Plim - Partial Likelihood Infection Modelling

Barry Rowlingson, Peter Diggle
July 22, 2011

The Problem

Our data typically consist of reports of cases of an infectious disease. These cases
are discretised in space by being reported within a known region, and discretised
in time by a reporting date - usually a day or week for human infectious data.

Along with the data, we need the baseline population at risk for each region.
We only consider situations where the number of cases is small relative to the
population, and we do not reduce the population at risk as cases occur. In the
current implementation the population must be constant in time, so we cannot
currently adjust for large population changes during the time-span of the data.

Our aim is to model how the infectivity and susceptibility of regions depends
on region-level covariates. Hence we need another dataset of covariate values
for each region. This can in principle vary in time if there are known changes
to the status of the regions. Each covariate gets a corresponding parameter for
infectivity and susceptibility.

To account for spatial dependence in the model we need to specify the relative
rate of transmission between pairs of regions. Typically this will be some kind
of distance-decay function, but full flexibility is implemented. The transmission
rate between two regions can also vary in time, perhaps to adjust for regions
being quarantined as an epidemic progresses.

We also need to know the time period for which a case is infectious. In the
current implementation this is a constant value.

With all these items prepared the model is fitted using maximum partial like-
lihood. The resulting ouput consists of parameter estimates and an empirical
Hessian matrix. From this, approximate standard errors on the estimates can
be computed. Parameters significantly non-zero can be interpreted as the corre-
sponding covariate having a significant effect on the infectivity or susceptibility
of the regions.

The Statistical Model

We have:

e m regions in our study area, with populations n, for r =1...m.

e N cases of times and regions (tg,r;) for k =1...N.

e A vector of possibly time-varying explanatory variables for each region,
Z(t).

e A matrix of regional pair-wise explanatory variables w;;(t), for 7,7 in 1..N
— this is also possibly time-varying.

e J, the length of time that a case is infectious.

We then model the infectivity, A;, of a case in region i and the susceptibility,
B; of an individual in region j as log-linear terms with the covariates and some
parameters a, 3:

Ai(t) = exp(Zi(t))
Bj(t) = exp(Z;(t)'B)

The transmissivity, W;; between an infected case in region 7 and a susceptible
individual in region j is then some function f() of the w;; matrix and a vector
of parameters ~:

Wii(t) = flwi(t);)

The form of f() is chosen appropriately for the nature of the problem.
Then the total rate of transmission from an infectious individual in region ¢
to a susceptible in region j is:

ij(t) = Ao(t)Ai(t)B;(t)Wij(t)

where Ag(t) models any change in transmission over the study period, in-
cluding changes in case ascertainment for any reason, as long as such change is
applied equally across the regions.

Using partial likelihood means we do not need to model or fit A(¢), since
this cancels out in the partial likelihood formula. We condition on the observed
case times, and work out the probabilities of the cases occuring in the given
regions as opposed to all the other regions.

By this model, a case at time ¢ can only occur if there are infected cases at
that time. Cases that occur when there are no infectious cases active add no
information to the likelihood and so do not contribute, except as possibly active
infections at the next time point.

If we define M,.(t) as the total number of cases in region r from time ¢ to
t — J, then we can write the probability of a case at time ¢ being in region r
given there is a case somewhere at time t as:

np 325 Mj () A (1)

P.(t) = > (niszj(t))\ji(t))

In this formula the A\o(t) cancels out, leaving us just with the A, B, and W
terms in A;;(t).

To compute the partial log-likelihood we loop over all the times at which we
have cases to get L:

N
L(a, B,y) = Zlog(PTk(tk))
k=1

and then maximise L over («, 3,) to get parameter estimates. Approximate
standard errors can be returned by optimisation functions.

The Package

The package loads in the usual way, and checks for the presence of OpenMP
functionality. When found, it will print how many threads the system will use.

> library(plim)

OpenMP available, will use 2 threads

Data

Swine flu data for California was searched for on the internet. Reports for
incidence by county were found on the California Department of Public Health
web pages. These took the form of weekly tables of cumulative total cases. The
data was scraped from the web and converted to weekly incidence.

Problems with the data meant that some values needed to be imputed, such
as when a cumulative count decreased in time. Cases were then randomly as-
signed to a day within the week. Missing values were linearly interpolated. The
resulting dataset, distributed with this package, should not be treated as an
accurate source of swine flu case counts for California, but merely used as an
illustrative example. The structure mirrors the original inspiration for the de-
velopment of the software which was an application to three areas in the UK
during the early stage of the 2009 outbreak.

The case data is a two-column data frame, with 2464 cases. The first column
is the standard US FIPS code for the county, and the second column is a vector
of Date objects:

> summary (caFluCases)

region day
Length:2464 Min. :2009-05-29
Class :character 1st Qu.:2009-07-29
Mode :character Median :2009-08-17
Mean :2009-08-16
3rd Qu.:2009-09-12
Max. :2009-09-26

> head(caFluCases)

region day
F06001 2009-06-06
F06001 2009-06-07
F06001 2009-06-09
F06001 2009-06-25
F06001 2009-06-20
F06001 2009-07-02

DO WN

We can plot a histogram of the weekly total cases:

> hist(caFluCases$day, "week",xlab="Date",main="2009 Swine Flu")

2009 Swine Flu

Density
0.015 0.020
|]

0.010
|

0.005
|

0.000
L

I L L L L L L L L L L
May Jun Jun Jul Jul Aug Aug Aug Sep Sep

Date

The abrupt ending is due to the reporting changing from cases to hospitali-
sations. By then there is enough data for an example anyway.
Next some census data was obtained from online sources. To avoid distribut-

ing county boundaries with the package, a Spatial Points Data Frame is given,
using the centroid locations of each county.

> library(sp)

> plot(caCountyData)

> axis(1)
> box()
oy 4
+ + + +
+ . +
+ + +
++4t
4t gt
+ T
+3 + o+
+ + +
++ + +
+ + +
+ 4+
+ o+
+
+ o .
+ +
+ +
T T T T T T
-4e+05 -2e+05 0e+00 2e+05 4e+05 6e+05

Fach county has data relating to the distribution of ethnicity of its popula-
tion and its economic state. The following table describes the columns in the

data:

Column Name | Description
NAME | County Name
FIPS | FIPS county code
nWhite | white population count
nBlack | black population count
nNative | native population count
nAsian | asian population count
nPacific | hawaiian/other pacific islander count
nMixed | two or more races count
Population | total population
houseValueMed | median value of specified owner-occupied housing units
houseIncomeMed | median household income
pPeoplePoverty | people of all ages in poverty
fCivUnemp | civilian labor force unemployment

We can plot the total cases per population by county - first use table to get

the total cases, and then plot using a scaled symbol. Notice how we use factor
to both include the counties with zero cases in the data and ensure the totals
are in the same order as the spatial data:

> totalCases = table(factor(caFluCases$region,

+ levels=caCountyData$FIPS))

> plot(caCountyData, cex=0.5+10000* (totalCases/caCountyData$Population),pch=1)
> box()

(e} o
o °
o
o ° @)
00 4% &
° °
[¢] B °
OOO
° 00
o
o o
oO [e) o
[} © o
(e} ° o
° o

Fitting The Model

We set delta to 3 since flu cases are assumed to be infective for three days.
Then for convenience we get the region codes and number of regions from the
county data frame:

> delta = 3
> R = caCountyData$FIPS
> nRegions = length(R)

To prepare the data we need to specify which column contains the region
IDs and which is the time - this is done by the stCases function which returns
the same data frame but with an extra attribute so that plim knows where to
get the region and time from. Although this seems pointless here, when data
has more than two columns it becomes essential. [Later revisions of the package
may use a formula-based method for this].

> caFluCases = stCases(caFluCases, "region", "day")

Next we have to specify the covariate matrix. Our covariates do not change
with time, so we use the constantCovariates function. We feed this a data
frame of scaled covariate values, nicely named, and set the row names to the

FIPS values. Evaluating this function at any time value returns the scaled
covariate matrix.

> Z1 = constantCovariates(

+ data.frame (

+ poverty = scale(caCountyData$pPeoplePoverty),

+ fWhite = scale(caCountyData$nWhite/caCountyData$Population),
+ row.names=R)

+)

> Z1

Covariate generator function

58 regions

2 explanatory variables (poverty,fWhite)
Time-invariant

> # show the first few rows at time O
> head(Z1(0))

poverty fWhite
F06001 -0.8376333 -2.9482490
F06003 0.3445911 -1.6322379
F06005 -0.9714700 0.6794125
FO06007 1.4598972 0.4733668
F06009 -0.5922660 0.9088201
F06011 -0.1461436 0.8696211

Again this may seem overkill for a simple two-column covariate matrix, but
it allows a more flexible framework to develop without breaking existing code.

Next we need the transmission rate factor between pairs of locations. This
is another possibly time-dependent matrix, so we use something that returns a
function of time. For the null model, we have f(w;;(t);7y) = 1 for all ¢, j at all
times. We use the constantTrans function to return a function that evaluates
to one at all time points. This transmissivity function has no v parameters:

> WO = constantTrans (matrix(1,ncol=nRegions,nrow=nRegions),R=R)
> WO

Transmission Matrix Generator
Fixed Transmission Model for 58 regions

> WO(0)[1:4,1:4]

F06001 F06003 FO06005 F06007

F06001 1 1 1 1
F06003 1 1 1 1
F06005 1 1 1 1
F06007 1 1 1 1

Not very exciting, but we can use distDecayTrans to implement a distance-
decay effect between two regions. This function takes a distance matrix (the w;;
values) and returns a function of time and two v parameters that control the
magnitude and range of the distance decay. We scale the distance to thousands
of kilometers (mega-metres?) to avoid large numbers.

> dMm = as.matrix(dist(coordinates(caCountyData)))/1e6
> W1 = distDecayTrans (dMm,R=R)
> W1

Transmission Matrix Generator
Distance Decay Model for 58 regions
1+exp(gamma[1])*exp(-(dmat) /exp(gamma[2]))

> W1(0,c(0,0))[1:4,1:4]

1 2 3 4
1 2.000000 1.810811 1.869155 1.797707
2 1.810811 2.000000 1.928331 1.823382
3 1.869155 1.928331 2.000000 1.853451
4 1.797707 1.823382 1.853451 2.000000
The plot method for W1 can be used to show how the relative rate varies
with distance under different parameter values:

par (mfrow=c(2,2))

plot(W1l,c(0,-1),0);title("low effect, long range")
plot(W1l,c(2,-3),0);title("high effect, short range")
plot(W1,c(0,-3),0);title("low effect, short range")
plot(W1l,c(2,-1),0);title("high effect, long range")
par (mfrow=c(1,1))

V V.V Vv \VvyVv

low effect, long range

high effect, short range

o
N
o E o
g © & —
2 2
8] <
g o & g
o o
o o
] o =
e e ———————————
T T T T T T T T T T T T T T
0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2
Distance Distance
low effect, short range high effect, long range
o
2 4
o E o
g o | g w© o
o - o
2 2
8] k]
& : - & N
D [=)
o o
— o —
e i —
T T T T T T T T T T T T T T
0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2

Distance Distance

Now we have everything ready to compute a null log-likelihood. Set the
alpha and beta parameters for the covariates to zero, and compute using the
constant transmission matrix:

> params=list (alpha=c(0,0),beta=c(0,0))
> nullModel = plimlik(params,caFluCases,delta,caCountyData$Population,Z1,W0)
> nullModel

[1] -7927.127

We can compute a likelihood for the model with a distance-decay transmis-
sion function by using W1 and including some gamma parameters:

> params = list(alpha=c(0,0),beta=c(0,0),gamma=c(2,-1))
> dModel = plimlik(params,caFluCases,delta,caCountyData$Population,Z1,W1)
> dModel

[1] -7872.713

Fitting a model is done with the plim function, and a set of initial values.
The default Nelder-Mead method failed to find a good solution, so we use the
BFGS option. The plimtable function shows a table of parameter values and
standard error estimates based on an empirical estimate of the Hessian matrix.

10

Estimate
alpha.poverty -2.01432705
alpha.fWhite -0.08222873
beta.poverty 0.29686612
beta.fWhite 0.17742046
gamma 2.67061242
gamma -2.78321959

Log-likelihood: -7707.305

Firstly note that our log-likelihood has increased by 219 for six degrees of
freedom, which is a highly significant change in deviance for the extra parameters

included.

>

>

+ method="BFGS"

+)

> fit.table = plimtable(fit)
> fit.table

Std. Error Z value

0.15746375 -12.
0.12331011 -0
0.03504676 8.
0.03195658 5
0.13253962 20.
0.11238172 -24.

792322

.666845

470571

.551923

149540

params = list(alpha=c(0,0),beta=c(0,0),gammas=c(2,-1))
fit = plim(params,caFluCases,delta,caCountyData$Population,Z1,W1,

Pr(>1Z1)
1.809840e-37
5.048712e-01
2.441920e-17
2.825447e-08
2.716255e-90

765768 2.096921e-135

This table then tells four things about the data:

e Increasing infectivity with decreasing poverty

e No evidence of a link between infectivity and ethnicity

e Increasing susceptibility with increasing poverty

e Increasing susceptibility with increasing fraction of population white

Interpretation of these results are for the epidemiologists and social scientists.
Perhaps affluent areas have more people travelling around, thus increasing the
infectivity, but they also take more measures to prevent getting ill in the first

place, thus decreasing their susceptibility?

Of course such debate is meaningless given the somewhat unauthoratitive
nature of the data presented here, but still represents the sort of debate we
have had with health providers in our motivating example of the UK swine-flu

epidemic.

To get an idea of the spatial structure, we can plot the distance-decay func-
tion at the parameters of the maximum likelihood fit, together with the curve at
plus and minus two standard errors of the fit to get some idea of the variability

of the estimate:

gfit = fit$par([5:6]
gse = fit.table[5:6,2]

+ VVVVVYV

11

s = seq(min(dMm) ,max (dMm) ,1en=100)*1000

Wv = cbind (Wf (s,gfit+2*gse) ,Wf (s,gfit-2%gse) ,Wf(s,gfit))

matplot (s, Wv,type="1",xlab="distance/km",ylab="relative rate",
1ty=c(3,3,1),col=c("#8DAOCB", "#8DAOCB", "black") ,1wd=c(4,4,2) ,1log="y")

Wf = function(d,gamma){1+exp(gamma[1])*exp(-(d/1000)/exp (gamma[2]))}

20
|

10

relative rate

I I I I I I I
0 200 400 600 800 1000 1200

distance/km

This shows us that the relative transmission rate at zero distance is between
10 and 20 times the rate at large distance, and also that the effect drops off such
that at 300km it is less than double.

Appendix: Writing your own transmission rate
functions

The package enables you to formulate new ways of specifying the transmission
rate between pairs of regions by the construction of new transmission matrix
generating functions. These are subclasses of standard R functions with some
extra attributes.

Consider the case where we have daily commuting flows between pairs of
regions. We would expect the transmission rate to be increasing with increasing
flow (unlike a distance-decay model where transmission rate decreases with in-
creasing distance). We may wish to model this with a simple linear relationship,
constrained to have positive slope and a positive intercept.

First we’ll set up a simple matrix of hypothetical commuter flows, with some
zeroes for regions where nobody works or lives:

> nR = 4
> M=matrix(as.integer (20*runif (nR*nR)* (runif (nR*nR)>.6)),ncol=nR)
> rownames (M)=letters[1:nR]

12

> colnames(M)=letters[1:nR]

> M

a b c d
a0 0 13 19
b8 0 013
cO0O O O O
do16 0 O

Now we need a function of time and gamma parameters which returns the
values of the linear function of the matrix. Since the optimiser works with
unconstrained parameter values, we exponentiate gamma so the effective values
are always positive:

> c¢1 = function(t,gamma){
+ return(exp(gamma[1]) + exp(gamma[2]) * M)
+ }
> ¢1(0,¢(0.5,0.2))
a b c d
1.648721 1.648721 17.526957 24.855374
11.419943 1.648721 1.648721 17.526957
1.648721 1.648721 1.648721 1.648721
1.648721 21.191165 1.648721 1.648721

o0 o e

The problem with this is that it relies on the existence of matrix M outside
of itself. If you change M then the function will return other values. We could
perhaps have a function that took M as a parameter value, but that would mean
that when the likelihood function tries to evaluate the transmission rates it
would have to know how to call it.

To solve all this we write a function that returns a function. This ensures
that:

e The interface for all transmission rate functions is the same: a function of
the time and a vector of parameters

e Any data needed by the function is encapsulated statically within the
function.

There are some further requirements that the plim routines need to know
about transmission rate functions:

e How many gamma parameters does it take?

Is it constant over time?

e What are the region names?

e How many regions are there?

13

This information is attached to the transmission function by attribute values.
A sample transmission rate function constructor then looks as follows:

> LinearTrans = function (mat, R = row.names (mat))

+ {

+ force(mat) #otherwise 'mat' isn't visible in function ct
+ ct = function(t, gamma) {

+ return (exp(gamma[1]) + exp(gamma[2]) * mat)

+ }

+ attr(ct, "ngamma") = 2

+ attr(ct, "regions") = R

+ attr(ct, "tconst") = TRUE

+ attr(ct, "size") = nrow(mat)

+ class(ct) <- c("plimtrans", "incLinearTrans", "function")
+ return(ct)

+

}

Typical usage would then be:

> L = LinearTrans (M)
L(0,c(0.5,0.2))

\

a b c d
1.648721 1.648721 17.526957 24.855374
11.419943 1.648721 1.648721 17.526957
1.648721 1.648721 1.648721 1.648721
1.648721 21.191165 1.648721 1.648721

Q0 o e

This object can then be passed into plim and the likelihood will be max-
imised over the two gamma parameters.
A number of transmission generator functions are included in the package:

e constantTrans returns the input matrix as its output. Useful for null
models or known fixed offsets.

e distDecayTrans the two-parameter distance decay effect used in the Cal-
ifornia flu example

e incLinearTrans a version of LinearTrans, but with more error checking

e piecelLinearTrans a piecewise-linear version of incLinearTrans.

The source code for each of these is readable and serves as further illustration.

14

