
Basic fpWeb Tutorial

Mario Ray Mahardhika

License
This tutorial is licensed under CC BY-SA, you should find a copy of the license as a file named LICENSE. If not,
please find one in Creative Commons website.

https://creativecommons.org/licenses/by-sa/4.0/

Table of Contents

License
Table of Contents
Introduction
Architecture (PLEASE read)

Application
Web Modules

Installation
Hello, World!
Reading GET & POST data

Reading GET
Reading POST
Reading File Uploads

Cookies
Setting
Getting

Sessions
Activating
Session Variables Manipulation
Terminating

Routing
Old Mechanism

Using Multiple Modules
Using Actions

Request Handling Flow
Add Actions to Web Modules
Default Action

New Mechanism
Route Syntax
Registering a Route

Using Templates
At Action Level
At Module Level
Using Separated Template

Tips and Tricks
Returning Different HTTP Response Code
Redirect Request to Different URL
Serving Static Files (Embedded Web Server)
Centralize Management of Configuration and Modules
Terminating Gracefully (FastCGI / Embedded Web Server)
Custom Exception Handler
Pure Hand Coding (No Form Designer Required)

Introduction
fpWeb is a web application framework shipped by FPC in its default distribution as a part of fcl-web
package. The framework itself is built on top of fcl-web features. The framework is built with RAD mind to
make a good use of componentization in producing dynamic content. A Lazarus package is provided that
can use the framework in a drag n drop manner for its session management and content production.

This tutorial will attempt to cover basic functionality of fpWeb, so that one can build common web
application with it. Note that this tutorial does NOT attempt to teach HTTP protocol, HTML, CSS, JavaScript
or database manipulation as the protocol and client languages should be the prerequisites for every web
application programmer and database manipulation does not differ from desktop implementation.

Architecture (PLEASE read)
Before starting, it's necessary to know the architecture and application flow to avoid confusion when certain
things don't work or work unexpectedly. So please spend some time reading this section.

Application

Application here refers to the protocol that your app will implement. fpWeb will happily switch from CGI,
FCGI, Apache module to embedded server, and more if fcl-web implements another one in the future. Each
application is implemented in its own unit, so to switch from one application to another, with the exception
of Apache module, one just needs to change the respective identifier in the uses clause. Currently (as of
3.0.0 / 3.1.1), they are:

fpCGI -> CGI
fpFCGI -> FastCGI
fpApache (requires httpd as well) -> Apache module
fpHttpApp -> embedded server

Throughout this tutorial, we will use embedded server for the sake of simplicity because you don't have to
deal with setting up virtual server and messing up with complicated configuration file and service
management. Your app will be a single binary portable web application! Another reason would be there are
more than just one web server application out there and each has different way to configure. It would be
overkill to cover all of them while their documentation already does the job.

Apache module is implemented as a (dynamic) library, while other protocols are normal application. Each
application may have specific properties (such as port) available and meaningful only to that application.
That's why if you look at fcl-web examples, .lpi / .lpr pairs for each protocol are put in their own directories,
only the web modules are shared.

Web Modules

fpWeb applications consist of web modules which does the actual content production. Web module can
contain web actions that can divide the functionality even more specific. For instance, an auth web module
might have login and logout web actions. While an about web module might not need an action at all and
serves just one content. Web module is integrated with fpTemplate that can be used for producing dynamic
content from a template file. This is roughly similar to what PHP does, only the gap between logic and
presentation is forced rather than suggested. Some say that fpTemplate implements passive view while PHP
by default implements active view design pattern.

Installation
fpWeb package for Lazarus is not installed by default (but it's shipped). So light up your Lazarus and choose
Package->Install/Uninstall Package , in the Available for installation listbox, look for weblaz

and press `Install selection . Press Save and rebuild IDE and confirm with Continue`. Let the IDE rebuild
and restart itself. If everything goes well, you should now have fpWeb tab in the component palette.

Installed weblaz package

Hello, World!
As commonly taught when learning programming, "Hello, World!" will be our first app. Open up Lazarus and
choose Project->New Project then pick "HTTP server Application".

Create new HTTP server application

Another dialog shall appear for serving static files, port selection and multithreading. You may skip the static
files serving (go to tips and tricks section if you want to know it more) and optionally modify the other
options but it won't matter much in this tutorial.

Static files, port selection and multithreading options

IMPORTANT!:

If you choose to use threads on *nix, don't forget to add cthreads as the first unit in the .lpr's uses clause,
otherwise a RTE 232 will be generated. When running from console, a message:

"This binary has no thread support compiled in. Recompile the application with a thread-driver in the
program uses clause before other units using thread."

shall appear.

Since Jan 14, 2017 (or FPC 3.0.4), you may need to open the .lpr and add the following line in the main body
if it's not already there:

Application.LegacyRouting := true;

reason will be explained in chapter Routing.

Whatever you choose, pick "OK" and you'll be presented in the default one module fpWeb app. Focus the
module and move to object inspector. Feel free to rename the module if you wish. Choose Events tab and
click the button at the right of the second column of the OnRequest row to create the event handler.

Creating web module's OnRequest handler in the object inspector

You will be redirected to the source editor with the following code:

Fill in the event with:

procedure TFPWebModule1.DataModuleRequest(Sender: TObject; ARequest: TRequest;
 AResponse: TResponse; var Handled: Boolean);
begin
 |
end;

1
2
3
4
5

Then run your app. Remember the port you select previously or simply open the .lpr to see it. Open your
browser and type:

http://localhost:<your selected port>/

You should see "Hello, World!" displayed. If it doesn't, check below:

The framework does a lot of exception handling and the IDE's debugger might catch them and interrupts
your app. It's OK to add most of the exceptions to the ignore list so you can concentrate more on your app
flow. Keep skipping and continue until no more dialog appears and the browser shows the output.

Handled := true is the way we tell the framework that the request has been handled. Not setting it (or
setting it to false) will show error page instead. For now, this doesn't affect the request flow yet, but it will be
later on. So keep it that way until the time comes to further make a good use of it.

procedure TFPWebModule1.DataModuleRequest(Sender: TObject; ARequest: TRequest;
 AResponse: TResponse; var Handled: Boolean);
begin
 AResponse.Content := 'Hello, World!';
 Handled := true;
end;

1
2
3
4
5
6

Reading GET & POST data
A dynamic content is likely to be triggered from user input, either through forms, providing values in the
URL, etc. Those data are sent along the request, which is represented in the method as ARequest

parameter of type TRequest .

Reading GET

GET data is provided as ARequest.QueryFields , which is a TStrings descendant. In short, whatever you
usually do with TStrings, is applicable here such as accessing the data in a map style through the Values
property.

Reusing above code, replace the method body with:

ARequest.URI is just a convenience to refer to the current URI, so even when you change your registered
module or action name, this code stays the same.

Note that as in Pascal, referring to the data is done case insensitively.

Now you can try requesting /, which will display

Please tell me your name

and /?name=<write anything here, e.g.: Bob>, which will display

Hello, Bob!

Reading POST

procedure TFPWebModule1.DataModuleRequest(Sender: TObject; ARequest: TRequest;
 AResponse: TResponse; var Handled: Boolean);
var
 LName: String;
begin
 LName := ARequest.QueryFields.Values['Name'];
 if LName = EmptyStr then
 with AResponse.Contents do begin
 Add('<form action="' + ARequest.URI + '" method="GET"');
 Add('<label for="name">Please tell me your name:</label>');
 Add('<input type="text" name="name" id="name" />');
 Add('<input type="submit" value="Send" />');
 Add('</form>');
 end
 else
 AResponse.Content := 'Hello, ' + LName + '!';
 Handled := true;
end;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

POST is actually doesn't differ much from GET, only differs in which property to access. If GET is accessed
through ARequest.QueryFields , POST is accessed through ARequest.ContentFields . POST style of
previous code is:

Reading File Uploads

One exception is for reading multipart/form-data fields, i.e. files. That one is available in
ARequest.Files as a TUploadedFiles instance, which is a TCollection descendant. The following is

TUploadedFiles public interface which you can use to access the files:

Each TUploadedFile itself has several properties:

procedure TFPWebModule1.DataModuleRequest(Sender: TObject; ARequest: TRequest;
 AResponse: TResponse; var Handled: Boolean);
var
 LName: String;
begin
 LName := ARequest.ContentFields.Values['Name'];
 if LName = EmptyStr then
 with AResponse.Contents do begin
 Add('<form action="' + ARequest.URI + '" method="POST"');
 Add('<label for="name">Please tell me your name:</label>');
 Add('<input type="text" name="name" id="name" />');
 Add('<input type="submit" value="Send" />');
 Add('</form>');
 end
 else
 AResponse.Content := 'Hello, ' + LName + '!';
 Handled := true;
end;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

TUploadedFiles = Class(TCollection)
...
public
 Function First : TUploadedFile;
 Function Last : TUploadedFile;
 Function IndexOfFile(AName : String) : Integer;
 Function FileByName(AName : String) : TUploadedFile;
 Function FindFile(AName : String) : TUploadedFile;
 Property Files[Index : Integer] : TUploadedFile read GetFile Write SetFile;
default;
end;

1
2
3
4
5
6
7
8
9

10

They should be descriptive enough, with the exception of FileName and LocalFileName . FileName is
the original file name as uploaded from client, LocalFileName is the file path in the server where the file
is temporarily stored. Note the difference in bold terms above.

Again, reusing the same request handler:

drag n drop a file (preferably text, as it's will be rendered as text) to the input file field (or click the respective
button) then click Send button. The file content should be displayed.

TUploadedFile = Class(TCollectionItem)
...
Public
 Destructor Destroy; override;
 Property FieldName : String Read FFieldName Write FFieldName;
 Property FileName : String Read FFileName Write FFileName;
 Property Stream : TStream Read GetStream;
 Property Size : Int64 Read FSize Write FSize;
 Property ContentType : String Read FContentType Write FContentType;
 Property Disposition : String Read FDisposition Write FDisposition;
 Property LocalFileName : String Read FLocalFileName Write FLocalFileName;
 Property Description : String Read FDescription Write FDescription;
end;

1
2
3
4
5
6
7
8
9
10
11
12
13

procedure TFPWebModule1.DataModuleRequest(Sender: TObject; ARequest: TRequest;
 AResponse: TResponse; var Handled: Boolean);
var
 n: Integer;
 f: TUploadedFile;
 i: Integer;
begin
 n := ARequest.Files.Count;
 if n = 0 then
 with AResponse.Contents do begin
 Add('<form id="form" action="' + ARequest.URI + '" method="POST"
enctype="multipart/form-data">');
 Add('<label for="name">Drag n drop or click to add file:</label>');
 Add('<input type="file" name="input" />');
 Add('<input type="submit" value="Send" />');
 Add('</form>');
 end
 else begin
 f := ARequest.Files[0];
 AResponse.Contents.LoadFromStream(f.Stream);
 end;
 Handled := true;
end;

1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22

Cookies

Setting

Cookies are browser responsibility to save and keep, therefore server need to send it as part of the
response in order to set one. AResponse.Cookies contains a list of cookies to be sent. It's a descendant of
TCollection , respectively the contained TCookie is a descendant of TCollectionItem . Therefore, you

can use TCollection way of managing items to manipulate it.

Here's an example:

You won't see any output in your browser. But if you use some kind of developer tools (Chrome has one
built-in), you can see the response header:

Set-Cookie response header in Chrome's developer tools

Note that cookie has attributes, so Name and Value is not the only two you can set. Browse TCookie
interface to see what properties are supported.

Getting

Once you give Set-Cookie header above, subsequent request to your site will contain additional header
containing the value you ask to set previously:

procedure TFPWebModule1.DataModuleRequest(Sender: TObject; ARequest: TRequest;
 AResponse: TResponse; var Handled: Boolean);
var
 C: TCookie;
begin
 C := AResponse.Cookies.Add;
 C.Name := 'mycookie';
 C.Value := 'somevalue';
 Handled := true;
end;

1
2
3
4
5
6
7
8
9
10

Cookie request header in Chrome's developer tools

Fortunately, the way to read it is no different from GET & POST data. The related property is
ARequest.CookieFields . To read previously set cookie:

procedure TFPWebModule1.DataModuleRequest(Sender: TObject; ARequest: TRequest;
 AResponse: TResponse; var Handled: Boolean);
begin
 AResponse.Contents.Add('<p>Cookie get: ' + ARequest.CookieFields.Values['mycookie']
+ '</p>');
 Handled := true;
end;

1
2
3
4

5
6

Sessions
TFPWebModule is a descendant of TSessionHTTPModule, so it has session management capability. Session
is module based, so each module may choose to use or not to use session management.

Session is implemented in abstract manner. By default, no implementation is provided. One sample
implementation using .ini files is given in iniwebsession unit. You must have this unit in your project or
implement one for session management to work. If you decide to implement one, basically you need to
extend and implement abstract methods in TCustomSession and TSessionFactory classes.

Activating

To activate session management, set CreateSession property to true. Session will be started prior to
request handling. In case of a new session, OnNewSession will be called. Initialize your session variables
here.

Session Variables Manipulation

Session variables are provided as Session.Variables . This is a string to string map like structure, so you
can read / write it like:

Setting a variable to empty string does not remove it. If you really want to remove a variable, call
Session.RemoveVariable instead.

Terminating

Call Session.Terminate whenever you want to terminate a session (e.g.: user logout). Session will also
automatically expire if the next request comes after Session.TimeOutMinutes since last request. When
session terminates, OnSessionExpired will be called. Do whatever cleanup you need there.

Session.Variables['myvar'] := myvar; // write
...
myvar := Session.Variables['myvar']; // read

1
2
3

Routing
Since FPC 3.0.4, a new routing mechanism has been implemented. Instead of maintaining backward
compatibility, it is decided that the new routing will be the default. Thus, any old code (or new code
depending on old routing) must be ported by adding:

Application.LegacyRouting := true;

in the .lpr.

Old Mechanism

Using Multiple Modules

You can have multiple modules in your app. Click "File" menu, then click "New...". A dialog shall appear,
select "Web Module" from the treeview.

Add new web module

then click OK.

With multiple modules exist in your app, you can no longer request just with /. The framework will not be
able to magically select which module must serve the response, so there are two ways to state which
module you'd like to call:

1. /<module name>
2. /?module=<module name>

In the 2nd format, you can change "module" (which is the default value) to whatever valid query string key
by modifying Application.ModuleVariable .

Using Actions

So far, we've only used web modules with single request handler. This doesn't scale much as your web app
gets more and more complex. Moreover, some features might have shared properties and be better
logically grouped, e.g.:

Account module

Login action
Logout action
Register action

Product module

Create action
Update action
Delete action
Details action

Request Handling Flow

Before using action, it is important to know fpWeb request handling flow. Failing to do so might render your
action useless because it's always your data module that handles the request. How could that be? Going
back a few chapters, remember the Handled := true that we always did before? Now this is where
Handled parameter comes into play.

Every requests will go through module's OnRequest first, regardless the requested action. Only if it does
not set Handled to true, web action's OnRequest is executed.

In general, the request flow is:

fpWeb request flow

Notice the "Our Concern" box, that's what we're going to put our attention at.

Add Actions to Web Modules

To add an action, select the web module then go to object inspector. In the properties tab, select Actions
and click the button on the second column.

Manage actions button in object inspector

A popup window shall appear where you can add, delete and reorder actions.

Manage actions button in popup window

Press Add, a new action shall appear in the list. Select it then go to object inspector. It will currently show
properties and events of that newly created action. Rename the Name property (this will be the name you
write in the URL, so give it a short, simple but descriptive name) as you wish, I will choose "Hello". Move on
to events tab, do the same as OnRequest for module, click button on the right of OnRequest row to create
the request handler.

Creating web action's OnRequest handler in the object inspector

You will be presented in the same OnRequest interface, but this one handles web action instead of web
module. Whatever you can do in web module's OnRequest can be done here as well. Copy the method body
from the "Hello, World!" section.

Remember to remove Handled := true from the previous web module's OnRequest body (or remove the
event completely) for the action to take care of the request handling.

Run your project, and fire up your browser. Now, since the request handling is delegated to web action, you
can no longer just request /, but you need /<action name> or <Module's ActionVar property>=<action
name>. Note that <Module's ActionVar property> has a default value of empty string, unlike
Application.ModuleVariable which has "module" as the default value. So, by default, you can only use

the /<action name> form.

If you have multiple modules, then you have a variety of options:

1. /<module name>/<action name>
2. /<module name>?action=<action name>
3. /<action name>?module=<module name>
4. /?module=<module name>&action=<action name>

Note that as soon as a module have at least one action, /<module or action name> alone will by default
map to /<action name>. To change the behavior such that it maps to /<module name> by default, set
Application.PreferModuleName to true . In case of multiple modules, if no module name given, then the

default module will handle the given action. To change the behavior such that module name must be
explicitly given, set Application.AllowDefaultModule to false .

The following tables summarize what will happen based on the two properties:

/<module or action name>
Application.PreferModuleName

true false

Application.AllowDefaultModule

true
/<module
name>

/<default module>/<action
name>

false
/<module
name>

ERROR

Default Action

Remember the previous diagram, the "Delegate request handling to actions" is actually not so simple, but if
we expand that diagram, the image will be too big to fit. So, here's the diagram of that part:

Request delegation to action flow

Two important things from the flow: DefActionWhenUnknown and a default action. The former is a web
module's property while the latter corresponds to Default property of an action. In the latter case, in case
there are more than two actions having Default property set to true, the the action order (as how it's
shown in the manage actions popup window) will be considered to decide which is the default action. The
two properties forms what the application should do if no matching action found for a given request.

Request with
invalid action name

DefActionWhenUnknown

true false

Action.Default

true
Request handled by
default action

Error: No action found for
action: <action name>

false
Error: Invalid action name
and no default action

Error: No action found for
action: <action name>

Request without
action name, i.e.: /

DefActionWhenUnknown

true false

Action.Default

true
Request handled by
default action

Request handled by
default action

false
Error: No action name and no
default action

Error: No action name and no
default action

The following tables summarize what will happen based on the two properties:

In case of error response above, a stack trace shall follow, complete with line number information if you
build your app with -gl. We'll see later on how to create custom handler for this (stacktrace are no good for
production). But for now, make sure you understand the concept of web module and web action, especially
the request flow. Play around until you think you're ready for next section.

New Mechanism

The new mechanism is extremely flexible and works even without data modules (old mechanism only works
with data modules).

A dedicated unit for this routing is provided as httproute (add this to uses clause of program / unit where
you want to register routes). The unit contains a function HTTPRouter that will return singleton object
responsible for application's route management and has RegisterRoute method to register your route.

Route Syntax

The first parameter of HTTPRouter.RegisterRoute is the route that will be matched against incoming
request. It can be as simple as * above, which means 0 or more paths or simply any paths, up to as
complex as /api/v1/:resource/* which means REQUEST_URI header should start
with /api/v1/ followed by something else that will be bound to variable named resource and finally
ended with 0 or more paths. It will match:

/api/v1/products

/api/v1/products/1

/api/v1/products/1/clone

/api/v1/products/something/else/that/is/really/long/and/silly

but not:

/api/v1

/excuse/me/api/v1/products

Basically there are only 3 special characters:

* denoting 0 or more paths
:param denoting a part
/ denoting part separator

your route will be composed of these 3 characters, plus everything else that made up a route.

Registering a Route

The 2nd, 3rd or 4th parameter (depending on whether you want to handle specific HTTP method and/or
pass additional data to it) of HTTPRouter.RegisterRoute is overloaded with several possibilities:

Callback procedure

Callback event

Object satisfying a (CORBA) interface

Object extending abstract router class

By default, if 2nd parameter is not a TRouteMethod , then all HTTP methods will match. Use one
of rmUnknown,rmAll,rmGet,rmPost,rmPut,rmDelete,rmOptions,rmHead, rmTrace to match only a
specific HTTP method.

Registration order matters. If there are two or more routes matching the current request, the earlier
registered one will handle it.

In this new mechanism, standalone Hello, World! program can be as simple as:

TRouteCallback = Procedure(ARequest: TRequest; AResponse);1

TRouteEvent = Procedure(ARequest: TRequest; AResponse) of object;1

IRouteInterface = Interface ['{10115353-10BA-4B00-FDA5-80B69AC4CAD0}']
 Procedure HandleRequest(ARequest : TRequest; AResponse : TResponse);
end;

1
2
3

TRouteObject = Class(TObject,IRouteInterface)
Public
 Procedure HandleRequest(ARequest : TRequest; AResponse : TResponse); virtual;
abstract;
end;

TRouteObjectClass = Class of TRouteObject;

1
2
3

4
5
6

uses
 fphttpapp, httpdefs, httproute;

procedure DoHello(ARequest:TRequest; AResponse : TResponse);
begin
 AResponse.Content:='<html><body><h1>Hello,World!</h1></body></html>'
end;

begin
 HTTPRouter.RegisterRoute('*',@DoHello);
 Application.Port := 9000;
 Application.Initialize;
 Application.Run;
end.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Using Templates
fpWeb has integrated support for FPTemplate, Free Pascal's generic templating engine. It doesn't have to be
used from web application context, but with integrated support things will be easier a bit. At least the
memory management can be ignored as the module will take care of it.

There are two levels where one can use templates at: action and module. The full RAD support is
incomplete, so you need to go down to hand coding at some points.

There are two modes of operation: non-parameterized and parameterized. The active mode is controlled by
AllowTagParams property, which should be obvious enough what value refers to what mode.

Template string can be given from a file through FileName property or a direct string through Template
property. Template.Template, I know it sounds weird :) If both are filled then FileName will take
precedence.

The two properties: StartDelimiter and EndDelimiter define how the engine should recognize a
template tag. For instance, if you have:

StartDelimiter = '{+'
EndDelimiter = '+}'

then a string '{+title+}' defines a template tag named 'title'. Note that spaces are significant, so '{+ title +}'
defines a template tag named ' title ' instead of just 'title'.

Special for parameterized mode, additional three properties: ParamStartDelimiter , ParamEndDelimiter
and ParamValueSeparator defines how the engine should recognize a template tag parameter. For
instance, if you have:

ParamStartDelimiter = '[-'
ParamEndDelimiter = '-]'
ParamValueSeparator = '='

then a string '{+data [-p=v-][-a=b-] +}' defines a template tag named 'data' with parameter 'p' of value 'v' and
parameter 'a' of value 'b'. This can be used to pass template level parameter such as expected date format,
header-row-footer for customizable output presentation, name of file, etc. you decide.

As a consequence of different way of operation, the core event where the template works is different, too.
Non-parameterized will use OnGetParam while the parameterized will use OnReplaceTag . The two has of
course different interface:

Type
 // OnGetParam: for simple template tag support only (ex: {Name})
 TGetParamEvent = Procedure(
 Sender : TObject;
 Const ParamName : String;
 Out AValue : String
) Of Object;
 // OnReplaceTag: for tags with parameters support
 TReplaceTagEvent = Procedure(
 Sender : TObject;
 Const TagString : String;

1
2
3
4
5
6
7
8
9
10
11

In OnGetParam , you check for ParamName , then assign AValue accordingly. i.e., if you want tag 'title' to be
replaced by 'My App', then fill in the method with:

In OnReplaceTag , you check for TagString and optionally TagParams , then assign ReplaceText

accordingly. i.e., if you want tag 'datetime' to be replaced by current time with parameter 'datetimeformat'
to specify how the date and time should be formatted, then fill in the method like this:

At Action Level

Create/select an action, then go to object inspector. You will see a subcomponent property named
Template . This template is a normal TFPTemplate instance. Expand it and fill in the properties as

explained above. Now go to Events tab, again expand Template , you will see the two events. Fill the one
based on your value of AllowTagParams property.

NOTE: If your Lazarus cannot autocomplete the event, try writing the name manually in the edit box then
click the ... button. This is a bug in present Lazarus which may be fixed in the future.

At this level, template with a content is not automatically set as request handler. It might change in the
future, but let's deal with its current state. Fill in OnRequest event of the action, then fill it with:

The cast is required since CurrentAction is of type TCustomWebAction instead of TFPWebAction .
Without it, we can't access the Template property.

At Module Level

 TagParams:TStringList;
 Out ReplaceText : String
) Of Object;

12
13
14

// use Trim() if you want the spaces around tag to be insignificant
case Trim(ParamName) of
 'title': AValue := 'My App';
 else AValue := 'UNKNOWN';
end;

1
2
3
4
5

// use Trim() if you want the spaces around tag to be insignificant
case Trim(TagString) of
 'datetime': AValue := FormatDateTime(TagParams.Values['datetimeformat'],Now);
 else AValue := 'UNKNOWN';
end;

1
2
3
4
5

with Actions.CurrentAction as TFPWebAction do begin
 AResponse.Content := Template.GetContent;
end;
Handled := true;

1
2
3
4

At module level, you currently have to do it by hand coding since no RAD support is implemented. The
linked property is ModuleTemplate . This is however not a regular TFPTemplate instance, but special
TFPWebTemplate class that's a descendant of it.

The idea here is to have module provide a layout while the actions provide content, with the ability to
provide additional variables. It's therefore a good idea to keep AllowTagParams as is and assign
OnGetParam event **of the module** only. Do NOT assign OnGetParam of ModuleTemplate as it will

never be called.

A template tag named 'content' will be replaced automatically by what content produced by action,
everything else is either replaced from internal template variables or from OnGetParam .

Using Separated Template

Despite the somewhat incomplete integration, nothing stops you from using fpTemplate (or any other
templating solutions) manually, outside from the integrated support. This could even be better in some
cases since it's modular.

Tips and Tricks

Returning Different HTTP Response Code

By default, fpWeb will return HTTP 200 OK to indicate successful request handling. This surely is not always
the case, as user input might not be as what we expected. To do so, set AResponse.Code in your request
handler to the code you want to return.

Redirect Request to Different URL

A common flow after a successful login is to redirect user to his account page. This can be done by calling
AResponse.SendRedirect in your request handler, supplying the URL to redirect request to.

Serving Static Files (Embedded Web Server)

Remember the dialog in the Hello, World! section after you select HTTP server Application? If you tick
"Register location to serve files from" you can fill "Location" (the URI segment, must not contain any slashes)
and "Directory" (physical directory in your computer, must exist at runtime) and the wizard will simply add:

to the beginning of your .lpr. You can actually do this by hand anytime and also register multiple times for
different locations / directories. After this you can request /<Location>/<any filename under

Directory> and it will be served automatically. Note that the mimetype of the file is determined by
fpmimetypes. Call MimeTypes.LoadFromFile with your mime.types file in order to give correct mimetype
based on its extension. Otherwise, the file will always be served as application/octet-stream which
means the browser will download it instead of interpreting it (especially important for JavaScript and CSS
files).

Centralize Management of Configuration and Modules

By default, the program file (.lpr) is the one that contains protocol unit. This limits the ability to use
Application object from other contexts such as from web modules. Fortunately, it's not difficult to

refactor to have what we want. We remove RegisterHTTPModule calls from web modules' units and left
out the .lpr to empty main block with single unit identifier in the uses clause, we name it: brokers. The unit
contains:

RegisterFileLocation('<Location>','<Directory>');1

unit Brokers;

{$mode objfpc}{$H+}

interface

{ $define cgi}
{ $define fcgi}

1
2
3
4
5
6
7
8

This way, we can control over web module registration and also provide an API to get Application object
(casted as TCustomWebApplication), while still easily switch between protocol implementations, in a single
place.

Terminating Gracefully (FastCGI / Embedded Web Server)

Instead of Ctrl+C-ing your app, there is a way for your app to terminate gracefully, doing whatever cleanup it
needs, by calling Application.Terminate . You might need to use previous trick to easily access the
Application object. A common implementation is to provide a specific password protected module /

action that calls the Terminate method. You may choose whatever way you want, though.

Custom Exception Handler

{$define httpapp}

uses
 CustWeb;

function GetApp: TCustomWebApplication; inline;

implementation

uses
 {$ifdef cgi}
 fpcgi
 {$endif}
 {$ifdef fcgi}
 fpfcgi
 {$endif}
 {$ifdef httpapp}
 fphttpapp
 {$endif}
 ,webmodule1
 ,webmodule2
 ;

function GetApp: TCustomWebApplication;
begin
 Result := Application;
end;

initialization
 RegisterHTTPModule('wm1', TWebModule1);
 RegisterHTTPModule('wm2', TWebModule2);
 {$ifndef cgi}
 Application.Port := 2015;
 {$endif}
 Application.Initialize;
 Application.Run;

end.

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

To override the default exception handler, which prints stacktrace whenever an exception is raised (i.e.: on
HTTP 404 or 500), and thus not good for production, you must assign
Application.OnShowRequestException . This is a method so you will need to provide an object that

implements the method and assign it by using the object. i.e.: if you have MyExceptionHandler as an
object of TMyExceptionHandler which has MyShowRequestException method, you can assign it by:

don't forget to .Create MyExceptionHandler BEFORE assigning above or you will get an
EAccessViolation !

Pure Hand Coding (No Form Designer Required)

It's not a must to use Lazarus' form designer to write an fpWeb application. You can use pure hand coding
technique to write it. The secret lies in the 3rd parameter of RegisterHTTPModule : SkipStreaming . When
this parameter is set to true, fpWeb will not search for .lfm resource. Therefore everything must be
manually handled: property settings, event handlers, action registration, etc.

Note that it's logical to do what's usually done through object inspector in an overriden constructor. Inside
it, call the inherited constructor supplying both AOwner and CreateMode as parameters. After that you can
set properties, assign event handlers, etc. Example:

Application.OnShowRequestException := @MyExceptionHandler.MyShowRequestException;1

type
 THelloWorldModule = class(TFPWebModule)
 constructor CreateNew(AOwner: TComponent; CreateMode: Integer); override;
 procedure Request(Sender: TObject; ARequest: TRequest;
 AResponse: TResponse; var Handled: Boolean);
 end;

constructor THelloWorldModule.CreateNew(AOwner: TComponent; CreateMode: Integer
);
begin
 inherited CreateNew(AOwner,CreateMode);
 OnRequest := @Request;
end;

procedure THelloWorldModule.Request(Sender: TObject; ARequest: TRequest;
 AResponse: TResponse; var Handled: Boolean);
begin
 AResponse.Content := 'Hello, World!';
 Handled := true;
end;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

