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The Conserved Variables - Traditional Implementation

double r[NX][NY][NZ];

double rux[NX][NY][NZ];

double ruy[NX][NY][NZ];

double ruz[NX][NY][NZ];

double E[NX][NY][NZ];

void forward_euler(double drdt, double druxdt, double druydt, double druzdt,

double dEdt, int i, int j, int k, double dt)

{

r[i][j][k] = r[i][j][k] + dt * drdt;

rux[i][j][k] = rux[i][j][k] + dt * druxdt;

ruy[i][j][k] = ruy[i][j][k] + dt * druydt;

ruz[i][j][k] = ruz[i][j][k] + dt * druzdt;

E[i][j][k] = E[i][j][k] + dt * dEdt;

}



The Conserved Variables - Structural Implementation

class Variable {

public:

double r;

vector3 ru;

double E;

};

Variable U[NX][NY][NZ];

void forward_euler(Variable dUdt, int i, int j, int k, double dt)

{

U[i][j][k] = U[i][j][k] + dt * dUdt;

}



The Conserved Variables - Operator Implementation

static inline Variable operator+(const Variable &a, const Variable &b)

{

Variable v;

v.r = a.r + b.r;

v.ru = a.ru + b.ru;

v.E = a.E + b.E;

return v;

}

static inline Variable operator*(const Variable &a, double n)

{

Variable v;

v.r = a.r * n;

v.ru = a.ru * n;

v.E = a.E * n;

return v;

}
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The Conserved Variables - Automated Operators

static inline Variable operator+(const Variable &a, const Variable &b)

{

Variable v;

for (auto M : Variable) v.*M = a.*M + b.*M;

return v;

}

static inline Variable operator*(const Variable &a, double n)

{

Variable v;

for (auto M : Variable) v.*M = a.*M * n;

return v;

}
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Domain Discretization - 3d Regular Grid

Variable U[NX][NY][NZ];

Variable Fx[NX+1][NY][NZ];

Variable Fy[NX][NY+1][NZ];

Variable Fz[NX][NY][NZ+1];

void update_variables(double dt)

{

for (int i=0; i<NX; i++) {

for (int j=0; i<NY; j++) {

for (int k=0; i<NZ; k++) {

U[i][j][k] -= dt * ((Fx[i+1][j][k] - Fx[i][j][k]) / dx +

(Fy[i][j+1][k] - Fy[i][j][k]) / dy +

(Fz[i][j][k+1] - Fz[i][j][k]) / dz);

}

}

}

}



Domain Discretization - General

array_over_cells<Variable> U;

array_over_faces<Variable> F;

void update_variables(double dt)

{

for (cell i: allcells()) {

for (face j: facesofcell(i)) {

U[i] -= dt * (j.area() / i.volume()) * F[j];

}

}

}
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The Flux Function

void point_flux(Variable &F, Variable U, dir d)

{

vector3 u = U.ru / U.r;

double p = (GAMMA-1) * (U.E - 0.5*U.ru*u);

F.r = U.ru * d;

F.ru = U.ru * (u * d) + p * d;

F.E = (U.E + p) * (u * d);

}
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Riemann Solver - HLL Implementation

void calculate_flux(Variable &F, const Variable &lU, const Variable &rU, dir d)

{

real sl, sr;

speeds2(sl, sr, lU, rU, d);

if (sl > 0) point_flux(F, lU, d);

else if (sr < 0) point_flux(F, rU, d);

else {

Variable lF, rF;

point_flux(lF, lU, d);

point_flux(rF, rU, d);

F = (sr*lF - sl*rF + sr*sl*(rU - lU))/(sr-sl);

}

}
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Second Order - Minmod

void interpolate(Variable &fU, face f, dir d, real pos)

{

cell i = f.cell();

Variable dU = 0.5*minmod(U[i+d]-U[i], U[i]-U[i-d]);

if (f.d == d) fU = U[i] - dU;

else fU = U[i] + dU;

}
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Source Terms

I Every Source Term is different

I Even simple ones might require well balancing

I Intrusive implementations

I ‘Aspect Oriented’ style



Code Insertion

const vector grav(0, 0, GRAVITY);

alter start calculate_simultaneous_sources(cell c)

{

S[c].m -= grav * U[c].rho;

S[c].E += grav * U[c].m;

}
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Availability

http://bitbucket.org/clef/clef/


