CLEF: A Framework for Solving Conservation-law Equations

Andrew McMurry

April 7, 2014

Finite volume method

$$
\begin{equation*}
U_{t}+\nabla \cdot F(U)=S(U) \tag{1}
\end{equation*}
$$

Finite volume method

$$
\begin{gather*}
U_{t}+\nabla \cdot F(U)=S(U) \tag{1}\\
\bar{U}^{i}=\frac{1}{V^{i}} \int_{V^{i}} U d V \tag{2}
\end{gather*}
$$

Finite volume method

$$
\begin{gather*}
U_{t}+\nabla \cdot F(U)=S(U) \tag{1}\\
\bar{U}^{i}=\frac{1}{V^{i}} \int_{V^{i}} U d V \tag{2}\\
\frac{1}{V^{i}} \int_{V^{i}} U_{t} d V+\frac{1}{V^{i}} \int_{V^{i}} \nabla \cdot F(U) d V=\frac{1}{V^{i}} \int_{V^{i}} S(U) d V \tag{3}
\end{gather*}
$$

Finite volume method

$$
\begin{gather*}
U_{t}+\nabla \cdot F(U)=S(U) \tag{1}\\
\bar{U}^{i}=\frac{1}{V^{i}} \int_{V^{i}} U d V \tag{2}\\
\bar{U}_{t}^{i}+\frac{1}{V^{i}} \int_{V^{i}} \nabla \cdot F(U) d V=\frac{1}{V^{i}} \int_{V^{i}} S(U) d V \tag{3}
\end{gather*}
$$

Finite volume method

$$
\begin{gather*}
U_{t}+\nabla \cdot F(U)=S(U) \tag{1}\\
\bar{U}^{i}=\frac{1}{V^{i}} \int_{V^{i}} U d V \tag{2}\\
\bar{U}_{t}^{i}+\frac{1}{V^{i}} \oint_{S^{i}} F(U) \cdot d S=\frac{1}{V^{i}} \int_{V^{i}} S(U) d V \tag{3}
\end{gather*}
$$

Finite volume method

$$
\begin{gather*}
U_{t}+\nabla \cdot F(U)=S(U) \tag{1}\\
\bar{U}^{i}=\frac{1}{V^{i}} \int_{V^{i}} U d V \tag{2}\\
\bar{U}_{t}^{i}+\sum_{j}\left(\frac{A^{j}}{V^{i}}\right) \bar{F}^{j}(\bar{U})=\frac{1}{V^{i}} \int_{V^{i}} S(U) d V \tag{3}
\end{gather*}
$$

Finite volume method

$$
\begin{gather*}
U_{t}+\nabla \cdot F(U)=S(U) \tag{1}\\
\bar{U}^{i}=\frac{1}{V^{i}} \int_{V^{i}} U d V \tag{2}\\
\bar{U}_{t}^{i}+\sum_{j}\left(\frac{A^{j}}{V^{i}}\right) \bar{F}^{j}(\bar{U})=\bar{S}^{i}(\bar{U}) \tag{3}
\end{gather*}
$$

Goals of the Framework

- Promote code re-use

Goals of the Framework

- Promote code re-use
- Support a library of standard algorithms

Goals of the Framework

- Promote code re-use
- Support a library of standard algorithms
- Avoid implementation specific dependencies

Goals of the Framework

- Promote code re-use
- Support a library of standard algorithms
- Avoid implementation specific dependencies
- Standard interfaces for algorithm types

Goals of the Framework

- Promote code re-use
- Support a library of standard algorithms
- Avoid implementation specific dependencies
- Standard interfaces for algorithm types
- Efficient executable

Problem

- The System of Equations

Problem

- The System of Equations
- The Conserved Variables

Problem

- The System of Equations
- The Conserved Variables
- The Flux Function

Problem

- The System of Equations
- The Conserved Variables
- The Flux Function
- Extra Information for Riemann Solver

Problem

- The System of Equations
- The Conserved Variables
- The Flux Function
- Extra Information for Riemann Solver
- Source Terms

Problem

- The System of Equations
- The Conserved Variables
- The Flux Function
- Extra Information for Riemann Solver
- Source Terms
- The Initial Conditions

Problem

- The System of Equations
- The Conserved Variables
- The Flux Function
- Extra Information for Riemann Solver
- Source Terms
- The Initial Conditions
- Boundary Conditions

Method

- Domain Discretization

Method

- Domain Discretization
- Riemann Solver

Method

- Domain Discretization
- Riemann Solver
- Order of Accuracy

Method

- Domain Discretization
- Riemann Solver
- Order of Accuracy
- Methods for Source Terms

Sections

Problem

- The System of Equations
- The Conserved Variables
- The Flux Function
- Extra Information for Riemann Solver
- Source Terms
- The Initial Conditions
- Boundary Conditions

Method

- Domain Discretization
- Riemann Solver
- Order of Accuracy
- Methods for Source Terms

The Conserved Variables - Traditional Implementation

```
double r[NX] [NY] [NZ];
double rux[NX] [NY] [NZ];
double ruy[NX] [NY] [NZ];
double ruz[NX] [NY] [NZ];
double E[NX] [NY] [NZ];
void forward_euler(double drdt, double druxdt, double druydt, double druzdt,
                        double dEdt, int i, int j, int k, double dt)
{
    r[i][j][k] = r[i][j][k] + dt * drdt;
    rux[i][j][k] = rux[i][j][k] + dt * druxdt;
    ruy[i][j][k] = ruy[i][j][k] + dt * druydt;
    ruz[i][j][k] = ruz[i][j][k] + dt * druzdt;
    E[i][j][k] = E[i][j][k] + dt * dEdt;
}
```


The Conserved Variables - Structural Implementation

```
class Variable {
public:
    double r;
    vector3 ru;
    double E;
};
Variable U[NX] [NY] [NZ];
void forward_euler(Variable dUdt, int i, int j, int k, double dt)
{
    U[i][j][k] = U[i][j][k] + dt * dUdt;
}
```


The Conserved Variables - Operator Implementation

```
static inline Variable operator+(const Variable &a, const Variable &b)
{
    Variable v;
    v.r = a.r + b.r;
    v.ru = a.ru + b.ru;
    v.E = a.E + b.E;
    return v;
}
static inline Variable operator*(const Variable &a, double n)
{
    Variable v;
    v.r = a.r * n;
    v.ru = a.ru * n;
    v.E = a.E * n;
    return v;
}
```


Automating Operator Implementation

- script part of the build process that generates these functions in $\mathrm{C}++$.

Automating Operator Implementation

- script part of the build process that generates these functions in $\mathrm{C}++$.
- extend $\mathrm{C}++$ with introspection.

Automating Operator Implementation

- script part of the build process that generates these functions in $\mathrm{C}++$.
- extend $\mathrm{C}++$ with introspection.
- create a new programming language.

The Conserved Variables - Automated Operators

```
static inline Variable operator+(const Variable &a, const Variable &b)
{
    Variable v;
    for (auto M : Variable) v.*M = a.*M + b.*M;
    return v;
}
static inline Variable operator*(const Variable &a, double n)
{
    Variable v;
    for (auto M : Variable) v.*M = a.*M * n;
    return v;
}
```


Sections

Problem

- The System of Equations
- The Conserved Variables
- The Flux Function
- Extra Information for Riemann Solver
- Source Terms
- The Initial Conditions
- Boundary Conditions

Method

- Domain Discretization
- Riemann Solver
- Order of Accuracy
- Methods for Source Terms

Domain Discretization - 3d Regular Grid

```
Variable U[NX] [NY] [NZ];
Variable Fx[NX+1] [NY] [NZ];
Variable Fy[NX] [NY+1] [NZ];
Variable Fz[NX] [NY] [NZ+1];
void update_variables(double dt)
{
    for (int i=0; i<NX; i++) {
        for (int j=0; i<NY; j++) {
            for (int k=0; i<NZ; k++) {
            U[i][j][k] -= dt * ((Fx[i+1][j][k] - Fx[i][j][k]) / dx +
                                    (Fy[i][j+1][k] - Fy[i][j][k]) / dy +
                                    (Fz[i][j][k+1] - Fz[i][j][k]) / dz);
            }
        }
    }
}
```


Domain Discretization - General

```
array_over_cells<Variable> U;
array_over_faces<Variable> F;
void update_variables(double dt)
{
    for (cell i: allcells()) {
        for (face j: facesofcell(i)) {
            U[i] -= dt * (j.area() / i.volume()) * F[j];
        }
    }
}
```


Domain Discretisation - Choices

- Regular Grid vs Irregular Mesh

Domain Discretisation - Choices

- Regular Grid vs Irregular Mesh
- Adaptive Mesh implementations

Domain Discretisation - Choices

- Regular Grid vs Irregular Mesh
- Adaptive Mesh implementations
- Domain parallelization

Domain Discretisation - Choices

- Regular Grid vs Irregular Mesh
- Adaptive Mesh implementations
- Domain parallelization
- GPU or CPU

Sections

Problem

- The System of Equations
- The Conserved Variables
- The Flux Function
- Extra Information for Riemann Solver
- Source Terms
- The Initial Conditions
- Boundary Conditions

Method

- Domain Discretization
- Riemann Solver
- Order of Accuracy
- Methods for Source Terms

The Flux Function

```
void point_flux(Variable &F, Variable U, dir d)
{
    vector3 u = U.ru / U.r;
    double p = (GAMMA-1) * (U.E - 0.5*U.ru*u);
    F.r = U.ru * d;
    F.ru = U.ru * (u * d) + p * d;
    F.E = (U.E + p) * (u * d);
}
```


Sections

Problem

- The System of Equations
- The Conserved Variables
- The Flux Function
- Extra Information for Riemann Solver
- Source Terms
- The Initial Conditions
- Boundary Conditions

Method

- Domain Discretization
- Riemann Solver
- Order of Accuracy
- Methods for Source Terms

Riemann Solver - HLL Implementation

```
void calculate_flux(Variable &F, const Variable &lU, const Variable &rU, dir d)
{
    real sl, sr;
    speeds2(sl, sr, lU, rU, d);
    if (sl > 0) point_flux(F, lU, d);
    else if (sr < O) point_flux(F, rU, d);
    else {
        Variable lF, rF;
        point_flux(lF, lU, d);
        point_flux(rF, rU, d);
        F = (sr*lF - sl*rF + sr*sl*(rU - lU))/(sr-sl);
    }
}
```


Sections

Problem

- The System of Equations
- The Conserved Variables
- The Flux Function
- Extra Information for Riemann Solver
- Source Terms
- The Initial Conditions
- Boundary Conditions

Method

- Domain Discretization
- Riemann Solver
- Order of Accuracy
- Methods for Source Terms

Second Order - Minmod

```
void interpolate(Variable &fU, face f, dir d, real pos)
{
    cell i = f.cell();
    Variable dU = 0.5*minmod(U[i+d]-U[i], U[i]-U[i-d]);
    if (f.d == d) fU = U[i] - dU;
    else fU = U[i] + dU;
}
```


Sections

Problem

- The System of Equations
- The Conserved Variables
- The Flux Function
- Extra Information for Riemann Solver
- Source Terms
- The Initial Conditions
- Boundary Conditions

Method

- Domain Discretization
- Riemann Solver
- Order of Accuracy
- Methods for Source Terms

Sections

Problem

- The System of Equations
- The Conserved Variables
- The Flux Function
- Extra Information for Riemann Solver
- Source Terms
- The Initial Conditions
- Boundary Conditions

Method

- Domain Discretization
- Riemann Solver
- Order of Accuracy
- Methods for Source Terms

Sections

Problem

- The System of Equations
- The Conserved Variables
- The Flux Function
- Extra Information for Riemann Solver
- Source Terms
- The Initial Conditions
- Boundary Conditions

Method

- Domain Discretization
- Riemann Solver
- Order of Accuracy
- Methods for Source Terms

Source Terms

- Every Source Term is different
- Even simple ones might require well balancing
- Intrusive implementations
- 'Aspect Oriented' style

Code Insertion

```
const vector grav(0, 0, GRAVITY);
alter start calculate_simultaneous_sources(cell c)
{
    S[c].m -= grav * U[c].rho;
    S[c].E += grav * U[c].m;
}
```


Finite Difference Method

- Don't use Riemann Solver or Finite-volume high order methods

Finite Difference Method

- Don't use Riemann Solver or Finite-volume high order methods
- Need to provide a finite difference divergence formula
- And compatible source term methods

Finite Difference Method

- Don't use Riemann Solver or Finite-volume high order methods
- Need to provide a finite difference divergence formula
- And compatible source term methods
- Or function for U_{t} for other hyperbolic equations

For the Scientist

- Scientist has new problem

For the Scientist

- Scientist has new problem
- Implements model and maybe system of equations

For the Scientist

- Scientist has new problem
- Implements model and maybe system of equations
- Lots of standard solvers and other features already available

For the Scientist

- Scientist has new problem
- Implements model and maybe system of equations
- Lots of standard solvers and other features already available
- Can easily try all of them to see which one works best

For the Applied Mathematician

- Applied Mathematician designs new solver

For the Applied Mathematician

- Applied Mathematician designs new solver
- Implements solver using the framework, maybe altering similar one

For the Applied Mathematician

- Applied Mathematician designs new solver
- Implements solver using the framework, maybe altering similar one
- Lots of standard systems of equations and test cases already available

For the Applied Mathematician

- Applied Mathematician designs new solver
- Implements solver using the framework, maybe altering similar one
- Lots of standard systems of equations and test cases already available
- New test cases easy to add

Conclusions

- Implement algorithms without adding dependencies

Conclusions

- Implement algorithms without adding dependencies
- Easy to swap between alternative algorithms

Conclusions

- Implement algorithms without adding dependencies
- Easy to swap between alternative algorithms
- Less programming required for a new problem

Conclusions

- Implement algorithms without adding dependencies
- Easy to swap between alternative algorithms
- Less programming required for a new problem
- Future proofing as much as we can

Availability

http://bitbucket.org/clef/clef/

