
Package ‘tigger’
April 29, 2015

Title R tools for inferring new IGHV alleles from Rep-Seq data

Version 2.1

Author Daniel Gadala-Maria and Jason Anthony Vander Heiden

Maintainer Daniel Gadala-Maria <daniel.gadala-maria@yale.edu>

Description Infers the IGHV genotype of an individual from Rep-Seq data,
including any novel alleles, and uses this information to correct existing
IGHV allele calls from among the sample sequences. Described in:
Gadala-Maria et al. (2015)
Automated analysis of high-throughput B cell sequencing data reveals a high
frequency of novel immunoglobulin V gene segment alleles. PNAS. 112(8):E862-70

License CC BY-NC-SA 3.0

LazyData true

Depends R (>= 3.0.0),
dplyr

Suggests knitr

VignetteBuilder knitr

R topics documented:
assignAlleleGroups . 2
compareGenotypes . 3
compareSepString . 3
createGermlines . 4
detectNovelV . 5
findIntercepts . 7
findNovelAlleles . 8
findNucletoideUsage . 9
findUnmutatedCalls . 10
genotypeFasta . 11
getMutatedPositions . 12
getMutCount . 13
getPopularMutationCount . 14
getSegment . 14
inferGenotype . 16
insertPolymorphisms . 17
modifyChangeoDb . 17
novelSummary . 18

1

2 assignAlleleGroups

plotJunctionBars . 19
plotNovelBars . 20
plotNovelLines . 21
readGermlineDb . 22
reassignAlleles . 23
runTigger . 24
sortAlleles . 26
summarizeMutations . 27
tigger . 28
trimMutMatrix . 28
updateAlleleNames . 29
writeFasta . 30

Index 32

assignAlleleGroups Find indicies of allele calls

Description

assignAlleleGroups determines the locations of unique alleles within a mixed group.

Usage

assignAlleleGroups(allele_calls, allele_min = 1e-04, binomial_cutoff = TRUE,
alpha = 0.05)

Arguments

allele_calls character vector respresenting Ig allele calls. Calls may consist of multiple
comma-separated alleles.

allele_min numeric indicating the minimum fraction of allele_calls that must contain an
allele for it to be retained. Integers of 1 or greater are interprted as a minumum
sequence count.

binomial_cutoff

logical indicating if an allele_min cutoff < 1 should be applied in a binomial
manner.

alpha numeric indicating the alpha cutoff used when applying a binomial cutoff of
allele_min.

Value

list of indicies in allele_calls where each unique input allele can be found.

Examples

Create a sample vector of allele calls
allele_names = c("IGHV1-69D*01","IGHV1-69*01","IGHV1-2*01","IGHV1-69-2*01",
"IGHV2-5*01","IGHV1-NL1*01","IGHV1-2*02", "IGHV1-69*02")
allele_counts = c(24, 15, 26, 36, 15, 43, 2, 42)
alleles = rep(allele_names, allele_counts)

Find how many of each allele there are
assignAlleleGroups(alleles)

compareGenotypes 3

compareGenotypes Compare two genotypes

Description

compareGenotypes takes two genotypes, binds them together by gene, and adds columns indicating
the alleles only in the first, the alleles only in the second, and the alleles shared between the two.

Usage

compareGenotypes(genotype1, genotype2)

Arguments

genotype1 a genotype of the type returned by inferGenotype

genotype2 a genotype of the type returned by inferGenotype

Value

A data frame indicating which alleles are unique to each genotype or shared between then two

See Also

inferGenotype

Examples

Load example data
data(sample_db)

Determine a genotype
geno = geno2 = inferGenotype(sample_db[,"V_CALL"])
Shuffle the gene names to make a different "genotype"
geno2$gene = sample(geno2$gene)

Compare the two genotypes
compareGenotypes(geno, geno2)

compareSepString Compare two strings of separated values

Description

compareSepString takes two strings, usually comma-separated, and returns their intersection or
difference in the form of a string using the same separator.

Usage

compareSepString(string1, string2, value = "both", sep = ",")

4 createGermlines

Arguments

string1 a string of separated values, usually by a comma

string2 a second string of separated values, usually by a comma

value what values to return. If "both" the intersection of the values will be returned.
"only1" and "only2" will return, respectively, the values only in the first string
or only in the second string.

sep the separator that should be used to divide up the strings before comparing the
values they hold

Value

A string of values representing the intersection or difference of of the input strings, separated in the
same manner as the input

Examples

compareSepString("1,2,5,6", "1,5,7", value="both")
compareSepString("1,2,5,6", "1,5,7", value="only1")
compareSepString("1,2,5,6", "1,5,7", value="only2")

createGermlines Create sequences with each combination of polymorphisms

Description

createGermlines inserts nucleotides in the desired locations of a provided sequence, for each
combination of possible insertions.

Usage

createGermlines(germline, positions, nucleotides)

Arguments

positions a vector of positions which to be changed

nucleotides a vector of nucletides to which to change the positions

sequence the starting nucletide sequence

Details

The nucletoide sequence provided should be named, and will serve as the basis of the resulting
names. For example, a sequence named IGHV1-2*02 with position 163 mutated to a C (from a T)
will be named 1-2*01_T163C.

Value

Each combination of sequences with the desired nucleotides in provided locations, with names
indicating the insertion(s) in the form _[germline_nucleotide][position][inserted_nucleotide].

detectNovelV 5

See Also

insertPolymorphisms

Examples

Insert each combination of letters at the listed locations
Note that 3! is 6
createGermlines("hugged", c(1,2,6), c("t","i","r"))

detectNovelV Find novel alleles from repertoire sequencing data

Description

detectNovelV analyzes mutation patterns in sequences thought to align to each germline allele in
order to determine which positions might be polymorphic.

Usage

detectNovelV(v_sequences, j_genes, junc_lengths, allele_groups, germline_db,
y_intercept = 1/8, nt_min = 1, nt_max = 312, mut_min = 1,
mut_max = 10, j_max = 0.1, min_seqs = 50, min_frac = 1/8,
verbose = FALSE, quiet = T)

Arguments

v_sequences a vector of IMGT-gapped sample V sequences

j_genes a vector of J gene names utilized by the samples

junc_lengths a vector of the junction lengths of the sample

allele_groups a list whose names match the alle names in germline_db and the contents of
which are the indicies of v_sequences that are assigned to those alleles. See
assignAlleleGroups.

germline_db a vector of named nucleotide germline sequences matching the calls detailed in
allele_groups

y_intercept the y-intercept above which positions should be considered potentially polymor-
phic, as utilized by findIntercepts

nt_min the first nucleotide position to be considered, as utilized by trimMutMatrix

nt_max the last nucleotide position to be considered, as utilized by trimMutMatrix

mut_min the minimum number of sequence-wide mutations for sequences that will be
used in analysis, as utilized by trimMutMatrix

mut_max the maximum number of sequence-wide mutations for sequences that will be
used in analysis, as utilized by trimMutMatrix

j_max the maximum fraction of sequences perfectly aligning to a potential novel allele
that are allowed to utilize to a particular combination of junction length and J
gene

min_seqs the minimum number of total sequences (within the desired mutational range
and nucleotide range) required for the samples to be considered, as utilized by
trimMutMatrix

6 detectNovelV

min_frac the minimum fraction of sequences that must have usable nucleotides in a given
position for that position to considered, as utilized by trimMutMatrix

verbose if TRUE, a message will be printed when the samples do not meet the required
parameters

Details

detectNovelV applies findNovelAlleles to each allele call found in the names of allele_groups.
Mutations are determined through comparison to the provided germline and the mutation frequency
at each *position* is determined as a function of *sequence-wide* mutation counts. Polymor-
phic positions are expected to exhibit a high mutation frequency despite sequence-wide mutation
count. False positive of potential novel alleles resulting from clonally-related sequences are guarded
against by ensuring that sequences perfectly matching the potential novel allele utilize a wide range
of combinations of J gene and junction length.

Value

for each potential novel allele, a list of length five is returned containing (1) the (named) germline
sequence, (2) the y-intercepts of the position(s) which passed the y-intercept threshhold (with names
indicating the positions themselves), (3) a matrix containing the fraction of sequences mutated
at each nucleotide position (columns) as a function of sequence-wide mutation count (rows), (4)
table(s) indicating the nucletoide usage at each polymorphic position as a function of mutation
count, and (5) a table detailing the number of unmutated versions of the novel allele found to use
each combination of J gene (columns) and junction length (rows).

See Also

findNovelAlleles, findIntercepts, summarizeMutations, trimMutMatrix

Examples

Load example data and germlines
data(sample_db)
data(germline_ighv)

Single out calls utilizing particular germline sequences and extract info
germs = germline_ighv[c(1,41)]
matches = lapply(names(germs),grep, sample_db$V_CALL, fixed=TRUE)
names(matches) = names(germs)
samples = sample_db$SEQUENCE_IMGT
j_genes = getGene(sample_db$J_CALL)
junc_lengths = sample_db$JUNCTION_LENGTH

Find novel alleles and return relevant data
novel = detectNovelV(samples, j_genes, junc_lengths, matches, germline_ighv)
Print the nucleotide sequence of the first (if any) novel alleles found
novel[[1]][[1]]

findIntercepts 7

findIntercepts Find which y-intercepts are above a threshhold

Description

findIntercepts takes a matrix as returned by trimMutMatrix, where mutation frequencies at
given positions (rows) are calculated as a function of sequence-wide mutation count (columns),
and determines which y-intercepts (positionalal mutation frequency when sequence-wide mutation
counts equals zero) are predicted to be above a certain threshhold.

Usage

findIntercepts(mut_fracs, y_intercept = 1/8, alpha = 0.05)

Arguments

mut_fracs a matrix as returned by trimMutMatrix, where rows are named with nucleotide
position and columns are named with sequence-wide mutation count

y_intercept the y-intercept above which positions should be returned

alpha the alpha cutoff that should be used in calculating the confidence interval for the
y-intercept

Details

The y-intercept is tested by using a t-test to determine the range of values likely to contain the
intercept. If the lower-bound of this confidence interval is greater than the y-intercept cutoff, the
position will be returned. This is the key step in detectNovelV.

Value

A matrix of mutation frequencies at given positions (rows) as a function of sequence-wide mutation
count (columns) for the desired ranges of each. If there is a problem with the number of sequences,
etc., NULL will be returned.

See Also

trimMutMatrix, detectNovelV

Examples

Invent some mutation matrix
mut_fracs = matrix(c(sapply(1:10, function(x) max(rnorm(1, x),0)/20),

sapply(1:10, function(x) max(rnorm(1, x),0)/20),
sapply(1:10, function(x) max(rnorm(1, x),0)/20),
sapply(rep(5,10), function(x) max(rnorm(1, x),0)/10)),

nrow=4, byrow=T)
colnames(mut_fracs) = 1:10; rownames(mut_fracs) = 1:4
Test to see if any have a y-intercept above 1/8 (position 4 should)
findIntercepts(mut_fracs)

8 findNovelAlleles

findNovelAlleles Find novel alleles in sequences thought to utilize one particular allele

Description

findNovelAlleles analyzes mutation patterns in sequences thought to align to a particular germline
allele in order to determine which positions might be polymorphic.

Usage

findNovelAlleles(samples, germlines, j_genes, junc_lengths, y_intercept = 1/8,
nt_min = 1, nt_max = 312, mut_min = 1, mut_max = 10, j_max = 0.1,
min_seqs = 50, min_frac = 3/4, verbose = FALSE)

Arguments

samples a vector of IMGT-gappedsample V sequences thought to be utilizing the same
germline V allele

j_genes a vector of J gene names utilized by the samples

junc_lengths a vector of the junction lengths of the sample

y_intercept the y-intercept above which positions should be considered potentially polymor-
phic, as utilized by findIntercepts

nt_min the first nucleotide position to be considered, as utilized by trimMutMatrix

nt_max the last nucleotide position to be considered, as utilized by trimMutMatrix

mut_min the minimum number of sequence-wide mutations for sequences that will be
used in analysis, as utilized by trimMutMatrix

mut_max the maximum number of sequence-wide mutations for sequences that will be
used in analysis, as utilized by trimMutMatrix

j_max the maximum fraction of sequences perfectly aligning to a potential novel allele
that are allowed to utilize to a particular combination of junction length and J
gene

min_seqs the minimum number of total sequences (within the desired mutational range
and nucleotide range) required for the samples to be considered, as utilized by
trimMutMatrix

min_frac the minimum fraction of sequences that must have usable nucleotides in a given
position for that position to considered, as utilized by trimMutMatrix

verbose if TRUE, a message will be printed when the samples do not meet the required
parameters

germline the germline V sequence utilized by the samples

Details

Mutations are determined through comparison to the provided germline and the mutation frequency
at each *position* is determined as a function of *sequence-wide* mutation counts. Polymorphic
positions are expected to exhibit a high mutation frequency despite sequence-wide mutation count.
False positive of potential novel alleles resulting from clonally- related sequences are guarded
against by ensuring that sequences perfectly matching the potential novel allele utilize a wide range
of combinations of J gene and junction length.

findNucletoideUsage 9

Value

For each potential novel allele, a list of length five is returned containing (1) the (named) germline
sequence, (2) the y-intercepts of the position(s) which passed the y-intercept threshhold (with names
indicating the positions themselves), (3) a matrix containing the fraction of sequences mutated
at each nucleotide position (columns) as a function of sequence-wide mutation count (rows), (4)
table(s) indicating the nucletoide usage at each polymorphic position as a function of mutation
count, and (5) a table detailing the number of unmutated versions of the novel allele found to use
each combination of J gene (columns) and junction length (rows).

See Also

findIntercepts, summarizeMutations, trimMutMatrix

Examples

Load example data and germlines
data(sample_db)
data(germline_ighv)

Single out calls utilizing a particular germline sequence and extract info
germ = germline_ighv[41]
matches = grep(names(germ), sample_db$V_CALL, fixed=TRUE)
samples = sample_db$SEQUENCE_IMGT[matches]
j_genes = getGene(sample_db$J_CALL[matches])
junc_lengths = sample_db$JUNCTION_LENGTH[matches]

Find novel alleles and return relevant data
novel = findNovelAlleles(samples, germ, j_genes, junc_lengths)
Print the nucleotide sequence of the first (if any) novel alleles found
novel[[1]][[1]]

findNucletoideUsage Determine nucleotide usage at a given position

Description

findNucletoideUsage determines the nucleotide distribution at a given IMGT-numbered position
as a function of sequence-wide mutation counts.

Usage

findNucletoideUsage(position, samples, germline, mut_counts, mut_min = 1,
mut_max = 10)

Arguments

position an integer representing the IMGT-numbered position of interest

samples a vector of sample nucleotide sequences

germline a string with the germline nucleotide sequence

mut_counts a vector containing the mutation count of each sample

10 findUnmutatedCalls

mut_min the minimum number of sequence-wide mutations for sequences that will be
included in the returned matrix

mut_max the maximum number of sequence-wide mutations for sequences that will be
included in the returned matrix

Value

A table of nucleotide usage at a given position as a function of sequence-wide mutation counts, with
the germline base on top and the most frequent mutated-to base on the bottom

Examples

Load example data and germlines
data(sample_db)
data(germline_ighv)

Single out calls utilizing a particular germline sequence
germ = germline_ighv[1]
matches = grep(names(germ), sample_db$V_CALL, fixed=TRUE)
samples = sample_db$SEQUENCE_IMGT[matches]

Find mutation counts in those sequences
mut_counts = getMutCount(samples, rep(names(germ), length(samples)), germ)

Find nucleotide usage at position 2 as a function of mutation count
findNucletoideUsage(2, samples, germ, mut_counts)

findUnmutatedCalls Determine which calls represent an unmutated allele

Description

findUnmutatedCalls determines which allele calls would represent a perfect match with the germline
sequence, given a vector of allele calls and mutation counts. In the case of multiple alleles being
assigned to a sequence, only the subset that would represent a perfect match is returned.

Usage

findUnmutatedCalls(allele_calls, mut_counts, only_unmutated = TRUE)

Arguments

allele_calls a vector of strings respresenting Ig allele calls, where multiple calls are separated
by a comma

mut_counts a list containing distance to each germline allele call within allele_calls, as
returned by getMutCount

only_unmutated if TRUE, calls where no allele that would represent an unmutated sequence will
be omitted from the output

Value

A vector of strings containing the members of allele_calls that represent unmutated sequences

genotypeFasta 11

Examples

Load germline database
data(germline_ighv)

Use createGermlines to insert a mutation into a germline sequence
sample_seqs = c(germline_ighv[2],

createGermlines(germline_ighv[1], 103, "G"),
germline_ighv[1],
germline_ighv[2])

Pretend that one sample sequence has received an ambiguous allele call
sample_alleles = c(paste(names(germline_ighv[1:2]), collapse=","),

names(germline_ighv[2]),
names(germline_ighv[1]),
names(germline_ighv[2]))

Compare the sequence to a subset of the germlines
mut_counts = getMutCount(sample_seqs, sample_alleles, germline_ighv)

Find which of the sample alleles are unmutated
findUnmutatedCalls(sample_alleles, mut_counts)

genotypeFasta Return the nucleotide sequences of a genotype

Description

genotypeFasta converts a genotype table into a vector of nucleotide sequences.

Usage

genotypeFasta(genotype, germline_db)

Arguments

genotype a table of alleles denoting a genotype, as returned by inferGenotype

germline_db a vector of named nucleotide germline sequences matching the alleles detailed
in genotype

Value

A named vector of strings containing the germline nucleotide sequences of the alleles in the pro-
vided genotype

See Also

inferGenotype

12 getMutatedPositions

Examples

Load example data
data(germline_ighv)
data(sample_db)

Infer and view a genotype from the sample
geno = inferGenotype(updateAlleleNames(sample_db[,"V_CALL"]))
geno

Return the sequences that correspond to the genotype
genotypeFasta(geno, germline_ighv)

getMutatedPositions Find the location of mutations in a sequence

Description

getMutatedPositions takes two vectors of aligned sequences and compares pairs of sequences. It
returns a list of the nucleotide positions of any differences.

Usage

getMutatedPositions(samples, germlines, ignored_regex = "[\\.N-]",
match_instead = FALSE)

Arguments

samples a vector of strings respresenting aligned sequences

germlines a vector of strings respresenting aligned sequences to which samples will be
compared. If only one string is submitted, it will be used for all samples.

ignored_regex a regular expression indicating what characters should be ignored (such as gaps
and N nucleotides).

match_instead if TRUE, the function returns the positions that are the same instead of those that
are different.

Value

A list of the nucleotide positions of any differences between the input vectors.

Examples

Create strings to act as a sample sequences and a reference sequence
seqs = c("----GATA","GAGAGAGA","TANA")
ref = "GATAGATA"

Find the differences between the two
getMutatedPositions(seqs, ref)

getMutCount 13

getMutCount Determine the mutation counts from allele calls

Description

getMutCount takes a set of nucleotide sequences and their allele calls and determines the distance
between that seqeunce and any germline alleles contained within the call

Usage

getMutCount(samples, allele_calls, germline_db)

Arguments

samples a vector of IMGT-gapped sample V sequences

allele_calls a vector of strings respresenting Ig allele calls for the sequences in samples,
where multiple calls are separated by a comma

germline_db a vector of named nucleotide germline sequences matching the calls detailed in
allele_calls

Value

A list equal in length to samples, containing the Hamming distance to each germline allele con-
tained within each call within each element of samples

Examples

Load germline database
data(germline_ighv)

Use createGermlines to insert a mutation into a germline sequence
sample_seqs = c(germline_ighv[2],

createGermlines(germline_ighv[1], 103, "G"),
createGermlines(germline_ighv[1], 107, "C"))

Pretend that one sample sequence has received an ambiguous allele call
sample_alleles = c(paste(names(germline_ighv[1:2]), collapse=","),

names(germline_ighv[2]),
names(germline_ighv[1]))

Compare each sequence to its assigned germline(s) to determine the distance
getMutCount(sample_seqs, sample_alleles, germline_ighv)

14 getSegment

getPopularMutationCount

Find Frequent Sequences’ Mutation Counts

Description

getPopularMutationCount determines which sequences occur frequently for each V gene and
returns the mutation count of those sequences.

Usage

getPopularMutationCount(sample_db, germline_db, gene_min = 0.001,
seq_min = 50, seq_p_of_max = 1/8, full_return = FALSE, ...)

Arguments

sample_db A Change-O db data frame. See runTigger for a list of required columns.

germline_db A named list of IMGT-gapped germline sequences.

gene_min The portion of all unique sequences a gene must constitute to avoid exclusion.

seq_min The number of copies of the V that must be present for to avoid exclusion.

seq_p_of_max For each gene, fraction of the most common V sequence’s count that a sequence
must meet to avoid exclusion.

full_return If true, will return all sample_db columns and will include sequences with mu-
tation count < 1.

... Additional arguments to pass to modifyChangeoDb prior to computation.

Value

A data frame of genes that have a frequent sequence mutation count above 1.

Examples

data(sample_db, germline_ighv)
getPopularMutationCount(sample_db, germline_ighv)

getSegment Get Ig segment allele, gene and family names

Description

getSegment performs generic matching of delimited segment calls with a custom regular expres-
sion. getAllele, getGene and getFamily extract the allele, gene and family names, respectively,
from a character vector of immunoglobulin (Ig) segment allele calls in IMGT format.

getSegment 15

Usage

getSegment(segment_call, segment_regex, first = TRUE, collapse = TRUE,
sep = ",")

getAllele(segment_call, first = TRUE, collapse = TRUE, sep = ",")

getGene(segment_call, first = TRUE, collapse = TRUE, sep = ",")

getFamily(segment_call, first = TRUE, collapse = TRUE, sep = ",")

Arguments

segment_call character vector containing segment calls delimited by commas.

segment_regex string defining the segment match regular expression.

first if TRUE return only the first call in segment_call; if FALSE return all calls de-
limited by commas.

collapse if TRUE check for duplicates and return only unique segment assignments; if
FALSE return all assignments (faster). Has no effect if first=TRUE.

sep character defining both the input and output segment call delimiter.

Value

A character vector containing allele, gene or family names

References

http://imgt.org

See Also

Uses str_extract.

Examples

kappa_call <- c("Homsap IGKV1-39*01 F,Homsap IGKV1D-39*01 F", "Homsap IGKJ5*01 F")

getAllele(kappa_call)
getAllele(kappa_call, first=FALSE)

getGene(kappa_call)
getGene(kappa_call, first=FALSE)

getFamily(kappa_call)
getFamily(kappa_call, first=FALSE)
getFamily(kappa_call, first=FALSE, collapse=TRUE)

http://imgt.org

16 inferGenotype

inferGenotype Infer a subject-specific genotype

Description

inferGenotype infers an subject’s genotype by finding the minimum number set of alleles that can
explain the majority of each gene’s calls. The most common allele of each gene is included in the
genotype first, and the next most common allele is added until the desired fraction of alleles can be
explained. In this way, mistaken allele calls (resulting from sequences which by chance have been
mutated to look like another allele) can be removed.

Usage

inferGenotype(allele_calls, fraction_to_explain = 7/8, gene_cutoff = 0.001)

Arguments

allele_calls a vector of strings respresenting Ig allele calls of unmutated sequences from a
single subject

fraction_to_explain

the portion of each gene that must be explained by the alleles that will be in-
cluded in the genotype

gene_cutoff either a number of sequences or a fraction of the length of allele_calls denot-
ing the minimum number of times a gene must be observed in allele_calls to
be included in the genotype

Details

Allele calls representing cases where multiple alleles have been assigned to a single sample se-
quence are rare among unmutated sequences but may result if nucleotides for certain positions are
not available. Calls containing multiple alleles are treated as belonging to all groups until one of
those groups is included in the genotype.

Value

A table of alleles denoting the genotype of the subject

Note

This method works best with data derived from blood, where a large portion of sequences are
expected to be unmutated. Ideally, there should be hundreds of allele calls per gene in the input.

Examples

Load example data; we'll pretend allele calls are unmutated
data(sample_db)

Infer the V genotype
inferGenotype(sample_db[,"V_CALL"])

Inger the J genotype
inferGenotype(sample_db[,"J_CALL"])

insertPolymorphisms 17

insertPolymorphisms Insert polymorphisms into a nucleotide sequence

Description

insertPolymorphisms replaces nucleotides in the desired locations of a provided sequence.

Usage

insertPolymorphisms(sequence, positions, nucleotides)

Arguments

sequence the starting nucletide sequence

positions a vector of positions which to be changed

nucleotides a vector of nucletides to which to change the positions

Value

a sequence with the desired nucleotides in provided locations

Examples

insertPolymorphisms("hugged", c(1,2,6), c("t","i","r"))

modifyChangeoDb Standardize Sample Db data

Description

modifyChangeoDb takes a Change-O Sample Db and modifies it for use with TIgGER.

Usage

modifyChangeoDb(sample_db, seq_imgt_col = "SEQUENCE_IMGT",
v_call_col = "V_CALL", j_call_col = "J_CALL",
junc_len_col = "JUNCTION_LENGTH", func_col = "FUNCTIONAL",
cols_to_add = c("V_GENE", "J_GENE", "V_SEQUENCE_IMGT"),
distinct_seq_only = TRUE, nonempty_seq_only = TRUE,
functional_seq_only = FALSE, standardize_calls = TRUE,
factor2char = TRUE)

18 novelSummary

Arguments

sample_db A Change-O db data frame.

seq_imgt_col The name of the column in sample_db containing the IMGT-gapped nucleotide
sequence.

v_call_col The name of the column in sample_db containingthe IMGT-assigned V allele
call.

j_call_col The name of the column in sample_db containing the IMGT-assigned J allele
call.

junc_len_col The name of the column in sample_db containing the junction length.

func_col The name of the column in sample_db indicating if the sequence is functional.

cols_to_add One or more of "V_GENE", "J_GENE", or "V_SEQUENCE_IMGT", indicating which
columns should be added. See details for more information.

distinct_seq_only

Logical indicating if duplicate IMGT-gapped sequences should be removed.
nonempty_seq_only

Logical indicating if empty sequences should be removed.
functional_seq_only

Logical indicating if nonfunctional sequences should be removed.
standardize_calls

Logical indicating if IMGT-assigned allele calls should be standardized.

factor2char Logical indicating if columns of type factor should be converted to type character.

Details

The supplied column names will be renamed to the current preferred names (and utilized for the
creation of new columns, if requested). Columns "V_GENE", "J_GENE", and "V_SEQUENCE_IMGT",
if added, will respectively contain the IMGT-assigned V gene call, the IMGT-assigned J gene call,
and the first 312 nucleotides (FWR1, CDR1, FWR2, CDR2, and FRW3) of the IMGT-gapped
nucleotide sequence.

Value

A corrected Change-O Db data frame

Examples

data(sample_db)
corrected_sample_db = modifySampleDb(sample_db, cols_to_add = c("V_GENE"))

novelSummary Return a summary of any novel alleles discovered

Description

novelSummary summaries the output of runTigger, stating which novel alleles were included in
the genotype. It returns the nucleotide sequences of the novel alleles.

plotJunctionBars 19

Usage

novelSummary(tigger_result, seqs_to_return = c("in genotype", "all")[1])

Arguments

tigger_result the output of runTigger
seqs_to_return either "in genotype" or "all", indicating whether only those potential novel

alleles alleles in the genotype should be returned or if all should be returned

Value

a named list of novel allele sequences, as well as text output indicating what number were detected
versus included in the genotype

Examples

Not run:
Load example data and run all aspects of TIgGER (takes a few minutes)
data(sample_db)
data(germline_ighv)
results = runTigger(sample_db, germline_ighv)

Summarize the detected novel alleles, add them to vector of all alleles
novel_sequences = novelSummary(results, seqs_to_return = "in genotype")
germline_ighv = c(germline_ighv, novel_sequences)
Plot positional mutation frequency versus sequence-wide mutation count
plotNovelLines(results$novel)
Plot nucleotide usage at polymorphic positions
plotNovelBars(results$novel)
Plot J and junction usage for sequences perfectly matching novel alleles
plotJunctionBars(results$novel)

View the inferred genotype
print(results$genotype)
Get the nucleotide sequences of all genotype alleles
genotype_sequences = genotypeFasta(results$genotype, germline_ighv)

Extract the corrected V allele calls and appened them to the data frame
V_CALL_GENOTYPED = results$new_calls
sample_db = cbind(sample_db, V_CALL_GENOTYPED)

End(Not run)

plotJunctionBars Visualization of J gene usage and junction length

Description

plotJunctionBars shows the frequency of each combination of J gene junction length found
among sequences representing unmutated versions of potential novel alleles.

Usage

plotJunctionBars(novel)

20 plotNovelBars

Arguments

novel a list of the type returned by detectNovelV

Value

plot(s) of the frequency of each combination of J gene and junction length among sequences using
potential novel alleles

See Also

detectNovelV, runTigger

Examples

Not run:
Load example data and run all aspects of TIgGER (takes a few minutes)
data(sample_db)
data(germline_ighv)
results = runTigger(sample_db, germline_ighv)

Summarize the detected novel alleles, add them to vector of all alleles
novel_sequences = novelSummary(results, seqs_to_return = "in genotype")
germline_ighv = c(germline_ighv, novel_sequences)
Plot positional mutation frequency versus sequence-wide mutation count
plotNovelLines(results$novel)
Plot nucleotide usage at polymorphic positions
plotNovelBars(results$novel)
Plot J and junction usage for sequences perfectly matching novel alleles
plotJunctionBars(results$novel)

View the inferred genotype
print(results$genotype)
Get the nucleotide sequences of all genotype alleles
genotype_sequences = genotypeFasta(results$genotype, germline_ighv)

Extract the corrected V allele calls and appened them to the data frame
V_CALL_GENOTYPED = results$new_calls
sample_db = cbind(sample_db, V_CALL_GENOTYPED)

End(Not run)

plotNovelBars Visualization of nucleotide usage

Description

plotNovelBars shows the nucleotide usage at polymorphic positions as a function of sequence-
wide mutation count.

Usage

plotNovelBars(novel)

plotNovelLines 21

Arguments

novel a list of the type returned by detectNovelV

Value

plot(s) of nucleotide usage at polymorphic positions as a function of sequence-wide mutation count.

See Also

detectNovelV, runTigger

Examples

Not run:
Load example data and run all aspects of TIgGER (takes a few minutes)
data(sample_db)
data(germline_ighv)
results = runTigger(sample_db, germline_ighv)

Summarize the detected novel alleles, add them to vector of all alleles
novel_sequences = novelSummary(results, seqs_to_return = "in genotype")
germline_ighv = c(germline_ighv, novel_sequences)
Plot positional mutation frequency versus sequence-wide mutation count
plotNovelLines(results$novel)
Plot nucleotide usage at polymorphic positions
plotNovelBars(results$novel)
Plot J and junction usage for sequences perfectly matching novel alleles
plotJunctionBars(results$novel)

View the inferred genotype
print(results$genotype)
Get the nucleotide sequences of all genotype alleles
genotype_sequences = genotypeFasta(results$genotype, germline_ighv)

Extract the corrected V allele calls and appened them to the data frame
V_CALL_GENOTYPED = results$new_calls
sample_db = cbind(sample_db, V_CALL_GENOTYPED)

End(Not run)

plotNovelLines Visualization of positional mutation frequencies

Description

plotNovelLines plots the mutation frequency of nucleotide positions as a function of sequence-
wide mutation count. Potentially polymorphic positions are highlighted in red.

Usage

plotNovelLines(novel)

22 readGermlineDb

Arguments

novel a list of the type returned by detectNovelV

Value

plot(s) the mutation frequency of nucleotide positions as a function of sequence-wide mutation
count.

See Also

detectNovelV, runTigger

Examples

Not run:
Load example data and run all aspects of TIgGER (takes a few minutes)
data(sample_db)
data(germline_ighv)
results = runTigger(sample_db, germline_ighv)

Summarize the detected novel alleles, add them to vector of all alleles
novel_sequences = novelSummary(results, seqs_to_return = "in genotype")
germline_ighv = c(germline_ighv, novel_sequences)
Plot positional mutation frequency versus sequence-wide mutation count
plotNovelLines(results$novel)
Plot nucleotide usage at polymorphic positions
plotNovelBars(results$novel)
Plot J and junction usage for sequences perfectly matching novel alleles
plotJunctionBars(results$novel)

View the inferred genotype
print(results$genotype)
Get the nucleotide sequences of all genotype alleles
genotype_sequences = genotypeFasta(results$genotype, germline_ighv)

Extract the corrected V allele calls and appened them to the data frame
V_CALL_GENOTYPED = results$new_calls
sample_db = cbind(sample_db, V_CALL_GENOTYPED)

End(Not run)

readGermlineDb Read a germline database

Description

readGermlineDb reads a fasta-formatted file of immunoglobulin (Ig) sequences and returns a named
vector of those sequences.

Usage

readGermlineDb(fasta_file, strip_down_name = TRUE, force_caps = TRUE)

reassignAlleles 23

Arguments

fasta_file fasta-formatted file of immunoglobuling sequences

strip_down_name

if TRUE, will extract only the allele name from the strings fasta file’s sequence
names

force_caps if TRUE, will force nucleotides to uppercase

Value

a named vector of strings respresenting Ig alleles

Examples

Not run:
Read an imaginary file called "foo.fasta"
foo = readGermlineDb("foo.fasta")

End(Not run)

reassignAlleles Correct allele calls based on a personalized genotype

Description

reassignAlleles uses a subject-specific genotype to correct correct preliminary allele assignments
of a set of sequences derived from a single subject.

Usage

reassignAlleles(v_calls, v_sequences, genotype_db)

Arguments

v_calls a vector of strings respresenting Ig allele calls for the sequences in v_sequences,
where multiple calls are separated by a comma

v_sequences a vector of IMGT-gapped sample V sequences from a single subject

genotype_db a vector of named nucleotide germline sequences matching the calls detailed in
allele_calls and personalized to the subject

Value

a list equal in length to v_calls, best allele call from among the sequences listed in genotype_db

24 runTigger

Examples

Not run:
Load example data and run all aspects of TIgGER (takes a few minutes)
data(sample_db)
data(germline_ighv)
results = runTigger(sample_db, germline_ighv)

Derive the subject-specific Ig sequences
novel_sequences = novelSummary(results, seqs_to_return = "in genotype")
germline_ighv = c(germline_ighv, novel_sequences)
genotype_db = genotypeFasta(sample_output$genotype, germline_ighv)

Extract the appropriate portions of example data
v_seqs = sapply(sample_db$SEQUENCE_IMGT, substr, 1, 312)

Derive the vector of corrected calls
corrected_calls = reassignAlleles(sample_db$V_CALL, v_seqs, genotype_db)

End(Not run)

runTigger Infer genotype (including novel alleles) and correct V calls

Description

runTigger takes a table of sample sequences from a single subject and a vector of database germline
sequences. It then performs the following: (1) Infers the presence of novel IGHV alleles not in the
germline database. (2) Infers the individuals V genotype. (3) Corrects the IGHV allele calls of
the samples based on the IGHV genotype. The sample sequences should be a data frame where
each row is a sequence and each column contains data about that sequence. The database germlines
should be a vector of sequences with names matching those in the table of sample sequences.

Usage

runTigger(sample_db, germline_db, find_novel = TRUE, find_genotype = TRUE,
correct_calls = TRUE, allele_min = 1e-04, y_intercept = 1/8,
nt_min = 1, nt_max = 312, mut_min = 1, mut_max = 10, j_max = 0.1,
min_seqs = 50, min_frac = 3/4, fraction_to_explain = 7/8,
gene_cutoff = 0.001, seq_gap = "SEQUENCE_IMGT", v_call_col = "V_CALL",
j_call_col = "J_CALL", junc_length_col = "JUNCTION_LENGTH",
quiet = FALSE)

Arguments

sample_db a data frame with the colums described in Details below.

germline_db a vector of named nucleotide germline sequences matching the calls in sample_db

find_novel logical. Should novel alleles be searched for?

find_genotype logical. Should the genotype be inferred?

correct_calls logical. Should the allele calls be corrected?

runTigger 25

allele_min a number < 1 representing the minimum fraction of sequences required for an
allele to not be excluded from analysis. or a number >= 1 representing the
minimum count for sequences. See assignAlleleGroups.

y_intercept the y-intercept above which positions should be considered potentially polymor-
phic. See detectNovelV.

nt_min the first nucleotide position to be considered in intercept calculations. See
detectNovelV.

nt_max the last nucleotide position to be considered in intercept calculations. See detectNovelV.

mut_min the minimum number of mutations carried by sequences used in in intercept
calculations. See detectNovelV.

mut_max the maximum number of mutations carried by sequences used in in intercept
calculations. See detectNovelV.

j_max the maximum fraction of sequences perfectly aligning to a potential novel allele
that are allowed to utilize to a particular combination of junction length and J
gene. See detectNovelV.

min_seqs the minimum number of total sequences (within the desired mutational range
and nucleotide range) required for the samples to be analyzed for polymor-
phisms. See detectNovelV.

min_frac the maxmium number of total sequences (within the desired mutational range
and nucleotide range) required for the samples to be analyzed for polymor-
phisms. See detectNovelV.

fraction_to_explain

the portion of each gene that must be explained by the alleles that will be in-
cluded in the genotype. See inferGenotype.

gene_cutoff the minimum fraction of the unmutated sequences that must be attributed to a
gene in order for it to be included in the genotype. See inferGenotype.

seq_gap the name of the column in sample_db that includes the IMGT-gapped sequence

v_call_col the name of the column in sample_db that includes the intial V call in the col-
umn indicated by seq_gap

j_call_col the name of the column in sample_db that includes the initial J call
junc_length_col

the name of the column in sample_db that includes the junction length

quiet logical indicating if additional diagonostic output will be suppressed

v_length_col the name of the column in sample_db that includes the length of the V sequence
contained within seq_gap

Details

The required columns that must be contained within sample_db are detailed below:

• SEQUENCE_IMGT: V(D)J sequence in the IMGT gapped format

• V_CALL: (Comma separated) name(s) of the nearest V allele(s)

• J_CALL: (Comma separated) name(s) of the nearest J allele(s)

• JUNCTION_LENGTH: Length of the junction region of the V(D)J sample

Value

a list containing data on new alleles, the inferred genotype, and the corrected IGHV calls.

26 sortAlleles

References

Gadala-Maria D, Yaari G, Uduman M, Kleinstein SH (2015) Automated analysis of high-throughput
B cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles.
PNAS. 112(8):E862-70

See Also

detectNovelV, inferGenotype, reassignAlleles

Examples

Not run:
Load example data and run all aspects of TIgGER (takes a few minutes)
data(sample_db)
data(germline_ighv)
results = runTigger(sample_db, germline_ighv)

Summarize the detected novel alleles, add them to vector of all alleles
novel_sequences = novelSummary(results, seqs_to_return = "in genotype")
germline_ighv = c(germline_ighv, novel_sequences)
Plot positional mutation frequency versus sequence-wide mutation count
plotNovelLines(results$novel)
Plot nucleotide usage at polymorphic positions
plotNovelBars(results$novel)
Plot J and junction usage for sequences perfectly matching novel alleles
plotJunctionBars(results$novel)

View the inferred genotype
print(results$genotype)
Get the nucleotide sequences of all genotype alleles
genotype_sequences = genotypeFasta(results$genotype, germline_ighv)

Extract the corrected V allele calls and appened them to the data frame
V_CALL_GENOTYPED = results$new_calls
sample_db = cbind(sample_db, V_CALL_GENOTYPED)

End(Not run)

sortAlleles Sort allele names

Description

sortAlleles returns a sorted vector of strings respresenting Ig allele names. Names are first sorted
by gene family, then by gene, then by allele. Duplicated genes have their alleles are sorted as if they
were part of their non-duplicated counterparts (e.g. IGHV1-69D*01 comes after IGHV1-69*01 but
before IGHV1-69*02), and non-localized genes (e.g. IGHV1-NL1*01) come last within their gene
family.

Usage

sortAlleles(allele_calls)

summarizeMutations 27

Arguments

allele_calls a vector of strings respresenting Ig allele names

Value

A sorted vector of strings respresenting Ig allele names

Examples

Create a list of allele names
alleles = c("IGHV1-69D*01","IGHV1-69*01","IGHV1-2*01","IGHV1-69-2*01",
"IGHV2-5*01","IGHV1-NL1*01", "IGHV1-2*01,IGHV1-2*05", "IGHV1-2",
"IGHV1-2*02", "IGHV1-69*02")

Sort the alleles
sortAlleles(alleles)

summarizeMutations Find positional mutation counts vs sequence-wide mutation count

Description

summarizeMutations takes the positions of that are similar and that are different between a set of
sequences and a germline, and returns a pair of tables summarizing the positional mutation counts.

Usage

summarizeMutations(mut_list, match_list)

Arguments

mut_list a list of the nucleotide positions of any differences between the two vectors of
sequences, as generated by getMutatedPositions.

match_list a list of the nucleotide positions of any similarities between the two vectors of se-
quences, as generated by getMutatedPositions where match_instead = TRUE.

Value

A list containing two matricies. The first details counts of sequences mutated at given positions
(rows) mutated as a function of sequence-wide mutation count (columns). The second is details
how many usable nucleotides (i.e., not gaps or Ns) were found for each combination of position and
sequence-wide mutation count.

See Also

getMutatedPositions

28 trimMutMatrix

Examples

Create strings to act as a sample sequences and a reference sequence
seqs = c("----GATA","GAGAGAGA","TANA")
ref = "GATAGATA"

Find the differences/similarities between the two
muts = getMutatedPositions(seqs, ref)
matches = getMutatedPositions(seqs, ref, match_instead =TRUE)

Find positional mutation and nucleotide counts
summarizeMutations(muts, matches)

tigger tigger

Description

Here we provide a *T*ool for *I*mmuno*g*lobulin *G*enotype *E*lucidation via *R*ep-Seq
(TIgGER). TIgGER inferrs the set of Ig alleles carried by an individual (including any novel al-
leles) and then uses this set of alleles to correct the initial assignments given to sample sequences
by existing tools.

Details

Immunoglobulin Repertoire-Sequencing (Rep-Seq) data is currently the subject of much study. A
key step in analyzing these data involves assigning the closest known V(D)J germline alleles to the
(often somatically mutated) sample sequences using a tool such as IMGT/HighV-QUEST. However,
if the sample utilizes alleles not in the germline database used for alignment, this step will fail.
Additionally, this alignment has an associated error rate of ~5 The purpose of TIgGER is to address
these issues.

References

Gadala-Maria et al. (2015) Automated analysis of high-throughput B cell sequencing data reveals
a high frequency of novel immunoglobulin V gene segment alleles. PNAS. 112(8):E862-70

trimMutMatrix Trim a mutation summary

Description

trimMutMatrix takes a pair of lists as returned by summarizeMutations and returns a matrix
of mutation frequencies at given positions (rows) as a function of sequence-wide mutation count
(columns) for the desired ranges of each.

Usage

trimMutMatrix(mut_summary, mut_min = 1, mut_max = 10, nt_min = 1,
nt_max = 312, min_seqs = 50, min_frac = 0.75, verbose = F)

updateAlleleNames 29

Arguments

mut_summary a pair of lists as returned by summarizeMutations

mut_min the minimum number of sequence-wide mutations for sequences that will be
included in the returned matrix

mut_max the maximum number of sequence-wide mutations for sequences that will be
included in the returned matrix

nt_min the first nucleotide position to be included in the returned matrix

nt_max the last nucleotide position to be included in the returned matrix

min_seqs the minimum number of total sequences (within the desired mutational range
and nucleotide range) required for the function to return a value

min_frac the minimum fraction of sequences that must have usable nucleotides in a given
position for that position to not be made NA

verbose if TRUE, a message will be printed when the input causes a value of NULL to be
returned

Value

A matrix of mutation frequencies at given positions (rows) as a function of sequence-wide mutation
count (columns) for the desired ranges of each. If there is a problem with the number of sequences,
etc., NULL will be returned.

See Also

summarizeMutations

Examples

Create strings to act as a sample sequences and a reference sequence
seqs = c("----GATA","GAGAGAGA","GATAGGGA","TANA")
ref = "GATAGATA"

Find the differences/similarities between the two
muts = getMutatedPositions(seqs, ref)
matches = getMutatedPositions(seqs, ref, match_instead =TRUE)

Find positional mutation and nucleotide counts
mut_mat = summarizeMutations(muts, matches)

Summarize the frequency for counts above one
trimMutMatrix(mut_mat, mut_max=2, nt_max=8, min_seqs=0, min_frac=0)

updateAlleleNames Update IGHV allele names

Description

updateAlleleNames takes a set of IGHV allele calls and replaces any outdated names (e.g. IGHV1-
f) with the new IMGT names.

30 writeFasta

Usage

updateAlleleNames(allele_calls)

Arguments

allele_calls vector of strings respresenting IGHV allele names.

Details

The updated allele names are based on IMGT release 201408-4.

Value

vector of strings respresenting updated IGHV allele names

Note

IGMT has removed IGHV2-5*10 and IGHV2-5*07 as it has determined they are actually alleles
*02 and *04, respectively.

References

Xochelli et al. (2014) Immunoglobulin heavy variable (IGHV) genes and alleles: new entities,
new names and implications for research and prognostication in chronic lymphocytic leukaemia.
Immunogenetics. 67(1):61-6

Examples

Create a vector that uses old gene/allele names.
alleles = c("IGHV1-c*01", "IGHV1-f*02", "IGHV2-5*07")

Update the alleles to the new names
updateAlleleNames(alleles)

writeFasta Write nucleotide sequences to a fasta file

Description

writeFasta write a vector of nucleotide sequences to a file

Usage

writeFasta(named_sequences, file, char_per_line = 60)

Arguments

named_sequences

a vector of nucleotide sequences

file a character string naming the file to write to

char_per_line how many characters should be printed per line

writeFasta 31

Value

Saves a fasta file containing the sequences of interest

Examples

Not run:
Load example IGHV germlines and write them to a fasta file
data(germline_ighv)
writeFasta(germline_ighv, file="germline_ighv.fasta")

End(Not run)

Index

assignAlleleGroups, 2, 5, 25

compareGenotypes, 3
compareSepString, 3
createGermlines, 4

detectNovelV, 5, 7, 20–22, 25, 26

findIntercepts, 5, 6, 7, 8, 9
findNovelAlleles, 6, 8
findNucletoideUsage, 9
findUnmutatedCalls, 10

genotypeFasta, 11
getAllele (getSegment), 14
getFamily (getSegment), 14
getGene (getSegment), 14
getMutatedPositions, 12, 27
getMutCount, 10, 13
getPopularMutationCount, 14
getSegment, 14

inferGenotype, 3, 11, 16, 25, 26
insertPolymorphisms, 5, 17

modifyChangeoDb, 14, 17

novelSummary, 18

plotJunctionBars, 19
plotNovelBars, 20
plotNovelLines, 21

readGermlineDb, 22
reassignAlleles, 23, 26
runTigger, 14, 18–22, 24

sortAlleles, 26
str_extract, 15
summarizeMutations, 6, 9, 27, 29

tigger, 28
tigger-package (tigger), 28
trimMutMatrix, 5–9, 28

updateAlleleNames, 29

writeFasta, 30

32

	assignAlleleGroups
	compareGenotypes
	compareSepString
	createGermlines
	detectNovelV
	findIntercepts
	findNovelAlleles
	findNucletoideUsage
	findUnmutatedCalls
	genotypeFasta
	getMutatedPositions
	getMutCount
	getPopularMutationCount
	getSegment
	inferGenotype
	insertPolymorphisms
	modifyChangeoDb
	novelSummary
	plotJunctionBars
	plotNovelBars
	plotNovelLines
	readGermlineDb
	reassignAlleles
	runTigger
	sortAlleles
	summarizeMutations
	tigger
	trimMutMatrix
	updateAlleleNames
	writeFasta
	Index

