
Tool for Immunoglobulin Genotype Elucidation via Rep-Seq
(TIgGER)

Daniel Gadala-Maria

Last modified 2015-04-29

Introduction

Immunoglobulin Repertoire-Sequencing (Rep-Seq) data is currently the subject of much
study. A key step in analyzing these data involves assigning the closest known V(D)J
germline alleles to the (often somatically mutated) sample sequences using a tool such as
IMGT/HighV-QUEST[1]. However, if the sample utilizes alleles not in the germline database
used for alignment, this step will fail. Additionally, this alignment has an associated error
rate of ~5%[2], notably among sequences carrying a large number of somatic mutations.

Here we provide a Tool for Immunoglobulin Genotype Elucidation via Rep-Seq (TIgGER).
TIgGER addresses these issues by inferring the set of Ig alleles carried by an individual
(including any novel alleles) and then using this set of alleles to correct the initial
assignments given to sample sequences by existing tools.

Additional information is available at http://clip.med.yale.edu/tigger/ and in:

Gadala-Maria D, Yaari G, Uduman M, Kleinstein SH (2015) Automated analysis of high-
throughput B cell sequencing data reveals a high frequency of novel immunoglobulin V
gene segment alleles. PNAS 112(8):E862-70.

Input

TIgGER requires two main inputs:

1. Pre-processed Rep-Seq data

2. Database germline sequences

Rep-seq data is input as a data frame where each row represents a unique observation and
and columns represent data about that observation. The preferred names of the required
columns are provided below along with a description of each.

Column Name Description

SEQUENCE_IMGT V(D)J sequence gapped in the IMGT gapped format[3]

V_CALL (Comma separated) name(s) of the nearest V allele(s)

J_CALL (Comma separated) name(s) of the nearest J allele(s)

JUNCTION_LENGTH Length of the junction region of the V(D)J sample

http://www.imgt.org/IMGTindex/IMGTHighV-QUEST.html
http://www.ncbi.nlm.nih.gov/pubmed/20147303
http://clip.med.yale.edu/tigger/
http://www.pnas.org/content/early/2015/02/05/1417683112
http://www.pnas.org/content/early/2015/02/05/1417683112
http://www.pnas.org/content/early/2015/02/05/1417683112
http://www.ncbi.nlm.nih.gov/pubmed/12477501

An example dataset is provided with the tigger package. It contains unique functional
sequences assigned to IGHV1 family genes isolated from individual PGP1 (referenced in
Gadala-Maria et al.).

library(tigger)

Loading required package: dplyr

Attaching package: 'dplyr'

The following object is masked from 'package:stats':

filter

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

Load example Rep-Seq data
data(sample_db)

The database of germline sequences should be provided in FASTA format with sequences
gapped according to the IMGT numbering scheme[3]. IGHV alleles in the IMGT database
(build 201408-4) are provided with this package. You may read in your own fasta file using
readGermlineDb().

Load example germline database
data(germline_ighv)

Running TIgGER

The function most users will wish to use is runTigger(). This function takes the two inputs
discussed above and can perform any combination of the following:

1. Infer the presence of novel IGHV alleles not in the germline database

2. Infer the individual's IGHV genotype

3. Correct the IGHV allele calls of the samples based on the IGHV genotype

These options are controlled by the logical arguments find_novel, find_genotype, and
correct_calls, which default to TRUE. Note, however, that if find_genotype is FALSE, the
provided germline database should contain only the alleles carried by the individual from
which the Rep-Seq data was isolated. See the help file (?runTigger) for a description of all
options.

Run tigger on the example input
sample_output = runTigger(sample_db, germline_ighv)

Finding novel alleles...done.
Finding genotype...done.
Correcting allele calls...done.

http://www.ncbi.nlm.nih.gov/pubmed/12477501

sample_output should now be a list of length three with the names novel, genotype, and
new_calls. Let's take a moment to examine the contents of each. (If any of these three
options of runTigger are set to FALSE, the some elements of sample_output will be empty.)

Novel Alleles

Potential novel alleles detected by TIgGER are in the first element of the list. Some of these
may have been included in the genotype (see below) while others may not have been. A
summary of which were included will be printed by novelSummary(), which will also
return the named novel nucleotide sequences. You may wish to add these to the existing
germline database alleles. However, you may also set seqs_to_return to "all" to also
return the non-genotype potential novel alleles.

Summarize the detected novel alleles
novel_sequences = novelSummary(sample_output, seqs_to_return = "in genotype")

1 potential novel alleles were detected.
1 novel alleles were common enough to be included in the genotype:
IGHV1-8*02_G234T

germline_ighv = c(germline_ighv, novel_sequences)

The first part of IGHV1-8*02_G234T identifies the nearest database allele, and the part
after the underscore indicates the polymorphic position(s) using the format
[database_nucleotide][position][polymorphic_nucleotide].

The TIgGER procedure for identifying novel alleles (see citation above) involves taking all
seqeunces which align to a particular germline allele and, for each position along the
aligned sequences, plotting the mutation frequency at that postion as a function of the
sequence-wide mutation count. While mutational hot-spots and cold-spots are both
expected to have a y-intercept around zero, polymorphic positions will have a y-intercept
larger than zero. The required minimum y-intercept may be specified in runTigger() by
y_intercept, but defaults to 1/8.

Passing this y-intercept threshold is the first of three pieces of evidence that support the
novel allele. To view the plots of positional mutation frequency vs sequence-wide mutation
count, plotNovelLines() may be used. Polymorphic positions are highlighted in red.
Remember that some or all sequences may not have been included in the final genotype.

Plot positional mutation frequency versus sequence-wide mutation count
plotNovelLines(sample_output$novel)

The second piece of evidence supporting novel allele calls is the nucleotide usage at the
polymorphic positions as a function of sequence-wide mutation count. We expect the
polymorphic allele to be prevalent at all mutation counts, and we expect the mutation
count equal to the number of polymorphisms in the novel sequence to be the most
prevalent. plotNovelBars() can be used to view the nucleotide usage at polymorphic
positions.

Plot nucleotide usage at polymorphic positions
plotNovelBars(sample_output$novel)

Finally, to avoid cases where a clonal expansion might lead to a false positive, combinations
of J gene and junction length are examined among sequences which perfectly match the
proposed germline allele. A true novel allele is expected to utilize a wide range of J genes,
and sequences with different junction length can be ruled out as not being clonally related.
The maximum portion of sequences which can consist of a specific combination of J gene
and junction length may be specified in runTigger() by j_max. plotJunctionBars() can be
used to view the distribution of J genes and junctions.

Plot J and junction usage for sequences perfectly matching the novel allele
plotJunctionBars(sample_output$novel)

Genotype

The second element of the list output by runTigger() is the genotype. This is the collection
of alleles inferred to be carried by the subject. For each gene, runTigger() finds the
sequences which might be interpreted as unmutated (as these should have the least error
in their allele assignment) and then identifies the smallest set of alleles that could explain
the majority of these calls. (This "majority" is set ot 7/8 but may be controlled by modifying
fraction_to_explain in the function runTigger(). Additionally, genes representing fewer
than 0.1% of sequences are, by default, excluded; this can be controlled by the user using
gene_cutoff.)

The genotype output is designed to be human readable. For each allele, the number of
sequences which perfectly match the germline are listed int he same order as the alleles are
listed. The total number of sequences that perfectly match any allele of that gene is also
given. Note that novel alleles are indicated using the same nomenclature as above.

View the inferred genotype
print(sample_output$genotype)

gene alleles counts total
1 IGHV1-2 02,04 1542,669 2211
2 IGHV1-3 01 532 532
3 IGHV1-8 01,02_G234T 1015,661 1676
4 IGHV1-18 01 2113 2113

5 IGHV1-24 01 493 493
6 IGHV1-46 01 1220 1220
7 IGHV1-58 01,02 53,49 102
8 IGHV1-69 01,06,04 1994,1179,1027 4223
9 IGHV1-69-2 01 101 101

genotypeFasta() is useful is you wish to ouput the sequences rather than the allele names.
Given a genotype and the vector of database germline sequences, it will return a vector of
germline alleles carried by the individual. Users may use writeFasta() to save the
sequences to a fasta file.

Get the nucleotide sequences of all genotype alleles
genotype_sequences = genotypeFasta(sample_output$genotype, germline_ighv)

Corrected Allele Calls

Finally, the original V allele calls have been limited to only those within the inferred
genotype; the third element of the output list contains a vector of allele calls equal in length
and ordering to the original allele calls. This can be combined to the existing data frame,
and used in future analyses as follows.

Extract the corrected V allele calls and appened them to the data frame
V_CALL_GENOTYPED = sample_output$new_calls
sample_db = cbind(sample_db, V_CALL_GENOTYPED)

References
1. Alamyar et al. (2010)

2. Munshaw and Kepler (2010)

3. Lefranc et al. (2003)

http://www.imgt.org/IMGTindex/IMGTHighV-QUEST.html
http://www.ncbi.nlm.nih.gov/pubmed/20147303
http://www.ncbi.nlm.nih.gov/pubmed/12477501

