Noname manuscript No.
(will be inserted by the editor)

Learning from Demonstration for Encapsulated
Evolution of Robotic Controllers

Travis DeVault, Nathaniel Ebel, Juan
Marulanda, Jayandra Pokharel, Terence
Soule, Robert B. Heckendorn

Received: date / Accepted: date

1 Abstract

In this paper we present a novel approach to encapsulated evolution using an
inexpensive, but computationally powerful, robot and learning from demonstra-
tion. Encapsulated evolution, in which a robot maintains an evolving population
of behaviors, is a common technique for allowing robots to adapt, in real-time,
to changing conditions and environments. Research on encapsulated evolution has
been hampered by a lack of inexpensive robots with the computational power
to run an evolutionary algorithm. Additionally, encapsulated evolution commonly
uses unsupervised learning techniques, which face several challenges in real-world
environments. We present two approaches to overcoming these difficulties. First,
we present an inexpensive, computationally powerful robot capable of maintaining
large populations of complex individuals. Second, we combine encapsulated evo-
lution with learning from demonstration, a supervised learning technique, which
avoids many of the problems associated with unsupervised learning in the real
world. Our results show that learning from demonstration combined with encap-
sulated evolution can be carried out in real robotic hardware using low cost, com-
putationally powered robots.

Keywords Evolutionary Robotics - On-Line - On-Board - Encapsulated -
Learning from Demonstration - Genetic Algorithm - COTSBots

This material is based in part upon work supported by the National Science Foundation
under Cooperative Agreement No. DBI-0939454. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

Travis DeVault, Nathaniel Ebel, Juan Marulanda, Jayandra Pokharel
Department of Computer Science,

University of Idaho, Moscow, ID 83844 USA

E-mail: {deva0562, nebel, maru2593, pokh6200}@vandals.uidaho.edu

Terence Soule, Robert B. Heckendorn
Department of Computer Science,
University of Idaho, Moscow, ID 83844 USA
E-mail: {heckendo, tsoule}@uidaho.edu

2 T. DeVault, N. Ebel, J. Marulanda, J. Pokharel, T. Soule, RB. Heckendorn

2 Introduction

The goal of this paper is to present an approach which addresses some of the
major problems of encapsulated, on-board, on-line evolution of robotic controllers.
To demonstrate the presented solution, we use a cheap, computationally powerful
robot, and evolve a population of neurocontrollers to follow a distinctly colored
road.

In encapsulated evolution, robots maintain an on-board population of evolv-
ing controllers. Encapsulated evolution has great shown great promise in allowing
robots to adapt, in real-time, to changing environments or conditions. Successes
with encapsulated evolution would represent a significant advance in robots’ abil-
ity to learn and perform efficiently and autonomously in complex or dynamic
environments.

Maintaining an evolving population is computationally expensive, making on-
board evolution of robotic controllers difficult, particularly if the population must
evolve in real-time and if the population consists of complex controllers. Thus, most
research in on-board evolution has been done in simulation [2]. This introduces
the simulation to reality problem (also referred to as the reality gap) [12] and does
not accurately portray encapsulated evolution’s true potential to produce robots
that can adapt to the real world. The little research that has been performed with
physical robots has either been limited to very simple representations that can be
evolved on a small processor [2] or extremely large, expensive robots [17].

A further difficulty with encapsulated evolution is that it has traditionally used
unsupervised learning techniques, in which fitness is measured via a time-sharing
system. Each individual in the population is placed in temporary control of the
robot and receives a fitness value based on how well the robot performed while
that individual is in control. A robot would need an on-board critic to judge the
fitness of each proposed solution. This can be problematic in novel complex real
world scenarios. This introduces three significant problems. First, evaluation of
every member of a population requires allowing each individual temporary control
of the robot, which is either extremely time intensive or severely limits the size of
the population. Second, performance of the robot suffers when a poor individual is
in control. Third, in practice this is a very noisy fitness measure as an individual’s
fitness depends on the state of the robot when it gains control. For example, if
the previous individual left the robot in a particular difficult situation, then the
current controller’s fitness will suffer. Techniques such as racing [7], a recovery
period [2], and revaluation [2] have been developed to minimize these drawbacks,
but any unsupervised learning technique will suffer from these limitations to some
extent.

We use a robot designed using Commodity Off The Shelf (COTS) design prin-
ciples to overcome the computational requirements of encapsulated evolution. The
robot uses a smart phone for processing, giving it significant computational power
and memory. Because of this, algorithms with larger population sizes and complex
representations can be implemented on-board the robot. The complete design is
described in Section 4.1.

To avoid the problems associated with unsupervised learning we use an evolu-
tionary approach based on learning from demonstration. The robots “observe” a
human operator and learn to imitate the human’s control decisions. Because the
correct control decisions are known (assuming that the human operator always,

Learning from Demonstration for Encapsulated Evolution of Robotic Controllers 3

B

Fig. 1 Robot designed and built at the University of Idaho following Commodity Off The
Shelf (COTS) design principles. The robot consists of three basic components: a smart phone,
an Arduino micro controller, and a mobile robot platform. See Section 4.1 for full design details.

or at least usually, makes the right decisions). Individuals can be evaluated based
on their ability to replicate the human operator’s choices without needing to give
them control of the physical robots.

Our results show that our techniques allow for encapsulated evolution of effec-
tive robotic controllers. Smart phones were able to perform the evolution of road
following neurocontrollers in real time, using encapsulated, on-board evolution.

3 Background

Much of the research into evolutionary robotics has focused on optimizing a con-
troller to allow a single robot to complete a given task during off-line evolution,
in which the robotic agent is evolved and evaluated in simulation, and the best
individual solution is transferred to a physical robot [10]. While this approach
works well for some problems, it has several important limitations. Firstly, when
evolution is done off-line, the robot does not continue to evolve after the simulation
is finished, so it cannot adapt to novel environments. The second limitation is the
difficulty in simulating real world environments, particularly when dealing with
inputs such as lighting, texture, and sound [4]. Because of this, controllers created
during simulation are susceptible to decreases in effectiveness once transferred to
the real world [3,12]. This decrease in performance is referred to as the simulation
to reality problem. To create controllers that perform well in real-world environ-
ments it becomes necessary for controllers to be evolved and tested on a physical
robot during real-time operation.

One approach to on-line, on-board evolution is encapsulated evolution in which
each robot runs its own evolutionary algorithm on-board, maintaining a popula-
tion of potential controllers, and testing those controllers on-line during operation.
Examples of encapsulated evolution include the (1+1) ON-LINE [2,14] and the (u
+ 1) ON-LINE [6,7,9,1] algorithms. These algorithms have been successfully ap-
plied to a number of test problems including fast-forward, collective patrolling, and

4 T. DeVault, N. Ebel, J. Marulanda, J. Pokharel, T. Soule, RB. Heckendorn

balancing, but testing has only been done in simulation or with small populations
of simple controllers.

Previously, encapsulated evolutionary approaches were designed under the as-
sumption that the operating hardware is limited in both processing power and
memory. Therefore, the evolutionary algorithms are designed to be “lightweight”
using simple representations and small population sizes [2]. In [11,14] evolution
was done on real robotic hardware with processing speeds in the MHz range and
memory in the KB range. While these lightweight algorithms have had success in
evolving robotic controllers, our work with color following shows that more com-
plex representations are better and therefore other hardware is needed [18]. [18]
also demonstrates that smart phones provide powerful hardware that measures
processing speeds in the GHz range and has memory in the MB and GB ranges.
The availability of this low cost, computationally powerful hardware decreases the
need for lightweight algorithms which leads to better performing controllers.

To have robots that can accomplish different tasks with the same controller,
robots must be able to learn in some way. Robotic learning falls into two main
categories: unsupervised, and supervised.

Unsupervised learning attempts to cluster unlabeled data without any feed-
back. Common approaches include hidden Markov models and principle compo-
nent analysis. In evolutionary robotics an unsupervised learning system would
have the additional requirement that the robot would need to be able to judge it’s
own performance, which while easy in simulation, can require additional hardware
or software in a physical robot.

Supervised learning strategies involve telling an agent what it should do, given
a set of inputs and then using that information to generalize behaviors. An example
of this type of learning is using back propagation to train a neural network. Another
example of supervised learning is learning from demonstration. In this method
a robot learns a task by observing how that task is carried out by an expert.
The actual method of learning varies and includes: learning policies, mimicking
trajectories, model building, and matching movement primitives [15]. Learning
from demonstration has been used to train robots to play soccer [19] and to train
a large “crusher” robot to drive through varied, outdoor terrain [17].

Encapsulated evolution is effective in evolving robotic controllers, but previous
work has focused on simple representations. It’s been shown that more complex
representations can lead to better performance. Learning from demonstration has
been shown to be an effective method of teaching robots to solve complex problems.
Our work combines these methods on a low cost, computationally powerful robot
to solve the real world task of trail following.

4 Methods

We use the problem of trail following to show that encapsulated evolution and
learning from demonstration can be used together to solve complex problems.
This problem was chosen for several reasons. First, the problem of trail following
is well suited to learning from demonstration because the desired driving behavior
can be easily demonstrated to a robot. Second, the problem is non-trivial and
has many real world applications. Third, trail following systems have been done
before, but usually on very expensive hardware.

Learning from Demonstration for Encapsulated Evolution of Robotic Controllers 5

4.1 Test Robot

These experiments were conducted with a physical robot designed and built at
the University of Idaho following Commodity Off The Shelf (COTS) design prin-
ciples. An approach that is becoming more common in robotics research (see for
example [8,13,18]). The robot consists of three basic components: a smart phone,
an Arduino micro controller, and a robot platform.

The smart phone, for these experiments was a HTC Nexus One. This phone has
a 1GHz Qualcomm Snapdragon processor, with 512 MB of RAM, and a Qualcomm
Adreno 200 GPU.

An Arduino based micro controller with Bluetooth capabilities handles com-
munication between the smart phone and the robot body. For these experiments
the DFRomeo micro controller from DFRobot was used.* Currently the micro con-
troller is only used to receive commands via bluetooth from the smart phone and to
activate the motors on the robotic platform accordingly. Thus, the computational
characteristics of the micro controller are not a concern.

A mobile robot platform is needed to carry out the commands given by the
smart phone. For these experiments, the Rover 5 Tank chassis was used.” This is a
small (22.5¢cm by 24.5c¢m), tracked, mobile robot platform. It can run continuously
for several hours while carrying the micro controller and smart phone.

The smart phone makes decisions and sends output commands to the micro
controller via Bluetooth. The micro controller then sends signals to the robot
platform’s motors to control movement. The robot is completely untethered: it uses
the smart phone’s computational power to run “full-scale” evolutionary algorithms
and the phones built-in sensors as the robot’s sensors. For these experiments,
the only sensor is the smart phone’s camera. During the human operation stage
(described below), the smart phone is connected via Bluetooth to a second smart
phone that is used as a remote controller.

4.2 Learning Framework

Our evolutionary approach combines learning from demonstration, in which the
robot attempts to learn to imitate a human operator, and encapsulated evolu-
tion, in which the entire evolutionary process is encapsulated within the robot.
The overall process consists of three general stages: human demonstration, learn-
ing through evolution, and autonomous operation. We begin by giving a broad
overview of the process, followed by a detailed description of each component.
During human demonstration, a human drives the robot, carefully following
the desired trail type. The human uses a remote control with discrete forward, left,
and right options. While the human is driving, the robot is building two sets of
data based on camera input. The first set of data is a library of safe, known road
types built from the input images. Details about how the library is built are given
in Section 4.2.1. The screen image is then split into 40, 80px X 96px, regions and
these subregions are assigned a road value using the roads library (see Figure 2).
The road value is a heuristic used to compare how similar an image region is no

2 DFRomeo micro controller http://www.dfrobot.com
b Rover 5 Tank chassis http://www.dfrobot.com

6 T. DeVault, N. Ebel, J. Marulanda, J. Pokharel, T. Soule, RB. Heckendorn

B

Fig. 2 Robot’s screen colored to indicate calculated road values. The box at the bottom is
the region from which the road library is built under the assumption that the box never leaves
the desired road type.

known, safe road types. These road values, combined with a corresponding action
taken by the human, make up the second set of data, which is used for training
during the learning stage.

In the learning stage the evolutionary algorithm is used to train a neural net-
work to generate the correct movement command when presented with the trained
road/action pairs. The evolutionary algorithm runs until 200 generations have
been evolved and evaluated and the individual with the best fitness is then used
to control the robot in autonomous mode.

During autonomous operation the robot uses the best evolved neural network to
follow a test track autonomously. Input images are continuously compared against
the road library to generate road values as inputs for the neural network which
then returns its trained action. For these experiments we measure successes and
the total number of corners traveled during autonomous operation. A success was
defined by:

— The robot driving the entire track (training or testing) while successfully nav-
igating all corners of the track

The robot failed the test if:

— The robot reversed direction on the track
— Both the robot’s treads were completely off the track

Because the testing track contained corners of differing angles than the training
track, successes on the test track indicate how effective the robot was in learning
generalized behaviors that can be applied to different test problems. Section 4.2.5
fully describes the training and testing tracks.

4.2.1 Library of road recognition histograms

To determine what are safe road regions, a library of known road types is generated
during human demonstration (Algorithm 1 describes the library creation process).

Learning from Demonstration for Encapsulated Evolution of Robotic Controllers 7

The library is created under the assumption that whatever is directly in front of
the robot is acceptable road. Based on this assumption, a small 50px x 50px region
from the bottom center of the input image is used to build the road library (see
Figure 2). This size was chosen because it was small enough that when the robot
turned, the region didn’t leave the road.

As in [20], image histograms were built from the sample region and were used
to represent examples of safe road types. Normalized histograms for red, green,
blue, hue, and saturation components of an image were used to construct a single
road model. During initial testing, using features from both the RGB and HSV
color space seemed to improve the performance of recognizing road from non-road
regions. The histograms were built using the OpenCV*® function calcHist, normal-
ized using the normalize function, and were then stored as a model representing
an example of a known road type.

When a model is created, it can either be used as a new example of an existing
road type, or as the first example of a new road type. For example, several models in
a row could be considered “lit road” and the next model might be the first example
of “shaded road.” Two models’ similarity corresponds to the average correlation
between the RGBHS components of each image. Correlation tests were performed
with the OpenCV function compareHist where an output value of 1.0 means the
two histograms are positively correlated, a 0 means no correlation, and -1.0 is a
negative correlation. A threshold similarity value of 0.75 was used to determine if
two models were examples of the same road type. If the similarity of two models
was less than 0.75, the new model was used as an example of a new road type.

A limit of 10 unique road types and road type examples was used. This was
done so the number of stored models did not grow indefinitely during operation.
This maximum value had to be considered in two situations:

1. A new road type has been found, but the maximum number of road types has
already been reached

2. A new example of an existing road type has been found, but the maximum
number of examples has already been reached

In the first situation, the least used type of road is removed from the road library,
and the new road example is added. In the second situation, the least used road
example is replaced by the new example. The least used is determined by taking
the minimum selection frequency of either a road type or road type example as
follows:

— Least Used Road Type: Total selectzon's of all emamples
Sum of all region comparisons

— Least Used Road Type Example: TOt;‘%l selections of example
egion comparisons

A road type example is considered selected when it is the most similar model to
an input region, and a road type is considered selected when one if its example
models is the most similar model to an input region.

4.2.2 Image processing

The goal of the image processing step is to partition an image into regions and
to assign each of these regions a value corresponding to how likely it is to contain

¢ http://opencv.org/

8 T. DeVault, N. Ebel, J. Marulanda, J. Pokharel, T. Soule, RB. Heckendorn

Algorithm 1 Road Library Creation
newModel generated from safe road region

{Find best matching model}
for all roadT'ypes € roadLibrary do
for all roadExzamples € roadT'ype do
correlation = compareHistograms(newM odel, road Example)
if correlation > bestCorrelation then
bestCorrelation = correlation
best RoadType = roadlype
end if
end for
end for

{Update or add to the road model list}
if bestCorrelation > similarityT hreshold then
if numberO f RoadType Examples() == maxModelSize then
removeLeastU sed Example()
end if
best RoadType.add Example(newM odel)
else
if numberO f RoadTypes == maxModelSize then
removeLeastU sed RoadType()
end if
roadLibrary.add RoadType(newModel)
end if

road. During operation each image received by the phone’s camera is processed
and generates a set of road values. These values are either used to build a set of
training cases, or as inputs to the neural network network depending on whether
the robot is in training or autonomous mode.

When an image is received it is partitioned into an 8 x 5 grid of subregions.
These regions are assigned a road value corresponding to the highest correlation
between the sub region and road library models. This creates 40 road values (one
for each of the sub regions in the image) which are used to build training cases with
an associated output action, or as the inputs to the controlling neural network.
Algorithm 2 describes the image processing step.

4.2.8 Neural network architecture

The neural network has forty input nodes, a single hidden layer consisting of five
nodes, and an output layer with three nodes. All of the nodes in the network use a
sigmoid activation function. The input layer corresponds to the forty 80px x 96px
regions in the partitioned image, one input per region. Each region is evaluated
against the constructed histograms of road models. A histogram is constructed
from the input region, and then it’s correlation with each color model in the roads
library is calculated. The highest correlation is used as the input value for each

Learning from Demonstration for Encapsulated Evolution of Robotic Controllers 9

Algorithm 2 Image Processing
for subRegion € Image do
for all roadTypes € roadLibrary do
for all roadExzamples € roadType do
correlation = average RGBH S correlation
if correlation > bestCorrelation then
bestCorrelation = correlation
end if
end for
end for
outputValues.add(bestCorrelation)
end for

region to the neural network. The three output neurons correspond to the three
discrete actions forward, left, and right. The action is determined by the output
neuron with the highest activation level. This is a common approach to evolving
ANN controllers for autonomous robots as demonstrated in [4]. In cases of a tie,
no command is sent to the robot. This would be a very extreme edge case and
never occurred during our experiment.

4.2.4 The evolutionary algorithm

An important goal of this project is to test the feasibility of using smart phones for
encapsulated evolutionary learning from demonstration. For these initial investi-
gations we intentionally chose to use a simple, but general, evolutionary model. It
is likely that a more sophisticated evolutionary model, in particular one developed
for the evolution of neural networks such as NEAT [16] or hyperNEAT [5], would
yield better results, and will be tried in future work.

We used a standard generational genetic algorithm (GA) to evolve the neural
network weights. Individuals are represented as a complete multilayer perceptron
neural network; each individual has 215 weights(40 input nodes to 5 hidden nodes
= 200, and 5 hidden nodes to 3 output nodes = 15). Initially the weights were
randomly set in the range -1.0 to 1.0. Initially each individual’s fitness is assigned
to 0.0, and is only calculated with the construction of the next generation, this
means that the first generation uses a random selection.

Selection was a tournament of size three. Two individuals are selected as par-
ents and produce only one offspring which receives crossover and mutation before
being added to the next generation. Crossover was done as a uniform crossover on
every set of parents when constructing the offspring. Each offspring will have 215
weights which will be mutated at a rate of .2, on average resulting in 43 mutations
per offspring. The amount of mutation was uniformly distributed between -0.1 to
0.1.

Fitness was determined by comparing the cases collected in the training data
and the output that the trainer gave to the robot to the actions taken by each
individual network with the same training case. The training cases are divided
into category based expected action(Left, Right, Forward). The network can earn
an equal amount of fitness for getting all the cases in a category correct, regardless

10 T. DeVault, N. Ebel, J. Marulanda, J. Pokharel, T. Soule, RB. Heckendorn

Table 1 Summary of the evolutionary algorithm parameters.

Population size 40
Generations 200

Mutation rate .2

Crossover rate 100% Uniform

Selection method Tournament(size 3)

of the number of cases within the category. The fitness was calculated this way
because during training, there were generally ten forward commands to every one
turn command given. Algorithm 3 describes the fitness function which assigns
a better fitness to the network if the network’s output at the expected winning
action is higher than it’s output at it’s other actions. The difference between the
value corresponding to the expected action and the other actions was attempted
to be wide, wide being defined as a threshold of 0.4. No testing was done on this
threshold value, this value was chosen because it was a mid range value. High and
low values were expected to work poorly in the fitness function. If the network
chooses the correct action, it always gets a positive fitness for that training case,
but the fitness will increment more if the if the difference is at least equal to the
threshold.

Algorithm 3 Genetic Algorithm Fitness Function

for each network in population do
fitness = 0
for each training case do
actualResults = network result from running training case
expectedResults = results from training case
winning Value = actualResults at the position of the expectedResults win-

ner
differencel = winningValue - actualResults at first position other than
winner
difference2 = winningValue - actualResults at second position other than
winner

for each difference do
if difference > threshold then
fitness += 0.5 / number of training cases in that catagory
else
fitness += 0.5 * (difference / threshold) / number of training cases
in that catagory
end if
end for
end for
fitness = 1 - fitness / 3
end for

The other parameters of the evolutionary algorithm are summarized in Table 1.

Learning from Demonstration for Encapsulated Evolution of Robotic Controllers 11

4
3
2,74m
—
Aam
1 2

1.83m

Fig. 3 Track that the robots were tested on. This track is more difficult than the training
track because it contains sharper turns than the training track. The numbers at each corner
are identifiers used to describe how far around the track the robot was able to navigate during
testing.

Fig. 4 This track is used to train the robot. The robot is trained by a human going from the
right hand side to the left hand side and back two times.

4.2.5 Test conditions and environment

The experimental procedure consisted of repeatedly training a robot on a simple
track, using the data collected during training to evolve a neural network, and then

12 T. DeVault, N. Ebel, J. Marulanda, J. Pokharel, T. Soule, RB. Heckendorn

testing the evolved neural network by letting it autonomously drive the robot on
both the training and testing tracks. The experiments were performed indoors in
a well lit room; the tracks were a light blue felt fabric track that contrasted well
with the dark brown carpet in the room. The shape of the two tracks are shown
in Figure 3 and Figure 4. The training track consisted of two 45 degree turns and
a 1.83m straightaway. The testing track was designed to be more difficult and to
test the evolved neural networks’ ability to generalize. It consisted of two 90 degree
turns, one 45 degree turn, and one 135 degree turn.

At the start of human demonstration the robot was given 10 drive commands
that are used to build an initial library of road models. With an initial library built
at the start of training, initial training cases more closely resemble later ones and
reduce the overall noise in the training data. After the initial road library is cre-
ated, the robot was then driven along the training track down and back two times,
although the exact number of given commands depends on the human operator
and the specific training. On average this training is sufficient to generate a library
of 100 histograms for road recognition and 120-160 road value/command pairs to
use during the learning process. At the start of training, and after each command,
the robot receives a new image, processes it, generates network inputs, and then
draws the image to the screen coloring each subregion based on its assigned road
value. The robot then waits to receive a drive command from the human oper-
ator. When a command is received the specified action is saved along with the
image processing outputs as a training case for ANN training. Once training was
completed, the operator started the evolutionary process which generated a neural
network controller for the robot. This controller was then used to test the robot
during the autonomous stage of operation.

Note that since the evolution happens after the demonstration, and before
the robot operates in autonomous mode. This model should be consider off-line
learning, because the robot is not learning during operation. The robot has no
one of receiving feedback about it’s performance during run time. We plan on
modifying the evolution to happen during the demonstration phase and during
run time to create an on-line learning system in the future.

During autonomous operation the robot attempted to navigate the testing
track three times in the clockwise direction, and three times in the counterclockwise
direction, for a total of six tests. Each test started from corner 4 because it was
perceived as the most difficult, which allowed the robot to attempt as many corners
as possible before reaching the most challenging one.

5 Results

Table 2 shows the results of the robot on the training track. The robot was able
to successfully navigate the training track 95% of the time indicating that it was
successful in learning from demonstration. Table 3 shows the results of the robot
on the testing track. Results for the robot in the clockwise and counter clockwise
directions are split, showing that on 14 trials in each direction the robot was able
to navigate every corner on the track for a total of 28 successes in 60 trials. Note
that on corner 3, the number of failures for both clockwise and counterclockwise
are 0. This is because corner 3 is the same type of corner that the training track
uses. Corners 1, 2, and 4 were all larger angle corners than those the robot had

Learning from Demonstration for Encapsulated Evolution of Robotic Controllers 13

Table 2 Results of testing the robot on the training track showed the robot could successfully
navigate the trail it was trained on 95% of the time.

Direction 1 | Direction 2

Corner Corner

1 2 2 1
Times reached 30 29 30 28
Failures 1 0 2 0

Table 3 Number of failures in each direction (clockwise and counterclockwise) on the training
track by corner number (see Figure 3). Failures are progressive, if the robot fails to negotiate
the Nt* corner on a test, it doesn’t get to the next corner on that test. E.g. when going
clockwise the robot always negotiated the first corner (Corner 3). It failed to negotiate the
second corner (Corner 2) 5 of the 21 times it reached it, and failed to negotiate the third
corner 1 of the 16 times it reached it. Note that the robot never fails on corner 3 (45 degrees),
which is the same angle as the training turn. Failures only occur on sharper, i.e. more difficult,
turns.

Clockwise [Counterclockwise

Corner Corner

3 2 1 4‘1 2 3 4

Times reached 30 30 23 19 | 30 27 20 20
Failures 0 7 4 5 3 7 0 6

been trained on. The ability to navigate these corners show an ability of the robot
to generalize trained behaviors to novel inputs during operation.

6 Conclusion

While the presented approach showed success in testing, there are several observed
limitations that affect the performance of the robot. Inputs from the camera and
outputs from image processing have a large impact on robot behavior. The HTC
Nexus One phone we used has a narrow degree viewing, so it can be difficult for
the camera input to see a severe upcoming turn. The vertical angle at which the
phone is placed is also important. Lighting changes significantly depending on the
angle of the phone as does the distance in front of the robot the camera can see.
These factors can affect both the ability to successfully match road models and
the ability to perceive changes to the path. We chose to angle the phone forward
at a 30 degree angle which allows the camera to see approximately six feet in front
of it and places the “safe road” box 10 inches in front of the robot. We suspect
that a greater field of vision would allow the robot to better perceive larger degree
corners and could lead to better performance, but further testing with a fish-eye
lens is needed.

Another limitation to the current approach is the maneuverability of the robotic
platform. The tested Rover 5 platform makes sharp, angled turns that work well
for angled corners, but are less desirable for curved tracks. Another platform that
was used in preliminary tests had 4 wheels and therefore made more rounded
turns.? These turns, and a faster operating speed, allowed this platform to quickly

d http://www.nitrorcx.com/51c871-maxstonel6-green-24ghz.html

14 T. DeVault, N. Ebel, J. Marulanda, J. Pokharel, T. Soule, RB. Heckendorn

traverse test tracks, but its limited turning radius made it very difficult to keep
the “safe road” box on the track. Keeping the box within the bounds of the track
allowed operation under the assumption that whatever is directly in front of the
robot is the desired road type. This works well for detecting safe road regions,
but it increases the importance of careful training. If the box leaves the desired
road surface, it can have a debilitating negative impact on the performance of the
image processing. It was for this reason we chose to use the more precise turning
Rover 5 as our robotic platform for this research. Because it is slower and has a
smaller turning radius, the Rover 5 makes it easier to keep the “safe road” box on
the track and therefore simplifies training.

It is likely that a more robust approach can be created by merging these steps.
For example, the learning algorithm can be run continuously in the background
during human operation. (Human operators tend to send 1-4 control signals per
second, this leaves 100’s of milliseconds for training between commands, plenty of
time for a smart phone’s processor or processors to progress on an evolutionary al-
gorithm.) This would allow the robot to take over as soon as its evolving controllers
were sufficiently reliable at matching the human operator’s decisions. Similarly, if
the robot seems to be performing poorly or moves into a novel environment where
its road recognition library is no longer appropriate then the human can resume
control and the learning process can be continued.

References

1. Arif, A.u.Q., Nedev, D.G., Haasdijk, E.: Controlling evaluation duration in on-line, on-
board evolutionary robotics. In: Evolving and Adaptive Intelligent Systems (EAIS), 2013
IEEE Conference on, pp. 84-90. IEEE (2013)

2. Bredeche, N., Haasdijk, E., Eiben, A.: On-line, on-board evolution of robot controllers.
In: Artifical Evolution, pp. 110-121. Springer (2010)

3. Brooks, R.A.: Artifical life and real robots. In: Toward a practice of autonomous systems:
Proc. of the 1st Europ. Conf. on Artificial Life, p. 3 (1992)

4. Capi, G., Toda, H.: Evolution of neural controllers for robot navigation in human envi-
ronments. Journal of Computer Science 6(8), 837 (2010)

5. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated quadruped
gaits with the hyperneat generative encoding. In: Evolutionary Computation, 2009.
CEC’09. IEEE Congress on, pp. 2764-2771. IEEE (2009)

6. Eiben, A., Haasdijk, E., Bredeche, N., et al.: Embodied, on-line, on-board evolution for
autonomous robotics. Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evo-
lution. 7, 361-382 (2010)

7. Haasdijk, E., Atta-ul Qayyum, A., Eiben, A.E.: Racing to improve on-line, on-board evo-
lutionary robotics. In: Proceedings of the 13th annual conference on Genetic and evolu-
tionary computation, pp. 187-194. ACM (2011)

8. Halfiz, A.R., Murase, K.: irov: A robot platform for active vision research and as education
tool. In: Advances in Autonomous Mini Robots, pp. 173-181. Springer (2012)

9. Huijsman, R.J., Haasdijk, E., Eiben, A.: An on-line on-board distributed algorithm for
evolutionary robotics. In: Artificial Evolution, pp. 73-84. Springer (2012)

10. Karafotias, G., Haasdijk, E., Eiben, AE, Haasdijk, E., Eiben, A., Winfield, A., Haasdijk,
E., Rusu, A., Eiben, A., Eiben, A., et al.: An algorithm for distributed on-line, on-board
evolutionary robotics. In: GECCO, pp. 171-178 (2011)

11. Kernbach, S., Meister, E., Scholz, O., Humza, R., Liedke, J., Ricotti, L., Jemai, J., Havlik,
J., Liu, W.: Evolutionary robotics: The next-generation-platform for on-line and on-board
artificial evolution. In: Evolutionary Computation, 2009. CEC’09. IEEE Congress on, pp.
1079-1086. IEEE (2009)

12. Koos, S., Mouret, J.B., Doncieux, S.: Crossing the reality gap in evolutionary robotics
by promoting transferable controllers. In: Proceedings of the 12th annual conference on
Genetic and evolutionary computation, pp. 119-126. ACM (2010)

Learning from Demonstration for Encapsulated Evolution of Robotic Controllers 15

13.

14.

15.

16.

17.

18.

19.

20.

Li, G.: Asccbot: An open mobile robot platform. Ph.D. thesis, Oklahoma State University
(2011)

Montanier, J.M., Bredeche, N.: Embedded evolutionary robotics: The (14 1)-restart-online
adaptation algorithm. In: New Horizons in Evolutionary Robotics, pp. 155-169. Springer
(2011)

Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learning by im-
itation. Philosophical Transactions of the Royal Society of London. Series B: Biological
Sciences 358(1431), 537-547 (2003)

Silva, F., Urbano, P., Oliveira, S., Christensen, A.L.: odneat: An algorithm for distributed
online, onboard evolution of robot behaviours. In: Artificial Life, vol. 13, pp. 251-258
(2012)

Silver, D., Bagnell, J.A., Stentz, A.: Applied imitation learning for autonomous navigation
in complex natural terrain. In: Field and Service Robotics, pp. 249-259. Springer (2010)
Soule, T., Heckendorn, R.B.: A practical platform for on-line genetic programming for
robotics. In: Genetic Programming Theory and Practice X, pp. 15-29. Springer (2013)
Sullivan, K., Luke, S.: Real-time training of team soccer behaviors. In: RoboCup 2012:
Robot Soccer World Cup XVI, pp. 356-367. Springer (2013)

Tan, C., Hong, T., Chang, T., Shneier, M.: Color model-based real-time learning for road
following. In: Intelligent Transportation Systems Conference, 2006. ITSC’06. IEEE, pp.
939-944. IEEE (2006)

