
Mechanisation of the AKS Algorithm

Hing-Lun Chan

College of Engineering and Computer Science
Australian National University

PhD Monitoring 2017

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 1 / 12



Outline

1 Introduction
Road Map

2 Work Progress
View in 2016
View in 2017
AKS in HOL4
Primality Testing

3 Look Ahead
Plans
Publications

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 2 / 12



Introduction Road Map

Mechanisation of AKS Algorithm – Road Map

AKS

AlgorithmTheory Analysis

Basic Theorem

Modifications

AKS Theorem

Power-free Check

Parameter Search

verified Algorithm

Simple?

Fast?

Efficient?

Basic Theorem

RingFieldPolynomial Group Monoid

AKS Theorem Efficient?

OrdersIdealsFactorsRoots

Modifications

AKS Theorem

QuotientsIrreduciblesSubstitutions

Power-free Check

Unity

Conjugate
Master Subfield

Parameter Search

Better AKS Theorem
Unity

Conjugate
Master Subfield

Parameter Search

Better AKS Theorem

2017

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 3 / 12



Work Progress View in 2016

Back in 2016

Revised:
Need: to gather information about Cyclotomic factors.
Need: to establish the existence of Finite Fields.
Key: obtain a count of monic irreducibles for a given degree.
Todo: Reformalute AKS proof with a simple parameter k .

Achieved:
Search for simple k is O(log n) if an LCM bound is true.
A short joint paper to ITP2016 for a cute proof of this result:
2n ≤ LCM {1;2;3; . . . ; (n + 1)}.
An implicit formula for the monic irreducibles count.
A finite field exists with cardinality pn, for prime p and 0 < n.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 4 / 12



Work Progress View in 2017

Now in 2017

Achieved:
Worked out a theory of Cyclotomic factors.
Removed the prime requirement on AKS parameter.
Reformulated the AKS proof with a simple parameter k .
Submitted a paper on AKS mechanisation work to JAR.
Submitted a paper on Finite Field classification to JAR.
Submitted an extended version of the consecutive LCM bound to
JAR.

To Do:
Investigate a computational model to analyse algorithm.
Working on: the use of separation logic in computational analysis.
Working on: include a clock to count the number of steps in code
execution.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 5 / 12



Work Progress AKS in HOL4

The Theorem

Theorem

The AKS Primality Test.

` prime n ⇐⇒ AKS n

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 6 / 12



Work Progress AKS in HOL4

The Algorithm

The algorithm starts with a power free test,
then performs a parameter search (AKS_param):

AKS n ⇐⇒
1 < n ∧ power_free n ∧
case AKS_param n of

nice j ⇒ j = n
| good k ⇒ poly_checks n k (

√
ϕ(k) × dlog ne)

| bad ⇒ F

Of the 3 result from the search:
a nice j takes a single check for TRUE or FALSE,
a good k needs further polynomial checks, and
bad never happens.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 7 / 12



Work Progress AKS in HOL4

The Algorithm

The algorithm starts with a power free test,
then performs a parameter search (AKS_param):

AKS n ⇐⇒
1 < n ∧ power_free n ∧
case AKS_param n of

nice j ⇒ j = n
| good k ⇒ poly_checks n k (

√
ϕ(k) × dlog ne)

| bad ⇒ F

Of the 3 result from the search:
a nice j takes a single check for TRUE or FALSE,
a good k needs further polynomial checks, and
bad never happens.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 7 / 12



Work Progress AKS in HOL4

The Pseudo Code

Input: integer n > 1.
1 Power Free Test

For each j = 2 to dlog ne:
◦ If (integer j-th root of n)j = n, COMPOSITE.

2 Parameter Search
For each k = 2 to 2 +

dlog ne5

2 :
◦ If k | n, then if k = n PRIME else COMPOSITE.
◦ If k ≥ dlog ne2 ∧ orderk (n) ≥ dlog ne2, go to Step 3.

3 Identity Checks
For each c = 1 to

√
ϕ(k) × dlog ne:

◦ if (X + c)n 6≡ (X n + c) (mod n, X k − 1),
COMPOSITE.

4 return PRIME.

Figure : AKS algorithm in Pseudo-codeHing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 8 / 12



Work Progress Primality Testing

Is 91 a prime?

Trial division (known since antiquity)
not divisible by 2,3,5.
but divisible by 7, so COMPOSITE.

Fermat’s method (around 1640)
91 = 100− 9 = 102 − 32, must be COMPOSITE.

by x2 − y2 = (x − y)(x + y), 91 = (10− 3)(10 + 3) = 7× 13.

AKS method (August 2002)
Search: found nice 7 that divides 91, so COMPOSITE.
Even if this is missed, polynomial check gives:

I (x + 1)91 6≡ x91 + 1 (mod 91, x37 − 1).
I LHS: (x + 1)91 ≡ 13x35 + · · ·+ x17 + · · ·+ 1 (mod 91, x37 − 1)
I RHS: x91 + 1 ≡ x17 + 1 (mod 91, x37 − 1)

so COMPOSITE.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 9 / 12



Work Progress Primality Testing

Is 91 a prime?

Trial division (known since antiquity)
not divisible by 2,3,5.
but divisible by 7, so COMPOSITE.

Fermat’s method (around 1640)
91 = 100− 9 = 102 − 32, must be COMPOSITE.

by x2 − y2 = (x − y)(x + y), 91 = (10− 3)(10 + 3) = 7× 13.

AKS method (August 2002)
Search: found nice 7 that divides 91, so COMPOSITE.
Even if this is missed, polynomial check gives:

I (x + 1)91 6≡ x91 + 1 (mod 91, x37 − 1).
I LHS: (x + 1)91 ≡ 13x35 + · · ·+ x17 + · · ·+ 1 (mod 91, x37 − 1)
I RHS: x91 + 1 ≡ x17 + 1 (mod 91, x37 − 1)

so COMPOSITE.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 9 / 12



Work Progress Primality Testing

Is 91 a prime?

Trial division (known since antiquity)
not divisible by 2,3,5.
but divisible by 7, so COMPOSITE.

Fermat’s method (around 1640)
91 = 100− 9 = 102 − 32, must be COMPOSITE.

by x2 − y2 = (x − y)(x + y), 91 = (10− 3)(10 + 3) = 7× 13.
AKS method (August 2002)

Search: found nice 7 that divides 91, so COMPOSITE.
Even if this is missed, polynomial check gives:

I (x + 1)91 6≡ x91 + 1 (mod 91, x37 − 1).
I LHS: (x + 1)91 ≡ 13x35 + · · ·+ x17 + · · ·+ 1 (mod 91, x37 − 1)
I RHS: x91 + 1 ≡ x17 + 1 (mod 91, x37 − 1)

so COMPOSITE.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 9 / 12



Work Progress Primality Testing

Is 91 a prime?

Trial division (known since antiquity)
not divisible by 2,3,5.
but divisible by 7, so COMPOSITE.

Fermat’s method (around 1640)
91 = 100− 9 = 102 − 32, must be COMPOSITE.
by x2 − y2 = (x − y)(x + y), 91 = (10− 3)(10 + 3) = 7× 13.

AKS method (August 2002)
Search: found nice 7 that divides 91, so COMPOSITE.
Even if this is missed, polynomial check gives:

I (x + 1)91 6≡ x91 + 1 (mod 91, x37 − 1).
I LHS: (x + 1)91 ≡ 13x35 + · · ·+ x17 + · · ·+ 1 (mod 91, x37 − 1)
I RHS: x91 + 1 ≡ x17 + 1 (mod 91, x37 − 1)

so COMPOSITE.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 9 / 12



Work Progress Primality Testing

Is 91 a prime?

Trial division (known since antiquity)
not divisible by 2,3,5.
but divisible by 7, so COMPOSITE.

Fermat’s method (around 1640)
91 = 100− 9 = 102 − 32, must be COMPOSITE.
by x2 − y2 = (x − y)(x + y), 91 = (10− 3)(10 + 3) = 7× 13.

AKS method (August 2002)
Search: found nice 7 that divides 91, so COMPOSITE.
Even if this is missed, polynomial check gives:

I (x + 1)91 6≡ x91 + 1 (mod 91, x37 − 1).
I LHS: (x + 1)91 ≡ 13x35 + · · ·+ x17 + · · ·+ 1 (mod 91, x37 − 1)
I RHS: x91 + 1 ≡ x17 + 1 (mod 91, x37 − 1)

so COMPOSITE.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 9 / 12



Work Progress Primality Testing

Is 97 a prime?

Trial division (known since antiquity)
not divisible by 2,3,5,7.
since

√
97 ≈ 9.85, so PRIME.

Fermat’s method (around 1640)
note 102 = 100 is nearest to 97, try 97 = 102 − y2, fail.
fail 97 = 112 − y2 = · · · = 482 − y2 where 48 ≈ 97

2 , so PRIME.
AKS method (August 2002)

Search: found good 59.
Polynomial checks:

I (x + 1)97 ≡ x97 + 1 (mod 97, x59 − 1) ok,
I (x + 2)97 ≡ x97 + 2 (mod 97, x59 − 1) ok, · · · , up to
I (x + 48)97 ≡ x97 + 48 (mod 97, x59 − 1), all ok.

so PRIME.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 10 / 12



Work Progress Primality Testing

Is 97 a prime?

Trial division (known since antiquity)
not divisible by 2,3,5,7.
since

√
97 ≈ 9.85, so PRIME.

Fermat’s method (around 1640)
note 102 = 100 is nearest to 97, try 97 = 102 − y2, fail.
fail 97 = 112 − y2 = · · · = 482 − y2 where 48 ≈ 97

2 , so PRIME.
AKS method (August 2002)

Search: found good 59.
Polynomial checks:

I (x + 1)97 ≡ x97 + 1 (mod 97, x59 − 1) ok,
I (x + 2)97 ≡ x97 + 2 (mod 97, x59 − 1) ok, · · · , up to
I (x + 48)97 ≡ x97 + 48 (mod 97, x59 − 1), all ok.

so PRIME.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 10 / 12



Work Progress Primality Testing

Is 97 a prime?

Trial division (known since antiquity)
not divisible by 2,3,5,7.
since

√
97 ≈ 9.85, so PRIME.

Fermat’s method (around 1640)
note 102 = 100 is nearest to 97, try 97 = 102 − y2, fail.
fail 97 = 112 − y2 = · · · = 482 − y2 where 48 ≈ 97

2 , so PRIME.

AKS method (August 2002)
Search: found good 59.
Polynomial checks:

I (x + 1)97 ≡ x97 + 1 (mod 97, x59 − 1) ok,
I (x + 2)97 ≡ x97 + 2 (mod 97, x59 − 1) ok, · · · , up to
I (x + 48)97 ≡ x97 + 48 (mod 97, x59 − 1), all ok.

so PRIME.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 10 / 12



Work Progress Primality Testing

Is 97 a prime?

Trial division (known since antiquity)
not divisible by 2,3,5,7.
since

√
97 ≈ 9.85, so PRIME.

Fermat’s method (around 1640)
note 102 = 100 is nearest to 97, try 97 = 102 − y2, fail.
fail 97 = 112 − y2 = · · · = 482 − y2 where 48 ≈ 97

2 , so PRIME.
AKS method (August 2002)

Search: found good 59.
Polynomial checks:

I (x + 1)97 ≡ x97 + 1 (mod 97, x59 − 1) ok,
I (x + 2)97 ≡ x97 + 2 (mod 97, x59 − 1) ok, · · · , up to
I (x + 48)97 ≡ x97 + 48 (mod 97, x59 − 1), all ok.

so PRIME.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 10 / 12



Look Ahead Plans

Possible Timeline

Thesis plan:

April, 2015: AKS Main Theorem (with suitable prime k )
June, 2016: AKS Main Theorem (with suitable k )

October, 2016: AKS Computational Steps Identification
December, 2017: Computational Model for AKS algorithm

September, 2018: Thesis written (hopefully!)

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 11 / 12



Look Ahead Publications

Publications

Publications:

CPP2012: A String of Pearls: Proofs of Fermat’s Little Theorem
JFR2013: Extended version for Journal of Formalized Reasoning
ITP2015: Mechanisation of AKS Algorithm Part 1: Main Theorem
ITP2016: Bounding LCMs with Triangles (a simple lower bound)

JAR2017: (accepted) Bounding LCMs with Triangles (both lower and
upper bounds)

JAR2017? (rejected) Mechanisation of AKS Algorithm (revised and
improved)

JAR2017: (subject to revision) Classification of Finite Fields with
Applications

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2017 12 / 12


	Introduction
	Road Map

	Work Progress
	View in 2016
	View in 2017
	AKS in HOL4
	Primality Testing

	Look Ahead
	Plans
	Publications


