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Introduction Complexity

Complexity

Aim: to show that AKS primality testing is a polynomial-time algorithm
Given a number n, the algorithm terminates with an answer to the
question: is n a prime?
The size of input n is measured by its number of bits, i.e., dlog ne.
The number of steps for the algorithm is bounded by a polynomial
function of dlog ne.
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Introduction The Machine

The Machine

Design a CPU with machine codes, and these parts:
a map of names to lists of machine codes,
a list of Registers,
a list of Memory Cells,

a program counter along a code list,
a base pointer to allocate/deallocate cells,
a stack for call and return, and
a boolean flag for test result.

Some book-keeping parts:
the clock tick to record execution time,
the maximum number of registers,
the maximum allocated cells, and
the maximum level of the stack.
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Algorithms Long multiplication

9× 5

decimal 5 = binary 101

9 9
×5 1 0 1
45 9 (9× 1)× 1 = 9

0 (9× 2)× 0 = 0
9 (9× 4)× 1 = 36

sum = 45

“Egyptian” multiplication: m × n giving r .

double m half n result r add: if ODD n then m else 0 next r
9 5 0 +9 9

18 2 9 +0 9
36 1 9 +36 45
72 0 45 STOP
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Algorithms Long multiplication

Multiplication

Pseudo code:

Input: integers m,n.
1 r ← 0
2 while n 6= 0:

◦ If (ODD n), r ← r + m.
◦ m← 2×m
◦ n← n

2
3 return r = m × n.

Figure : Long Multiplication

Complexity:
Intermediate r ≤ m × n, size(m × n) ≤ size(m) + size(n).
Total number of steps is bounded by (dlog me + dlog ne)× dlog ne.
O(dlog max(m,n)e2).
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Algorithms Long multiplication

Multiplication
Machine code for “mult”:

Given m, n registers: m :: n :: tail
r ← 0 PUSH 0 registers: 0 :: m :: n :: tail

LOCAL 2 allocate two cells: r and m
PUT 0 r ← 0, registers: m :: n :: tail
PUT 1 m ← m, registers: n :: tail

loop:
while (n 6= 0) begin TZERO Is n = 0?

JY 12 yes, exit
if (ODD m), TEVEN Is n EVEN?

JY 5 yes, skip
then r ← r + m GET 1 registers: m :: n :: tail

GET 0 registers: r :: m :: n :: tail
ADD registers: (r + m) :: n :: tail
PUT 0 r ← r + m, registers: n :: tail

skip:
m ← 2× m GET 1 registers: m :: n :: tail

LSHIFT registers: 2m :: n :: tail
PUT 1 m ← 2m, registers: n :: tail

n ← n
2 RSHIFT registers: n

2 :: tail
end while JP -12 back to loop

exit:
return r POP registers: tail

GET 0 registers: r :: tail
FREE discard allocated cells
RETURN back to caller
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Algorithms Long multiplication

Long multiplication

Theorem

The machine code for long multiplication is implemented correctly.

` m.state = RUNNING ∧ m.registers = n::k ::t ∧
m.codeMap = program_codes ∧ m sees [CALL “mult”] ⇒

FUNPOW cpu_step (11 + mult_loop_step k) m =
m with
<|registers := n × k ::t;

rcount := max(m.rcount,3 + LENGTH t);
ccount := max(m.ccount,2 + LENGTH m.cells);
level := max(m.level,1 + LENGTH m.stack); flag := T;
pc := m.pc + 1;
clock := m.clock + (13 + mult_loop_tick k n 0)|>
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Algorithms Fast exponentiation

Exponentiation

Multiplication:
Slow: multiplication = iterated addition
9× 5 = 9 + 9 + 9 + 9 + 9
Fast: m × n = double m, half n, update result by add if (ODD n).

Exponentiation:
Slow: exponentiation = iterated multiplication
95 = 9× 9× 9× 9× 9
Fast: mn = square m, half n, update result by multiply if (ODD n).
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Algorithms Fast exponentiation

95

decimal 5 = binary 101

9 9
to power 5 1 0 1

59049 9 (91)1 = 9
0 (92)0 = 1

9 (94)1 = 6561
product = 59049

Fast exponentiation: mn giving r .

square m half n result r times: if ODD n then m else 1 next r
9 5 1 ×9 9

81 2 9 ×1 9
6561 1 9 ×6561 59049

43046721 0 59049 STOP
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Algorithms Fast exponentiation

Exponentiation

Pseudo code:

Input: integers m,n.
1 r ← 1
2 while n 6= 0:

◦ If (ODD n), r ← r ×m.
◦ m← m2

◦ n← n
2

3 return r = mn.

Figure : Fast Exponentiation

Complexity:
Intermediate r ≤ mn, size(mn) ≤ n × size(m).
Total number of steps is bounded by
(n × dlog me2 + dlog me2)× dlog ne.
O(n × dlog ne × dlog me2).
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Algorithms Fast exponentiation

Exponentiation
Machine code for “exp”:

Given m, n registers: m :: n :: tail
r ← 1 PUSH 1 registers: 1 :: m :: n :: tail

LOCAL 2 allocate two cells: r and m
PUT 0 r ← 1, registers: m :: n :: tail
PUT 1 m ← m, registers: n :: tail

loop:
while (n 6= 0) begin TZERO Is n = 0?

JY 12 yes, exit
if (ODD m), TEVEN Is n EVEN?

JY 5 yes, skip
then r ← r × m GET 1 registers: m :: n :: tail

GET 0 registers: r :: m :: n :: tail
CALL “mult” registers: (r × m) :: n :: tail
PUT 0 r ← r × m, registers: n :: tail

skip:
m ← m2 GET 1 registers: m :: n :: tail

CALL “square” registers: m2 :: n :: tail
PUT 1 m ← m2, registers: n :: tail

n ← n
2 RSHIFT registers: n

2 :: tail
end while JP -12 back to loop

exit:
return r POP registers: tail

GET 0 registers: r :: tail
FREE discard allocated cells
RETURN back to caller
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Algorithms Fast exponentiation

Fast exponentiation

Theorem

The machine code for fast exponentiation is implemented correctly.

` m.state = RUNNING ∧ m.registers = n::k ::t ∧
m.codeMap = program_codes ∧ m sees [CALL “exp”] ⇒

FUNPOW cpu_step (11 + exp_loop_step k n) m =
m with
<|registers := nk ::t;

rcount := max(m.rcount, (if k = 0 then 3 else 4) + LENGTH t);
ccount := max(m.ccount, (if k = 0 then 2 else 4) + LENGTH m.cells);
level := max(m.level, (if k = 0 then 1 else 3) + LENGTH m.stack);
flag := T; pc := m.pc + 1;
clock := m.clock + (13 + exp_loop_tick k n 1)|>
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Look Ahead Review

AKS Pseudo Code

Input: integer n > 1.
1 Power Free Test

For each j = 2 to dlog ne:
◦ If (integer j-th root of n)j = n, COMPOSITE.

2 Parameter Search
For each k = 2 to 2 +

dlog ne5

2 :
◦ If k | n, then if k = n PRIME else COMPOSITE.
◦ If k ≥ dlog ne2 ∧ orderk (n) ≥ dlog ne2, go to Step 3.

3 Identity Checks
For each c = 1 to

√
ϕ(k) × dlog ne:

◦ if (X + c)n 6≡ (X n + c) (mod n, X k − 1),
COMPOSITE.

4 return PRIME.

Figure : AKS algorithm in Pseudo-codeHing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 15 / 18



Look Ahead Review

Progress

Achieved:
Designed a simple model for a Machine.
Established properties of macros to compose machine codes.
Proved the correctness of machine codes for simple arithmetic.
Verified the machine code for root extraction (by unrolling
recursion).
Implemented the Power Free Test (AKS step 1) and proved its
correctness.

To Do:
Use the Big-O notation to simplify machine statistics.
Establish machine codes for modular computations (required for
AKS step 2).
Improve the machine model to handle polynomials (necessary for
AKS step 3).
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Look Ahead Plans

Possible Timeline

Thesis plan:

April, 2015: AKS Main Theorem (with suitable prime k )
June, 2016: AKS Main Theorem (with suitable k )

November, 2017: Machine model to support AKS Computation
September, 2018: AKS Computational Model for polynomial time
December, 2018: Thesis written (hopefully!)
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Look Ahead Publications

Publications

Publications:

CPP2012: A String of Pearls: Proofs of Fermat’s Little Theorem
JFR2013: Extended version for Journal of Formalized Reasoning
ITP2015: Mechanisation of AKS Algorithm Part 1: Main Theorem
ITP2016: Bounding LCMs with Triangles (a simple lower bound)

JAR2017: Bounding LCMs with Triangles (both lower and upper
bounds)

JAR2018? (to be revised) Classification of Finite Fields with
Applications
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