
Mechanisation of the AKS Algorithm

Hing-Lun Chan

College of Engineering and Computer Science
Australian National University

PhD Monitoring, April 2018

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 1 / 18



Outline

1 Introduction
Road Map
Complexity
The Machine

2 Algorithms
Long multiplication
Fast exponentiation

3 Look Ahead
Review
Plans
Publications

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 2 / 18



Introduction Road Map

Mechanisation of AKS Algorithm – Road Map

AKS

AlgorithmTheory Analysis

Basic Theorem

Modifications

AKS Theorem

Power-free Check

Parameter Search

verified Algorithm

Simple?

Fast?

Efficient?

Basic Theorem

RingFieldPolynomial Group Monoid

AKS Theorem Efficient?

OrdersIdealsFactorsRoots

Modifications

AKS Theorem

QuotientsIrreduciblesSubstitutions

Power-free Check

Unity

Conjugate
Master Subfield

Parameter Search

Better AKS Theorem
Unity

Conjugate
Master Subfield

Parameter Search

Better AKS Theorem

2018

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 3 / 18



Introduction Complexity

Complexity

Aim: to show that AKS primality testing is a polynomial-time algorithm
Given a number n, the algorithm terminates with an answer to the
question: is n a prime?
The size of input n is measured by its number of bits, i.e., dlog ne.
The number of steps for the algorithm is bounded by a polynomial
function of dlog ne.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 4 / 18



Introduction The Machine

The Machine

Design a CPU with machine codes, and these parts:
a map of names to lists of machine codes,
a list of Registers,
a list of Memory Cells,

a program counter along a code list,
a base pointer to allocate/deallocate cells,
a stack for call and return, and
a boolean flag for test result.

Some book-keeping parts:
the clock tick to record execution time,
the maximum number of registers,
the maximum allocated cells, and
the maximum level of the stack.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 5 / 18



Introduction The Machine

The Machine

Design a CPU with machine codes, and these parts:
a map of names to lists of machine codes,
a list of Registers,
a list of Memory Cells,
a program counter along a code list,
a base pointer to allocate/deallocate cells,
a stack for call and return, and
a boolean flag for test result.

Some book-keeping parts:
the clock tick to record execution time,
the maximum number of registers,
the maximum allocated cells, and
the maximum level of the stack.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 5 / 18



Introduction The Machine

The Machine

Design a CPU with machine codes, and these parts:
a map of names to lists of machine codes,
a list of Registers,
a list of Memory Cells,
a program counter along a code list,
a base pointer to allocate/deallocate cells,
a stack for call and return, and
a boolean flag for test result.

Some book-keeping parts:
the clock tick to record execution time,
the maximum number of registers,
the maximum allocated cells, and
the maximum level of the stack.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 5 / 18



Algorithms Long multiplication

9× 5

decimal 5 = binary 101

9 9
×5 1 0 1
45 9 (9× 1)× 1 = 9

0 (9× 2)× 0 = 0
9 (9× 4)× 1 = 36

sum = 45

“Egyptian” multiplication: m × n giving r .

double m half n result r add: if ODD n then m else 0 next r
9 5 0 +9 9

18 2 9 +0 9
36 1 9 +36 45
72 0 45 STOP

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 6 / 18



Algorithms Long multiplication

9× 5

decimal 5 = binary 101

9 9
×5 1 0 1
45 9 (9× 1)× 1 = 9

0 (9× 2)× 0 = 0
9 (9× 4)× 1 = 36

sum = 45

“Egyptian” multiplication: m × n giving r .

double m half n result r add: if ODD n then m else 0 next r
9 5 0 +9 9

18 2 9 +0 9
36 1 9 +36 45
72 0 45 STOP

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 6 / 18



Algorithms Long multiplication

Multiplication

Pseudo code:

Input: integers m,n.
1 r ← 0
2 while n 6= 0:

◦ If (ODD n), r ← r + m.
◦ m← 2×m
◦ n← n

2
3 return r = m × n.

Figure : Long Multiplication

Complexity:
Intermediate r ≤ m × n, size(m × n) ≤ size(m) + size(n).
Total number of steps is bounded by (dlog me + dlog ne)× dlog ne.
O(dlog max(m,n)e2).

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 7 / 18



Algorithms Long multiplication

Multiplication
Machine code for “mult”:

Given m, n registers: m :: n :: tail
r ← 0 PUSH 0 registers: 0 :: m :: n :: tail

LOCAL 2 allocate two cells: r and m
PUT 0 r ← 0, registers: m :: n :: tail
PUT 1 m ← m, registers: n :: tail

loop:
while (n 6= 0) begin TZERO Is n = 0?

JY 12 yes, exit
if (ODD m), TEVEN Is n EVEN?

JY 5 yes, skip
then r ← r + m GET 1 registers: m :: n :: tail

GET 0 registers: r :: m :: n :: tail
ADD registers: (r + m) :: n :: tail
PUT 0 r ← r + m, registers: n :: tail

skip:
m ← 2× m GET 1 registers: m :: n :: tail

LSHIFT registers: 2m :: n :: tail
PUT 1 m ← 2m, registers: n :: tail

n ← n
2 RSHIFT registers: n

2 :: tail
end while JP -12 back to loop

exit:
return r POP registers: tail

GET 0 registers: r :: tail
FREE discard allocated cells
RETURN back to caller

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 8 / 18



Algorithms Long multiplication

Long multiplication

Theorem

The machine code for long multiplication is implemented correctly.

` m.state = RUNNING ∧ m.registers = n::k ::t ∧
m.codeMap = program_codes ∧ m sees [CALL “mult”] ⇒

FUNPOW cpu_step (11 + mult_loop_step k) m =
m with
<|registers := n × k ::t;

rcount := max(m.rcount,3 + LENGTH t);
ccount := max(m.ccount,2 + LENGTH m.cells);
level := max(m.level,1 + LENGTH m.stack); flag := T;
pc := m.pc + 1;
clock := m.clock + (13 + mult_loop_tick k n 0)|>

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 9 / 18



Algorithms Fast exponentiation

Exponentiation

Multiplication:
Slow: multiplication = iterated addition
9× 5 = 9 + 9 + 9 + 9 + 9
Fast: m × n = double m, half n, update result by add if (ODD n).

Exponentiation:
Slow: exponentiation = iterated multiplication
95 = 9× 9× 9× 9× 9
Fast: mn = square m, half n, update result by multiply if (ODD n).

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 10 / 18



Algorithms Fast exponentiation

Exponentiation

Multiplication:
Slow: multiplication = iterated addition
9× 5 = 9 + 9 + 9 + 9 + 9
Fast: m × n = double m, half n, update result by add if (ODD n).

Exponentiation:
Slow: exponentiation = iterated multiplication
95 = 9× 9× 9× 9× 9
Fast: mn = square m, half n, update result by multiply if (ODD n).

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 10 / 18



Algorithms Fast exponentiation

95

decimal 5 = binary 101

9 9
to power 5 1 0 1

59049 9 (91)1 = 9
0 (92)0 = 1

9 (94)1 = 6561
product = 59049

Fast exponentiation: mn giving r .

square m half n result r times: if ODD n then m else 1 next r
9 5 1 ×9 9

81 2 9 ×1 9
6561 1 9 ×6561 59049

43046721 0 59049 STOP

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 11 / 18



Algorithms Fast exponentiation

95

decimal 5 = binary 101

9 9
to power 5 1 0 1

59049 9 (91)1 = 9
0 (92)0 = 1

9 (94)1 = 6561
product = 59049

Fast exponentiation: mn giving r .

square m half n result r times: if ODD n then m else 1 next r
9 5 1 ×9 9

81 2 9 ×1 9
6561 1 9 ×6561 59049

43046721 0 59049 STOP

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 11 / 18



Algorithms Fast exponentiation

Exponentiation

Pseudo code:

Input: integers m,n.
1 r ← 1
2 while n 6= 0:

◦ If (ODD n), r ← r ×m.
◦ m← m2

◦ n← n
2

3 return r = mn.

Figure : Fast Exponentiation

Complexity:
Intermediate r ≤ mn, size(mn) ≤ n × size(m).
Total number of steps is bounded by
(n × dlog me2 + dlog me2)× dlog ne.
O(n × dlog ne × dlog me2).

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 12 / 18



Algorithms Fast exponentiation

Exponentiation
Machine code for “exp”:

Given m, n registers: m :: n :: tail
r ← 1 PUSH 1 registers: 1 :: m :: n :: tail

LOCAL 2 allocate two cells: r and m
PUT 0 r ← 1, registers: m :: n :: tail
PUT 1 m ← m, registers: n :: tail

loop:
while (n 6= 0) begin TZERO Is n = 0?

JY 12 yes, exit
if (ODD m), TEVEN Is n EVEN?

JY 5 yes, skip
then r ← r × m GET 1 registers: m :: n :: tail

GET 0 registers: r :: m :: n :: tail
CALL “mult” registers: (r × m) :: n :: tail
PUT 0 r ← r × m, registers: n :: tail

skip:
m ← m2 GET 1 registers: m :: n :: tail

CALL “square” registers: m2 :: n :: tail
PUT 1 m ← m2, registers: n :: tail

n ← n
2 RSHIFT registers: n

2 :: tail
end while JP -12 back to loop

exit:
return r POP registers: tail

GET 0 registers: r :: tail
FREE discard allocated cells
RETURN back to caller

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 13 / 18



Algorithms Fast exponentiation

Fast exponentiation

Theorem

The machine code for fast exponentiation is implemented correctly.

` m.state = RUNNING ∧ m.registers = n::k ::t ∧
m.codeMap = program_codes ∧ m sees [CALL “exp”] ⇒

FUNPOW cpu_step (11 + exp_loop_step k n) m =
m with
<|registers := nk ::t;

rcount := max(m.rcount, (if k = 0 then 3 else 4) + LENGTH t);
ccount := max(m.ccount, (if k = 0 then 2 else 4) + LENGTH m.cells);
level := max(m.level, (if k = 0 then 1 else 3) + LENGTH m.stack);
flag := T; pc := m.pc + 1;
clock := m.clock + (13 + exp_loop_tick k n 1)|>

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 14 / 18



Look Ahead Review

AKS Pseudo Code

Input: integer n > 1.
1 Power Free Test

For each j = 2 to dlog ne:
◦ If (integer j-th root of n)j = n, COMPOSITE.

2 Parameter Search
For each k = 2 to 2 +

dlog ne5

2 :
◦ If k | n, then if k = n PRIME else COMPOSITE.
◦ If k ≥ dlog ne2 ∧ orderk (n) ≥ dlog ne2, go to Step 3.

3 Identity Checks
For each c = 1 to

√
ϕ(k) × dlog ne:

◦ if (X + c)n 6≡ (X n + c) (mod n, X k − 1),
COMPOSITE.

4 return PRIME.

Figure : AKS algorithm in Pseudo-codeHing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 15 / 18



Look Ahead Review

Progress

Achieved:
Designed a simple model for a Machine.
Established properties of macros to compose machine codes.
Proved the correctness of machine codes for simple arithmetic.
Verified the machine code for root extraction (by unrolling
recursion).
Implemented the Power Free Test (AKS step 1) and proved its
correctness.

To Do:
Use the Big-O notation to simplify machine statistics.
Establish machine codes for modular computations (required for
AKS step 2).
Improve the machine model to handle polynomials (necessary for
AKS step 3).

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 16 / 18



Look Ahead Review

Progress

Achieved:
Designed a simple model for a Machine.
Established properties of macros to compose machine codes.
Proved the correctness of machine codes for simple arithmetic.
Verified the machine code for root extraction (by unrolling
recursion).
Implemented the Power Free Test (AKS step 1) and proved its
correctness.

To Do:
Use the Big-O notation to simplify machine statistics.
Establish machine codes for modular computations (required for
AKS step 2).
Improve the machine model to handle polynomials (necessary for
AKS step 3).

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 16 / 18



Look Ahead Plans

Possible Timeline

Thesis plan:

April, 2015: AKS Main Theorem (with suitable prime k )
June, 2016: AKS Main Theorem (with suitable k )

November, 2017: Machine model to support AKS Computation
September, 2018: AKS Computational Model for polynomial time
December, 2018: Thesis written (hopefully!)

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 17 / 18



Look Ahead Publications

Publications

Publications:

CPP2012: A String of Pearls: Proofs of Fermat’s Little Theorem
JFR2013: Extended version for Journal of Formalized Reasoning
ITP2015: Mechanisation of AKS Algorithm Part 1: Main Theorem
ITP2016: Bounding LCMs with Triangles (a simple lower bound)

JAR2017: Bounding LCMs with Triangles (both lower and upper
bounds)

JAR2018? (to be revised) Classification of Finite Fields with
Applications

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2018 18 / 18


	Introduction
	Road Map
	Complexity
	The Machine

	Algorithms
	Long multiplication
	Fast exponentiation

	Look Ahead
	Review
	Plans
	Publications


