Mechanisation of the AKS Algorithm

Hing-Lun Chan

College of Engineering and Computer Science Australian National University

PhD Review 2016

Outline

Work Progress

- View in 2014
- View in 2015
- View in 2016

Look AheadPlans

Road Map

Road Map

Road Map

Road Map

Back in 2014

Completed:

- Basic libraries for Group, Ring, Field.
- Basic libraries for Polynomials.
- Show that Polynomials modulo an irreducible form a finite field.

To Do:

- Understand the role of parameters for the AKS algorithm.
- Formulate the notion of introspective relation in AKS proof.
- Formulate the sets and maps critical for the AKS proof.
- How the Pigeonhole Principle will play in AKS proof?

View in 2015

Back in 2015

Completed:

- Put AKS in script, with one parameter k, derived from input n.
- Correct definition of introspective relation after some false starts.
- AKS parameter k imposes injective maps between sets.
- Key: if AKS is false, an injective map between finite sets would violate the Pigeonhole Principle.
- Part 1: a prime $k \Rightarrow$ AKS Main Theorem, and such k exists.

To Do:

- Why 2nd version of AKS proof does not require k to be prime?
- Remove the prime requirement on k for the formalized AKS proof.
- Show that parameter k can be found within steps of O(log n).

Now in 2016

Revised:

- Need: to gather information about Cyclotomic factors.
- Need: to establish the existence of Finite Fields.
- Key: obtain a count of monic irreducibles for a given degree.
- Todo: Reformalute AKS proof with a simple parameter *k*.

Achieved:

- Search for simple *k* is *O*(*log n*) if an LCM bound is true.
- A short joint paper to ITP2016 for a cute proof of this result: $2^n \leq LCM \{1; 2; 3; ...; (n+1)\}.$
- An implicit formula for the monic irreducibles count.
- A finite field exists with cardinality p^n , for prime p and 0 < n.

Jigsaw Puzzle

AKS Jigsaw Puzzle

Parameter k is derived from input n

Input: a power-free number n

 Coprime checks for {1;...; k}
From k derive another limit ℓ
Polynomial checks for {1;...; ℓ} in (mod n, X^k − 1)

- 4: Choose *p*, a prime divisor of *n*
- 5: Shift to (mod $p, X^k 1$)
- 6: Construct introspective sets
- 7: Craft finite sets and 1-to-1 maps
- 8: Conclude: *n* must be a power of *p* or Pigeonhole principle is violated!

Jigsaw Puzzle

AKS Jigsaw Puzzle

Parameter k is derived from input n

Input: a power-free number n

 Coprime checks for {1;...; k}
From k derive another limit ℓ
Polynomial checks for {1;...; ℓ} in (mod n, X^k − 1)
Choose p, a prime divisor of n

5: Shift to (mod $p, X^{k} - 1$)

- 6: Construct introspective sets
- 7: Craft finite sets and 1-to-1 maps
- 8: Conclude: *n* must be a power of *p* or Pigeonhole principle is violated!

A prime k makes a key proof step easy.

AKS Jigsaw Puzzle – improved

Parameter k is derived from input n

Input: a power-free number n

 Coprime checks for {1;...; k}
From *k* derive another limit *ℓ* Polynomial checks for {1;...; *ℓ*} in (mod *n*, X^k − 1)

- 4: Choose p, a prime divisor of n
- 5: Shift to (mod $p, X^k 1$)
- 6: Construct introspective sets
- 7: Craft finite sets and 1-to-1 maps
- 8: Conclude: *n* must be a power of *p* or Pigeonhole principle is violated!

AKS Jigsaw Puzzle – improved

Parameter k is derived from input n

Input: a power-free number n

 Coprime checks for {1;...; k}
From k derive another limit ℓ
Polynomial checks for {1;...; ℓ} in (mod n, X^k − 1)
Choose p, a prime divisor of n

5: Shift to (mod $p, X^k - 1$)

6: Construct introspective sets

7: Craft finite sets and 1-to-1 maps

8: Conclude: *n* must be a power of *p* or Pigeonhole principle is violated!

Just *k* will simplify its search bound.

Possible Timeline

Thesis plan:

April, 2015:	AKS Main Theorem (with suitable prime <i>k</i>)
June, 2016:	AKS Main Theorem (with suitable k)
June, 2017:	Complexity/Efficiency of AKS algorithm
December, 2017:	Thesis written (hopefully!)

Possible Timeline

Thesis plan:

AKS Main Theorem (with suitable prime k)
AKS Main Theorem (with suitable k)
Complexity/Efficiency of AKS algorithm
Thesis written (hopefully!)

Publications:

Г

CPP2012: A String of Pearls: Proofs of Fermat's Little Theorem JFR2013: Extended version for Journal of Formalized Reasoning ITP2015: Mechanisation of AKS Algorithm Part 1: Main Theorem ITP2016: (submitted) Bounding LCMs with Triangles ?? (planned) Mechanisation of AKS Algorithm Part 2.