Mechanisation of the AKS Algorithm

Hing-Lun Chan

College of Engineering and Computer Science
Australian National University

PhD Review Talk 2015

Outline

(1) Introduction

- Road Map
(2) AKS Main Theorem
- Basic Theorem
- Introspective Relation
- Easy and Hard
(3) Look Ahead
- Plans

Mechanisation of AKS Algorithm - Road Map

Mechanisation of AKS Algorithm - Road Map

Basic Theorem for Primality Test

Theorem (Primality condition for the characteristic of a ring.)
\vdash Ring $\mathcal{R} \Rightarrow$

$$
\forall c .
$$

$$
\operatorname{gcd}(c, \chi)=1 \Rightarrow
$$

$$
\text { (prime } \left.\chi \Longleftrightarrow 1<\chi \wedge(\boldsymbol{X}+\boldsymbol{c})^{\chi}=\boldsymbol{X}^{\chi}+\boldsymbol{c}\right)
$$

Basic Theorem for Primality Test

Theorem (Primality condition for the characteristic of a ring.)
\vdash Ring $\mathcal{R} \Rightarrow$

$$
\forall c .
$$

$$
\operatorname{gcd}(c, \chi)=1 \Rightarrow
$$

$$
\text { (prime } \left.\chi \Longleftrightarrow 1<\chi \wedge(\boldsymbol{X}+\boldsymbol{c})^{\chi}=\boldsymbol{X}^{\chi}+\boldsymbol{c}\right)
$$

Given a number $n>1$,

- Identify \mathcal{R} as \mathbb{Z}_{n}, with $\chi\left(\mathbb{Z}_{n}\right)=n$.
- Always $\operatorname{gcd}(1, n)=1$. Pick $c=1$, then this theorem applies.
- Is n prime? Perfrom one Freshman-Fermat identity check in \mathbb{Z}_{n}, i.e., prime $n \Longleftrightarrow(\boldsymbol{X}+1)^{n} \equiv \boldsymbol{X}^{n}+\mathbf{1}(\bmod n)$.

Basic Theorem for Primality Test

Theorem (Primality condition for the characteristic of a ring.)
\vdash Ring $\mathcal{R} \Rightarrow$
$\forall c$.

$$
\begin{aligned}
& \operatorname{gcd}(c, \chi)=1 \Rightarrow \\
& \quad\left(\text { prime } \chi \Longleftrightarrow 1<\chi \wedge(\boldsymbol{X}+\boldsymbol{c})^{\chi}=\boldsymbol{X}^{\chi}+\boldsymbol{c}\right)
\end{aligned}
$$

Given a number $n>1$,

- Identify \mathcal{R} as \mathbb{Z}_{n}, with $\chi\left(\mathbb{Z}_{n}\right)=n$.
- Always $\operatorname{gcd}(1, n)=1$. Pick $c=1$, then this theorem applies.
- Is n prime? Perfrom one Freshman-Fermat identity check in \mathbb{Z}_{n}, i.e., prime $n \Longleftrightarrow(\boldsymbol{X}+1)^{n} \equiv \boldsymbol{X}^{n}+\mathbf{1}(\bmod n)$.

Therefore,

- This theorem gives a deterministic primality test.
- Alas: the left-side, upon expansion, contains $(n+1)$ terms.
- Impractical primality test for large values of n.

AKS twists

The AKS team modifies the Freshman-Fermat identities checks:

- Perform the polynomial identity checks in $\left(\bmod n, \boldsymbol{X}^{k}-1\right)$ for some suitably chosen k.
- Check a range of coprime values c, for $0<c \leq \ell$, up to some maximum limit ℓ.

AKS twists

The AKS team modifies the Freshman-Fermat identities checks:

- Perform the polynomial identity checks in $\left(\bmod n, \boldsymbol{X}^{k}-1\right)$ for some suitably chosen k. Remainder has only up to k terms.
- Check a range of coprime values c, for $0<c \leq \ell$, up to some maximum limit ℓ. Provide more ways to weed out composites.

AKS twists

The AKS team modifies the Freshman-Fermat identities checks:

- Perform the polynomial identity checks in $\left(\bmod n, \boldsymbol{X}^{k}-\mathbf{1}\right)$ for some suitably chosen k. Remainder has only up to k terms.
- Check a range of coprime values c, for $0<c \leq \ell$, up to some maximum limit ℓ. Provide more ways to weed out composites.
The AKS choice of parameters k and ℓ :
- $\operatorname{order}_{k}(n) \geq(2(\log n+1))^{2}$
- $\ell=2 \sqrt{k}(\log n+1)$

AKS twists

The AKS team modifies the Freshman-Fermat identities checks:

- Perform the polynomial identity checks in $\left(\bmod n, \boldsymbol{X}^{k}-1\right)$ for some suitably chosen k. Remainder has only up to k terms.
- Check a range of coprime values c, for $0<c \leq \ell$, up to some maximum limit ℓ. Provide more ways to weed out composites.
The AKS choice of parameters k and ℓ :
- $\operatorname{order}_{k}(n) \geq(2(\log n+1))^{2}$,i.e., search for k given n.
- $\ell=2 \sqrt{k}(\log n+1)$,i.e., compute ℓ from k and n.

AKS twists

The AKS team modifies the Freshman-Fermat identities checks:

- Perform the polynomial identity checks in $\left(\bmod n, \boldsymbol{X}^{k}-1\right)$ for some suitably chosen k. Remainder has only up to k terms.
- Check a range of coprime values c, for $0<c \leq \ell$, up to some maximum limit ℓ. Provide more ways to weed out composites.
The AKS choice of parameters k and ℓ :
- $\operatorname{order}_{k}(n) \geq(2(\log n+1))^{2}$,i.e., search for k given n.
- $\ell=2 \sqrt{k}(\log n+1)$,i.e., compute ℓ from k and n.

The AKS result:

- With k and ℓ chosen, if all modified identity checks are satisfied, then n must be a perfect power of its prime factor p.
- That is, $n=p^{e}$ where prime $p \mid n$ for some exponent e.
- Include a power check: if n is power free, then n must be prime.

AKS Main Theorem

Theorem (The AKS Main Theorem.)

\vdash prime n

$$
1<n \wedge \text { power_free } n \wedge
$$

$$
\exists k .
$$

prime $k \wedge(2(\log n+1))^{2} \leq \operatorname{order}_{k}(n) \wedge$
$(\forall j .0<j \wedge j \leq k \wedge j<n \Rightarrow \operatorname{gcd}(n, j)=1) \wedge$
($k<n \Rightarrow$ $\forall c$.
$0<c \wedge c \leq 2 \sqrt{k}(\log n+1) \Rightarrow$
$\left.(\boldsymbol{X}+\boldsymbol{c})^{n} \equiv\left(\boldsymbol{X}^{n}+\boldsymbol{c}\right)\left(\bmod n, \boldsymbol{X}^{k}-1\right)\right)$

AKS Main Theorem

Theorem (The AKS Main Theorem.)

\vdash prime $n \Longleftrightarrow$

$$
1<n \wedge \text { power_free } n \wedge
$$

$$
\exists k .
$$

prime $k \wedge(2(\log n+1))^{2} \leq \operatorname{order}_{k}(n) \wedge$
$(\forall j .0<j \wedge j \leq k \wedge j<n \Rightarrow \operatorname{gcd}(n, j)=1) \wedge$
($k<n \Rightarrow$ $\forall c$.
$0<c \wedge c \leq 2 \sqrt{k}(\log n+1) \Rightarrow$ $\left.(\boldsymbol{X}+\boldsymbol{c})^{n} \equiv\left(\boldsymbol{X}^{n}+\boldsymbol{c}\right)\left(\bmod n, \boldsymbol{X}^{k}-1\right)\right)$

- The details involve more checks: simple coprime checks.
- This version requires that the parameter k is prime.
- Modified identity checks are needed only when $k<n$.

Introspective Relation

AKS polynomial identity checks involve double moduli:

$$
(\boldsymbol{X}+\boldsymbol{c})^{n} \equiv\left(\boldsymbol{X}^{n}+\boldsymbol{c}\right)\left(\bmod n, \boldsymbol{X}^{k}-1\right)
$$

Introspective Relation

AKS polynomial identity checks involve double moduli:

$$
(\boldsymbol{X}+\boldsymbol{c})^{n} \equiv\left(\boldsymbol{X}^{n}+\boldsymbol{c}\right)\left(\bmod n, \boldsymbol{X}^{k}-1\right)
$$

In the context of \mathbb{Z}_{n}, which is a ring for a general n :

$$
(\boldsymbol{X}+\boldsymbol{c})^{n} \equiv \boldsymbol{X}^{n}+\boldsymbol{c}\left(\bmod \boldsymbol{X}^{k}-\mathbf{1}\right)
$$

Introspective Relation

AKS polynomial identity checks involve double moduli:

$$
(\boldsymbol{X}+\boldsymbol{c})^{n} \equiv\left(\boldsymbol{X}^{n}+\boldsymbol{c}\right)\left(\bmod n, \boldsymbol{X}^{k}-1\right)
$$

In the context of \mathbb{Z}_{n}, which is a ring for a general n :

$$
(\boldsymbol{X}+\boldsymbol{c})^{n} \equiv \boldsymbol{X}^{n}+\boldsymbol{c}\left(\bmod \boldsymbol{X}^{k}-\mathbf{1}\right)
$$

Rewriting with polynomial substitution, for a general ring \mathcal{R} :

$$
(\boldsymbol{X}+\boldsymbol{c})^{n}[\boldsymbol{X}] \equiv(\boldsymbol{X}+\boldsymbol{c})\left[\boldsymbol{X}^{n}\right]\left(\bmod \boldsymbol{X}^{k}-\mathbf{1}\right)
$$

Introspective Relation

AKS polynomial identity checks involve double moduli:

$$
(\boldsymbol{X}+\boldsymbol{c})^{n} \equiv\left(\boldsymbol{X}^{n}+\boldsymbol{c}\right)\left(\bmod n, \boldsymbol{X}^{k}-1\right)
$$

In the context of \mathbb{Z}_{n}, which is a ring for a general n :

$$
(\boldsymbol{X}+\boldsymbol{c})^{n} \equiv \boldsymbol{X}^{n}+\boldsymbol{c}\left(\bmod \boldsymbol{X}^{k}-\mathbf{1}\right)
$$

Rewriting with polynomial substitution, for a general ring \mathcal{R} :

$$
(\boldsymbol{X}+\boldsymbol{c})^{n}[\boldsymbol{X}] \equiv(\boldsymbol{X}+\boldsymbol{c})\left[\boldsymbol{X}^{n}\right]\left(\bmod \boldsymbol{X}^{k}-\mathbf{1}\right)
$$

Define n is introspective to polynomial p, denoted by $n \bowtie p$, when:
$\vdash n \bowtie \mathrm{p} \Longleftrightarrow$ poly $\mathrm{p} \wedge 0<k \wedge \mathrm{p}^{n} \equiv \mathrm{p}\left[\boldsymbol{X}^{n}\right]\left(\bmod \boldsymbol{X}^{k}-1\right)$

Freshman-Fermat

Theorem (Prime characteristic is introspective to any monomial.)
\vdash Ring $\mathcal{R} \wedge \mathbf{1} \neq \mathbf{0} \wedge$ prime $\chi \Rightarrow$

$$
\forall k . \quad 0<k \Rightarrow \forall c . \chi \bowtie \boldsymbol{X}+\boldsymbol{c}
$$

Freshman-Fermat

Theorem (Prime characteristic is introspective to any monomial.)
\vdash Ring $\mathcal{R} \wedge \mathbf{1} \neq \mathbf{0} \wedge$ prime $\chi \Rightarrow$

$$
\forall k . \quad 0<k \Rightarrow \forall c . \chi \bowtie \boldsymbol{X}+\boldsymbol{c}
$$

Proof.

- By introspective definition, we need to show:
$(\boldsymbol{X}+\boldsymbol{c})^{\chi} \equiv(\boldsymbol{X}+\boldsymbol{c})\left[\boldsymbol{X}^{\chi}\right]\left(\bmod \boldsymbol{X}^{k}-\mathbf{1}\right)$.
- $(\boldsymbol{X}+\boldsymbol{c})^{\chi}=\boldsymbol{X}^{\chi}+\boldsymbol{c}^{\chi}$ by Freshman Theorem, given prime χ.
- $\boldsymbol{c}^{\chi}=\boldsymbol{c}$ by Fermat's Little Theorem, given prime χ.
- $\boldsymbol{X}^{\chi}+\boldsymbol{c}=(\boldsymbol{X}+\boldsymbol{c})[\boldsymbol{X} \chi]$ by polynomial substitution.
- Both sides equal, hence equivalent under modulo by $\boldsymbol{X}^{k}-1$.

AKS Main Theorem — restated

Theorem (A number is prime of it satisfies all the AKS checks.)
\vdash prime $n \Longleftrightarrow$

$$
1<n \wedge \text { power_free } n \wedge
$$

$\exists k$ 。

$$
\text { prime } k \wedge(2(\log n+1))^{2} \leq \operatorname{order}_{k}(n) \wedge
$$

$$
(\forall j . \quad 0<j \wedge j \leq k \wedge j<n \Rightarrow \operatorname{gcd}(n, j)=1) \wedge
$$

$$
(k<n \Rightarrow
$$

$$
\forall c .
$$

$$
\begin{aligned}
& 0<c \wedge c \leq 2 \sqrt{k}(\log n+1) \Rightarrow \\
&\left.n \bowtie_{\mathbb{Z}_{n}} \boldsymbol{X}+c\right)
\end{aligned}
$$

AKS Main Theorem — restated

Theorem (A number is prime of it satisfies all the AKS checks.)
\vdash prime $n \Longleftrightarrow$

$$
1<n \wedge \text { power_free } n \wedge
$$

$\exists k$ 。
prime $k \wedge(2(\log n+1))^{2} \leq \operatorname{order}_{k}(n) \wedge$
$(\forall j .0<j \wedge j \leq k \wedge j<n \Rightarrow \operatorname{gcd}(n, j)=1) \wedge$
($k<n \Rightarrow$
$\forall c$.
$0<c \wedge c \leq 2 \sqrt{k}(\log n+1) \Rightarrow$
$\left.n \bowtie_{\mathbb{Z}_{n}} \boldsymbol{X}+\boldsymbol{c}\right)$
Easy part (\Longrightarrow), parameter k can be shown to exist.
If $k \geq n, \forall j$. $0<j \wedge j<n \Rightarrow \operatorname{gcd}(n, j)=1$?
If $k<n, \forall j$. $0<j \wedge j \leq k \Rightarrow \operatorname{gcd}(n, j)=1$?
$\forall c . n \bowtie_{\mathbb{Z}_{n}} \boldsymbol{X}+\boldsymbol{c}$?

AKS Main Theorem — restated

Theorem (A number is prime iff it satisfies all the AKS checks.)
\vdash prime $n \Longleftrightarrow$

$$
1<n \wedge \text { power_free } n \wedge
$$

$$
\exists k .
$$

$$
\text { prime } k \wedge(2(\log n+1))^{2} \leq \operatorname{order}_{k}(n) \wedge
$$

$$
(\forall j .0<j \wedge j \leq k \wedge j<n \Rightarrow \operatorname{gcd}(n, j)=1) \wedge
$$

$$
(k<n \Rightarrow
$$

$$
\forall c .
$$

$$
0<c \wedge c \leq 2 \sqrt{k}(\log n+1) \Rightarrow
$$

$$
\left.n \bowtie_{\mathbb{Z}_{n}} \boldsymbol{X}+\boldsymbol{c}\right)
$$

Easy part (\Longrightarrow), parameter k can be shown to exist.
If $k \geq n, \forall j$. $0<j \wedge j<n \Rightarrow \operatorname{gcd}(n, j)=1$? True for prime n.
If $k<n, \forall j .0<j \wedge j \leq k \Rightarrow \operatorname{gcd}(n, j)=1$? Still true for prime n. $\forall c$. $n \bowtie_{\mathbb{Z}_{n}} \boldsymbol{X}+\boldsymbol{c}$? By Freshman-Fermat for field $\mathbb{Z}_{n}, \chi\left(\mathbb{Z}_{n}\right)=n$.

AKS Main Theorem - restated

Hard part ($\Longleftarrow)$, parameter k is assumed.
If $k \geq n$, we have $\forall j .0<j \wedge j<n \Rightarrow \operatorname{gcd}(n, j)=1$
If $k<n$, we have $\forall j .0<j \wedge j \leq k \Rightarrow \operatorname{gcd}(n, j)=1$.

Theorem (The AKS Main Theorem in \mathbb{Z}_{n}.)

$$
\begin{aligned}
\vdash 1 & <n \Rightarrow \\
& \forall k \ell .
\end{aligned}
$$

$$
\text { prime } k \wedge(2(\log n+1))^{2} \leq \operatorname{order}_{k}(n) \wedge
$$

$$
\ell=2 \sqrt{k}(\log n+1) \wedge
$$

$$
(\forall j . \quad 0<j \wedge j \leq k \Rightarrow \operatorname{gcd}(n, j)=1) \wedge
$$

$$
\left(\forall c . \quad 0<c \wedge c \leq \ell \Rightarrow n \bowtie_{\mathbb{Z}_{n}} \boldsymbol{X}+\boldsymbol{c}\right) \Rightarrow
$$

$$
\exists p . \text { prime } p \wedge \text { perfect_power } n p
$$

AKS Main Theorem - restated

Hard part ($\Longleftarrow)$, parameter k is assumed.

If $k \geq n$, we have $\forall j .0<j \wedge j<n \Rightarrow \operatorname{gcd}(n, j)=1 \Rightarrow$ prime n.
If $k<n$, we have $\forall j .0<j \wedge j \leq k \Rightarrow \operatorname{gcd}(n, j)=1$.
Apply the following Theorem, then $n=p^{e}$ for prime p and some e.
Since n is power free, $e=1$ and $n=p$, giving a prime n.
Theorem (The AKS Main Theorem in \mathbb{Z}_{n}.)

$$
\begin{aligned}
& \vdash 1<n \Rightarrow \\
& \quad \forall k \ell . \\
& \quad \text { prime } k \wedge(2(\log n+1))^{2} \leq \operatorname{order}_{k}(n) \wedge \\
& \ell=2 \sqrt{k}(\log n+1) \wedge \\
& \quad(\forall j .0<j \wedge j \leq k \Rightarrow \operatorname{gcd}(n, j)=1) \wedge \\
& \quad\left(\forall c .0<c \wedge c \leq \ell \Rightarrow n \mathbb{Z}_{\mathbb{R}_{n}} \boldsymbol{X}+\boldsymbol{c}\right) \Rightarrow \\
& \quad \exists p . \text { prime } p \wedge \text { perfect_power } n p
\end{aligned}
$$

Possible Timeline

Thesis plan:
April, 2015:
June, 2016:
June, 2017:
AKS Main Theorem $(\sqrt{ })$
Bound on Parameters
Complexity/Efficiency
December, 2017: Thesis written (hopefully!)

