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Introduction Road Map

Mechanisation of AKS Algorithm — Road Map

@ Foundation Work:

» Build Monoid theory in HOL4.
Build Group theory from Monoid theory.
» Build Ring theory using Group and Monoid.
Build Field theory using Ring and Group.
Build Polynomial theory using Field and Ring.

v

v

v

@ Apply to AKS:

» Code in HOL4: AKS nthat returns true or false upon input n.
» Prove in HOL4: AKS nreturns true iff nis prime.
» Prove in HOL4: number of steps of AKS nis bound by O(log *n).
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Introduction Current Plan
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Primality Testing

determiny W‘abilistic

Try all prime factors p < /n ‘ ’ Test: primes will pass, others may pass.
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Introduction Deterministic Test

Primality Testing

determiny W‘abilistic

’ Try all prime factors p < /n ‘ ’ Test: primes will pass, others may pass.

{

{
Try 1st prime |— NO Try one test |— NO
{

+80% sure
Try 2nd prime |— NO —> no

J99% sure
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Introduction Deterministic Test

Primality Testing

determiny W‘abilistic

’ Try all prime factors p < /n ‘ ’ Test: primes will pass, others may pass.

Try 1st prime |[— NO Try one test |— NO
1+ 80% sure

(—I(—

Try 2nd prime |— NO Try another test |— nO
J J99% sure

Try last prime |— NO Try more tests |— NO
{

199.99% sure
yes
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Deterministic Primality Testing Basic Idea

Primes and Binomial Coefficients

@ Prime n < n > 1 and ndivides all its non-unit Binomials.
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Primes and Binomial Coefficients

@ Prime n < n > 1 and ndivides all its non-unit Binomials.
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Primes and Binomial Coefficients

@ Prime n < n > 1 and ndivides all its non-unit Binomials.
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Deterministic Primality Testing Basic Idea

Primes and Binomial Coefficients

@ Prime n <= n > 1 and ndivides all its non-unit Binomials.
' DD
mod 2 Q)@Q)
mod 3 Q)@@Q)
mod4 DO DOWD
mod5 D QO OOD
mds DO PIIDOD
md7 DO D

e Construction: <Z> = (Z: 1) + (n_ 1) (n> <n>
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Deterministic Primality Testing Basic Idea

Primes and Binomial Coefficients

@ Prime n < n > 1 and ndivides all its non-unit Binomials.

(x+1)!
mod 2
mod 3
mod 4
mod 5
mod 6
mod 7

DD

DO D

DOOD
DO WD
DOYDOOW
DOPIIOVOW
VOOV W

_n(n—=1)(n-2)..(n—k+1)

@ Solution: m = .
"\k/)  k!'(n—k)! k!

Hing-Lun Chan (ANU)

Mechanisation of the AKS Algorithm

PhD 2014

6/12



Deterministic Primality Testing Basic Idea

Primes and Binomial Coefficients

@ Prime n <= n > 1 and ndivides all its non-unit Binomials.

x+1)' DD

mod 2 q)@q)

mod 3 q)@@q)

mod4 DO WD

mod5 D OQOOD
md6  DODPIPOD
md7 DO WD

@ Theorem: primen< n>1and (x+1)"=x"+1 mod n.
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Deterministic Primality Testing Basic Theorem

Polynomial ldentity for Primes

Theorem

Given a number n, let ¢ be coprime with n;i.e. gcd(c,n) = 1.
Then primen <= n>1and(x+c)"=x"+c¢ mod n.
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@ Fermat’s Little Theorem: for any ¢, prime p = ¢c° = ¢ mod p.
Only-if part («<):
e Equating coefficients, (})c(™*) =0 mod n, for 0 < k < n.
@ By coprime with ¢, n cannot divide ¢("%), i.e. ¢("~%) £ 0 mod n.
@ Therefore, () =0 mod n, for 0 < k < n, or prime n by “key”. [
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Deterministic Primality Testing AKS Theorem

Towards AKS

Basic Theorem:
prime n <= n>1and (x+c)”=x"+ ¢ mod nfor any coprime c.
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Deterministic Primality Testing AKS Theorem

Towards AKS

Basic Theorem:
primen < n>1and (x +¢)" = x"+ ¢ mod n for any coprime c.

@ Good: need to check only one coprime ¢ (e.g. ¢ = 1).

@ Bad: need to compute with polynomials up to degree n.
Modifications (for a practical algorithm):

@ Compute with polynomial remainders after division by (x" — 1).

@ Check a range of coprimes: 1 <c <s.

Theorem

Theorem is broken:

Assume n > 1,

primen = (x+c¢)" = x"+c¢ mod (n,x" —1) for coprimes: 1 <c <s.
prime n ¢« (x+c¢)" = x"+c¢ mod (n,x" —1) for coprimes: 1 <c < s.
(polynomial remainders of degree up to r have less number of terms!)
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Deterministic Primality Testing AKS Theorem

Towards AKS

Basic Theorem:
prime n <= n>1and (x+c)" = x"+ ¢ mod n for any coprime c.
@ Good: need to check only one coprime ¢ (e.g. ¢ = 1).
@ Bad: need to compute with polynomials up to degree n.
Modifications (for a practical algorithm):
@ Compute with polynomial remainders after division by (x" — 1).
@ Check a range of coprimes: 1 <c<s.

Theorem

Theorem found by AKS team:

Givenn > 1,

there exists suitable parameters r and s related to n, such that:
(x+c¢)"=x"+c¢ mod (n,x"—1) forcoprimes: 1 <c<s

= nis a prime power.
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Deterministic Primality Testing AKS Theorem

Road Ahead

i

>

’ Preliminary Filter ‘

| ! !
’ Search Parameters ‘
| ! !

AKS Theorem | | Model/Verify AKS Algorithm |

Potynomia
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Deterministic Primality Testing AKS Theorem

Possible Timeline

Thesis plan:

(end of) 2014: AKS Theorem

June, 2015: Model/Verify AKS Algorithm
June, 2016: Complexity/Efficiency
December, 2016: Thesis written(!)
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Deterministic Primality Testing AKS Theorem

Possible Timeline

Thesis plan:

(end of) 2014: AKS Theorem
June, 2015: Model/Verify AKS Algorithm
June, 2016: Complexity/Efficiency
December, 2016: Thesis written(!)

My official start-date was 7 April 2012

My latest possible submission date is ~4 years later: 7 March 2016

If necessary, will switch to part-time to extend this deadline
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Deterministic Primality Testing AKS Theorem

The Key - Part 1

Theorem

n

Prime n < n > 1 and n divides ( K

)for0<k<n.
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@ Since all k < p, prime p cannot divide k!.
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Deterministic Primality Testing AKS Theorem

The Key - Part 2

Theorem

n

Prime n < n > 1 and n divides ( K
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Deterministic Primality Testing

The Key - Part 2

AKS Theorem

Theorem

Prime n < n > 1 and n divides (:) for0 < k < n.

Only-if part (<)

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2014 12/12



Deterministic Primality Testing AKS Theorem

The Key - Part 2

Theorem

Prime n < n > 1 and n divides (:) for0 < k < n.

Only-if part (<)
@ Recall binomial formula: k!(}) = n(n—1)(n—2)...(n— k + 1)

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2014 12/12



Deterministic Primality Testing AKS Theorem

The Key - Part 2

Theorem

Prime n < n > 1 and n divides (:) for0 < k < n.

Only-if part (<)
@ Recall binomial formula: k!(}) = n(n—1)(n—2)...(n— k + 1)
@ Assume nis not prime, then it has a prime factor p and p < n.

@ Let k = p, divide by n: p!% =(n-1)(n-2)...(n—p+1)

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2014 12/12



Deterministic Primality Testing AKS Theorem

The Key - Part 2

Theorem

Prime n < n > 1 and n divides (:) for0 < k < n.

Only-if part (<)
@ Recall binomial formula: k!(}) = n(n—1)(n—2)...(n— k + 1)
@ Assume nis not prime, then it has a prime factor p and p < n.

@ Let k = p, divide by n: p!% =(n-1)(n-2)...(n—p+1)

@ Note that (%) is an integer, since n divides all non-unit binomials.

@ Therefore p divides LHS. So p must also divide RHS.

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2014 12/12



Deterministic Primality Testing AKS Theorem

The Key - Part 2

Theorem

Prime n < n > 1 and n divides (:) for0 < k < n.

Only-if part (<)
@ Recall binomial formula: k!(}) = n(n—1)(n—2)...(n— k + 1)
@ Assume nis not prime, then it has a prime factor p and p < n.

@ Let k = p, divide by n: p!% =(n-1)(n-2)...(n—p+1)

@ Note that (%) is an integer, since n divides all non-unit binomials.
@ Therefore p divides LHS. So p must also divide RHS.
@ But nis a multiple of p; the nearest prior multiple is (n — p).

@ Since pis prime, p cannot divide any of (n—1), ..., (n—p+1).

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2014 12/12



Deterministic Primality Testing AKS Theorem

The Key - Part 2

Theorem

Prime n < n > 1 and n divides (:) for0 < k < n.

Only-if part (<)
@ Recall binomial formula: k!(}) = n(n—1)(n—2)...(n— k + 1)
@ Assume nis not prime, then it has a prime factor p and p < n.

@ Let k = p, divide by n: p!% =(n-1)(n-2)...(n—p+1)

@ Note that (%) is an integer, since n divides all non-unit binomials.
@ Therefore p divides LHS. So p must also divide RHS.

@ But nis a multiple of p; the nearest prior multiple is (n — p).

@ Since pis prime, p cannot divide any of (n—1), ..., (n—p+1).
@ A contradiction — n must be prime! [

Hing-Lun Chan (ANU) Mechanisation of the AKS Algorithm PhD 2014 12/12



	Introduction
	Road Map
	Current Plan
	Deterministic Test

	Deterministic Primality Testing
	Basic Idea
	Basic Theorem
	AKS Theorem


