Mechanisation of the AKS Algorithm

Hing-Lun Chan

College of Engineering and Computer Science Australian National University

PhD Review Talk 2014

Outline

Introduction

- Road Map
- Current Plan
- Deterministic Test

2 Deterministic Primality Testing

- Basic Idea
- Basic Theorem
- AKS Theorem

Road Map

Mechanisation of AKS Algorithm – Road Map

Foundation Work:

- Build Monoid theory in HOL4.
- Build Group theory from Monoid theory.
- Build Ring theory using Group and Monoid.
- Build Field theory using Ring and Group.
- Build Polynomial theory using Field and Ring.
- Apply to AKS:
 - Code in HOL4: AKS n that returns true or false upon input n.
 - Prove in HOL4: AKS n returns true iff n is prime.
 - Prove in HOL4: number of steps of AKS n is bound by O(log kn).

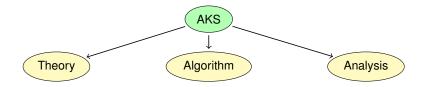
Road Map

Mechanisation of AKS Algorithm – Road Map

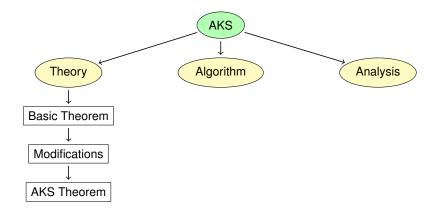
Foundation Work:

- Build Monoid theory in HOL4.($\sqrt{}$)
- Build Group theory from Monoid theory.($\sqrt{}$)
- Build Ring theory using Group and Monoid.($\sqrt{}$)
- Build Field theory using Ring and Group $(\sqrt{})$
- Build Polynomial theory using Field and Ring. $(\sqrt{})$
- Apply to AKS:
 - Code in HOL4: AKS n that returns true or false upon input n.
 - Prove in HOL4: AKS n returns true iff n is prime.
 - Prove in HOL4: number of steps of AKS n is bound by O(log kn).

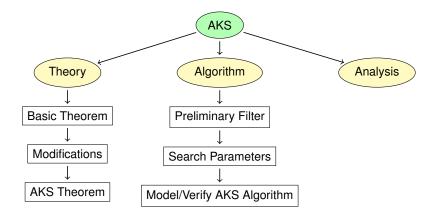
Current Plan



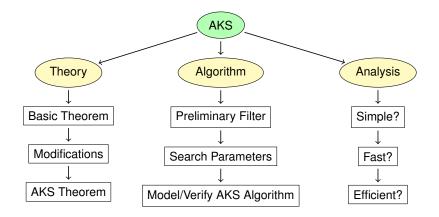
Current Plan



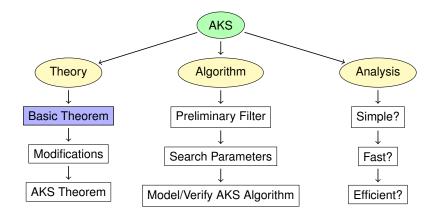
Current Plan



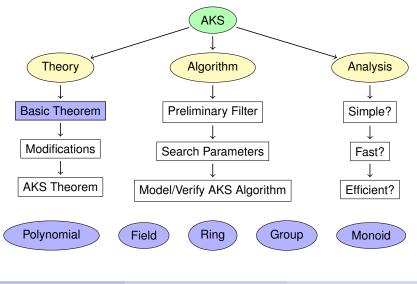
Current Plan



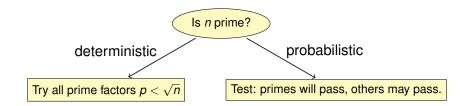
Current Plan



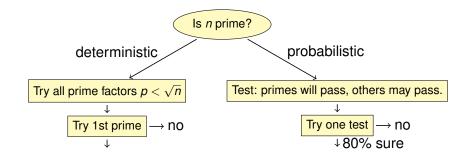
Current Plan



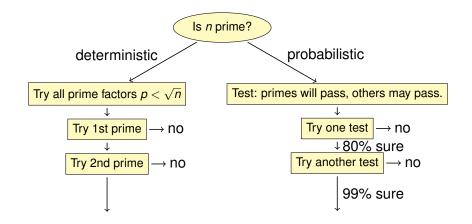
Deterministic Test



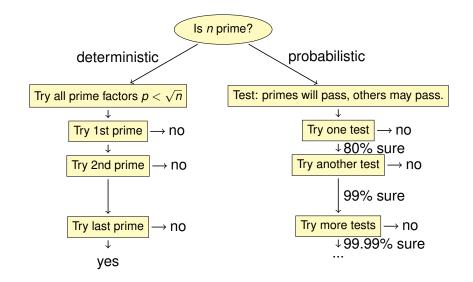
Deterministic Test



Deterministic Test



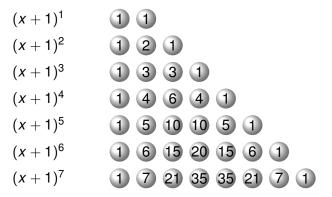
Deterministic Test



Primes and Binomial Coefficients

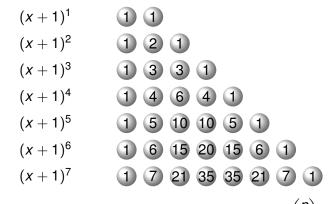
Deterministic Primality Testing Basic Idea

Primes and Binomial Coefficients



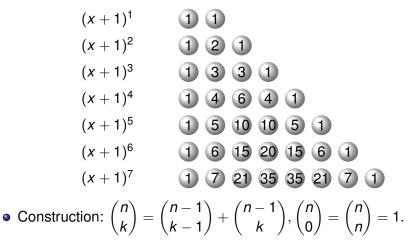
Primes and Binomial Coefficients

• Prime $n \iff n > 1$ and *n* divides all its non-unit Binomials.



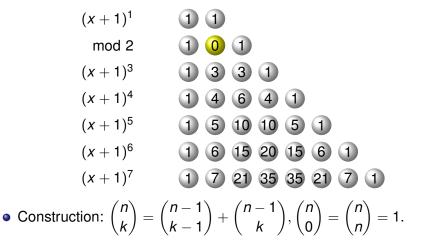
• Famous Pascal's triangle, with binomial coefficients $\binom{n}{k}$.

Primes and Binomial Coefficients



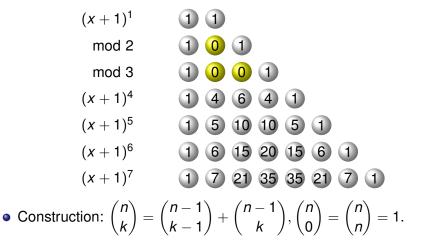
Deterministic Primality Testing Basic Idea

Primes and Binomial Coefficients

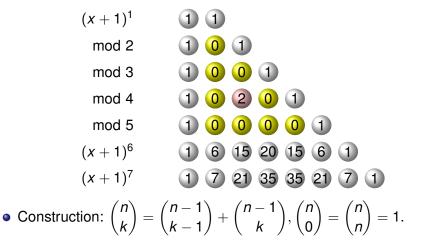


Deterministic Primality Testing Basic Idea

Primes and Binomial Coefficients

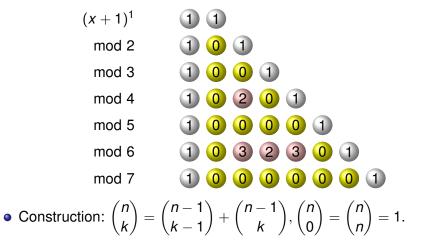


Primes and Binomial Coefficients



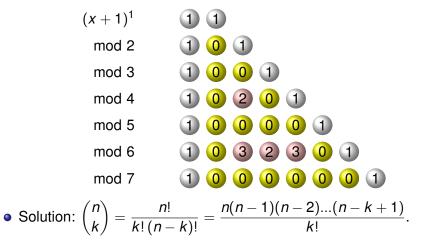
Deterministic Primality Testing Basic Idea

Primes and Binomial Coefficients



Deterministic Primality Testing Basic Idea

Primes and Binomial Coefficients



Primes and Binomial Coefficients

• Prime $n \iff n > 1$ and *n* divides all its non-unit Binomials.

• Theorem: prime $n \Leftrightarrow n > 1$ and $(x + 1)^n \equiv x^n + 1 \mod n$.

Theorem

Given a number n, let c be coprime with n; i.e. gcd(c, n) = 1. Then prime $n \iff n > 1$ and $(x + c)^n \equiv x^n + c \mod n$.

Theorem

Given a number n, let c be coprime with n; i.e. gcd(c, n) = 1. Then prime $n \iff n > 1$ and $(x + c)^n \equiv x^n + c \mod n$.

Theorem

Given a number n, let c be coprime with n; i.e. gcd(c, n) = 1. Then prime $n \iff n > 1$ and $(x + c)^n \equiv x^n + c \mod n$.

If part (\Rightarrow):

• "Key" idea: prime $n \Rightarrow n > 1$ and $(x + c)^n \equiv x^n + c^n \mod n$.

Theorem

Given a number n, let c be coprime with n; i.e. gcd(c, n) = 1. Then prime $n \iff n > 1$ and $(x + c)^n \equiv x^n + c \mod n$.

- "Key" idea: prime $n \Rightarrow n > 1$ and $(x + c)^n \equiv x^n + c^n \mod n$.
- Fermat's Little Theorem: for any *c*, prime $p \Rightarrow c^p \equiv c \mod p$.

Theorem

Given a number n, let c be coprime with n; i.e. gcd(c, n) = 1. Then prime $n \iff n > 1$ and $(x + c)^n \equiv x^n + c \mod n$.

If part (\Rightarrow) :

• "Key" idea: prime $n \Rightarrow n > 1$ and $(x + c)^n \equiv x^n + c^n \mod n$.

• Fermat's Little Theorem: for any *c*, prime $p \Rightarrow c^p \equiv c \mod p$. Only-if part (\Leftarrow):

Theorem

Given a number n, let c be coprime with n; i.e. gcd(c, n) = 1. Then prime $n \iff n > 1$ and $(x + c)^n \equiv x^n + c \mod n$.

- "Key" idea: prime $n \Rightarrow n > 1$ and $(x + c)^n \equiv x^n + c^n \mod n$.
- Fermat's Little Theorem: for any *c*, prime $p \Rightarrow c^p \equiv c \mod p$. Only-if part (\Leftarrow):
 - Equating coefficients, $\binom{n}{k}c^{(n-k)} \equiv 0 \mod n$, for 0 < k < n.

Theorem

Given a number n, let c be coprime with n; i.e. gcd(c, n) = 1. Then prime $n \iff n > 1$ and $(x + c)^n \equiv x^n + c \mod n$.

- "Key" idea: prime $n \Rightarrow n > 1$ and $(x + c)^n \equiv x^n + c^n \mod n$.
- Fermat's Little Theorem: for any *c*, prime $p \Rightarrow c^p \equiv c \mod p$. Only-if part (\Leftarrow):
 - Equating coefficients, $\binom{n}{k}c^{(n-k)} \equiv 0 \mod n$, for 0 < k < n.
 - By coprime with c, n cannot divide $c^{(n-k)}$,

Theorem

Given a number n, let c be coprime with n; i.e. gcd(c, n) = 1. Then prime $n \iff n > 1$ and $(x + c)^n \equiv x^n + c \mod n$.

- "Key" idea: prime $n \Rightarrow n > 1$ and $(x + c)^n \equiv x^n + c^n \mod n$.
- Fermat's Little Theorem: for any *c*, prime $p \Rightarrow c^{p} \equiv c \mod p$. Only-if part (\Leftarrow):
 - Equating coefficients, $\binom{n}{k}c^{(n-k)} \equiv 0 \mod n$, for 0 < k < n.
 - By coprime with *c*, *n* cannot divide $c^{(n-k)}$, *i.e.* $c^{(n-k)} \neq 0 \mod n$.

Theorem

Given a number n, let c be coprime with n; i.e. gcd(c, n) = 1. Then prime $n \iff n > 1$ and $(x + c)^n \equiv x^n + c \mod n$.

- "Key" idea: prime $n \Rightarrow n > 1$ and $(x + c)^n \equiv x^n + c^n \mod n$.
- Fermat's Little Theorem: for any *c*, prime $p \Rightarrow c^p \equiv c \mod p$. Only-if part (\Leftarrow):
 - Equating coefficients, $\binom{n}{k}c^{(n-k)} \equiv 0 \mod n$, for 0 < k < n.
 - By coprime with *c*, *n* cannot divide $c^{(n-k)}$, *i.e.* $c^{(n-k)} \neq 0 \mod n$.
 - Therefore, $\binom{n}{k} \equiv 0 \mod n$, for 0 < k < n, or prime *n* by "key".

AKS Theorem

Towards AKS

Basic Theorem:

prime $n \iff n > 1$ and $(x + c)^n \equiv x^n + c \mod n$ for any coprime c.

Towards AKS

Basic Theorem:

prime $n \iff n > 1$ and $(x + c)^n \equiv x^n + c \mod n$ for any coprime c.

- Good: need to check only one coprime c (*e.g.* c = 1).
- Bad: need to compute with polynomials up to degree *n*.

Towards AKS

Basic Theorem:

prime $n \iff n > 1$ and $(x + c)^n \equiv x^n + c \mod n$ for any coprime c.

• Good: need to check only one coprime c (*e.g.* c = 1).

• Bad: need to compute with polynomials up to degree *n*. Modifications (for a practical algorithm):

- Compute with polynomial remainders after division by $(x^r 1)$.
- Check a range of coprimes: $1 \le c \le s$.

Towards AKS

Basic Theorem:

prime $n \iff n > 1$ and $(x + c)^n \equiv x^n + c \mod n$ for any coprime c.

- Good: need to check only one coprime c (e.g. c = 1).
- Bad: need to compute with polynomials up to degree *n*.

Modifications (for a practical algorithm):

- Compute with polynomial remainders after division by $(x^r 1)$.
- Check a range of coprimes: $1 \le c \le s$.

Theorem

Theorem is <mark>broken</mark>:

Assume n > 1,

prime $n \Rightarrow (x+c)^n \equiv x^n + c \mod (n, x^r - 1)$ for coprimes: $1 \le c \le s$. prime $n \not\models (x+c)^n \equiv x^n + c \mod (n, x^r - 1)$ for coprimes: $1 \le c \le s$.

(polynomial remainders of degree up to r have less number of terms!)

Towards AKS

Basic Theorem:

prime $n \iff n > 1$ and $(x + c)^n \equiv x^n + c \mod n$ for any coprime c.

- Good: need to check only one coprime c (e.g. c = 1).
- Bad: need to compute with polynomials up to degree *n*.

Modifications (for a practical algorithm):

- Compute with polynomial remainders after division by $(x^r 1)$.
- Check a range of coprimes: $1 \le c \le s$.

Theorem

Theorem found by AKS team:

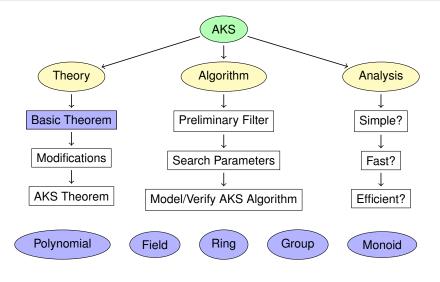
Given n > 1,

there exists suitable parameters r and s related to n, such that:

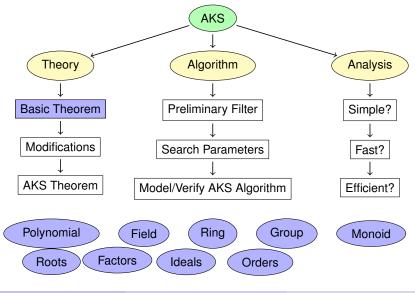
 $(x+c)^n \equiv x^n + c \mod (n, x^r - 1)$ for coprimes: $1 \le c \le s$

 \Rightarrow n is a prime power.

Road Ahead

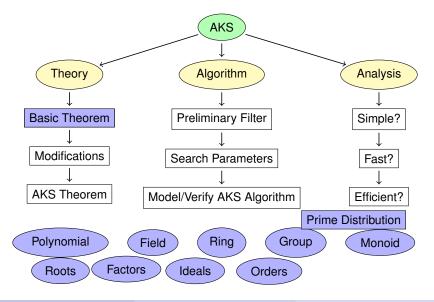


Road Ahead

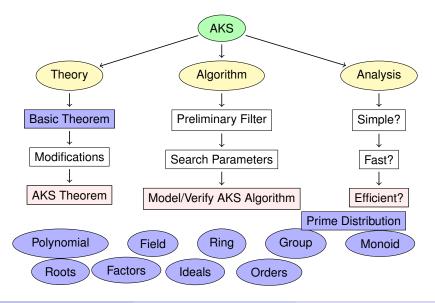


Hing-Lun Chan (ANU)

Road Ahead



Road Ahead



Possible Timeline

Thesis plan:

(end of) 2014:	AKS Theorem
June, 2015:	Model/Verify AKS Algorithm
June, 2016:	Complexity/Efficiency
December, 2016:	Thesis written(!)

Possible Timeline

Thesis plan:

(end of) 2014:	AKS Theorem
June, 2015:	Model/Verify AKS Algorithm
June, 2016:	Complexity/Efficiency
December, 2016:	Thesis written(!)

My official start-date was 7 April 2012

My latest possible submission date is ${\sim}4$ years later: 7 March 2016

If necessary, will switch to part-time to extend this deadline

The Key - Part 1

Theorem

Prime
$$n \Leftrightarrow n > 1$$
 and n divides $\binom{n}{k}$ for $0 < k < n$.

Theorem

Prime
$$n \Leftrightarrow n > 1$$
 and n divides $\binom{n}{k}$ for $0 < k < n$.

If part (\Rightarrow)

The Key - Part 1

Theorem

Prime
$$n \Leftrightarrow n > 1$$
 and n divides $\binom{n}{k}$ for $0 < k < n$.

If part (\Rightarrow)

• Recall binomial formula: $k!\binom{n}{k} = n(n-1)(n-2)...(n-k+1)$

Theorem

Prime
$$n \Leftrightarrow n > 1$$
 and n divides $\binom{n}{k}$ for $0 < k < n$.

If part (\Rightarrow)

• Recall binomial formula: $k!\binom{n}{k} = n(n-1)(n-2)...(n-k+1)$

• Let
$$n = p$$
 be prime, $p > 1$ is trivial. Replace n by p :
 $k! \binom{p}{k} = p(p-1)(p-2)...(p-k+1)$

Theorem

Prime
$$n \Leftrightarrow n > 1$$
 and n divides $\binom{n}{k}$ for $0 < k < n$.

If part (\Rightarrow)

• Recall binomial formula: $k!\binom{n}{k} = n(n-1)(n-2)...(n-k+1)$

• Let
$$n = p$$
 be prime, $p > 1$ is trivial. Replace n by p :
 $k! \binom{p}{k} = p(p-1)(p-2)...(p-k+1)$

• Surely, *p* divides RHS. Thus *p* also divides LHS.

Theorem

Prime
$$n \Leftrightarrow n > 1$$
 and n divides $\binom{n}{k}$ for $0 < k < n$.

If part (\Rightarrow)

- Recall binomial formula: $k!\binom{n}{k} = n(n-1)(n-2)...(n-k+1)$
- Let n = p be prime, p > 1 is trivial. Replace n by p: $k! \binom{p}{k} = p(p-1)(p-2)...(p-k+1)$
- Surely, *p* divides RHS. Thus *p* also divides LHS.
- Since all k < p, prime p cannot divide k!.

Theorem

Prime
$$n \Leftrightarrow n > 1$$
 and n divides $\binom{n}{k}$ for $0 < k < n$.

If part (\Rightarrow)

- Recall binomial formula: $k!\binom{n}{k} = n(n-1)(n-2)...(n-k+1)$
- Let n = p be prime, p > 1 is trivial. Replace n by p: $k! \binom{p}{k} = p(p-1)(p-2)...(p-k+1)$
- Surely, *p* divides RHS. Thus *p* also divides LHS.
- Since all k < p, prime p cannot divide k!.
- Therefore, *p* must divide $\binom{p}{k}$.

Theorem

Prime
$$n \Leftrightarrow n > 1$$
 and n divides $\binom{n}{k}$ for $0 < k < n$.

Theorem

Prime
$$n \Leftrightarrow n > 1$$
 and n divides $\binom{n}{k}$ for $0 < k < n$.

Theorem

Prime
$$n \Leftrightarrow n > 1$$
 and n divides $\binom{n}{k}$ for $0 < k < n$.

Only-if part (⇐)

• Recall binomial formula: $k!\binom{n}{k} = n(n-1)(n-2)...(n-k+1)$

Theorem

Prime
$$n \Leftrightarrow n > 1$$
 and n divides $\binom{n}{k}$ for $0 < k < n$.

- Recall binomial formula: $k!\binom{n}{k} = n(n-1)(n-2)...(n-k+1)$
- Assume *n* is not prime, then it has a prime factor *p* and p < n.
- Let k = p, divide by n: $p! \frac{\binom{n}{p}}{n} = (n-1)(n-2)...(n-p+1)$

Theorem

Prime
$$n \Leftrightarrow n > 1$$
 and n divides $\binom{n}{k}$ for $0 < k < n$.

- Recall binomial formula: $k!\binom{n}{k} = n(n-1)(n-2)...(n-k+1)$
- Assume *n* is not prime, then it has a prime factor *p* and p < n.
- Let k = p, divide by n: $p! \frac{\binom{n}{p}}{n} = (n-1)(n-2)...(n-p+1)$
- Note that $\frac{\binom{n}{p}}{n}$ is an integer, since *n* divides all non-unit binomials.
- Therefore *p* divides LHS. So *p* must also divide RHS.

Theorem

Prime
$$n \Leftrightarrow n > 1$$
 and n divides $\binom{n}{k}$ for $0 < k < n$.

- Recall binomial formula: $k!\binom{n}{k} = n(n-1)(n-2)...(n-k+1)$
- Assume *n* is not prime, then it has a prime factor *p* and p < n.
- Let k = p, divide by n: $p! \frac{\binom{n}{p}}{n} = (n-1)(n-2)...(n-p+1)$
- Note that $\frac{\binom{n}{p}}{n}$ is an integer, since *n* divides all non-unit binomials.
- Therefore *p* divides LHS. So *p* must also divide RHS.
- But *n* is a multiple of *p*; the nearest prior multiple is (n p).
- Since p is prime, p cannot divide any of (n-1), ..., (n-p+1).

Theorem

Prime
$$n \Leftrightarrow n > 1$$
 and n divides $\binom{n}{k}$ for $0 < k < n$.

- Recall binomial formula: $k!\binom{n}{k} = n(n-1)(n-2)...(n-k+1)$
- Assume n is not prime, then it has a prime factor p and p < n.
- Let k = p, divide by n: $p! \frac{\binom{n}{p}}{n} = (n-1)(n-2)...(n-p+1)$
- Note that $\frac{\binom{n}{p}}{n}$ is an integer, since *n* divides all non-unit binomials.
- Therefore *p* divides LHS. So *p* must also divide RHS.
- But *n* is a multiple of *p*; the nearest prior multiple is (n p).
- Since p is prime, p cannot divide any of (n-1), ..., (n-p+1).
- A contradiction n must be prime!