Mechanisation of AKS Algorithm

Hing-Lun Chan

College of Engineering and Computer Science Australian National University

PhD Annual Review Talk 2013

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

The AKS Algorithm

- Idea and Theory
- Algorithm

- Building Theories
- Achievements

B Recall

• AKS Algorithm = a deterministic primality test in polynomial-time

The Idea

• Based on a generalization of Fermat's Little Theorem:

Theorem

If gcd(a, n) = 1, $(x + a)^n \equiv x^n + a \mod (n)$ iff n is prime.

 Put a = 1, and compute – but the left side involves n terms, the degree of the polynomial.

The Idea

• Based on a generalization of Fermat's Little Theorem:

Theorem

If gcd(a, n) = 1, $(x + a)^n \equiv x^n + a \mod (n)$ iff n is prime.

- Put a = 1, and compute but the left side involves n terms, the degree of the polynomial.
- To reduce the task to polynomial-time, compute the polynomial remainder of both sides by division of some x^r − 1. There would only be r terms, and hopefully degree r ~ O(log^hn) for some h.
- To compensate for lowering of degree, verify more polynomials: (x + a)ⁿ ≡ xⁿ + a mod (x^r − 1, n) for 1 ≤ a ≤ s, and hopefully limit s ~ O(log^kn) for some k.
- If this works, the overall number of steps is $O(rs \times log^2 n)$.

• The AKS team looks for a theorem of this form:

Theorem

Given n > 1, there are "suitably chosen" values of r and s such that, if $(x + a)^n \equiv x^n + a \mod (x^r - 1, n)$ for $1 \le a \le s$, then n must be a prime (hopefully).

• The AKS team looks for a theorem of this form:

Theorem

Given n > 1, there are "suitably chosen" values of r and s such that, if $(x + a)^n \equiv x^n + a \mod (x^r - 1, n)$ for $1 \le a \le s$, then n must be a prime (hopefully).

• Problem: need a prime *p* to apply the generalized Fermat's Little Theorem, but don't know if *n* is prime.

• The AKS team looks for a theorem of this form:

Theorem

Given n > 1, there are "suitably chosen" values of r and s such that, if $(x + a)^n \equiv x^n + a \mod (x^r - 1, n)$ for $1 \le a \le s$, then n must be a prime (hopefully).

- Problem: need a prime *p* to apply the generalized Fermat's Little Theorem, but don't know if *n* is prime.
- Solution: *n* must have a prime factor *p*, so use the prime *p* to investigate the unknown *n*.

• The AKS team looks for a theorem of this form:

Theorem

Given n > 1, there are "suitably chosen" values of r and s such that, if $(x + a)^n \equiv x^n + a \mod (x^r - 1, n)$ for $1 \le a \le s$, then n must be a prime (hopefully).

- Problem: need a prime *p* to apply the generalized Fermat's Little Theorem, but don't know if *n* is prime.
- Solution: *n* must have a prime factor *p*, so use the prime *p* to investigate the unknown *n*.
- Bonus: Since *p* divides *n*, $x \equiv y \mod n$ implies $x \equiv y \mod p$, the modulo *n* can be replaced by *p* during investigation.

The Innovation

- Replacing the modulo *n* by *p*: $(x + a)^n \equiv x^n + a \mod (x^r - 1, p)$ for $1 \le a \le s$, by given $(x + a)^p \equiv x^p + a \mod (x^r - 1, p)$ for $1 \le a \le s$, by prime *p*
- There is a pattern here, which the AKS team cleverly exploits to squeeze information of *n* from *p*:

Theorem

Given n > 1, if r and s are chosen wisely, and preliminary checks are done, and $(x + a)^n \equiv x^n + a \mod (x^r - 1, n)$ for $1 \le a \le s$, then $n = p^k$ for some prime p and index k, i.e. n is a prime power.

- Hence if a power check is performed at the start, *n* must be prime.
- The AKS theory is based on finite fields 𝔽, and the ring of polynomials 𝔼[x] with coefficients from such fields.

The Algorithm

Input: integer
$$n > 1$$
.
1. If $(n = a^b$ for $a \in \mathcal{N}$ and $b > 1$), output COMPOSITE.
2. Find the smallest r such that $o_r(n) > \log^2 n$.
3. If $1 < (a, n) < n$ for some $a \le r$, output COMPOSITE.
4. If $n \le r$, output PRIME.¹
5. For $a = 1$ to $\lfloor \sqrt{\phi(r)} \log n \rfloor$ do
if $((X + a)^n \ne X^n + a \pmod{X^r - 1, n})$, output COMPOSITE;
6. Output PRIME;

Algorithm for Primality Testing

- Others have made slight variations of this basic algorithm.
- The only known deteministic polynomial-time primality test.

Road Map

• Foundation Work:

- $(\sqrt{})$ Build Monoid theory in HOL4.
- $(\sqrt{})$ Build Group theory from Monoid theory.
- $(\sqrt{})$ Build Ring theory using Group and Monoid.
- $(\sqrt{})$ Build Field theory using Ring and Group.
- $(\sqrt{})$ Build Polynomial theory using Field and Ring.
- Apply to AKS:
 - Code in HOL4: AKS n that returns true or false upon input n.
 - Prove in HOL4: AKS n returns true iff n is prime.
 - Prove in HOL4: number of steps of AKS n is bound by $O(\log^k n)$.

Milestones

- $(\sqrt{})$ Subgroups and Lagrange Theorem.
- $(\sqrt{})$ Units of a Ring form a Group.
- $(\sqrt{})$ GF(p) for prime p are indeed Finite Fields.
- $(\sqrt{)}$ Polynomials $\mathbb{F}[x]$ over a field \mathbb{F} form a Ring.
- $(\sqrt{})$ Polynomials $\mathbb{F}[x]$ have no zero divisiors.
- (√) Polynomials F[x] have a Division Algorithm.
 i.e. Existence and Uniqueness of quotient and remainder.
- Polynomial Divisibility and Modulo.
- Polynomial Factors and Roots.
- Irreducible Polynomials.
- Polynomial Quotient Ring.

A (1) > A (1) > A

• • • • • • • • • • •

References

- Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, "PRIMES in P" (revised 2005)
- Manindra Agrawal, "Primality Tests Based on Fermat's Little Theorem" (2006)

Questions