
Primality Testing is Polynomial-time:
A Mechanised Verification of the AKS

Algorithm

Hing Lun Chan

A thesis submitted for the degree of
Doctor of Philosophy in Computer Science at

The Australian National University

November 2019

c© Hing Lun Chan 2019
All Rights Reserved

This document was produced using TEX, LATEXand BIBTEX

I declare that this thesis is entirely my own work. Although it contains materials
from my published work with my supervisor, to the best of my knowledge it does
not contain any materials previously published or written by another person except
where otherwise indicated.

Hing Lun Chan
22 November 2019

To my beloved sweetheart, Jantsen.

Acknowledgments

The completion of this PhD project fulfills my personal dream. It is an achievement built upon
extensive help from people all around. Looking back, it took about eight years to finish, and I
have been offered every assistance along the way. The list to say thanks is long, but I shall start
with my family.

First and foremost, I express my heartfelt thanks to my wife Jantsen. As a mature student,
I have my fair share of health issues, family issues, and other age-related issues. She is always
the one showing her support with care and patience. I feel confident and comfortable in her
presence. She is my angel, and this thesis is dedicated to her.

Without the patient guidance of Michael Norrish, my chief supervisor, this work could not
have seen the light at the end of the tunnel. He offers critical advice, accurate judgements, and
friendly support. He can tolerate my mistakes, always revealing a way forward when I get stuck.
We met regularly on a fortnightly basis to discuss the work progress. The fond memories of
each session will last for a lifetime.

Besides being a friend, Michael is also the maintainer of the HOL4 theorem prover. He can
guide my skills to take full advantage of the system, and answer all my technical queries with
ease. The continual improvement of the HOL4 system is much appreciated, as new features
streamline the conversion of proof ideas into scripts. Such convenience in a theorem proving
environment deserves many thanks.

I would like to express my gratitude to Peter Baumgartner and Jeremy Dawson, my faithful
supervisors, and my superiors Rajeev Gore, Dirk Pattinson, Ranald Clouston and Alwen Tiu.
They all show great interest in my work. Peter and Jeremy were keen to enquire about my
progress. Rajeev enjoyed my talks and invited me to give guest lectures in his course. Dirk
provided me with valuable feedback, Ranald offered opportunities for me to share my work to a
wide audience, and Alwen gave me encouragement.

The Australian National University is an excellent institution for intellectual work. I have
been given unconditional help from the higher degree research unit, with both administrative
support and research training. Many thanks to Elspeth Davies for assisting with my overseas
travels, Inger Mewburn for giving valuable advice on my Visualise Your Thesis competition,
Candida Spence for kindly providing feedback about my presentation content, and Marie-Claire
Miličević for resolving many issues related to my higher degree study.

My thanks extend to Yiming Xu, an ANU undergraduate student doing her research project
using my libraries on groups and subgroups. Her excellent work, completed within the short
allocated time, shows the general applicability of the libraries I have developed.

Thanks to the many editors of the Journal of Automated Reasoning (JAR), including Jasmin

vii

Blanchette, Stephan Merz, Jeremy Avigad, and Lawrence Paulson. Larry showed great interest
in my early PhD work, and encouraged me to complete the milestone.

Also thanks to Candida Spence of the Information Literacy team at the ANU Library for
checking the formatting of this thesis. Numerous errors had been pointed out by anonymous
examiners in detailed comments; they have been corrected. The readability of this thesis has
been greatly improved by various people, including my wife, Michael Norrish, Jeremy Dawson,
and other anonymous reviewers. I am responsible for any remaining mistakes.

Throughout my work, I learn from the masters. I would like to thank those who pointed me in
the right direction. John Harrison showed me how to formulate the AKS Main Theorem. Terence
Tao clarified by email a difficult point in his AKS webpage. Laurent Théry was fascinated by
one of my conference talks that, by the next day, he showed me his scripts reproducing what I
had talked about the day before.

Thanks to the AKS team for providing the topic of my research, and bringing to the world
such ground-breaking insight into primality testing. I am deeply impressed with the Gödel Prize
lecture by Manindra Agrawal, and his many talks sketching the history of the AKS algorithm.

Thanks also to the various authors who offer me well-written textbooks or articles on algebra,
especially finite fields, some with lucid expositions of the AKS algorithm. The ideas for the
proofs in this thesis are taken from various sources. They are acknowledged in a footnote at the
start of the proof, to enhance readability.

Lastly, I would like to thank the world of mathematics, populated by many highly gifted
mathematicians. I read broadly, and learn many excellent ideas and techniques through their
work. That world is a world of dreams, with wonderful colors one cannot see, and delightful
music one cannot hear. The experience is aptly expressed in the following quote:

In the broad light of day
mathematicians check their equations and their proofs,

leaving no stone unturned in their search for rigour.
But, at night, under the full moon, they dream,

they float among the stars
and wonder at the miracle of the heavens.

They are inspired.
Without dreams there is no art,

no mathematics, no life.
— Michael Atiyah1

1In “Dreams”, from “The Unravelers”, a book produced by the IHES.

Abstract

We present a formalisation of the Agrawal-Kayal-Saxena (AKS) algorithm, a deterministic
polynomial-time primality test. This algorithm was first announced by the AKS team in 2002,
later improved in 2004. Our work is based on the improved version, with Parts 1 and 2 aim at
a formal proof of the correctness of the algorithm, and Part 3 aims at a formal analysis of the
complexity of the algorithm. The entire work is carried out in the HOL4 theorem prover.

The correctness of the AKS algorithm relies on a main theorem developed by the AKS
team, based on the theory of finite fields. To achieve the goal for Parts 1 and 2, we start by
building up a hierarchy of HOL4 libraries for algebraic structures: from monoids, to groups,
then rings and fields. Equipped with this foundation, we develop an abstract algebra library cov-
ering subgroups, quotient groups, ideals, and vector spaces. We extend the algebra library with
polynomials, quotient rings, quotient fields, and finite fields. With all these we can formulate the
AKS main theorem, which gives the correctness of the algorithm. For the formal proof, we need
to dive into several advanced topics in finite field, in particular the existence and uniqueness of
finite fields, and properties of cyclotomic polynomials.

Although algebraic structures, including finite fields, have been formalised in other theorem
provers, our work is the first such comprehensive library in HOL4, covering also the uniqueness
of finite fields up to isomorphism. Furthermore, by casting the AKS main theorem in the context
of finite fields, we can see clearly the inter-relationship of various parts of the proof. As a
result, we can make slight adjustments to the published version of the AKS algorithm. These
slight adjustments are minor in terms of the significance of the AKS achievement, answering the
challenge "Is Primes in P?" in the affirmative, but they simplify the implementation and analysis
of the AKS algorithm.

The AKS algorithm consists of several loops: loops for checking if a condition still holds,
and loops for searching if a condition will hold. Thus for the goal of Part 3, we embark on
an analysis of such loops: formalising their behaviour, in particular the bound on the number
of iterations. The AKS algorithm mostly involves modular computations, using numbers or
manipulating polynomials. We develop tools and techniques to formally assert the recurrence
properties of loop computations, with emphasis on the analysis of the time complexity behaviour.
As far as we know, this approach to complexity analysis has not been done in other theorem
provers.

Many offshoots from this work are interesting, even new to published proofs of the AKS
algorithm. We have an elegant proof to a key result that enables us to slightly improve the bound
on the AKS parameter. We present the relationship between the AKS algorithm and the AKS
main theorem. We distill a picture to visualise the logic behind the proof of the AKS main
theorem. We show in detail an implementation of the AKS algorithm that is suitable for loop
analysis of complexity. We introduce an approach to study the time complexity of simple loops.

ix

x

Contents

Acknowledgments vii

Abstract ix

Publications xxi

1 Introduction 1
1.1 Formalisation . 1
1.2 PRIMES is in P . 2
1.3 AKS Phases . 3
1.4 AKS Formalisation . 5
1.5 Our Contribution . 7
1.6 Thesis Structure . 8
1.7 Summary . 9
1.8 Remarks . 9
1.9 Notation . 11

I Foundations 13

2 Basic Algebra 15
2.1 Algebraic Structures . 15
2.2 Monoids and Groups . 18
2.3 Rings and Fields . 20
2.4 Integral Domains . 20
2.5 Polynomials . 21
2.6 Finite Fields . 24
2.7 Number Theory . 26
2.8 Summary . 40
2.9 Remarks . 40

3 AKS Algorithm 43
3.1 AKS Pseudocode . 43
3.2 Power Free Test . 45

xi

xii Contents

3.3 AKS Parameter . 46
3.4 Introspective Checks . 49
3.5 AKS Primality Test . 50
3.6 Introspective Shift . 51
3.7 AKS in Finite Field . 53
3.8 Summary . 54
3.9 Remarks . 54

II Correctness 57

4 Advanced Algebra 59
4.1 Finite Field Classification . 59
4.2 Existence of Finite Fields . 61
4.3 Uniqueness of Finite Fields . 64
4.4 Cyclotomic Polynomials . 69
4.5 Summary . 72
4.6 Remarks . 72

5 AKS Main Theorem 75
5.1 Main Theorem . 75
5.2 Introspective Relation . 77
5.3 Introspective Sets . 79
5.4 Modulo Sets . 81
5.5 Reduced Polynomials . 83
5.6 Reduced Exponents . 86
5.7 Punch Line . 87
5.8 Summary . 90
5.9 Remarks . 90

III Complexity 93

6 Complexity Models 95
6.1 Monadic Computation . 95
6.2 Complexity Analysis . 96
6.3 Machine Model . 98
6.4 Subroutines . 99
6.5 Integer Logarithm . 99
6.6 Recurrence Loops . 103
6.7 Complexity Results . 108

Contents xiii

6.8 Summary . 110
6.9 Remarks . 110

7 AKS Complexity 113
7.1 AKS Implementation . 113
7.2 Power Free Check . 114
7.3 AKS Parameter . 117
7.4 Introspective Checks . 121
7.5 Complexity Analysis . 127
7.6 Summary . 130
7.7 Remarks . 130

8 Conclusion 133
8.1 Overall Summary . 133
8.2 Formalisation Issues . 135
8.3 Alternative Tactics . 139
8.4 Future Work . 143
8.5 Afterword . 145

Appendix 147
A.1 Script References . 147
A.2 Script Libraries . 154

Bibliography 159

Index 169

xiv Contents

List of Figures

1.1 Dependency Diagram of thesis topics. Terms and symbols are defined in the
relevant chapters. Very briefly, here FLT is Fermat’s Little Theorem, and PHP is
the Pigeonhole Principle. 10

2.1 Pascal’s Triangles: the one on the left shows the binomial coefficients, the one
on the right has each row depicting the remainders under division by the corre-
sponding row index. The colored rows, with remainders in-between all equal to
zero, have row indexes that are prime. 28

2.2 Pascal’s Triangle to Leibniz’s Denominator Triangle. 32
2.3 Leibniz’s Denominator Triangle and Harmonic Triangle. 32
2.4 Leibniz’s Denominator Triangle . 33
2.5 The Leibniz triplet: in Denominator Triangle and in Harmonic Triangle. 34
2.6 Transformation of a path from vertical to horizontal in the Denominator Trian-

gle, stepping from left to right. The path is indicated by entries with black discs.
The 3 gray-dotted discs in L-shape indicate the Leibniz triplet, which allows
LCM exchange. Each step preserves the overall LCM of the path. Hence the
black discs of Step 1 and of Step 7 have the same LCM. 37

5.1 Sketch of the AKS proof. The introspective relations of n and p, a prime divi-
sor of n, together with the cofactor q = n div p, give rise to two sets N and P
(Section 5.3). By taking modulo of k and h, an irreducible factor of Xk − 1,
respectively, the sets N and P map, correspondingly, to two finite sets Mk and
Qh (Section 5.4). Two finite subsets of N and P can be crafted such that injec-
tive maps between finite sets can be constructed, as illustrated, if the parameters
k and s are suitably chosen to satisfy the “if” conditions (Section 5.5 and Sec-
tion 5.6). Once these “if” conditions are established, if n is not a perfect power
of p, the grey set will have more than |Mk| elements. This is impossible as the
injective map on the left will contradict the Pigeonhole Principle (Section 5.7).
Therefore n must be a perfect power of its prime divisor p. 80

7.1 Polynomial as a list of cofficients, with the least significant coefficient on the left. 121
7.2 Polynomial introspective check: p = q in Rn,k = Zn[X]/(Xk − 1). 122

8.1 Dependency Diagram of Section 1.6, page 10. 134

xv

xvi LIST OF FIGURES

List of Tables

1.1 Phases of the AKS algorithm. 3

3.1 Selected values of the AKS parameter by aks_param n. 48

6.1 Comparison of measures size n and dlog ne. 97
6.2 Subroutines values and number of steps. 100
6.3 Types of Recurrence Loop . 105

7.1 Steps to perform introspective computations for unnormalised X + c. 121

xvii

xviii LIST OF TABLES

List of Algorithms

1 The AKS algorithm in pseudo-code . 44
2 The algorithm in AKS revised paper, Agrawal et al. [2004]. 44

xix

xx LIST OF ALGORITHMS

Publications

Parts of this thesis have been published as the papers listed below. Some ideas in Chapter 3
and Chapter 5, on the correctness of the AKS algorithm, first appear in the second paper. Some
parts of Chapter 2 on basic algebra come from the first and third papers. Chapter 4 on advanced
algebra is based on the fourth paper.

� Hing Lun Chan and Michael Norrish. A String of Pearls: Proofs of Fermat’s Little
Theorem. In Chris Hawblitzel and Dale Miller, editors, Proceedings of Certified Pro-
grams and Proofs, 2012. LNCS number 7679, pages 188—207. Springer, December
2012. Print ISBN: 978-3-642-35307-9, doi: 10.1007/978-3-642-35308-6_16. Also pub-
lished in Andrea Asperti, editor, Journal of Formalized Reasoning. Volume 6, number 1,
pages 63—87. December 2013. ISSN 1972-5787, doi: 10.6092/issn.1972-5787/3728.

� Hing Lun Chan and Michael Norrish. Mechanisation of AKS Algorithm: Part 1 — the
Main Theorem. In Christian Urban and Xingyuan Zhang, editors, Interactive Theorem
Proving, ITP 2015. 6th International Conference, Nanjing, China, August 24-27, 2015,
Proceedings. LNCS number 9236, pages 117—136. Springer, August 2015. First Online
19 August 2015, doi: 10.1007/978-3-319-22102-1_8.

� Hing Lun Chan and Michael Norrish. Proof Pearl: Bounding Least Common Multiples
with Triangles. In Jasmin Christian Blanchette and Stephan Merz, editors, Interactive
Theorem Proving, ITP 2016. 7th International Conference, Nancy, France, August 22-25,
2016, Proceedings. LNCS number 9807, pages 140—150. Springer, August 2016. First
Online 07 August 2016, doi: 10.1007/978-3-319-43144-4_9. Also published in Jour-
nal of Automated Reasoning, Springer Netherlands. First online 14 October 2017, doi:
10.1007/s10817-017-9438-0. Printed in February 2019, Volume 62, Issue 2, pages 171—
192.

� Hing Lun Chan and Michael Norrish. Classification of Finite Fields with Applications.
In Journal of Automated Reasoning, Springer Netherlands. First online 25 October 2018,
doi: 10.1007/s10817-018-9485-1. Printed in October 2019, Volume 63, Issue 3, pages
667—693.

xxi

xxii LIST OF ALGORITHMS

Chapter 1

Introduction

This thesis is about a formal proof of the Agrawal-Kayal-Saxena (AKS) algorithm in the theorem-
prover HOL4. This is based on a formal definition of the AKS algorithm, with a proof of its
correctness. This is followed by a formal implementation of the AKS algorithm, with a proof
of its computational complexity based on a machine model. We identify 3 phases for the AKS
algorithm, highlighting the role of a critical parameter k, and its effect on performance. We
touch on the impact of the AKS algorithm, and why its formalisation is significant. We discuss
what has been done, what we have achieved, and the layout of this thesis.

If you can’t explain your mathematics to a machine,
it is an illusion to think you can explain it to a student.

— Nicolaas Govert de Bruijn (2003)1

1.1 Formalisation

To formalise is to understand, in detail: explain the logic to a machine, as de Bruijn proclaims.
There are many levels to understand a mathematical proof. Take the example of the AKS

algorithm, the theme topic of this thesis. The AKS team presented their proof in nine pages
(Agrawal et al. [2002, 2004]). Expositions of various lengths and depths have been writ-
ten (Bernstein [2002]; Aaronson [2003]; Saptharishi [2007]; Schoof [2008]), whole chapters
have been devoted to this topic (Crandall and Pomerance [2005]; Shoup [2008]; Rempe-Gillen
and Waldecker [2014]), and even a whole book (Dietzfelbinger [2004]) has been published.
Nonetheless, to the Fields medalist Tao [2009], the essence of the proof can be understood
within a single webpage.

A formalisation, with proof scripts to be compiled by a theorem-prover, provides yet another
level of understanding, one that is machine-checkable. The formalisation process reveals the
dependency of various concepts, identifies their intricate relationships, and ultimately unfolds
the logical threads that lead to the validity of the result.

For the formalisation of the AKS algorithm, we are keen to understand:

1From his invited lecture titled Memories of the Automath Project. For a delightful discussion of this quote, see Zen
and the art of formalization by Asperti and Avigad [2011].

1

2 Introduction

1. What is the AKS algorithm?

2. Is the AKS algorithm correct?

3. How to implement the AKS algorithm?

4. What is the run-time behaviour of the AKS algorithm?

The AKS algorithm is about primes, a major topic in number theory. The first involves some
concepts in modular arithmetic, using numbers and polynomials. The second involves some
knowledge of abstract algebra, in particular the theory of finite fields. The third involves an
appreciation of machine execution, with some understanding of subroutines. The fourth involves
a model to execute an algorithm, and techniques to solve recurrence relations.

Our formalisation therefore touches on a potpourri of topics in mathematics. However, all
topics lead back to the AKS algorithm. For a peek at these topics, see Figure 1.1.

1.2 PRIMES is in P

Given a number n greater than 1, a primality test is a method to determine if n is prime, i.e.,
whether n has only the trivial factors 1 and itself.2

The primality test takes the form of an algorithm: a step-by-step method with input n and
output the verdict: n is prime or not. The run-time behaviour of an algorithm is an estimate of
the number of steps from input to output. Intuitively, the larger the input number, the more the
number of steps. To formalise this idea, we need at least a notion of the input size.

It is customary to measure the size of input n by (log n), the base 2 logarithm of n, which
is indicative of its number of binary digits. Throughout this work, we shall use instead dlog ne,
the round-up value, which is defined3 for all values of n. An algorithm with input n and its
number of steps bounded by a polynomial function of dlog ne belongs to class P, the class of
polynomial-time algorithms. Compare to the class of exponential-time algorithms, such class P
algorithms are considered efficient, at least in theory.

The name PRIMES refers to the class of primality test algorithms. Since internet security
protocols make use of primes with many digits to generate keys, an efficient primality test is
keenly sought after. For a long time, only probabilistic primality tests in class P are known,
but deterministic primality tests are theoretically more desirable. A deterministic and efficient
primality test remains elusive, and the challenge to find one is known as “Is PRIMES in P?”.

On August 4, 2002, the AKS team announced their algorithm in a paper (Agrawal et al.
[2002]) with the title “PRIMES is in P”. This immediately caused a sensation throughout the
computer science community, even making news headlines in the popular press.4 After careful
analysis by experts, the AKS algorithm was substantially refined in Agrawal et al. [2004]. The

2Note that 0 is never a prime, and 1 is a unit, neither prime nor composite.
3We define dlog 0e = 0, while log 0 is undefined.
4As reported in The New York Times [Robinson, 2002, August 8, 2002], and also in Notices of The American
Mathematical Society [Bornemann, 2003, May 2003].

§1.3 AKS Phases 3

breakthrough was officially recognized when the AKS team was awarded the Gödel Prize by the
European Association for Theoretical Computer Science EATCS [2006]:

The result obtained by Agrawal, Kayal, and Saxena can be seen as a crowning
achievement of a long algorithmic and mathematical quest.

A remarkable aspect of the article is that the final exposition itself turns out to
be rather simple. The text as published in Annals of Mathematics is a masterpiece
in mathematical reasoning. It has a high density of tricks and techniques, but the
arguments come in a brilliantly simple manner; they remain completely elementary.
The contents of the paper are therefore accessible to a broad audience.

The revised version shows that the AKS algorithm can determine whether a number n is
prime with the number of steps bounded by some polynomial function of dlog ne 15

2 . The rather
high polynomial exponent means the AKS algorithm cannot compete with the known proba-
blilistic primality tests.

Nevertheless, the AKS algorithm remains the only known unconditional, deterministic and
polynomial-time primality test. We shall refer to the first 2002 paper as the original AKS paper,
and the later 2004 paper as the revised AKS paper, or simply the AKS paper.

1.3 AKS Phases

The AKS algorithm consists of 3 phases:

AKS Algorithm
Input: a number n
Output: decide whether n is PRIME

Phase 1 Power Free Test the number n is not a square, not a cube, etc.
if n is not power free, n is not PRIME

Phase 2 Parameter Search the parameter k is chosen with some criteria based on n
if k is a factor of n, n is PRIME only when k = n

Phase 3 Polynomial Checks identities to hold under two moduli involving n and k.
if n passes all polynomial identity checks, n is PRIME

Table 1.1: Phases of the AKS algorithm.

Phase 1 is a preliminary step. This is because the theory behind the AKS algorithm, to be
presented in Parts I and II, shall declare that, if the input n passes the checks of Phase 3 from
a good parameter k of Phase 2, then n = pe for some prime p and exponent e. With Phase 1
ensuring that n is power free, the exponent e = 1. Therefore, n is prime.

For Phases 2 and 3, Table 1.1 shows the appearance of a parameter k. As we shall see, this
AKS parameter k is central to the AKS algorithm. Its existence through a search comprises the
whole of Phase 2. The search, denoted by aks_param n, is sequential. The search can give 3
possible results:

4 Introduction

1. a nice k, where k is a factor of n,

2. a good k, where k is not a factor of n, and satisfies a special condition,

3. a bad situation, where the search, up to some cut-off, fails to find a nice k or a good k.

We shall spell out details of the search (Section 3.3.1), and prove that the search never fails.
If Phase 2 returns a parameter of the type nice k, k is a factor of n. Therefore n is prime if

and only if this factor is itself, i.e., n = k. On the other hand, if a parameter of the type good k
is returned, this parameter k is used to drive Phase 3, which consists of a series of polynomial
identity checks of the form:

(X + c)n ≡ Xn + c (mod n, Xk − 1) (1.1)

for a range of constants c, i.e., 0 < c ≤ s. The limit s is specified by an expression based
on n and k. Details of such polynomial identity checks will be explained later, but the form
of the polynomial identity is so striking that the AKS team suggested a special term for this
form: an introspective check. We shall eventually see how such introspective polynomial checks
characterise the AKS algorithm.

With these notions, we can get a glimpse of our formal definition of the AKS algorithm:

Definition 1. The AKS algorithm with 3 phases.

aks n def
=

power_free n ∧
case aks_param n of

| nice k . k = n
| good k .
∀ c. 0 < c ∧ c ≤ (SQRT ϕ(k))dlog ne ⇒ (X + c)n ≡ Xn + c (mod n, Xk − 1)
| bad . F

Note how our formal definition of aks n takes into account the 3 phases of the AKS algorithm.
We shall formally establish that the AKS algorithm, backed up by some beautiful results

from the theory finite fields, stands up to its claim:

Theorem 2. The AKS algorithm is a primality test.

` prime n ⇐⇒ aks n

We shall explain computation in monadic style in Chapter 6, Section 6.1. Using monadic
style primitives (e.g.eqM n k for equality check) and subroutines: power_freeM n for power free
test, paramM n for parameter search, and poly_intro_rangeM n k k for polynomial introspective
checks, we put each phase of the AKS algorithm together by composing them in monadic style:

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKScleanScript.sml#lines-745
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKScleanScript.sml#lines-992

§1.4 AKS Formalisation 5

Definition 3. The AKS algorithm implemented in monadic style.

aksM n def
=

do

b ← power_freeM n;
if b then

do

c ← paramM n;
case c of

| nice k . eqM k n
| good k . poly_intro_rangeM n k k
| bad . return F

od

else return F

od

and prove these important results, where valueOf (aksM n) is the final value of the monadic
computation with input n, and stepsOf ◦ aksM is the number of steps of monadic computation
expressed as a function of n:

Theorem 4. The AKS implementation is correct, and belongs to the polynomial class.

` valueOf (aksM n) ⇐⇒ aks n
` stepsOf ◦ aksM ∈ O(dlog ne21)

These results constitute our formal proof of the AKS algorithm, i.e., “PRIMES is in P”. Given
that our implementation of the AKS algorithm is not intended for efficiency, and our model
of elementary computations is quite conservative (see Section 6.3), together with the fact that
our recurrence theory vastly over-estimates for the sake of simplicity, we are happy with our
O(dlog ne21). The original AKS paper estimated the algorithm5 in the order Õ(dlog ne12), and
the revised AKS paper lowered this to Õ(dlog ne 15

2).

1.4 AKS Formalisation

Because the AKS algorithm is a major milestone in primality testing, we would like to formally
verify the authors’ claim, to be 100% confident of the breakthrough.

The AKS algorithm depends critically on a parameter k derived from the input number n.
In the original AKS paper, the parameter k needs to be a prime, and its bound depends on the
Prime Number Theorem for the distribution of primes, and the Brun-Titchmarsh Theorem for
an upper bound on the distribution of primes in an arithmetic progression. Using these results

5The Õ notation ignores logarithmic powers of the variable, e.g.O(f (n)dlog ne3) is shortened to Õ(f (n)).

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countAKSScript.sml#lines-1047
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKScleanScript.sml#lines-2155

6 Introduction

from analytic number theory, the AKS team obtained an upper bound for parameter k, showing
that the AKS algorithm is in P, the class of polynomial-time algorithms.

The Prime Number Theorem aims at the limiting behaviour of the distribution of primes.
However, if only the bounds on the distribution is required, such a result had been obtained by
Chebyshev. This result is known as a weak form of the Prime Number Theorem.

When experts examined the AKS proof, they realized that while the best bound for the
parameter k depends on those theorems of analytic number theory, the weak form of prime
distribution can already produce an acceptable bound, still keeping “PRIMES is in P”. Therefore,
initial attempts to formalise the AKS algorithm concentrated on establishing prime distributions
of some form in theorem provers. As early as 19 August 2002, John Harrison [2002] mentioned
during his talk on formalisation of real numbers that:

By the way, some deep results about the distribution of primes are used in the
recent polynomial-time primality-testing algorithm . . .

As reported in Wiedijk [2003], John Harrison formalised, in HOL Light, a weak form of the
Prime Number Theorem and a theory of cyclotomic polynomials for this purpose.

Laurent Théry [2003] discussed the formalisation of algorithms in number theory: those
related to primes and primality tests. He reported a formal proof of the Miller-Rabin algorithm,
a probabilistic primality test, by Joe Hurd [2003]. He predicted that the next candidate for
formalisation will be the AKS algorithm.

Théry observed that there is no relationship between the description of an algorithm and the
difficulty of its formal proof. As an example in the report, he found that a correctness proof in
Coq of the simple Knuth’s algorithm to list the first n primes required a variety of techniques,
including a formal proof of Bertrand’s postulate.6 This was prior to the revised AKS paper, thus
he was concerned that a formal proof of the AKS algorithm will involve much deeper properties
about primes than Bertrand’s postulate.

With the role of the Prime Number Theorem in determining the bound on the parameter k
clarified, the proof in the revised AKS paper of 2004 is considered “simple and elementary”,
as expressed in the Gödel Prize 2006 citation (see Section 1.2). The improvements concern the
parameter k:

• The parameter k is no longer required to be prime. Instead, the correctness proof of the
AKS algorithm is obtained by invoking properties of cyclotomic polynomials, which is a
standard topic in finite field theory.

• Since the condition on k is relaxed, the bound on its size no longer depends explicitly on
Prime Number Theorem. Instead, the bound can be derived from a lemma about a lower
bound on the least common multiple of consecutive numbers. The lemma has a standard
proof by elementary calculus in the literature.

These improvements cleaned up the presentation of the AKS algorithm.

6This is first proved by Chebyshev in 1852, that there is always a prime between n and 2n for n > 1.

§1.5 Our Contribution 7

Due to these simplications, there was renewed interest to formalise the AKS algorithm.
Indeed, Campos et al. [2004] tried in ACL2, and de Moura and Tadeu [2008] attempted in Coq.
Both only showed that a prime will pass all the AKS tests. This is the easy part. The hard part
is show that a non-prime cannot pass all the AKS tests.

1.5 Our Contribution

Our goal is to achieve a formal proof of “PRIMES is in P”, based on the AKS algorithm. This
includes a proof of its correctness, both the easy and hard parts, and a proof of its complexity,
establishing that the AKS algorithm is indeed in the polynomial-time class.

We aim for a formalisation in HOL4 that is:7

• self-contained, not relying on external libraries of previous work,

• elementary, not involving concepts from analysis of real-valued functions, and

• algebraic, following the improved version of the algorithm by the AKS team.

Our work in the formalisation of the AKS algorithm is built up by layers. We develop theories
for various topics, many of these are interesting by themselves.

In a previous effort, we formalised the correctness of the AKS algorithm, both the easy and
hard parts, in Chan and Norrish [2015]. In that work, we followed the original AKS paper,
taking the parameter k to be a prime. We also established k’s existence on general grounds, but
without giving it a bound.

In this thesis, we follow the revised AKS paper, and achieve the following:

1. We prove a lemma about a lower bound on the least common multiple of consecutive
numbers without any use of calculus. Instead, the lemma is established by an ingenious
use of the Leibniz’s triangle, a variant of the Pascal’s triangle. The lower bound given by
the lemma provides a bound on the parameter k of the AKS algorithm (Definition 1).

2. The correctness of the AKS algorithm (Theorem 2) is now proved with parameter k no
longer required to be prime. This is a result of another effort, the formalisation of finite
field theory including cyclotomic polynomials.

3. We have a formal implementation of the AKS algorithm (Definition 3), involving details
of each phase. The implementation is not optimized for performance, but it simplifies the
subsequent complexity analysis.

4. We reach the ultimate goal: a proven correct implementation of the AKS algorithm, with
verification that its computational complexity is indeed bounded by a polynomial of the
input size (Theorem 4).

7See Section 8.2 (page 135) for reflections on how well we meet our aims.

8 Introduction

5. Our work is backed up by a thorough formalisation of finite fields, from the hierarchy of
algebraic structures, to their existence and uniqueness up to isomorphism by cardinality.
The collection of abstract algebra libraries is developed with generic types. It has proved
its usefulness in several key areas in the formalisation of AKS algorithm.

6. We introduce a simple monadic framework to analyse the computational complexity of
algorithms. This proves to be adequate to show that the AKS algorithm runs in polynomial
time.

Thus we achieve a complete formal elementary proof of the correctness of the AKS algorithm,
and provide an elementary complexity analysis to verify “PRIMES is in P”.

Our theorem prover is HOL4, and our techniques are all elementary: basic number theory,
and standard abstract algebra. We build a fairly complete library for finite fields, including
quotient fields, cyclotomic polynomials, culminating in their existence and uniqueness for the
classification of finite fields.

1.6 Thesis Structure

In order to present a coherent account of the formalisation of the AKS algorithm, with minimal
distraction from other issues, this thesis is structured into chapters, as follow:

1. Introduction — an overview of the AKS formalisation work (Chapter 1).

2. Part 1: Foundation

• Basic Algebra — number theory and algebra theorems (Chapter 2).

• AKS Algorithm — a study of its phases and parameters (Chapter 3).

3. Part 2: Correctness

• Advanced Algebra — finite field and cyclotomic factors (Chapter 4).

• AKS Main Theorem — a formal proof of the correctness of algorithm (Chapter 5).

4. Part 3: Complexity

• Complexity Models — toolkit for computational complexity analysis (Chapter 6).

• AKS Complexity — implemetation and analysis of the algorithm (Chapter 7).

5. Conclusion — summary and preview of future work (Chapter 8).

Refer to Figure 1.1 for the relationships between chapters and topics. An Appendix is included
with A.1 providing Script References to all definitions, lemma, theorems and corollaries in this
thesis, and A.2 describing the Script Library organisation in our source code repository.

§1.7 Summary 9

HOL4 Sources Our entire respository of HOL4 proof scripts can be found at this location:
http://bitbucket.org/jhlchan/hol/src/. The respository is tagged with phd-thesis-02, and
consists of sub-folders aks/, /algebra and /algorithm. Each folder or subfolder has a
description of its content in a file named README.md. Scripts in the repository are provided in
two formats:

• those with suffix .hol are intended for use in interactive HOL4 sessions,

• those with suffix Script.sml are intended for HOL4 compilation using Holmakefile.8

We shall omit the suffix when referring to proof scripts. Each proof script has documentation
in block comments at the beginning. The full library of proof scripts is described in Appendix
(Section A.2, page 154). Hyperlinks have been set up for each Definition, Theorem, Lemma,
and Corollary to associate with the actual location of the item in our repository.

1.7 Summary

We introduce the AKS algorithm through its 3 phases, and formulate our goals: to prove that it
is a primality test (Theorem 2), and to show that an implementation is correct and has a run-time
bounded by a polynomial function of the input size (Theorem 4). Together they verify formally
that the AKS algorithm exemplifies “PRIMES is in P”. The revised AKS paper, complete with
traditional proofs of both the correctness and complexity of the AKS algorithm, consists of only
nine pages. Although the paper is short, there is a substantial amount of coding to be done
in order to formalise the AKS algorithm from the ground up. Most of the work relates to the
proper development of the supporting libraries. Our discussion shall be divided into 3 Parts:
Foundation, Correctness, and Complexity. We start with Part 1, to develop a blueprint for the
formalisation work.

1.8 Remarks

For informative accounts of formalisation of mathematics and automated theorem proving, see
John Harrison [1996] and his talks over the years (Harrison [2013, 2015]). A comprehensive
survey of iteractive theorem proving was given by Andrea Asperti [2009]. An article titled
Formally Verified Mathematics was contributed by Jeremy Avigad and Harrison [2014]. Another
recent talk on advances of formal mathematics was given by Josef Urban [2016].

During December 2008, the Notices of the American Mathematical Society (Magid [2008])
published A Special Issue on Formal Proof. In August 2011, the journal Mathematical Structures
in Computer Science (Curien [2011]) had a special issue on Interactive Theorem Proving and
the Formalisation of Mathematics. In February 2013, the Journal of Automated Reasoning had
Special Issue: Formal Mathematics for Mathematicians (Trybulec et al. [2013]).

8Compile using HOL4 version with commit tag 6711e409.

http://bitbucket.org/jhlchan/hol/src/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/

10 Introduction

Formal definition: aks n Formal implementation: aksM n

Monoids Groups

Rings Fields

Polynomials

Quotient Rings

Number Theory

Finite Fields

Subfields Vector Spaces

Irreducibles Minimal Poly.

Existence Uniqueness

Cyclotomic Factors

Machine Model

Recurrence
Loops

Example:
logM n

power_free n

aks_param n

poly_intro_range Zn k n s

`prime n ⇒ aks n

poly_intro_range Zp k n s

`aks n ⇒ prime n

Introspective
Relation:

n k
./ X + c

N P

Mk Qh

Proof

power_freeM n

paramM n

poly_intro_rangeM n k s

aksM n: analysis

`prime n ⇐⇒ aks n
` valueOf (aksM n) ⇐⇒ aks n
` stepsOf ◦ aksM ∈ O(dlog ne21)

Ch 1: Introduction

Ch 2: Basic Algebra

Ch 3: AKS Algorithm

Ch 4: Advanced Algebra

Ch 5: AKS Main Theorem

Ch 6: Complexity Models

Ch 7: AKS Complexity

Ch 8: Conclusion

k

pFLTLCM bound
h

1 1

2
2

3

3

PHP

Figure 1.1: Dependency Diagram of thesis topics. Terms and symbols are defined in the relevant
chapters. Very briefly, here FLT is Fermat’s Little Theorem, and PHP is the Pigeonhole Principle.

§1.9 Notation 11

1.9 Notation

All statements starting with a turnstile (`) are HOL4 theorems, automatically pretty-printed to
LATEX from the relevant theory in the HOL4 development. Generally, our notation allows an
appealing combination of quantifiers (∀, ∃), logical connectives (∧ for “and”, ∨ for “or”, ¬ for
“not”, ⇒ for “implies”, and ⇐⇒ for “if and only if”), with logical constants T for true, and
F for false. For functional notation, we use λ for function abstraction, and juxtaposition for
function application.

Set-theoretic Notation We use standard set notations: ∈ for set membership, ∪ for set
union, ∩ for set intersection, and set comprehensions such as { x | x < 7 } . The universal set
of type α is denoted by U (:α). For a finite set S, the cardinality is written |S|, the sum over its
elements is ∑ S, and the product over its elements is ∏ S.

List Notation Lists are enclosed in square-brackets [], with list members separated by semi-
colon (;), using infix operators :: for “cons”, _ for append, and . . for inclusive range. When
` = h::t, h is the head of ` and t is the tail of `. The empty list is []. For a nonempty list `, LAST `
picks the element at the end, and FRONT ` takes all elements except the end. Other common
list operators are: LENGTH, SUM, REVERSE, and MEM for list member. We use λ for function
abstraction, and juxtaposition for function application. The application of a single argument
function f to every element x in a list xs is denoted by MAP f xs. Extending this to a function
of two arguments, MAP2 f xs ys denotes the application of f taking the first argument from xs
and the second argument from ys.

Relation and Maps Given a binary relationR, its reflexive and transitive closure is marked
by an asterisk (∗), i.e.,R∗. We write f : s ↪→ t to mean that function f is injective from set s
to set t, and write f : s ↔ t to mean that function f is bijective from set s to set t.

Multiplication Except for explicit products like 7 × 13 = 91, we shall use juxtaposition for
the product of two numbers x and y, as xy. When a function f is applied to a product, it is shown
as f xy; whereas (f x)y shows the product of f x and y. This convention closely resembles
the traditional presentation in mathematics. In other domains, e.g., algebraic structures and
polynomials, we shall use x× y to represent the product of two elements x, y.

Number-theoretic Notation For natural number division of n by m, the quotient is denoted
by n div m, and the remainder is denoted by n mod m. We write n | m when n divides m, or,
equivalently, n ∈ divisors m. The notation x ≡ y (mod n) means that both x and y give the
same remainder after division by n. We use ϕ(n) to denote the Euler ϕ-function of n, the count
of numbers up to n that are coprime to n. All numeric functions are integer functions, rounding
down unless enclosed by up-brackets d e, the rounding-up or ceiling function. For example,

12 Introduction

ROOT k n is the integer k-th root of n, SQRT n is the integer square root of n, n div 2 is the
integer half of n, and dlog ne is the round-up of the logarithm of n in base 2.

HOL4 types The HOL4 theorem prover uses a simple type system. Our formalisation of the
AKS algorithm uses the basic number type, num, and sets and lists derived from number type.
In order for abstract algebra to be applicable to objects of various types, the algebraic structures
are defined over a generic type α.

These are the basic notations. More notation will be introduced as the need arises.

Part I

Foundations

Part 1 is about the AKS algorithm, from pseudocode to primality test. For each
phase of the algorithm, we define concepts to formalise the actions, and develop
theories with background from basic algebra. Showing a prime can go through
the AKS algorithm is straight-forward. Proving a number going through the AKS
algorithm must be a prime needs a strategy: get a prime, build a finite field, and
formulate the AKS Main Theorem in finite field. The AKS Main Theorem is the focus
of Part 2, but all preparatory work are provided in Part 1.

13

Chapter 2

Basic Algebra

This chapter walks through various topics in algebra that are basic for an understanding of the
AKS algorithm. We describe our formalisation of abstract algebra, from monoids and groups,
to rings and fields. The correctness proof of the AKS algorithm draws ideas from the theory of
finite fields. Modular systems, based on numbers and polynomials, provide examples of these
algebraic structures. Their properties and terminology are frequently used in discussions of
the AKS algorithm. We begin with fairly obvious definitions and results, but finish with some
remarkable formulae, including a novel approach to the first lemma in the AKS paper.

Mathematics is the work of the human mind,
which is destined to study rather than to know,

to seek the truth rather than to find it.
— Évariste Galois (1832)1

2.1 Algebraic Structures

It was the work of Galois’ mind where the concept of a group was first conceived and studied.
This transformed the study of algebra: from concrete numbers to abstract structures. Moreover,
a short paper by Galois [1830] laid the foundation for the study of finite fields — they are also
called Galois fields in his honour.

The theory behind the AKS algorithm is based on finite fields. Our formalisation of finite
fields is at the top of a hierarchy of theories defining a family of algebraic structures:

• A MonoidM with a binary operation × that is closed, associative, and has an identity #e.
An abelian monoid, AbelianMonoidM, has the operation also commutative.

• A Group G is a monoid with an inverse x−1 for each element x such that x × x−1 = #e. An
abelian group, AbelianGroup G, is a commutative group.

• A commutative Ring R has two components, a group R.sum with operation + and a
monoidR.prod with operation ×. Both share the same carrier, and:

1From his writing On the progress in pure analysis, as translated in Neumann [2013].

15

16 Basic Algebra

◦ R.sum is an abelian group with identity 0;

◦ R.prod is an abelian monoid with identity 1;

◦ Multiplication is distributive over addition.

• A Field F is a commutative ring, with all nonzero elements having multiplicative inverses;
i.e., they form a group F ∗.

Our formalisation takes only the commutative ring, since our target is the finite field. Hereafter,
rings are understood to be commutative rings. This hierarchy exemplifies the naïve approach to
algebra in HOL4, which is sufficient for the purpose of this thesis.

The traditional mathematical presentation and notations undergo some drastic modifications
when rendered in HOL. We first determine our representation for these algebraic structures. At
our base, we have the α monoid type:

α monoid = 〈[carrier : α → bool; op : α → α → α; id : α]〉

A monoid (M : α monoid) is a value of the α monoid type, effectively a triple of three
different fields. Using the HOL record machinery, we can refer to these fields with a pleasant
“dot” notation; e.g., M.op. The M.carrier is a subset of all possible values of type α; the
operation M.op is a binary operation on those values and the identity M.id is one of those
values.

It is then straightforward to define the predicate Monoid over such values that carves out those
that satisfy the axioms of a monoid. Here we annotate the definition’s variables with their types,
and remove the special overloading used in the rest of this thesis so that uses of M.op are
explicit.

Definition 5. Axioms of a monoid: closure, associativity and identity.

Monoid (M : α monoid)
def
=

(∀ (x : α) (y : α). x ∈M.carrier ∧ y ∈M.carrier ⇒M.op x y ∈M.carrier) ∧
(∀ (x : α) (y : α) (z : α).

x ∈M.carrier ∧ y ∈M.carrier ∧ z ∈M.carrier ⇒
M.op (M.op x y) z =M.op x (M.op y z)) ∧M.id ∈M.carrier ∧

∀ (x : α). x ∈M.carrier ⇒M.opM.id x = x ∧M.op xM.id = x

A group G is a monoid with all its elements invertible. By hiding the underlying types,
and overloading G.carrier by G, G.op x y by x × y, and G.id by #e, the result is better for
readability:

Definition 6. A group is a monoid with every element having an inverse.

Group G def
= Monoid G ∧ ∀x. x ∈ G ⇒ ∃y. y ∈ G ∧ y × x = #e

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/monoid/monoidScript.sml#lines-170
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupScript.sml#lines-972

§2.1 Algebraic Structures 17

We can prove that such inverses are unique and are inverses on the left and right. Skolemizing,
we define the inverse function, and characterise it thus

` Group G ⇒ ∀x. x ∈ G ⇒ x × x−1 = #e ∧ x−1 × x = #e

The ring type consists of a combination of two monoid values:

α ring = 〈[carrier : α → bool; sum : α monoid; prod : α monoid]〉

For a ring R, its additive monoid is denoted by R.sum and its multiplicative monoid is denoted
byR.prod. When we come to define the ring axioms, we can use prettier syntax in the description
of the distributive law. In other words, x + y is really R.sum.op x y, and x × y is really
R.prod.op x y. Denoting the carrier of ringR by R, this is the definition of a ring in HOL4:

Definition 7. Axioms of a ring: additive group, multiplicative monoid, and distribution law.

Ring R def
=

AbelianGroup R.sum ∧ AbelianMonoid R.prod ∧ R.sum.carrier = R ∧ R.prod.carrier = R ∧
∀x y z. x ∈ R ∧ y ∈ R ∧ z ∈ R ⇒ x × (y + z) = x × y + x × z

Finally, the definition of what it is to be a field F can be quite terse:

Definition 8. A field is a ring with nonzeros forming a multiplicative group.

Field F def
= Ring F ∧ Group F ∗

HOL4 Conventions In HOL4, definitions such as these subsequently require that all theorem
statements to be qualified with assumptions such as Field F . This is because the value F is
just a pair of record values, and is not known to satisfy the field axioms without that explicit
assumption. Though tedious, these qualifications of our theorem statements do not significantly
impact the theorem-proving task. Rather, the burden lies mostly in the initial writing of the goal.

Although overloading can be used to pretty-print for readability, we keep the types barely
visible through the use of different fonts. For example, a field F has elements in the carrier F,
with the nonzero elements F∗ forming a group F ∗.

In the rest of this thesis, overloading is used extensively to hide complicated terms such as
R.sum.op x y, but the logical assumptions (such as Field F) always appear. Occasionally, this
can make the assumption seem vacuous as the syntax for the operators no longer appears to refer
back to the value (e.g., F) at all. For example, this apparent vacuousness can be seen in the last
ring axiom above.

We shall look at the properties of these algebraic structures, especially those that will be
used later in the AKS algorithm.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringScript.sml#lines-358
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/field/fieldScript.sml#lines-511

18 Basic Algebra

2.2 Monoids and Groups

Both monoid and group have only one operation, generally called multiplication. Repeated
multiplication of an element x by itself n times is exponentiation, with the usual notation xn. By
definition, x0 = #e. It may happen that xn = #e for some n > 0. The smallest such exponent n is
the multiplicative order of x, or simply the order of x, denoted by orderM(x):

Definition 9. The multiplicative orderM(x) is the least nonzero exponent to give the identity, or
zero is no such exponent exists.

0 < n ⇒ (orderM(x) = n ⇐⇒ xn = #e ∧ ∀m. 0 < m ∧ m < n ⇒ xm 6= #e)
orderM(x) = 0 ⇐⇒ ∀n. 0 < n ⇒ xn 6= #e

Although finding xn = #e does not imply that n is the order, we do have:

Theorem 10. The order of a monoid element divides an exponent that can give the identity.

` MonoidM ⇒ ∀x n. x ∈ M ⇒ (xn = #e ⇐⇒ orderM(x) | n)

Proof. Let k = orderM(x). Dividing n by k gives a quotient q and a remainder r, such that
n = qk + r and r < k. Thus,

#e = xn = xqk + r = xk × xr = #ek × xr = xr

Therefore xr = #e. But r < k and order k is minimal, so r = 0. In other words, k | n.

This enables us to deduce the order of xn from the order of x:

Theorem 11. For a monoid element, the order of its power is reduced by the greatest common
divisor of the power and its order.

` MonoidM ⇒ ∀x n. x ∈ M ∧ 0 < n ⇒ orderM(xn) = orderM(x) div gcd(n, orderM(x))

Proof. Let k = orderM(x), y = xn, j = orderM(y), and d = gcd(n, k). Since d | n and d | k„

yk div d = (xn)k div d = (xk)n div d = #en div d = #e

Thus j | k div d by order divides exponent (Theorem 10).
Now xnj = (xn)j = yj = #e, so k | nj, again by Theorem 10. By Bézout’s identity2, there

exists s, t such that ns = kt + d. Multiply by j to give nsj = ktj + dj. Because k | nj, k | dj.
Since d | k, so k div d | j.

With j | k div d and k div d | j, j = k div d.

We writeH ≤ G to mean thatH is a subgroup of G:

2This form of Bézout’s identity allows us to remain within the natural numbers.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/monoid/monoidOrderScript.sml#lines-210
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/monoid/monoidOrderScript.sml#lines-319
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/monoid/monoidOrderScript.sml#lines-429

§2.2 Monoids and Groups 19

Definition 12. A subgroupH of group G is a group with subset carrier and the same operation.

H ≤ G def
= Group H ∧ Group G ∧ H ⊆ G ∧ H.op = G.op

Similar ideas apply to submonoids. A subgroup can also be identified by:

Theorem 13. Let H be a nonempty subset of the group G equipped with the group operation.
If for all elements x, y ∈ H, x × y−1 ∈ H, thenH is a subgroup of G.

` H ≤ G ⇐⇒
Group G ∧ H.op = G.op ∧ H.id = G.id ∧ H 6= ∅ ∧ H ⊆ G ∧
∀x y. x ∈ H ∧ y ∈ H ⇒ G.op x (y−1) ∈ H

Since a subgroupH induces an equal-size partition via cosets, we have:

Theorem 14. (Lagrange’s Theorem). For a finite group G, the cardinality of any subgroup is
a divisor of |G|.

` H ≤ G ∧ FINITE G ⇒ |H| | |G|

For a finite group G, there are only a finite number of elements. Let a ∈ G. Then the set
{a, a2, a3, . . . } is finite. Together with the group operation, this forms a subgroup, called the
group generated by element a, denoted by 〈a〉. Its cardinality is easily derived:

Theorem 15. For an element a with nonzero order in a finite group G, the subgroup 〈a〉 has
cardinality orderG(a).

` Group G ∧ a ∈ G ∧ 0 < orderG(a) ⇒ |〈a〉.carrier| = orderG(a)

Applying Lagrange’s Theorem (Theorem 14), we have:

Theorem 16. In a finite group G, the order of an element divides |G|.

` FiniteGroup G ⇒ ∀ a. a ∈ G ⇒ orderG(a) | |G|

We can also derive this important result:

Theorem 17. In a finite group, an element raised to cardinality exponent gives the identity.

` FiniteGroup G ∧ a ∈ G ⇒ a|G| = #e

Proof. Let element a in a finite group G has order k. Then ak = #e. Now |G| is a multiple of k,
i.e., |G| = qk for some q. Thus a|G| = (ak)q = #eq = #e.

Order Notation Although the order of an element x in a monoidM should be denoted by
orderM(x), the monoid subscript is usually abbreviated. For example, we write ordern(k) for

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/subgroupScript.sml#lines-214
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/subgroupScript.sml#lines-400
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/subgroupnScript.sml#lines-957
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupOrderScript.sml#lines-871
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupOrderScript.sml#lines-905
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupOrderScript.sml#lines-922

20 Basic Algebra

order of k in the monoid Z∗n.3 Later in Section 4.2, we shall introduce quotient rings over rings
R or fields F , and write orderh(X) for the order of polynomial X in the monoid R∗h[X] or F ∗h [X]
derived from a modulus polynomial h.

2.3 Rings and Fields

A ring with 1 = 0 is called a trivial ring. A field is a non-trivial ring, since 1 is in F ∗ with 0
excluded. As noted in Section 2.1, our rings are more commonly known as commutative rings
with identity. We did not go all the way to non-commutative rings since our goal is about finite
fields. By the same token, we do not consider skew fields. However, we do consider other
algebraic structures related to fields, e.g., integral domains in Section 2.4.

Let a be a nonzero element in a ring. Due to the distributive law, and the fact that 1 × a = a,
all nonzero a have the same additive order as 1. The unique additive order of 1 in a ring R is
called its characteristic, denoted by char(R):

Definition 18. The characteristic of a ring is the additive order of its multiplicative identity.

char(R) def
= orderR.sum(1)

The characteristic of a finite ring is positive: the smallest number of repeated additions of 1
giving 0.

The multiplicative invertibles of a ring R are called units, denoted by R∗. Since each unit
has a multiplicative inverse, we have:

Theorem 19. The units of a ring form a group.

` Ring R ⇒ Group R∗

For a field F , all nonzero elements are units, by definition, and the group is F ∗.

2.4 Integral Domains

Since a field F has a multiplicative group F ∗, it means that the product of two nonzero elements
cannot be 0, by multiplicative closure. Hence a field has no zero divisors, an instance of a special
kind of ring:

Definition 20. An integral domain is a non-trivial ring with no zero divisors.

IntegralDomain D def
=

Ring D ∧ 1 6= 0 ∧ ∀x y. x ∈ D ∧ y ∈ D ⇒ (x × y = 0 ⇐⇒ x = 0 ∨ y = 0)

3For k not in the monoid Z∗n, ordern(k) = ordern(k mod n) for n > 0.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringScript.sml#lines-2484
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringUnitScript.sml#lines-144
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/integralDomainScript.sml#lines-135

§2.5 Polynomials 21

For an integral domain D, let a be a nonzero element, i.e., a 6= 0. If the integral domain is finite,
the sequence a, a2, a3, . . . must repeat. Suppose aj = aj + k for some j and k with k 6= 0. Then
ring subtraction and distribution give aj × (ak − 1) = 0. The absence of zero divisors in an
integral domain implies that ak = 1. Note that ak = 1 and k 6= 0 means that a has a multiplicative
inverse: ak − 1. Therefore:

Theorem 21. A finite integral domain is always a field, hence a finite field.

` FiniteIntegralDomain F ⇒ Field F
` FiniteIntegralDomain F ⇒ FiniteField F

This allows us to conclude that a finite non-trivial ring is a finite field simply by checking that
there are no zero divisors (see Section 4.2, page 61).

2.5 Polynomials

Polynomials are expressions of the form:

cnXn + cn−1Xn − 1 + · · ·+ c1X + c0 (2.1)

where the coefficients cj come from a ring R. These polynomials, equipped with the usual
polynomial addition and multiplication, form a polynomial ring, denoted by R[X]. In these
polynomial rings, the additive identity is 0, the zero polynomial, and the multiplicative identity
is 1, the constant polynomial one. When the ring R has further properties, e.g., without zero
divisors so that it is an integral domain D, or all nonzero elements are invertible so that it is a
field F , we shall denote the polynomial ring by D[X] or F [X], respectively.

Polynomial Implementation For simplicity, polynomials are implemented as finite lists.
Indeed, our type (α poly) is a synonym for (α list) in HOL4. Internally, a polynomial
of type α is a list of cofficients taken from U (:α), with the first element the constant term,
and the last element the leading coefficient. The zero polynomial 0 is taken as the empty list,
its degree is defined as 0, and the degree of a nonzero polynomial is defined as one less than
its length. The results of polynomial operations are normalised, so that a nonzero polynomial
always has a nonzero leading coefficient. Polynomial addition is componentwise list addition,
and polynomial scalar multiplication is componentwise list scaling. Polynomial multiplication is
defined by list recursion, using addition and scalar multiplication. Polynomial division requires
proper notions of a polynomial divisor and a polynomial remainder, see Section 2.5.1. Further
discussion of our implementation is deferred to Section 8.2.2, Polynomial as lists (page 137).

Polynomial Notation Denote by h the polynomial as given in (2.1). For this polynomial h,
its degree is deg h = n and its leading coefficient is lead h = cn. If all coefficients are zero, then
h = 0, otherwise lead h 6= 0 after normalisation. We write poly h to assert that h is a normalised
polynomial, and write monic h to indicate that h is a monic polynomial, with lead h = 1.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/field/fieldScript.sml#lines-2494

22 Basic Algebra

A polynomial h with coefficients from a ring R, as in (2.1), can be viewed as a function
in X. The valuation h(a) is the value of h when X is substituted by an element a ∈ R. We
extend the notion of substitution to polynomials: substituting the X in polynomial h by another
polynomial g gives a polynomial hJgK.4 We also extend the modulus notation for polynomials,
e.g., f ≡ g (mod h) means that both f and g give the same remainder after division by h. In
other words, h | (f − g).

2.5.1 Polynomial Modulus

For polynomial division, the polynomial divisor h is called the modulus. Besides requiring the
modulus to be nonzero, h 6= 0, there are other restrictions for the modulus h. We first consider
the general case, where the polynomials have coefficients from a ringR.

Clearly, a monic modulus can always perform the long division for any polynomial dividend
— since a suitable multiple of the modulus can cancel the leading term of the dividend. Thus the
degree of the dividend p is reduced at each step, leading to termination of the division process
with this result:

p = p div h × h + p mod h (2.2)

where (p div h) is the quotient, and (p mod h) is the remainder. When the modulus is not monic,
this division process is possible only when the leading coefficient of the modulus is invertible,
i.e., a unit element in a ring, denoted by unit (lead h). In this case, both the dividend and the
modulus can be multiplied by the inverse of the leading coefficient of the modulus, reducing the
polynomial division to the monic situation.5

For polynomial division to terminate with (p div h) and (p mod h) satisfying Equation (2.2),
the degree of the remainder has to be strictly less than the degree of the modulus. This means
0 < deg h, i.e., the modulus is not a constant polynomial. In this case, polynomial division by
modulus h satisfies:

` Ring R ∧ poly p ∧ poly h ∧ unit (lead h) ∧ 0 < deg h ⇒
p = p div h × h + p mod h ∧ deg (p mod h) < deg h

When the modulus h is a constant polynomial, we have:

` Ring R ∧ poly p ∧ poly h ∧ unit (lead h) ∧ deg h = 0 ⇒ p div h = (lead h)−1 × p

` Ring R ∧ poly p ∧ poly h ∧ unit (lead h) ∧ deg h = 0 ⇒ p mod h = 0

We lose the fact that the degree of the remainder decreases, but retain the Euclidean Equa-
tion (2.2).

Thus in our formulation, division of polynomials with coefficients from a ring R is defined
only for certain types of modulus: those polynomials with leading coefficient invertible. Since

4Viewing polynomials as functions, this is their function composition.
5A variation of this idea is to use pseudo division: the dividend polynomial is first multiplied by enough powers of
cn, the leading coefficient of the modulus, to allow for leading term cancellation in the division process.

§2.5 Polynomials 23

nonzero field elements are invertible, any nonzero polynomial with coefficients from a field F
can be a modulus.

In this thesis, many theorems concerning polynomial division with coefficients from a ring
are presented with the version of a monic modulus, though a more general version of the theorem
may also have been proved. This is adequate because, when applied to the AKS algorithm, the
modulus is Xk − 1 with k > 0, which is monic, or one of its monic factors h.

2.5.2 Polynomial Divisibility

An irreducible polynomial, denoted by ipoly p, has only trivial factors. Let z be an irreducible
polynomial. If the irreducible z divides a power, say z | pn, it must divide the base, i.e., z | p.
Extending this result to a set S of monic irreducible polynomials, denoted by miset S, and write
∏ S for the product of all polynomials in the set S, we have:

Theorem 22. For polynomials with coefficients from a field, let S be a set of such monic ir-
reducibles, and q = ∏ S be their product. If q divides a polynomial power, then q divides the
polynomial base.

` Field F ∧ FINITE S ∧ miset S ∧ poly p ∧ pn ≡ 0 (mod ∏ S) ⇒ p ≡ 0 (mod ∏ S)

This result is used in the proof of Theorem 102, regarding an exponent for the introspective
relation.

2.5.3 Polynomial Roots

An element a is a root of polynomial h if h(a) = 0. The roots of polynomial h is the set roots h,
or rootsR h if the underlying ringR needs to be specified. Each root a gives a factor (X − a):

Theorem 23. (Root Factor Theorem). Each polynomial root corresponds to a linear factor
dividing the polynomial.

` Ring R ⇒ ∀h a. poly h ∧ a ∈ R ⇒ (h(a) = 0 ⇐⇒ (X − a) | h)

If the coefficients of a polynomial are from a field, the leading coefficient can always be reduced
to 1 by multiplying with its inverse. This shows that such a polynomial will have the same roots
as the resulting monic polynomial.

Although a polynomial with coefficients from a ring may have more roots than its degree 6,
this cannot happen when its coefficients come from a ring without zero divisors, i.e.,

Lemma 24. A nonzero polynomial with coefficients from an integral domain has no more roots
than its degree.

` IntegralDomain F ⇒ ∀h. poly h ∧ h 6= 0 ⇒ |roots h| ≤ deg h

6For example, in Z6, 2 ∗ 3 = 0. Hence in Z6[X], (X − 2)(X − 3) = X2 − 5X = X(X − 5), which is an example
of a degree 2 polynomial with more than 2 roots.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyFieldModuloScript.sml#lines-1321
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyDividesScript.sml#lines-1902
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyRootScript.sml#lines-1307

24 Basic Algebra

Since a field is also an integral domain, this result holds for polynomials with coefficients from
a field:

Theorem 25. A nonzero polynomial with coefficients from a field cannot have more roots than
its degree.

` Field F ⇒ ∀p. poly p ∧ p 6= 0 ⇒ |roots p| ≤ deg p

Thus a polynomial with coefficients from a field with positive degree n has at most n factors.

2.6 Finite Fields

The characteristic of a finite field is particularly interesting:

Theorem 26. A finite field has prime characteristic.

` FiniteField F ⇒ prime char(F)

Proof. A field has no zero divisors, thus its characteristic has no proper factor.

2.6.1 Field Orders

A finite field F is an integral domain, with all nonzero elements in F∗ having nonzero orders.
The set of elements with order equal to n is denoted by (orders F ∗ n). Its cardinality is related
to the Euler’s ϕ-function, ϕ(n), counting the number of coprimes from 1 to n:

Theorem 27. In a finite field F , the number of elements with order n is ϕ(n) if n divides |F∗|,
otherwise 0.

` FiniteField F ⇒ ∀n. |orders F ∗ n| = if n | |F∗| then ϕ(n) else 0

Proof. 7 In a finite field F , the multiplicative group F ∗ is finite. Let q = |F∗|, then every element
has a nonzero order that divides q (Theorem 16). Thus orders F ∗ 0 = ∅, and |orders F ∗ 0| = 0.
For n > 0, first observe that field elements of the same order are in power form of each other:

` FiniteField F ⇒ ∀x y. x ∈ F ∧ y ∈ F ∧ orderF ∗(x) = orderF ∗(y) ⇒ ∃ j. y = xj

This is because both elements are roots of Xk − 1, where k is their common order. Let z be
an field element of order k, then z, z2, . . . , zk are all roots of Xk − 1, which can have at most
k roots (Theorem 25). Thus z is a generator of the multiplicative cyclic group of the roots of
Xk − 1, denoted by (Generated F ∗ z):

` FiniteField F ⇒ ∀ z. z ∈ F ∧ z 6= 0 ⇒ roots (XorderF∗ (z) − 1) = (Generated F ∗ z).carrier

7This proof, based on Gauss’ sum, is adapted from [McEliece, 1987, Theorem 5.7].

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyRootScript.sml#lines-1062
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/field/fieldScript.sml#lines-2974
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffUnityScript.sml#lines-1035

§2.6 Finite Fields 25

Moreover, the order of a power (Theorem 11) for a field element is:

` Field F ⇒ ∀x. x ∈ F ⇒ ∀n. 0 < n ⇒ orderF ∗(xn) = orderF ∗(x) div gcd(n, orderF ∗(x))

This means that if orders F ∗ n is nonempty with an element x, the elements in the set are
precisely those xk where k is coprime to n. Thus |orders F ∗ n| = ϕ(n), the count of coprimes to
n not exceeding n.

We claim that orders F ∗ n is nonempty whenever n | q. Suppose the contrary, that n | q but
orders F ∗ n = ∅. Let u = divisors q, v = {d ∈ divisors q | orders F ∗ d 6= ∅}. Then n /∈ v, so that
v is a proper subset of u. Therefore, by v ⊂ u,

∑
d ∈ v

ϕ(d) < ∑
d ∈ u

ϕ(d)

Note that every field element has an order that divides q, and the sets orders F ∗ d for various
divisor d of q form a partition of F∗. Since each value d ∈ v has |orders F ∗ d| = ϕ(d), the
left-hand side is:

∑
d ∈ v

ϕ(d) = ∑
d ∈ v
|orders F ∗ d| =

∣∣∣∣∣ ⋃
d ∈ v

orders F ∗ d

∣∣∣∣∣ = |F∗| = q

and using an identity for Euler’s ϕ-function, the right-hand side is:

∑
d ∈ u

ϕ(d) = ∑
d | q

ϕ(d) = q by Theorem 58 near the end.

Combining both sides, we have q < q, a contradiction. Hence orders F ∗ n 6= ∅.

2.6.2 Cyclic Multiplicative Group

This is a fundamental feature about finite fields:

Theorem 28. The multiplicative group of a finite field is cyclic.

` FiniteField F ⇒ cyclic F ∗

Proof. 8 By Theorem 27, the set orders F ∗ |F∗| 6= ∅. Thus there exists a field element of order
|F∗|, i.e., a generator of F ∗, making it cyclic.

2.6.3 Primitives

A generator of the cyclic group F ∗ of the finite field F is called a primitive of the finite field:

8This proof, based on order of field elements, is adapted from [McEliece, 1987, Corollary of Theorem 5.7].

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffAdvancedScript.sml#lines-1342

26 Basic Algebra

Definition 29. A primitive of a finite field F is an element z with order |F∗|.

z ∈ orders F ∗ |F∗| def
= z ∈ F∗ ∧ orderF ∗(z) = |F∗|

By Theorem 27, there are ϕ(|F∗|) primitives for a finite field F . We shall see the role played by
primitives in Section 4.3.2 about isomorphic fields.

2.7 Number Theory

The abstract concepts of algebraic structures have some concrete applications, one of which
concerns the modular systems in our next topic. This is relevant to the AKS algorithm because
the introspective checks (see Section 1.3, Equation (1.1)) are polynomial computations with
double moduli (mod n, Xk − 1). We also take this opportunity to walk through some topics
in number theory. Some results are well-known, while some are not. They all have a place in
understanding the nature of the AKS algorithm.

2.7.1 Modular Systems

Given a modulus n, the remainders under (mod n) form the ring Zn:

Theorem 30. For positive n, the ring Zn has cardinality n and characteristic n.

` 0 < n ⇒ Ring Zn

` |Zn.carrier| = n
` 0 < n ⇒ char(Zn) = n

Homomorphism is a structure-preserving map between two algebraic structures of the same
type: between monoids, groups, rings, or fields. Here is a homomorphism between two rings,
indicated by (7→r):

Theorem 31. If m is a factor of n, then (mod m) is a homomorphism between the rings Zn

and Zm.
` 0 < n ∧ m | n ⇒ (λ x. x mod m) : Zn 7→r Zm

Proof. Since n is a multiple of m, taking (mod n) then (mod m) is the same as taking (mod m)
once. Therefore we have, for two x, y less than n:

(x + y) mod n mod m = (x + y) mod m = (x mod m + y mod m) mod m
xy mod n mod m = xy mod m = (x mod m)(y mod m) mod m

Thus the map preserves both modular addition and multiplication, hence a homomorphism.

This result is used later in the proof of introspective shifting (Theorem 71, page 52).

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/field/fieldOrderScript.sml#lines-601
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringInstancesScript.sml#lines-426
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringInstancesScript.sml#lines-1821

§2.7 Number Theory 27

Given two numbers m, n, their greatest common divisor d = gcd(m, n) can be expressed as
a linear combination of m and n, by Bézout’s identity:

` 0 < m ⇒ ∃p q. pm = qn + gcd(m, n)

If gcd(m, n) = 1, then m has a multiplicative inverse p in (mod n). Therefore,

Definition 32. The units in the ring Zn are the elements coprime to n.

Z∗n
def
=

〈[carrier := { x | 0 < x ∧ x < n ∧ gcd(n, x) = 1 } ; id := 1; op := (λ x y. xy mod n)]〉

Since ϕ(n) is the count of coprimes up to n, we have:

Theorem 33. The group Z∗n has cardinality ϕ(n). Each coprime to n has an order that divides
ϕ(n).

` 1 < n ⇒ Group Z∗n by Theorem 19
` 1 < n ⇒ |Z∗n.carrier| = ϕ(n) by definitions
` 0 < k ∧ gcd(k, n) = 1 ⇒ orderk(n) | ϕ(k) by Theorem 16

The last one shows the order divides the cardinality, giving the analogue of Theorem 17:

Theorem 34. (Euler’s Totient Theorem). Given a modulus n and a coprime to n, raising a to
exponent ϕ(n) gives 1 in (mod n).

` 1 < n ∧ gcd(a, n) = 1 ⇒ aϕ(n) ≡ 1 (mod n)

and the Fermat’s Little Theorem:

Corollary 35. Given a prime p, raising any number a to exponent p gives a in (mod p).

` prime p ⇒ ap ≡ a (mod p)

Proof. For a prime p, ϕ(p) = p − 1. We have ap − 1 ≡ 1 (mod p) by Theorem 34. Multiply
both side by a gives the desired result.

For another derivation based on Pascal’s Triangle, see Theorem 38.
The modulo arithmetic of polynomials is patterned after the modulo arithmetic of numbers.

In Section 2.5, we have introduced the polynomial ringR[X]. Picking a monic polynomial h with
deg h > 1 as modulus (see criteria for polynomial modulus in Section 2.5.1), the polynomial
remainders after division by h will have a degree less than deg h. With polynomial addition
and multiplication results always reduced by the modulus h, these polynomial remainders after
division by h form a quotient ringR[X]/(h).

We shall see that for a prime p, Zp is a finite field (Theorem 80, page 61), and for an
irreducible h, the quotient ring becomes a quotient field (Theorem 81, page 62).

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupInstancesScript.sml#lines-612
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringInstancesScript.sml#lines-1112
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupInstancesScript.sml#lines-777
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupInstancesScript.sml#lines-805

28 Basic Algebra

2.7.2 Pascal’s Triangle and Primes

In the Pascal’s Triangle, if the n-th row is replaced by remainders after division by n, for n > 1,
those rows with all zeroes, except the first and the last, are precisely those with prime n.

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1
n = 6 1 6 15 20 15 6 1
n = 7 1 7 21 35 35 21 7 1
n = 8 1 8 28 56 70 56 28 8 1

— 1
— 1 1

(mod 2) 1 0 1
(mod 3) 1 0 0 1
(mod 4) 1 0 2 0 1
(mod 5) 1 0 0 0 0 1
(mod 6) 1 0 3 2 3 0 1
(mod 7) 1 0 0 0 0 0 0 1
(mod 8) 1 0 4 0 6 0 4 0 1

Figure 2.1: Pascal’s Triangles: the one on the left shows the binomial coefficients, the one on
the right has each row depicting the remainders under division by the corresponding row index.
The colored rows, with remainders in-between all equal to zero, have row indexes that are prime.

Since remainder zero in (mod n) is equivalent to divisible by n, this feature of the modular
Pascal’s Triangle can be stated as:

Theorem 36. Characterisation of a prime by binomial divisibility.

` prime n ⇐⇒ 1 < n ∧ ∀ k. 0 < k ∧ k < n ⇒ n |
(

n
k

)

Proof. Recall that the binomial coefficient
(

n
k

)
is the number of ways to choose k elements

from a set of n elements. Thus for 0 < k < n:(
n
k

)
=

n(n − 1) . . . (n − k + 1)
k!

(2.3)

For the if part (⇒), n is prime. Rearrange (2.3) as:(
n
k

)
k! = n(n − 1) . . . (n − k + 1)

Clearly, n divides the right-hand side, so n must also divide the left-hand side. But a prime n

cannot divide into k! with k < n, so n |
(

n
k

)
.

For the only-if part (⇐), assume that n |
(

n
k

)
for 0 < k < n. By contradiction, suppose n

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/binomialScript.sml#lines-714

§2.7 Number Theory 29

is not a prime. Then n has a proper prime factor p. Rearrange this specific binomial coefficient:(
n
p

)
= n
[
(n − 1) . . . (n − p + 1)

p(p − 1)!

]

As p is a proper factor of n, 1 < p < n, so n |
(

n
p

)
by assumption. Thus the term inside

the square brackets has to be an integer. That requires the prime p to divide one of the numbers
in the numerator. This is impossible because when n is a multiple of p, the nearest multiple
preceding n that p can divide is (n − p), yet all numbers in the numerator are in between.

Corollary 37. If rows of the Pascal’s Triangle are taken as remainders of row index, only those
rows with prime index will have zeroes except first and last.

` prime n ⇐⇒ 1 < n ∧ ∀ k. 0 < k ∧ k < n ⇒
(

n
k

)
≡ 0 (mod n)

All these lead to this nice gem:

Theorem 38. Fermat’s Little Theorem.

` prime p ⇒ cp ≡ c (mod p)

Proof. By induction on c. The base case c = 0 is trivial. Assuming that cp ≡ c (mod p), then

(c + 1)p ≡ cp + 1 ≡ c + 1 (mod p)

The first congruence comes from binomial expansion with exponent a prime p (Theorem 36).

Theorem 39. Fermat’s Little Theorem for monomials X + c.

` prime p ⇒ (X + c)p ≡ Xp + c (mod p)

Proof. For a prime p, the binomial expansion of the left-hand side in (mod p) will leave only
the first and last terms (Theorem 36):

(X + c)p ≡ Xp + cp (mod p)

Also for a prime p, cp = c by Fermat’s Little Theorem (Corollary 35). The result follows.

This result is used in showing that the introspective limit is irrelevant for a prime (Theorem 69,
page 50), and the characteristic of a finite field is an introspective exponent for monomials X + c

(Theorem 98, page 77).
Another nice result concerning binomial expansion is this:

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/binomialScript.sml#lines-724
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupInstancesScript.sml#lines-805
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyBinomialScript.sml#lines-1791

30 Basic Algebra

Theorem 40. In a ring with characteristic prime, the binomial expansion with characteristic
exponent for polynomials has a special form.

` Ring R ∧ prime char(R) ⇒ ∀p q. poly p ∧ poly q ⇒ (p + q)char(R) = pchar(R) + qchar(R)

` Ring R ∧ prime char(R) ⇒ ∀p q. poly p ∧ poly q ⇒ (p − q)char(R) = pchar(R) − qchar(R)

Proof. Let p = char(R), and n.1 be the addition of n copies of 1, the multiplicative identity.
Then n.1 = 0 whenever n is a multiple of p, by definition of characteristic (Definition 18).
The first one is due to the vanishing of binomial coefficients in (mod p) (Theorem 36) upon
binomial expansion of (p + q)p. Using the first one,

(p − q)p + qp = (p − q + q)p = pp

A simple rearrangement gives the second one.

Since the characteristic of a finite field is prime (Theorem 26), the above results are applicable
to finite fields. The second result is used in the proof of Theorem 102, where a cofactor is shown
to be an exponent for the introspective relation.

2.7.3 Generalised Fermat’s Little Theorem

Note that both forms of Fermat’s Little Theorem (Theorems 38 and 39) are not primality tests.
However, the following generalisation is:

Theorem 41. Primality Test based on Fermat’s Little Theorem for monomials X + c.

` 1 < n ∧ gcd(c, n) = 1 ⇒ (prime n ⇐⇒ (X + c)n ≡ Xn + c (mod n))

Proof. Using binomial expansion, the left-hand side is:

(X + c)n =
n

∑
k=0

(
n
k

)
ckXn − k

Equating coefficients on both sides of (X + c)n ≡ Xn + c (mod n), the first terms from k = 0
are equal, and the last terms from k = n are equal by Fermat’s Little Theorem (Theorem 38).
For the terms in between, note that gcd(c, n) = 1 implies ck 6≡ 0 (mod n), and, with 1 < n,(

n
k

)
≡ 0 (mod n) is equivalent to n |

(
n
k

)
. Thus the proof reduces to showing:

prime n ⇐⇒ n |
(

n
k

)
for 0 < k < n.

This is true by Theorem 36.

This result resembles the introspective checks in Section 1.3, Equation (1.1). The difference is
that this one is just (mod n), while the introspectie checks have two moduli for (mod n, Xk −

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyBinomialScript.sml#lines-380
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyBinomialScript.sml#lines-1751

§2.7 Number Theory 31

1). As a primality test, this result is deterministic but not in polynomial-time, as the number of
terms to check is of order O(n).

2.7.4 Consecutive LCM

The concept of the least common multiple (lcm) for two numbers can be readily extended to a
list ` of numbers, denoted by LCM `:

Definition 42. The least common multiple of a numeric list, defined recursively.

LCM []
def
= 1

LCM (h::t) def
= lcm h (LCM t)

The list ` should be a list of positives, denoted by POSITIVE `, since zero has no common
multiple with any nonzero. We can derive:

Lemma 43. Some properties of LCM for lists.

` LCM (l1 ++ l2) = lcm (LCM l1) (LCM l2)
` LCM (REVERSE `) = LCM `
` (∀x. MEM x ` ⇒ x | m) ⇒ LCM ` | m
` POSITIVE ` ⇒ SUM ` ≤ LENGTH ` × LCM `

The third one just asserts that LCM ` is indeed the least common multiple of all list members:
any common multiple m of the members is divisible by LCM `. We shall establish the last one
slightly differently to show how to get a lower bound for LCM `:

Theorem 44. The least common multiple of a non-empty positive list cannot be less than the
integer average of its elements.

` ` 6= [] ∧ POSITIVE ` ⇒ SUM ` div LENGTH ` ≤ LCM `

Proof. Let z = LENGTH `, and m = LCM `, the least common multiple of its members. Each
nonzero member xi | m, so xi ≤ m. Then:

SUM ` =
z

∑
i = 1

xi ≤
z

∑
i = 1

m = zm

With ` 6= [], its length z 6= 0. A simple integer division by z gives the desired result.

Let ` = [1 .. n], then LCM ` is the least common multiple of consecutive numbers up to n.
This is of interest in the study of the AKS algorithm because a lower bound on LCM [1 .. n] gives
a bound on the AKS parameter. This is essentially the first lemma invoked in the paper [Agrawal
et al., 2004, Lemma 3.1]:

` 2n ≤ LCM [1 .. n + 1]

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-1440
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-1610
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-1781

32 Basic Algebra

We shall sketch a proof of this result (Theorem 52) using the Leibniz Harmonic Triangle in
denominator form. For the details, refer to Chan and Norrish [2019b].

2.7.5 From Pascal to Leibniz

For each row of the Pascal’s Triangle, if we multiply the entry values by the number of elements
in that row, we can form another number triangle (Figure 2.2). The transformed Pascal’s Triangle
is called Leibniz’s Denominator Triangle, because it consists of all denominators of the usual
Leibniz’s Harmonic Triangle, shown on the right of Figure 2.3.

1 1
1 1 2 2

1 2 1 3 6 3
1 3 3 1 4 12 12 4

1 4 6 4 1 5 20 30 20 5
1 5 10 10 5 1 6 30 60 60 30 6

1 6 15 20 15 6 1 7 42 105 140 105 42 7

×1⇒
×2⇒
×3⇒
×4⇒
×5⇒
×6⇒
×7⇒

Figure 2.2: Pascal’s Triangle to Leibniz’s Denominator Triangle.

1 1
1

2 2 1
2

1
2

3 6 3 1
3

1
6

1
3

4 12 12 4 1
4

1
12

1
12

1
4

5 20 30 20 5 1
5

1
20

1
30

1
20

1
5

6 30 60 60 30 6 1
6

1
30

1
60

1
60

1
30

1
6

7 42 105 140 105 42 7 1
7

1
42

1
105

1
140

1
105

1
42

1
7

⇒12
20 30

1
12

1
20

1
30

Figure 2.3: Leibniz’s Denominator Triangle and Harmonic Triangle.

Recall that Pascal’s Triangle has a building rule: each entry not on the boundary is the sum
of its immediate parents. A similar building rule exists for Leibniz’s Triangles, involving an
entry and its immediate children – a triplet, a typical one is highlighted in Figure 2.3. Such a

triplet, with denominators a, b, and c, is called a Leibniz triplet, denoted by
(

a
bc

)
. Its basic

property is: (
a
bc

)
:

1
a

=
1
b

+
1
c

(2.4)

which reflects that, in the Harmonic Triangle, each entry is the sum of its immediate children.
To establish this, we need to set up a formal theory for the Denominator Triangle.

First, it is quite easy to formalise the Pascal’s Triangle. Let Prow n denote the list of binomial
coefficients along the n-th row. A basic property is this:

§2.7 Number Theory 33

Theorem 45. The sum across the n-th row of the Pascal’s Triangle is 2n.

` SUM (Prow n) = 2n

Proof.

SUM (Prow n) =
n

∑
k=0

(
n
k

)
= (1 + 1)n = 2n (2.5)

2.7.6 Leibniz Denominator Triangle

Let L denotes Leibniz’s Denominator Triangle, as shown in Figure 2.4, with the entry Ln,k at
n-th row, k-th column defined via the binomial coefficients (see Figure 2.2):

Definition 46. Entries of the Leibniz Denominator Triangle by Figure 2.2.

Ln,k
def
= (n + 1)

(
n
k

)

Note that Ln,k = 0 when k > n, since in this case
(

n
k

)
= 0 by definition. Indeed, expressing

the binomial coefficient in terms of factorials, we have:

` k ≤ n ⇒ Ln,k =
(n + 1)n!

k!(n − k)!
(2.6)

1
2 2
3 6 3
4 12 12 4
5 20 30 20 5
6 30 60 60 30 6

n = 0
n = 1
n = 2
n = 3
n = 4
n = 5
k = 0 1 2 3 4 5

1
2
3
4
5
66 30 60 60 30 6

Figure 2.4: Leibniz’s Denominator Triangle

Evidently from Definition 46 and Figure 2.4, the left boundary of L (highlighted vertical) con-
sists of consecutive numbers, from the denominators of the harmonic sequence:

` Ln,0 = n + 1

Denoting the n-th row (highlighted horizontal) by Lrow n, we have:

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/binomialScript.sml#lines-1047
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-848

34 Basic Algebra

Theorem 47. In Leibniz’s Denominator Triangle, the integer average of the n-th row is 2n.

` SUM (Lrow n) div LENGTH (Lrow n) = 2n

Proof. From Definition 46, (Lrow n) is just a multiple of (Prow n) by a factor of (n + 1), giving:

` SUM (Lrow n) = (n + 1)(SUM (Prow n))
` LENGTH (Lrow n) = n + 1

The result follows by applying the binomial sum formula of Equation (2.5).

This is a useful result because in Figure 2.4, as we shall demonstrate, the LCM of the vertical
list is the same as the LCM of the horizontal list. By Theorem 44, the LCM of the horizontal list
is bounded by its row average, and we have just proved that its row average is 2n.

2.7.7 LCM Exchange

Within the vertical-horizontal format of the Denominator Triangle (Figure 2.5), we identify
L-shaped “Leibniz triplets” (a typical one is marked) rooted at row n and column k, with 3
entries:

• the root of the triplet: αnk = Ln,k and,

• its two children on the next row: βnk = Ln + 1,k, γnk = Ln + 1,k + 1

· · · · · ·
row · · · · · · · · · · · · · · ·
row n · · · αnk · · · · · · 1

αnk
· · ·

row (n + 1) · · · βnk γnk · · · · · · 1
βnk

1
γnk

· · ·

row ·
· ·

Denominator Triangle Harmonic Triangle

Figure 2.5: The Leibniz triplet: in Denominator Triangle and in Harmonic Triangle.

Such a Leibniz triple is denoted by
(

αnk

βnkγnk

)
. Our definition of Ln,k shows that a Leibniz triple

satisfies Equation (2.4), or express linearly by clearing fractions:

Theorem 48. An identity for a Leibniz triplet
(

αnk

βnkγnk

)
in the Denominator Triangle.

` αnkβnk = γnk(βnk − αnk)

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-2295
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-2383

§2.7 Number Theory 35

Proof. The vertical and horizontal pairs of the triplet have these relationships by Definition 46:

` (n + 2)αnk = (n + 1 − k)βnk vertical pair
` (k + 1)γnk = (n + 1 − k)βnk horizontal pair

If k > n, these equations (with truncated natural number subtraction) show that both αnk and γnk

are zero, and the identity is trivially true. Otherwise,

(k + 1)αnkβnk

= (n + 2 − (n + 1 − k))αnkβnk by k ≤ n
= (n + 2)αnkβnk − (n + 1 − k)αnkβnk by distribution
= (n + 1 − k)βnkβnk − (n + 1 − k)αnkβnk by vertical pair
= (n + 1 − k)βnkβnk − (n + 1 − k)βnkαnk by commutativity
= (n + 1 − k)βnk(βnk − αnk) by distribution
= (k + 1)γnk(βnk − αnk) by horizontal pair

Since k + 1 6= 0, the result follows by factor cancellation.

There is a remarkable property for a Leibniz triplet:

Theorem 49. In a Leibniz triplet
(

αnk

βnkγnk

)
, the vertical and horizontal pairs share the same

least common multiple.
` lcm βnk αnk = lcm βnk γnk

Proof. Let a = αnk, b = βnk, and c = γnk form a Leibniz triplet, with b at the corner. If one (or
more) of these entries is outside the usual range, the desired LCM exchange is trivially true:9

• if b = 0, then both a = 0 and c = 0.

• if b 6= 0, but a = 0 then c = 0, and vice versa.

Otherwise, all a, b, and c are nonzero. Note that ab = c(b− a) by Theorem 48. Therefore,10

lcm b c
= bc÷ gcd(b, c) by property of LCM
= abc÷ (a gcd(b, c)) introduce factor a above and below division
= bac÷ gcd(ab, ca) by common factor a, commutativity
= bac÷ gcd(c(b− a), ca) by Leibniz triplet identity (Theorem 48)
= bac÷ (c gcd(b − a, a)) extract common factor c
= ba÷ gcd(b, a) apply GCD subtraction and cancel factor c
= lcm b a by property of LCM.

9For any number n, lcm 0 n = lcm n 0 = 0.
10Here, all divisions (÷) give integers, as the denominator divides the numerator.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-2431

36 Basic Algebra

Therefore we can exchange the LCM computation from vertical to horizontal.

2.7.8 LCM of Paths

Within the Denominator Triangle, a path is composed of entries. We treat paths as lists of
numbers, without requiring the path to be connected. However, the paths we work with will be
connected (refer to Figure 2.4) and include:

Definition 50. Paths in Leibniz Denominator Triangle.

• (Ldown n): the list [1 .. n + 1], which happens to be the first (n + 1) elements of the
leftmost column of the Denominator Triangle, reading downwards;

• (Lup n): the reverse of (Ldown n), or the leftmost column of the triangle reading upwards;
and

• (Lrow n): the n-th row of the Denominator Triangle, reading from the left to right.

Due to the LCM exchange within a Leibniz triplet (Theorem 49), we can prove the following:

Theorem 51. In the Denominator Triangle, consider the first element (at the left boundary) of
the n-th row. Then the least common multiple of the column of elements above it is equal to the
least common multiple of elements along its row.

` LCM (Ldown n) = LCM (Lrow n)

The proof is done via a kind of zig-zag transformation, see Figure 2.6. In the Denominator
Triangle, we represent the entries for LCM consideration as a path of black discs, and indicate
the Leibniz triplets by discs marked with small gray dots. Recall that, by Theorem 49, the
vertical pair of a Leibniz triplet can be swapped with its horizontal pair without affecting the
least common multiple. This allows a path of black discs to zigzag to another, keeping the LCM
of the whole path. By following the path transform at each step by the indicated Leibniz triplet,
we can see that as the path formed by the black discs wriggles from being vertical in Step 1 to
being horizontal at Step 7. Due to LCM exchange of a Leibniz triplet, the path LCM is kept
unchanged, leading to an alternative way to estimate the consecutive LCM.
After formalising zigzag paths and wriggle paths (see Chan and Norrish [2016]), we can prove:

Theorem 52. A lower bound for the LCM of consecutive numbers from 1 to (n + 1) is 2n.

` 2n ≤ LCM [1 .. n + 1]

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-1878
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-2759
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-2807

§2.7 Number Theory 37

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Figure 2.6: Transformation of a path from vertical to horizontal in the Denominator Triangle,
stepping from left to right. The path is indicated by entries with black discs. The 3 gray-dotted
discs in L-shape indicate the Leibniz triplet, which allows LCM exchange. Each step preserves
the overall LCM of the path. Hence the black discs of Step 1 and of Step 7 have the same LCM.

Proof.

LCM [1 .. n + 1]
= LCM (Ldown n) by path notation (Definition 50)
= LCM (Lrow n) by LCM transform (Theorem 51)
≥ SUM (Lrow n) div LENGTH (Lrow n) by average lower bound (Theorem 44)
= 2n by denominator row average (Theorem 47)

This result is used to establish the bound on the AKS parameter (Theorem 65, page 47).

2.7.9 Powers and Coprimes

The following basic theorems are useful in providing the groundwork for the AKS proof.
The predicate n power_of b is defined as:

Definition 53. A number n is a power of base b when n = be for some exponent e.

n power_of b def
= ∃ e. n = be

A number n is power-free if it can only be a trivial power of itself. Moreover,

Theorem 54. Let p be a factor of a positive n. Then n is a power of p iff n is a power of its
cofactor n div p.

` 0 < n ∧ p | n ⇒ (n power_of p ⇐⇒ n div p power_of p)

Proof. Let q = n div p. Then n = pq. If n is a power of p, there is a k such that n = pk

(Definition 53). If k = 0, then n = 1, so p = q = 1, and q is a power of p. Otherwise k 6= 0, then
k = h + 1 for some h, so q = ph, and q is a power of p. Conversely, if q is a power of p, then
n = pq must be a power of p.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-1691
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-2078

38 Basic Algebra

This is used in the proof of AKS Main Theorem, whereby instead of considering n is not a power
of p, we show that the cofactor q = n div p is not a power of p,

There is a simple condition that implies a number must be a power of a prime:

Theorem 55. Given a prime p and a number q, if some nonzero power of p is a power of q,
then q is a power of the prime p.

` prime p ∧ (∃x y. 0 < x ∧ px = qy) ⇒ q power_of p

Proof. Note that px = qy means p | q, since p divides the left side, and a prime dividing a power
must divide its base. Since p | q, divide q by p as many times as possible, and express q = pmu
where m is the maximum possible exponent, and p 6 | u. The equation px = qy becomes

px = (pmu)y = pmyuy.

By unique factorisation, with prime p and p 6 | u and x 6= 0, it must be that y 6= 0, and uy = 1,
i.e., u = 1. Thus q = pm, and m 6= 0 shows that q is a power of p.

This result in used in the proof of Theorem 114, when providing an expression for the cardinality
of a certain introspective set.

Two numbers are coprime if their greatest common divisor is 1. This property obviously
passes onto factors:

Theorem 56. If m is a factor of n, then any number coprime to n is coprime to m.

` m | n ⇒ ∀ k. gcd(n, k) = 1 ⇒ gcd(m, k) = 1

Proof. Let d = gcd(m, k). Then d | m and d | k. Since m | n, so d | n. Hence d is a common
factor of n and k, which makes d = 1.

This is used in the proof of AKS Main Theorem, after introucing the cofactor q = n div p
(page 89).

The following is used in the finding a special prime factor for n:

Theorem 57. If a number n has a multiplicative order 1 < orderk(n) in modulo k, then among
the prime factors of n, there is a prime factor p such that 1 < orderk(p).

` 0 < k ∧ 1 < orderk(n) ⇒ ∃p. prime p ∧ p | n ∧ 1 < orderk(p)

Proof. Let p be a prime factor of n, i.e., p | n. Since 0 < orderk(n), we have gcd(k, n) = 1. Then
gcd(k, p) = 1, as any common divisor of k, p is also a common divisor of k, n (Theorem 56).
Thus 0 < orderk(p). If orderk(p) = 1, that implies p ≡ 1 (mod k). Hence if every prime factor
p of n has orderk(p) = 1, then n, as a product of its prime factors, will also have orderk(n) = 1.
This contradicts 1 < orderk(n). Therefore some prime factor p of n must have 1 < orderk(p).

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-2027
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/helperFunctionScript.sml#lines-2292
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringInstancesScript.sml#lines-1313

§2.7 Number Theory 39

This special prime factor is picked up in Section 3.6, about shifting of the introspective relation.

2.7.10 Phi Sum over Divisors

This is an identity for Euler’s ϕ-function:

Theorem 58. The sum of ϕ(d) over the divisors d of n equals to n.

` n = ∑ ϕ (divisors n) or n = ∑
d | n

ϕ(d)

Proof. Let S = divisors n, and T = {1, . . . , n}. Consider the function f for a divisor d ∈ S:

f (d) = {j | j ∈ T and gcd(j, n) = d}

We want to show that distinct divisors have distinct images of f . Let x, y be two divisors of n.
Assume that f (x) = f (y). Since x | n gives gcd(x, n) = x, x ∈ f (x). That means x ∈ f (y),
with gcd(x, n) = y, giving x = y.

Therefore, the images f (d) of all divisors d ∈ S form a partition on the set T. Moreover, if
gcd(j, n) = d, then gcd(j div d, n div d) = 1. Define a permutation π(d) = n div d on the divisors
S, then | f (d)| = ϕ(π(d)). Since π is a permutation, the sum over all d ∈ S is identical to the
sum over all π(d) ∈ S. Hence:

∑
d | n

ϕ(d) = ∑
d∈S

ϕ(d) = ∑
π(d)∈S

ϕ(π(d)) = ∑
d∈S
| f (d)| =

∣∣∣∣∣⋃
d∈S

f (d)

∣∣∣∣∣ = |T| = n

This theorem is used in working out the order of elements in a finite field (Theorem 27, page 24),
and the cyclotomic factors of Xk − 1 (Theorem 94, page 69).

Scripts Properties of monoids are proved in algebra/monoid, while properties of groups
are proved in algebra/group. Similarly, properties of rings are proved in algebra/ring,
while properties of fields and finite fields are located in algebra/field. For properties of
the ring Zk, refer to algebra/ring/ringInstances.

Polynomial rings are formulated in algebra/polynomial/polynomial, and poly-
nomial quotient rings are formulated in algebra/polynomial/polyModuloRing.

The remarkable results from number theory come from algebra/lib: binomial for
binomials and prime, triangle for the consecutive LCM, logPower for power forms and
cofactors, and Gauss for the Euler’s ϕ-function.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringInstancesScript.sml#lines-1313
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/monoid/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/field/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringInstancesScript.sml#lines-86
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polynomialScript.sml#lines-298
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyModuloRingScript.sml#lines-80
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/binomialScript.sml#lines-78
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-90
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-155
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/GaussScript.sml#lines-94

40 Basic Algebra

2.8 Summary

We have covered the basic algebraic concepts required for the AKS algorithm. The hierarchy
of algebraic structures has monoids, groups, rings, and fields. Each one is defined and the main
properties elucidated. The concept of zero divisors leads to integeral domains, and we show
that finite integral domains are finite fields. We use elements from rings or fields as coefficients
for polynomials, and look at modular systems that give rise to quotient structures. We visit the
Pascal’s Triangle for Fermat’s Little Theorem, look at the Leibniz Denominator Triangle for
a consecutive LCM bound, check out some useful results about coprimes, and derive the sum
of Euler’s ϕ-function over the divisors of n. Equipped with this knowledge of basic algebra
and number theory, we shall examine the AKS algorithm in detail, and see that it is indeed a
primality test.

2.9 Remarks

Many theorem-proving systems have developed algebra libraries, including number theory and
abstract algebra. These systems will be described at the end of Chapter 4, after we have covered
our advanced algebra library.

Here, we just take an example to indicate the algebra libraries in various systems. These are
the applications of finite fields to cryptography, include elliptic curve algorithms and polynomial
factorisation algorithms.

In HOL, Joe Hurd et al. [2006] formalised elliptic curve cryptography based on a group
structure. They defined algebraic structures for a generic type, but their work was based on
concrete instances with numeric type.

In Mizar, Yuichi Futa et al. [2013] formalised some theorems on elliptic curve over a prime
field by enriching the Mizar Mathematical Library.

In Coq, Evmorfia-Iro Bartzia and Strub [2014] had extended the Mathematical Components
library for elliptic curves based on fields and projective geometry. Reynald Affeldt et al. [2016]
reported on the formalisation of Reed-Solomon codes and their work on LDPC codes, using
polynomials with coefficients from a field.

In Isabelle/HOL, Jose Divasón et al. [2017] had given a formalisation of the Berlekamp-
Zassenhaus factorization algorithm. Their work involved the fields Zp where p is a prime, and
polynomials over such fields.

Formalisation of results in elementary number theory can be a substantial task, as evident
in Asperti and Armentano [2008]. They discussed their work in Matita Interactive Theorem
Prover to formalise just one page taken from a standard graduate textbook. Their work offered a
proof of the Euler ϕ-function identity (Theorem 58).

Refer to Chan and Norrish [2012, 2013] for several approaches to formalise Fermat’s Little
Theorem (Theorem 38), including a combinatoric proof based on necklace counting and a
group-theoretic proof based on Orbit-Stabilizer Theorem. In Chan and Norrish [2019b], the
Leibniz Denominator Triangle was used to deduce, for the consecutive LCM, both a lower bound

§2.9 Remarks 41

and an upper bound.
About the characterisation of a prime by binomial divisibility (Theorem 36), the only-if

part is less well-known. In [Dietzfelbinger, 2004, Lemma 8.1.1], [Granville, 2004, Theorem 1]
and [Shoup, 2008, Theorem 22.1], the only-if proof proceeds as follows. Let p be a prime factor
of a composite n, so p < n. Put n = pkq, where k ≥ 1 is the greatest power of p that divides n.
Then we can express:(

n
p

)
= pkq

[
(n − 1) . . . (n − p + 1)

p(p − 1)!

]
= pk − 1q

[
(n − 1) . . . (n − p + 1)

(p − 1)!

]
Since n is a multiple of p, the closest lesser number p can divide is (n− p). Thus the numerator

in the square brackets cannot have a factor p. This implies
(

n
p

)
is only divisible by pk − 1, not

pk. This guarantees that n 6 |
(

n
p

)
. Our proof is a variation using the same idea.

42 Basic Algebra

Chapter 3

AKS Algorithm

This chapter begins with the pseudocode of the AKS algorithm, then relates the pseudocode to
each phase of the algorithm. We shall derive the limit for power free check, prove the existence
and bound of the AKS parameter, and investigate the role of introspective checks. It is relatively
easy to show that a prime will pass the AKS tests, but the converse takes us onto a pathway
meeting rings and fields. By getting hold of a special prime factor, we build up a finite field. We
shift the introspective checks to polynomials with coefficients from this finite field. This pathway
leads to a formulation of the AKS Main Theorem, the key to complete the proof of the correctness
of the AKS algorithm.

The journey of a thousand miles
begins with a single step.

— Lao Tzu (老子) (circa 600 BC)1

3.1 AKS Pseudocode

Our journey to formalise the AKS algorithm begins with its pseudocode, see Algorithm 1. The
pseudocode shows the details of each phase, discussed briefly in Section 1.3. We make use of
several subroutines, e.g., ROOT k n for the integer k-th root of n, orderk(n) for the multiplicative
order of n in modulo k, and ϕ(k) for the Euler-phi function of k, the number of coprimes to k
not exceeding k. There are 3 FOR-loops, one for each phase. More explanation of these loops,
and the justification of loop bounds, will be given in subsequent sections.

For now, note the upper bound for each loop with input n:

• for phase 1, the bound is dlog ne.

• for phase 2, the bound is roughly dlog ne5, which gives the bound for parameter k.

• for phase 3, the bound is s = (SQRT ϕ(k))dlog ne. As k is within dlog ne5, s is bounded
by some power in dlog ne.

1From chapter 64 of Tao Te Ching (道德經：「千里之行，始於足下。」).

43

44 AKS Algorithm

Input: integer n > 1.
Output: whether n is PRIME or COMPOSITE.

1. Power Free Test
For each k from 2 to dlog ne:

◦ If (ROOT k n)k = n, return COMPOSITE.

2. Parameter Search
For each k from 2 to 1 + dlog ne5 div 2:

◦ If k | n, then if k = n, return PRIME, else return COMPOSITE.

◦ If k ≥ dlog ne2 and orderk(n) ≥ dlog ne2, go to Step 3 with this k.

3. Introspective Checks
For each c from 1 to (SQRT ϕ(k))dlog ne:

◦ if (X + c)n 6≡ Xn + c (mod n, Xk − 1), return COMPOSITE.

4. return PRIME.

Algorithm 1: The AKS algorithm in pseudo-code

Input: integer n > 1.
Output: whether n is PRIME or COMPOSITE.

1. If (n = bm for b ∈N and m > 1), return COMPOSITE.

2. Find the smallest k satisfying orderk(n) ≥ dlog ne2.

3. For each (1 < j ≤ k), if 1 < gcd(j, n) < n, return COMPOSITE.

4. If (k ≥ n), return PRIME.

5. For each (c = 1 to (SQRTϕ(k))dlog ne)
if (X + c)n 6≡ Xn + c (mod n, Xk − 1), return COMPOSITE.

6. return PRIME.

Algorithm 2: The algorithm in AKS revised paper, Agrawal et al. [2004].

§3.2 Power Free Test 45

Assuming that the subroutines have run-times bounded by polynomials in dlog ne, this suggests
that the AKS algorithm runs in polynomial time of dlog ne. We shall formally prove this result
as Theorem 4.

The pseudocode in Algorithm 1 is not optimized for efficiency. It is just simple enough,
using only integer arithmetic, to carry out each phase. Our monadic style implementation in
HOL4, aksM n closely matches this pseudocode (see Definition 3). This implementation is the
basis of our computational complexity analysis of the AKS algorithm.

Our pseudocode differs slightly from the version given by the AKS team (see Algorithm 2),
which in step 3 involves the computation of greatest common divisors. This effectively checks
whether d = gcd(j, n) is 1 or n. If d is neither of these, then d is a proper factor of n, so n is
composite. In Algorithm 1, we guarantee gcd(k, n) = 1 upon entering step 3. This is because
any common factor of k and n, which divides n, must have been encountered in step 2 and be
dealt with in the k | n check. This keeps our implementation GCD free, and spares us the need to
analyse the computational complexity of GCD algorithms.2

For a better understanding of the AKS algorithm through the pseudocode, we shall study
each phase in detail.

3.2 Power Free Test

Phase 1 of the AKS algorithm is to check whether the input n is power free. A number is power
free if it is not a square, not a cube,etc., i.e., not a power, or formally:

Definition 59. A power free number n has a trivial power form, with exponent 1.

power_free n def
= ∀ b e. n = be ⇒ b = n ∧ e = 1

Since a power form be has its base b as factor, it is easy to see that:

Theorem 60. A prime is power free.

` prime n ⇒ power_free n

Here is one method to determine if a given number is power free:

Theorem 61. Power free test by integer root and exponentiation.

` power_free n ⇐⇒ 1 < n ∧ ∀ j. 1 < j ∧ j ≤ dlog ne ⇒ (ROOT j n)j 6= n

Proof. If n = (ROOT j n)j with 1 < j, then n is not power free by Definition 59. We only need
testing with j-th integer roots for j up to dlog ne, due to:

` 0 < n ⇒ ∀ b. n power_of b ⇐⇒ ∃ e. e ≤ dlog ne ∧ n = be

2In principle, the binary GCD algorithm, also known as Stein’s algorithm, can be analysed by our techniques, based
on the complexity model described in Chapter 6. Refer to Knuth [1998] and Brent [2000] for the complexity analysis
of GCD algorithms.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-2117
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-2185
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-3314

46 AKS Algorithm

This is because for a fixed number n = be, the highest possible exponent e is attained by the
smallest possible base b = 2.

This result translates to the first FOR-loop in our AKS pseudocode (Algorithm 1).

3.3 AKS Parameter

Phase 2 of the AKS algorithm is to search for a parameter k, with three possible outcomes:
nice k, good k, or bad (see Section 1.3). A good k is coprime to n with a ≤ orderk(n), where
a = dlog ne2, while a nice k is a factor of n.

3.3.1 Parameter Search

As depicted in the second FOR-loop in Algorithm 1, the search starts with k = 2. In successive
iterations, each k is tested for its divisibility into n,

(i) if k | n, we have found the smallest non-trivial factor k of n. The search returns a nice k.

(ii) if k 6 | n, none of the smaller values of k is a factor of n. Thus gcd(k, n) = 1, and orderk(n)
can be computed. Note that orderk(n) ≤ ϕ(k) ≤ k. If k < a, there is no hope for
a ≤ orderk(n). Otherwise, if a ≤ orderk(n), the search returns a good k.

We define the parameter k = aks_param n as the result of a recursive search:

Definition 62. Sequential search for the AKS parameter k of input n.

aks_param n def
=

(let

a = dlog ne ;
c = 1 + a5 div 2

in

if a ≤ 1 then nice n else aks_param_search n (a2) 2 c)
where

aks_param_search n a k c def
=

if c < k then bad

else if k | n then nice k
else if a ≤ k ∧ a ≤ orderk(n) then good k
else aks_param_search n a (k + 1) c

The actual value of the cutoff c will be investigated in Section 3.3.2. For now, the use of a cutoff
ensures that the search will always terminate. From the definition, we can show formally that:

Theorem 63. If n > 1 has parameter nice k, then k is the smallest non-trivial factor of n.

` 1 < n ∧ aks_param n = nice k ⇒ 1 < k ∧ k | n ∧ ∀ j. 1 < j ∧ j < k ⇒ j 6 | n

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeParamScript.sml#lines-1887
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeParamScript.sml#lines-2251

§3.3 AKS Parameter 47

Theorem 64. If n has parameter good k, then k is coprime to n with a multiplicative order in
(mod k) at least dlog ne2.

` aks_param n = good k ⇒ 1 < k ∧ k < n ∧ gcd(k, n) = 1 ∧ dlog ne2 ≤ orderk(n)

3.3.2 Parameter Exists

In the search for aks_param n by Definition 62, we use a particular cutoff c for termination, due
to:

Theorem 65. Let two numbers n, m be given, both at least 2. Up to a cutoff c expressed in n, m,
there must be a value k in the range 1 < k ≤ c such that, if k is not a factor of n, then k is a
modulus with orderk(n) at least m.

` 1 < n ∧ 1 < m ∧ c = 1 + (m2 div 2)dlog ne ⇒
∃ k. 1 < k ∧ k ≤ c ∧ (k | n ∨ m ≤ orderk(n))

Proof. By contradiction, suppose for all k in the range 1 < k ≤ c, k 6 | n and orderk(n) < m.
Then gcd(k, n) = 1, since otherwise a common factor d will divide n, but d 6 | n as 1 < d ≤ k.
Let j = orderk(n), then j < m, and 0 < j because gcd(k, n) = 1. Thus 0 < j < m.

Consider the following set:

Bnm = {nj − 1 | 0 < j < m}

Since j = orderk(n) implies nj ≡ 1 (mod k), or k | nj − 1, k divides some element in Bnm.
In other words, k divides the product of all the numbers in Bnm, which is:

Bnm =
j<m

∏
0<j

(nj − 1)

Now consider the consecutive numbers in [1 .. k]. Not only does 1 divide Bnm and k divide
Bnm, but each intermediate value, say h, divides Bnm too, as orderh(n) < m by assumption.
Hence the consecutive least common multiple of [1 .. k], denoted by LCM [1 .. k], divides Bnm,
or:

LCM [1 .. k] ≤ Bnm (3.1)

Although enormous, Bnm is a single number, depending only on n and m. Thus Bnm is fixed,
yet LCM [1 .. k] grows with k. Therefore condition (3.1) cannot hold forever as k increases. To
find the threshold, we need to obtain estimates for both sides of the condition.

For an estimate of Bnm, observe that 0 < j < m means j counts from 1 to m− 1. Hence,

Bnm =
m−1

∏
j=1

(nj − 1) <
m−1

∏
j=1

nj = n

m−1
∑

j=1
j

= nm(m − 1) div 2 < n(m2) div 2

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeParamScript.sml#lines-2462
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeParamScript.sml#lines-1628

48 AKS Algorithm

A lower bound for LCM [1 .. k] is given by Theorem 52, page 36:

` 2k − 1 ≤ LCM [1 .. k]

Combining both estimates, to keep LCM [1 .. k] ≤ Bnm we must have:

2k − 1 < n(m2) div 2 ≤ 2dlog ne((m2) div 2) by n ≤ 2dlog ne, or
k < 1 + ((m2) div 2)dlog ne and cutoff c = 1 + ((m2) div 2)dlog ne.

If k advances to be equal to c, condition (3.1) will be violated. Thus within the range 1 < k ≤ c,
we must have encountered either a factor k with k | n, or a modulus k with orderk(n) ≥ m.

For the AKS parameter search, the cutoff is obtained by putting m = dlog ne2 in Theorem 65.
This gives the bound 1 + ((dlog ne22) div 2)dlog ne, which is simplified to 1 + dlog ne5 div 2.
This bound is used in Definition 62. With the guarantee from Theorem 65, we have:

Corollary 66. Our search for the AKS parameter is always successful, and the bound for
aks_param n has order dlog ne5.

` aks_param n 6= bad

` 2 < n ∧ aks_param n = nice k ⇒ k ≤ 1 + dlog ne5 div 2
` aks_param n = good k ⇒ k ≤ 1 + dlog ne5 div 2

Some values of our AKS parameter are given in Table 3.1.

n aks_param n comment
1 nice 1 by definition
2 nice 2 prime
3 nice 3 prime
4 nice 2 factor
5 nice 5 prime
6 nice 2 factor
7 nice 7 prime

11 nice 11 prime
31 good 29 first prime with good
47 good 41 next prime with good
91 nice 7 factor
97 good 59 prime

95477 good 293 first composite with good3

Table 3.1: Selected values of the AKS parameter by aks_param n.

3Indeed, 95477 = 3092 − 22 = 311× 307.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeParamScript.sml#lines-2015

§3.4 Introspective Checks 49

Thus the only possible results of the parameter search are either a nice k or a good k. Note
that our bound for k is 1 + dlog ne5 div 2. This is a minor improvement of the equivalent reuslt
in the paper Agrawal et al. [2004], where Lemma 4.3 gives a bound of dlog ne5.

The first exit in Phase 2 of Algorithm 1 is the result of:

Theorem 67. When aks_param n returns nice k, then n is prime iff k = n.

` 1 < n ∧ aks_param n = nice k ⇒ (prime n ⇐⇒ k = n)

Proof. Since k is the least factor of n greater than 1 by Theorem 63, the result follows.

This proves Theorem 2 when parameter is nice k. Hereafter, we shall take a parameter good k,
with 1 < k < n, gcd(k, n) = 1 and dlog ne2 ≤ orderk(n) by Theorem 64.

3.4 Introspective Checks

Phase 3 of the AKS algorithm corresponds to the third FOR-loop in Algorithm 1. The loop is
initiated by a parameter good k, and performs a range of introspective checks by Equation (1.1):

∀ c. 0 < c ∧ c ≤ s ⇒ (X + c)n ≡ Xn + c (mod n, Xk − 1)

where s = (SQRT ϕ(k))dlog ne is called the introspective limit. The introspective checks are
polynomial identities in (mod n, Xk − 1). These introspective checks shall be denoted by
poly_intro_range Zn k n s:

0 < k ∧ 0 < n ⇒
(poly_intro_range Zn k n s ⇐⇒
∀ c. 0 < c ∧ c ≤ s ⇒ (X + c)n ≡ Xn + c (mod n, Xk − 1))

(3.2)

Since Phase 2 passes a parameter good k to Phase 3, the introspective limit s has an upper bound:

Theorem 68. If input n gives a parameter good k, the introspective limit s is bounded by k.

` 1 < n ∧ aks_param n = good k ∧ s = (SQRT ϕ(k))dlog ne ⇒ s ≤ k

Proof. In the ring Zk, the coprimes of k form a multiplicative group (Theorem 33). Let n be
coprime to k, then the powers of n mod k form a subgroup of the multiplicative group. Thus,

orderk(n) | ϕ(k) by multiplicative order (Theorem 16)
or orderk(n) ≤ ϕ(k) by being a divisor
Also dlog ne2 ≤ orderk(n) by good k (Theorem 64)
Combining, dlog ne2 ≤ ϕ(k) by above
giving dlog ne ≤ SQRT ϕ(k) by taking integer square roots

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeParamScript.sml#lines-2364
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKScleanScript.sml#lines-825

50 AKS Algorithm

Multiplying both sides by SQRT ϕ(k),

s = (SQRT ϕ(k))dlog ne ≤ (SQRT ϕ(k))2 ≤ ϕ(k) ≤ k

However, this introspective limit s is irrelevant when n is prime:

Theorem 69. A prime n is introspective to all monomial X + c.

` prime n ∧ 0 < k ⇒ poly_intro_range Zn k n s

Proof. From Fermat’s Little Theorem for monomials (Theorem 39, page 29):

` prime n ⇒ (X + c)n ≡ Xn + c (mod n)

The equivalence evidently holds when both sides are reduced to remainders in Xk − 1:

` prime n ∧ 0 < k ⇒ (X + c)n ≡ Xn + c (mod n, Xk − 1)

Thus we have poly_intro_range Zn k n s by (3.2).

Therefore, a parameter good k plays a vital role in Phase 3: it specifies Xk − 1 as the
polynomial modulus for introspective checks, and it defines the introspective limit s. Overall,
this good k is passed onto Phase 3 for poly_intro_range Zn k n s, with s ≤ k by Theorem 68.

3.5 AKS Primality Test

With the notion of poly_intro_range Zn k n s, we can recast aks n from Definition 1 as:

` aks n ⇐⇒
power_free n ∧
case aks_param n of

| nice k . k = n
| good k . poly_intro_range Zn k n (SQRT ϕ(k))dlog ne
| bad . F

(3.3)

This enables an uncluttered proof that the AKS algorithm is indeed a primality test (Theorem 2):

` prime n ⇐⇒ aks n

One direction is easy:

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSintroScript.sml#lines-1056

§3.6 Introspective Shift 51

Theorem 70. A prime n shall pass all phases of the AKS algorithm.

` prime n ⇒ aks n

Proof. A prime n is power free by Theorem 60. We know that aks_param n will not return
bad by Corollary 66. If aks_param n returns nice k, then k = n by Theorem 67, since a prime
has no proper factor. If aks_param n returns good k, then 0 < k since the search starts with
k = 2. By Theorem 69, the introspective limit s = (SQRT ϕ(k))dlog ne is irrelevant, hence
poly_intro_range Zn k n s.

As noted in Section 1.4, this easy direction had been formalised by Campos et al. [2004] in
ACL2, and de Moura and Tadeu [2008] attempted in Coq.

The other direction requires more work, with a change in perspective:

1. Find a special prime factor p of n to build a finite field Zp.

2. Verify that poly_intro_range Zn k n s implies poly_intro_range Zp k n s.

3. Formulate AKS Main Theorem (Theorem 115) to prove the converse of Theorem 70.

The main reason for this perspective change is that, as algebraic structures and in a broad sense,
a field is better behaved compared to a ring. In particular,

• all field elements are invertible. Thus any nonzero polynomial with coefficients taken
from a field can be a divisor for polynomial division.

• a field has no zero divisors. This enforces that any nonzero polynomial with coefficients
taken from a field cannot have more roots than its degree (Theorem 25).

• the characteristic of a finite field is always a prime (Theorem 26). This implies that the
prime characteristic will be introspective to any monomial X + c (Theorem 69).

• in a finite field, the multiplicative group is cyclic (Theorem 28). Thus the multiplicative
order of field elements are confined to be divisors of the order of the multiplicative group.
This dictates the cyclotomic factorisation of the introspective modulus Xk − 1.

As we shall see, all these contribute to the beautiful proof of AKS Main Theorem (Theorem 115).

3.6 Introspective Shift

Given the input number n, our starting point is the ring Zn. To find a field F to work with,
note that n > 1 since it is power free. Therefore, n has a prime factor p. There may be several
primes to choose from, but we shall pick one with the help of parameter good k. Recall that
aks_param n = good k means gcd(k, n) = 1 with 1 < k and k < n (Theorem 64). Thus 2 < n
and 1 < dlog ne2 < orderk(n). We choose a prime factor p of n with 1 < orderk(p), provided
by Theorem 57.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKScleanScript.sml#lines-915

52 AKS Algorithm

We shall show that, for a number n with parameter good k and a factor p | n, the introspective
checks in modulo n:

(X + c)n ≡ Xn + c (mod n, Xk − 1) (3.4)

can be regarded as introspective checks in modulo p:

(X + c)n ≡ Xn + c (mod p, Xk − 1) (3.5)

When the constants c are in the same range 0 < c ≤ s, with limit s = (SQRT ϕ(i))dlog ne, this
is shifting of all checks from poly_intro_range Zn k n s to poly_intro_range Zp k n s.

This introspective shift is barely mentioned in the AKS paper.4 We provide a formal proof
by invoking ring homomorphism, denoted by (7→r), because Zn and Zp are two distinct rings
with their own operations.

In order to treat the monomials X + c with 0 < c ≤ s as elements of either Zn[X] or Zp[X],
the limit s needs to satisfy:

s < n and s < p. (3.6)

Note that p | n gives p ≤ n, and s ≤ k from Theorem 68. Thus for (3.6) to hold, we just need
k < p. This is true because in the search for AKS parameter, if aks_param n returns good k, we
have not encountered any factor of n, yet p | n. Hence the following applies:

Theorem 71. For a suitable factor p of n, introspective checks based on Zn are preserved as
introspective checks based on Zp.

` 0 < n ∧ 0 < k ∧ 1 < p ∧ p | n ∧ s < p ∧ poly_intro_range Zn k h s ⇒
poly_intro_range Zp k h s

Proof. Consider the two rings, Zn and Zp, where p is a factor of n. If x ≡ y (mod n), then
(x− y) is a multiple of n, or a multiple of its factor p, showing that x ≡ y (mod p) holds.
Hence there is a homomorphism between these two rings (Theorem 31):

` 0 < n ∧ p | n ⇒ (λ x. x mod p) : Zn 7→r Zp

This ring homomorphism preserves monomials X + c:

` 0 < n ∧ 1 < p ∧ s < p ⇒
∀ c. 0 < c ∧ c ≤ s ⇒ ∀ f . f : Zn 7→r Zp ⇒ f (X + c) = X + c

Here f (X + c) denotes the result of applying the ring homomorphism f to each coefficient of
X + c. That f (X + c) = X + c shows that the monomials X + c with 0 < c ≤ s can be treated as
elements of either Zn[X] or Zp[X].

A ring homomorphism f preserves algebraic operations. Thus polynomial additions in

4Just Equation 3.4 “implies” Equation 3.5 in [Agrawal et al., 2004, page 4].

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSshiftScript.sml#lines-360

§3.7 AKS in Finite Field 53

Zn[X] are preserved as the corresponding polynomial additions in Zp[X]. Similarly, multi-
plication of polynomials by a scalar is preserved by homomorphism f . Since multiplication of
polynomials is defined in terms of scalar multiplication by successive coefficients, it is preserved
by homomorphism f . Furthermore, as exponentiation of a polynomial to a power is defined in
terms of polynomial multiplication, it is preserved by homomorphism f .

Finally, the introspective relation just checks the result of a polynomial exponentiation. It
follows that every introspective check in the quotient ring Zn[X]/(Xk − 1) is reflected as an
introspective check in the quotient ring Zp[X]/(Xk − 1).

3.7 AKS in Finite Field

The special prime p factor of n from Section 3.6 gives a finite field Zp, with characteristic the
same as prime p. This will be the setting for the AKS Main Theorem (Chapter 5, Theorem 115).
We collect the useful properties of such a finite field F as a set of criteria:

Definition 72. The criteria for a field F to be applied in AKS Main Theorem.

aks_criteria F n k def
=

0 < n ∧ 0 < k ∧ 1 < orderk(char(F)) ∧ char(F) | n ∧ k < char(F) ∧
dlog ne2 ≤ orderk(n) ∧ poly_intro_range F k n (SQRT ϕ(k))dlog ne

The criteria for the field Zp becomes:

` 0 < p ∧ aks_criteria Zp n k ⇒
0 < n ∧ 0 < k ∧ 1 < orderk(p) ∧ p | n ∧ k < p ∧ dlog ne2 ≤ orderk(n) ∧
poly_intro_range Zp k n (SQRT ϕ(k))dlog ne

We can now provide an outline to establish the hard part of Theorem 2:

Theorem 73. If a number n passes all phases of the AKS algorithm, then n is prime.

` aks n ⇒ prime n

Proof. Repeating the definition of aks n in (3.3):

` aks n ⇐⇒
power_free n ∧
case aks_param n of

| nice k . k = n
| good k . poly_intro_range Zn k n (SQRT ϕ(k))dlog ne
| bad . F

If n is not power free, n cannot be a prime (Theorem 60). The search for aks_param n will not
return bad by Corollary 66. If aks_param n returns nice k, then n is prime only when k = n by

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKScleanScript.sml#lines-390
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKScleanScript.sml#lines-959

54 AKS Algorithm

Theorem 67. If aks_param n returns good k, we have shown in Section 3.6 that there is a special
prime p factor of n that fits into the criteria of Definition 72:

` aks_param n = good k ∧ poly_intro_range Zn k n (SQRT ϕ(k))dlog ne ⇒
∃p. prime p ∧ aks_criteria Zp n k

We shall prove this AKS Main Theorem for a finite field F (Theorem 115):

` FiniteField F ∧ |F| = char(F) ⇒ ∀n k. aks_criteria F n k ⇒ n power_of char(F)

Identifying the finite field F with Zp, a finite field with cardinality p and characteristic p, we
conclude that n is a power of p. But n is power free, therefore n must be equal to p. In other
words, n is prime.

Scripts Scripts for the study of the computational aspect of the AKS algorithm are located in
aks/compute. Power free test theorems are proved in computeBasic, Parameter search
theorems are given in computeParam. Scripts for the study of the theoretical aspect of the
AKS algorithm are located in aks/theories. Introspective relation and introspective shifting
are discussed in AKSintro and AKSshift, respectively.

3.8 Summary

Starting with the pseudocode of the AKS algorithm, we study each phase: what are the key ideas
behind, and how they fit together. We give the bound for the power free test, assert the existence
of the AKS parameter with a search bound. For the introspective checks, proving that a prime
n will pass all of them is straightforward, because the characterisation of primes by binomial
divisibility (Theorem 36) shows that limit for the introspective checks is irrelevant. In order to
prove that a composite n will fail at least one introspective check, we go through the tortuous
journey of picking up a special prime factor p of n, then shift the introspective checks from
Zn[X]/(Xk − 1) to Zp[X]/(Xk − 1). With this feat we formulate the AKS Main Thoerem in
a finite field, and outline the proof of AKS theorem (Theorem 2) based on the Main Theorem.
This concludes the first part of the theory for the AKS algorithm. The focus of the next part will
be the AKS Main Theorem.

3.9 Remarks

The proof of Theorem 71 was done in a general context: how to shift poly_intro_range R k n s
from one ring to another, then adapt to instances of ring like Zn and Zp. This illustrates a
general approach taken by us. We could have proved the theorem by appealing directly to the
properties of modular arithmetic between Zn and Zp, but we choose a ring-theoretic path using
ring homomorphism. This puts the investigation in a proper algebraic setting, and provides an
example to apply our generic ring library.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeBasicScript.sml#lines-78
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeParamScript.sml#lines-202
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSintroScript.sml#lines-92
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSshiftScript.sml#lines-101

§3.9 Remarks 55

We follow the revised AKS paper (Agrawal et al. [2004]) to bound the parameter k by a
lower bound for the consecutive LCM. Most expositions regarding this parameter (Tao [2009];
Daleson [2006]; Crandall and Pomerance [2005]), following the original AKS paper (Agrawal
et al. [2002]), make use of a Chebyshev-type estimate for the product of consecutive primes.
This has been discussed in Section 1.2 (page 2). These two approaches, based on different
methods, are equivalent because both are effectively weak forms of the prime number theorem
(see Chan and Norrish [2019b]).

Although not directly related to our approach, note that the Prime Number Theorem has been
formalised by Avigad et al. [2007] in Isabelle proof assistant, and independently in HOL Light
by John Harrison [2009]. The formalization of Chebyshev’s approach was taken up in Asperti
and Ricciotti [2008] using Matita Interactive Theorem Prover.

56 AKS Algorithm

Part II

Correctness

Part 2 is about the correctness of the AKS algorithm. The key is formulated in Part
1 as the Main Theorem. We first develop the required background theory of finite
fields, then investigate the introspective relation by separating the exponents and
polynomials into different sets. The interplay between these sets, together with the
properties of polynomials with coefficients from a finite field, and the Pigeonhole
Principle for injective map between finite sets, eventually stipulate the conclusion
of the Main Theorem.

57

Chapter 4

Advanced Algebra

This chapter develops more topics in finite fields that are crucial for the theory behind the AKS
Main Theorem. Taking a geometric viewpoint, a finite field is a vector space over its subfields,
with polynomial coefficients restricted to those of the subfields. The use of subfield polynomials
give rise to irreducibility and adjoining roots, with a minimal polynomials for each field element.
This leads to the existence and uniqueness of finite fields, which are essential for the cyclotomic
factorisation of Xk − 1, where k is the AKS parameter and Xk − 1 is the introspective
modulus. We shall establish the existence of a special irreducible factor from the cyclotomic
factors of Xk − 1, which plays a key role in the proof of the AKS Main Theorem.

Algebra is nothing more than geometry, in words;
geometry is nothing more than algebra, in pictures.

— Sophie Germain (1831)

4.1 Finite Field Classification

The AKS Main Theorem, as formulate in the proof of Theorem 73, is:

` FiniteField F ∧ |F| = char(F) ⇒ ∀n k. aks_criteria F n k ⇒ n power_of char(F)

It is based on a finite field F satisfying certain criteria, the aks_criteria F n k. Its proof depends
on a special irreducible factor h of Xk − 1, the modulus of introspective checks. This irreducible
factor h is used to form a polynomial quotient field F [X]/(h), with an element X. There are
many irreducible factors of Xk − 1, but the proof, in one of its counting arguments, requires
one with the multiplicative order of X in this quotient field to be k, i.e., orderh(X) = k. The
existence of such a special irreducible h requires the full theory of finite field existence and
uniqueness up to isomorphism, which are the classification theorems for finite fields.

Toward this goal, we shall take a field/subfield pair, treating the field as an extension of the
subfield. These ideas involve the vector spaces, a geometric picture for finite fields.

59

60 Advanced Algebra

4.1.1 Vector Spaces

A vector space VSpace S G f is another algebraic structure, with three components:

• a field S of scalars,

• an additive group G of vectors, and

• a multiplication f taking a scalar and a vector, resulting in a vector.

Together they must satisfy the vector space axioms, which are expressed in HOL4 as:

Definition 74. Axioms for a vector space.

VSpace S G f def
=

Field S ∧ AbelianGroup G ∧ (∀ a v. a ∈ S ∧ v ∈ G ⇒ f a v ∈ G) ∧
(∀ a b v. a ∈ S ∧ b ∈ S ∧ v ∈ G ⇒ f a (f b v) = f (S .prod.op a b) v) ∧
(∀v. v ∈ G ⇒ f 1 v = v) ∧
(∀ a u v. a ∈ S ∧ u ∈ G ∧ v ∈ G ⇒ f a (G.op u v) = G.op (f a u) (f a v)) ∧
∀ a b v. a ∈ S ∧ b ∈ S ∧ v ∈ G ⇒ f (a + b) v = G.op (f a v) (f b v)

Our formalisation of the theory of vector spaces follows the approach given in Axler [2015].
The library is a standalone development consisting of basis, spanning subspace, and linear inde-
pendence. The dimension of a vector space over its subspace is the minimal number of vectors
in a subspace basis to span the vector space. The minimal requirement ensures that such basis
vectors are linear independent.

4.1.2 Subfields

A subfield S of a field F has its carrier S ⊆ F, and itself is a field by keeping the same field
additions and multiplications. The fact that multiplication is distributive over addition gives
another view of the field/subfield relationship:

Theorem 75. A field is a vector space over its subfield.

` S 4 F ⇒ VSpace S F .sum (×)

Proof. Given S 4 F , we can:

• identify the elements of the subfield S as scalars.

• identity the elements of the abelian group F .sum of field F as vectors.

• identify the field multiplication ∗ as the multiplication op of scalar to vector giving a
vector.

Then it is a routine exercise to verify that all vector space axioms are satisfied.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/linear/VectorSpaceScript.sml#lines-172
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffAdvancedScript.sml#lines-225

§4.2 Existence of Finite Fields 61

4.1.3 Prime Subfields

For a finite field F , the elements given by repeated additions of 1 form a subfield. This subfield,
which must be embedded in any subfield of F , is also a field with no proper subfield. It is called
its prime field, denoted by PFF :

Theorem 76. The prime field of a finite field is its smallest subfield.

` FiniteField F ∧ s 4 F ⇒ PFF 4 s

The cardinality of PFF is char(F), the additive order of 1. The dimension of a finite field F
over its prime field PFF is called its degree, denoted by deg(F). Treating a finite field F as a
vector space over its prime field PFF , its dimension is the number of basis vectors. Since every
field element is uniquely expressed by a linear combination of basis vectors, we have:

Theorem 77. The cardinality of a finite field equals its characteristic raised to its degree.

` FiniteField F ⇒ |F| = char(F)deg(F)

With every field having its prime field as a subfield, this is the first key result about finite
field cardinality:

Theorem 78. Cardinality — The cardinality of a finite field must be a nontrivial prime power.

` FiniteField F ⇒ ∃p d. prime p ∧ 0 < d ∧ |F| = pd

Proof. Take p = char(F) and n = deg(F). Since the dimension of F over its subfield PFF is at
least 1, we have 0 < n. Now p is prime by Theorem 26, and |F| = pn by Theorem 77.

This particular result, that all subfields of a field share its characteristic, is trivial:

Theorem 79. All subfields have the same characteristic as the field.

` S 4 F ⇒ char(S) = char(F)

Proof. All subfields have the same multiplicative identity 1 of the field.

4.2 Existence of Finite Fields

The integers Z form a ring, an infinite one. Dividing the integers by a modulus n 6= 0, the
remainders are in the range from 0 to (n − 1). These are the elements of Zn, a finite ring
with arithmetic operations in (mod n). There may be zero divisors in Zn, e.g.. 2× 3 ≡ 0
(mod 6). Thus Zn cannot be a field if n is composite. However:

Theorem 80. The ring Zp for a prime p modulus is a finite field.

` prime p ⇒ FiniteField Zp

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffBasicScript.sml#lines-515
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffAdvancedScript.sml#lines-454
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-412
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/field/fieldMapScript.sml#lines-1427
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/field/fieldInstancesScript.sml#lines-606

62 Advanced Algebra

Proof. In the finite ring Zp, if ab ≡ 0 (mod p), then p | ab. Since p is prime, p | a or p | b.
This means that a ≡ 0 (mod p) or b ≡ 0 (mod p). Thus Zp has no zero divisors for a
prime p, making it a finite integral domain, and a finite field by Theorem 21.

Polynomials with coefficients from integers or a field both form Euclidean rings, which
have the property that every ideal is generated by a single element. The ideal generated by a
ring element a is written as (a). Let h be a polynomial, with coefficients from a field F . The
quotient ring by the ideal (h), denoted by F [X]/(h), consists of all polynomial remainders after
division by h. Like Zp for a prime p, we have:

Theorem 81. For a finite field, the polynomial quotient ring generated by an irreducible is a
finite field.

` FiniteField F ⇒ ∀h. ipoly h ⇒ FiniteField F [X]/(h)

Proof. 1 Note that F [X]/(h) is a finite ring, as it consists of polynomials p with deg p < deg h.
Let f and g be two such polynomials. If f × g ≡ 0 (mod h), this means h | f × g. Since h is
irreducible, h | f or h | g. Thus f ≡ 0 (mod h) or g ≡ 0 (mod h). Therefore F [X]/(h)
has no zero divisors, making it a finite integral domain, or a finite field by Theorem 21.

Note that the order of F [X]/(h) is |F|d, where d = deg h, by counting the number of
polynomial remainders, all with degree less than d. This provides a recipe to construct other
finite fields, based on those of prime order, e.g., Zp for prime p, if there are irreducibles of every
nonzero degree d.

4.2.1 Counting Irreducibles

For a finite field F , let (IF n) denote the set of monic irreducibles of degree n in F [X]. We
show that:

Theorem 82. There are monic irreducible polynomials of any positive degree.

` FiniteField F ⇒ ∀n. 0 < n ⇒ ∃p. monic p ∧ ipoly p ∧ deg p = n

Proof. 2 For each divisor d of n 6= 0, let Ψd = ∏ (IF d), the product of all monic irreducibles
of degree d. Multiplying these products over all divisors of n gives a remarkable result:3

` FiniteField F ∧ 0 < n ⇒ X|F|
n
− X = ∏ { Ψd | d ∈ divisors n }

1This proof works because polynomial rings over a field is a unique factorisation domain, where irreducibles are
primes.

2This proof, based on degree and divisibility of special polynomials, is adapted from [Belk, 2016, Theorem 9].
3This result is nontrivial: it depends on a detailed analysis of the distinct irreducible factors of X|F|

n − X. For a
formal proof, refer to our script.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyFieldModuloScript.sml#lines-1673
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffMasterScript.sml#lines-2899
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffMasterScript.sml#lines-2612

§4.2 Existence of Finite Fields 63

A more pleasant typographic rendering, as one might find in textbooks, is:

X|F|
n − X = ∏

d | n
Ψd (4.1)

The left-side is a polynomial of degree |F|n. By including more monic irreducibles on the right-
side, the left polynomial becomes a divisor:(

X|F|
n − X

)
|

n

∏
d = 1

Ψd

Now, suppose there are no monic irreducibles of degree n. Then IF n = ∅, so that Ψn = 1. We
shall see how this leads to a contradiction, thus proving the result.

With Ψn = 1, the left polynomial shall divide the product of all Ψd, with subscript d from 1
to n − 1. We claim that: (

X|F|
n − X

)
|

n−1

∏
d = 1

Ψd |
n−1

∏
d = 1

(
X|F|

d
− X
)

This is because each (X|F|
d − X) has a factor Ψd by Equation (4.1), and the Ψd’s, being the

product of all monic irreducibles of degree d, are pairwise coprime. However, the degree of the
polynomial product on the right-side is less than the degree of the left polynomial:

n−1

∑
d = 1
|F|d =

|F|n − 1
|F| − 1

< |F|n by geometric series, and 1 < |F|.

This is impossible since the left-side divides the right-side, and the right-side is not the zero
polynomial. Thus IF n 6= ∅, i.e., there exists a monic irreducible polynomial of degree n.

With the existence of monic irreducible polynomials of any positive degree, we can assert
the existence of finite fields with prime power cardinality:

Theorem 83. Existence — For each nontrivial prime power, there exists a finite field of that
cardinality.

` prime p ∧ 0 < d ⇒ ∃F . FiniteField F ∧ |F| = pd

Proof. Note that Zp is a finite field for a prime p, by Theorem 80. Applying Theorem 82,
there is a monic irreducible h in Zp[X] with deg h = n. Then Zp[X]/(h) is a finite field by
Theorem 81, with pn elements.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-541

64 Advanced Algebra

4.3 Uniqueness of Finite Fields

Putting n = 1 in Equation (4.1) gives X|F| − X = Ψ1. As Ψ1 is the product of linear monic
irreducibles, we have:

` FiniteField F ⇒ X|F| − X = ∏ { X − a × 1 | a ∈ F }

We use a × 1 to represent the constant polynomial given by an element a ∈ F, in accordance
with types. In textbooks, this is presented simply as:

X|F| − X = ∏
a ∈ F

(X − a) (4.2)

The polynomial on the left has coefficients 1, 0 and −1, which are present in any subfield
S 4 F . Therefore such a polynomial is for any subfield a subfield polynomial. However, as a
field polynomial, its roots are all the field elements, each contributing a single factor, i.e., there
are no repeated roots.

4.3.1 Minimal Polynomials

Given a subfield S 4 F , consider all the subfield polynomials, i.e., elements in S [X]. Any field
element a ∈ F is then a root of some subfield polynomial, e.g., the polynomial of Equation (4.2).
We write polyS h to indicate a subfield polynomial with coefficients in S . If h has no proper
subfield polynomial factors, it is irreducible in the subfield, indicated by ipolyS h.

A monic subfield polynomial of the smallest degree having a as a root is called a minimal
polynomial of a, denoted by ma, with these properties (see, e.g., [Belk, 2016, page 47]):

(1) A minimal polynomial of a finite field element a is irreducible over any subfield.

` FiniteField F ∧ S 4 F ⇒ ∀ a. a ∈ F ⇒ ipolyS ma

(2) A minimal polynomial of a finite field element a divides every subfield polynomial with
root a.

` FiniteField F ∧ S 4 F ⇒ ∀h a. polyS h ∧ a ∈ roots h ⇒ ma | h

From property (2), if there are two minimal polynomials of a ∈ F, they will divide each other,
hence equal, i.e.. ma is unique. We shall refer to ma as “the” minimal polynomial of a.

Recall from Equation (4.2) that all a ∈ F are roots of X|F| − X. By property (2), each ma

divides X|F| − X, the dividend. Since each ma is irreducible by property (1), and irreducibles
are coprime, the product of all ma also divides the dividend. Both product and dividend have
identical roots, i.e., all elements in F. With all possible elements taken as roots, there can be no
more roots. Thus the product and the dividend differ only by a constant, which must be 1 as both
are monic polynomials. Therefore:

§4.3 Uniqueness of Finite Fields 65

Theorem 84. With respect to any subfield of a finite field F , the polynomial X|F| − X is the
product of distinct minimal polynomials from all the field elements.

` FiniteField F ∧ S 4 F ⇒ X|F| − X = ∏ { ma | a ∈ F }

Note that in our formalisation, this product is over a set, which eliminates duplicates. This
result shows that if a monic irreducible divides X|F| − X, it is the minimal polynomial of some
field element, by unique factorisation.

4.3.2 Isomorphic Fields

We have shown that every finite field has prime characteristic p (Theorem 26), which is also
the cardinality of its prime field. Note that the prime field operations by repeated addition of
multiplicative identity are identical to modulo arithmetic in Zp. Hence,

Theorem 85. For a finite field F , its prime field is isomorphic to Zp where p = char(F).

` FiniteField F ⇒ PFF ∼= Zchar(F)

Consider two finite fields of the same cardinality. By Theorem 78, this means equal prime
powers, which happens only when both the primes and powers are equal. Theorem 77 implies
that both finite fields must have the same characteristic. Therefore:

Theorem 86. Two finite fields of the same cardinality have isomorphic prime fields.

` FiniteField F1 ∧ FiniteField F2 ∧ |F1| = |F2| ⇒ PFF1
∼= PFF2

Since the minimal polynomials ma for a ∈ F are subfield irreducibles (see property (1) in
Section 4.3.1), they can be used to construct quotient fields S [X]/(ma). If a ∈ πF , a primitive
of the finite field (see Section 2.6.3), this can be shown (e.g., see [Belk, 2016, page 50, Theorem
5]):

Theorem 87. A finite field is isomorphic to the quotient field by the minimal polynomial of a
primitive.

` FiniteField F ∧ S 4 F ∧ a ∈ πF ⇒ F ∼= S [X]/(ma)

These ideas lead directly to the uniqueness of finite fields up to isomorphism:

Theorem 88. Uniqueness — Finite fields of the same cardinality are isomorphic, i.e., they are
structurally the same.

` FiniteField F1 ∧ FiniteField F2 ∧ |F1| = |F2| ⇒ F1 ∼= F2

Proof. 4 Let |F1| = |F2| = q. Note that their primes fields are isomorphic by Theorem 86, i.e.,
there is an isomorphism: ϑ : PFF1 → PFF2 . Let a ∈ πF be a primitive of F1. Its minimal
4This proof, based on quotient fields by minimal polynomials of primitives, is adapted from [Belk, 2016, page 56,
Theorem 3]. Similar ideas are given in [Herstein, 1996, Theorem 6.4.2].

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffConjugateScript.sml#lines-2458
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-1797
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-1855
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExtendScript.sml#lines-1484
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-2557

66 Advanced Algebra

polynomial ma in the prime field has coefficients in PFF1 . Then ϑ(ma), the polynomial whose
coefficients are the ϑ-image of the corresponding coefficients of ma, is a subfield polynomial of
F2[X] with coefficients in PFF2 . The isomorphism ϑ ensures that:

• Note that ma is irreducible (property (1) in Section 4.3.1). Thus ϑ(ma) is also irreducible
in F2[X], and it divides ϑ(Xq − X) = ϑ(X)q − ϑ(X), a polynomial in F2[X] which is
a product of the minimal polynomials of the elements of F2 (Theorem 84). Therefore
ϑ(ma) equals to some minimal polynomial mb in F2[X], with b ∈ F2.

• both a and b have the same order, so b is a primitive in F2.

• polynomial division is preserved: the quotient and remainder by a polynomial modulus
will map to their respective images, giving in general, when f is the isomorphism between
F1 and F2:

` F1
∼=(f) F2 ⇒ ∀h. ipoly h ⇒ F1[X]/(h) ∼=(MAP f) F2[X]/(f (h))

where (MAP f) is the isomorphism between polynomials, using f for each coefficient:

(MAP f)

(
n

∑
j = 0

cjX
j

)
=

n

∑
j = 0

f (cj)Xj where cj ∈ F1 gives f (cj) ∈ F2

Using Theorem 87 and applying the last result for the isomorphic prime fields, taking h = ma,
we have:

F1
∼= PFF1 [X]/(ma) ∼= PFF2 [X]/(ϑ(ma)) = PFF2 [X]/(mb) ∼= F2 (4.3)

4.3.3 Existence and Uniqueness: Maximizing Type Generality

Our Theorem 88, stating the uniqueness of fields of the same order is “doubly polymorphic” in
both fields: as we can see when we redisplay the theorem with extra type annotations, the related
fields may be over different underlying types α and β:

` FiniteField (F1 : α ring) ∧ FiniteField (F2 : β ring) ∧ |F1| = |F2| ⇒ F1 ∼= F2

However, our “base” Theorem 83, stating the existence of finite fields of prime power order,
is over fields of numeric polynomial type:

` prime (p : num) ∧ (0 : num) < (d : num) ⇒
∃ (F : num poly ring). FiniteField F ∧ |F| = ((pd) :num)

This is because we started with the finite field Zp for a prime p (Theorem 80), with elements of
numeric type. The resulting quotient field Zp[X]/(h), formed by an irreducible h of degree d

§4.3 Uniqueness of Finite Fields 67

(Theorem 81), will have elements of numeric polynomial type.
If desired, we can lift the existence result to an arbitrary type α, as long as that type has

enough elements. Here we satisfy that cardinality constraint by requiring the universe of that
type (written U (:α)) to be infinite.

The first step exploits the fact that an infinite set A has the same cardinality as the set of all
possible (finite) lists of elements drawn from A:

Lemma 89. There is a bijection between all finite lists with elements type α and the elements
themselves.

` INFINITE U (:α) ⇒ ∃ f . f : U (:α list) ↔ U (:α)

We instantiate this lemma with α set to num and thereby show the existence of finite fields
of the desired order over the type of natural numbers. Finally, because we know that our desired
destination type has an infinite cardinality, we can inject homomorphically from the natural
numbers into α, giving us:

Theorem 90. Given an infinite type and a nontrivial prime power, there exist a finite field of
that type and order.

` prime (p : num) ∧ (0 : num) < (n : num) ∧ INFINITE U (:α) ⇒
∃ (F : α ring). FiniteField F ∧ |F| = ((pn) :num)

This establishes the existence of finite fields with prime power cardinality, for a generic type,
provided its universe is infinite. As a point of interest, we can obtain the same result via a
perhaps more traditional route: using extension fields and splitting fields.

4.3.4 Extension and Splitting Fields

Given a finite field (F : α ring), consider a polynomial t in F [X] with deg t 6= 0, i.e., not
a constant polynomial. Then t has an irreducible polynomial h as its factor. We shall first
concentrate on this irreducible h, then show its relationship with t.

Note that the quotient field F [X]/(h) from Theorem 81 has type (α poly ring). It
contains X when deg X < deg h, i.e. 1 < deg h. Because h divides itself, h = hJXK ≡
0 (mod h), showing that 5:

Theorem 91. Let h be a non-linear polynomial with coefficients from a field F . Then X is a
root of h in the quotient ring F [X]/(h).

` Field F ∧ poly h ∧ 1 < deg h ⇒ h | hJXK

Assume that α type is infinite, i.e., INFINITE U (:α). The bijection between U (:α poly) and
U (:α) from Lemma 89 allows the conversion of the quotient field to an extension field E of type

5When h is not required to be irreducible, F [X]/(h) is a quotient ring, which becomes a quotient field when h is
irreducible.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExisttScript.sml#lines-344
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-1047
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyFieldModuloScript.sml#lines-3991

68 Advanced Algebra

(α ring). The constant polynomials in the quotient field becomes a subfield S of E , which is
isomorphic to the coefficients field F through a bijective map f :

F ∼= f S ∧ S 4 E

At a high level, one might hope that F is a subset of E is true if and only if E is an extension
of F . However, the previous discussion shows that for a typed system like HOL4 there is a
subtle difference:

• A field/subfield pair S 4 F relates fields of the same type, with the same field operations.

• A field F and its extension field E , though possibly of the same type, are related through
an isomorphic subfield S of E , with extended field operations in E .

Recall that polynomial t has an irreducible factor h, i.e., h has no roots in F . Since the
coefficients of t and h are in F , they have images f (t) and f (h) in S . The root X of h in the
quotient field F [X]/(h) from Theorem 91 corresponds to some element in the extension field E .

Note that any root of f (h) is also a root of f (t). Therefore, the extension field E contains a
root for f (t). The set of roots of f (t) in E is denoted by rootsE f (t):

` FiniteField F ∧ INFINITE U (:α) ∧ poly t ∧ 0 < deg t ⇒
∃S E f b. F ∼=f S ∧ S 4 E ∧ FINITE E ∧ b ∈ rootsE f (t)

Having field F and its extension E of the same type enables successive extensions until E re-
duces f (t) into linear factors, i.e., containing all its roots. This is called a splitting field for t,
denoted by splittingE f (t):

` FiniteField F ∧ INFINITE U (:α) ∧ poly t ∧ 0 < deg t ⇒
∃S E f . F ∼=f S ∧ S 4 E ∧ FINITE E ∧ splittingE f (t)

The splitting field provides another proof for the existence of finite fields of an infinite type:

Proof of Theorem 90. 6

Given a prime p, a positive n, an infinite type α, one can start with a field (F : α ring)
isomorphic to Zp. In this field F , with |F| = p, consider the polynomial t = Xpn

− X. The
smallest splitting field E of t has all the roots of t. Note that char(E) = p by Theorem 79. Thus
the formal derivative of t is a constant, sharing no root with t. This shows that t has no multiple
roots, i.e., all the pn roots of t are distinct. Hence the field (E : α ring) has precisely pn

elements.

We have shown that it is possible to follow what one might argue is a standard approach:
making use of splitting fields to establish the existence of finite fields of order pn for all prime
p and positive n. However, the pleasant generality of the splitting field theorems is somewhat

6Such proofs can be found in, e.g., [Herstein, 1996, Theorem 6.3.3], [Judson, 1994, Theorem 20.5], or [Robinson,
2008, Theorem 10.3.1].

§4.4 Cyclotomic Polynomials 69

undone by the requirement to add the various INFINITE U (:α) preconditions. It is therefore a
matter of taste as to which one to prefer.

4.3.5 Finite Fields of Finite Type

The requirement that the universe of α be infinite guarantees that an arbitrary amount of splitting
can be carried out. Of course, the final splitting field is still finite, and so one is always able
to construct an isomorphic finite field over a sufficiently large finite type. For example, if one
started with the two-element finite field over bool, isomorphic to Z2, one could eventually
carry this procedure out to construct a splitting field over a finite type of cardinality 2n for any
value of positive n. Though it is clear that this procedure can always be carried out, in HOL4 we
cannot express the construction because we would need to be able to make a statement asserting
the existence of a type of a specific finite cardinality.

4.4 Cyclotomic Polynomials

In a finite field F , each nonzero element in F∗ has a nonzero order, say n. The cardinality of
(orders F ∗ n), the set of elements with order equal to n, is given by Theorem 27:

` FiniteField F ⇒ ∀n. |orders F ∗ n| = if n | |F∗| then ϕ(n) else 0

The product formed by multiplying all factors from elements of order n is called the n-th cyclo-
tomic polynomial, denoted by Φn:

Definition 92. Cyclotomic polynomials in a field.

Field F ⇒ Φn = ∏ { X − a × 1 | a ∈ F∗ ∧ orderF ∗(a) = n }

Since Φn is a product of monic monomials, its degree is given by the number of factors:

Theorem 93. The degree of a cyclotomic polynomial in a finite field.

` FiniteField F ⇒ ∀n. deg Φn = if n | |F∗| then ϕ(n) else 0

Cyclotomic polynomials are related to the factorisation of Xn − 1:

Theorem 94. Let n be a divisor of the number of nonzero elements in a finite field. In the ring
of polynomials with coefficients from this finite field, the polynomial Xn − 1 is a product of
cyclotomic factors Φm where m divides n.

` FiniteField F ∧ n | |F∗| ⇒ Xn − 1 = ∏ { Φm | m ∈ divisors n }

Proof. 7 Note that Φm consists of factors of elements with order m, i.e., x ∈ F∗ with xm = 1. If
7This proof, based on divisibility of polynomials and pairwise coprime factors, is adapted from [Ireland and Rosen,
1990, Proposition 13.3.2].

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffCycloScript.sml#lines-118
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffUnityScript.sml#lines-1204
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffUnityScript.sml#lines-1364

70 Advanced Algebra

m | n, then xn = xm(n
m) = 1. Therefore x is a root of the polynomial Xn − 1. The factors are

pairwise coprime, and their product, Φm, divides Xn − 1:

` FiniteField F ⇒ ∀m n. m | n ⇒ Φm | Xn − 1

Since two different cyclotomic polynomials, say Φm and Φk, involve factors associated with
elements of different orders n and k, the cyclotomic polynomials are pairwise coprime. It follows
that their product over the divisors of n will divide Xn − 1, or

Xn − 1 = h ∏
m | n

Φm for some polynomial h (4.4)

Equating the polynomial degree of both sides using Theorem 93, and applying Euler’s ϕ-function
identity (Theorem 58, page 39), h must be a constant. By Equation (4.4), h = 1 because a product
of monic polynomials, with a multiplier h, gives a monic result.

We prove that cyclotomic polynomials have coefficients in any subfield, i.e., they are subfield
polynomials:

` FiniteField F ∧ S 4 F ⇒ ∀n. polyS Φn

Since the prime field PFF is the smallest subfield of a finite field F (Theorem 76), which is
isomorphic to the field Zchar(F) (Theorem 85), the coefficients of Φn are integers. Indeed,
using Equation (4.4) with h = 1 and polynomial division, we can deduce, successively, that
X − 1 = Φ1, then X2 − 1 = Φ1 × Φ2 giving Φ2 = X + 1, then X3 − 1 = Φ1 × Φ3 giving
Φ3 = X2 + X + 1, etc., by keeping track of the divisors of n.

4.4.1 Alternative Presentations of Φn

Our cyclotomic polynomials are defined in a finite field, so that there are elements of various
orders to give the factors and form the products Φn. As the statement of Theorem 94 shows,
Equation (4.4) holds in a finite field F with a condition: n | |F∗|. This is different from usual
treatments 8, where Equation (4.4) holds for all 0 < n.

Some textbooks, e.g., Rotman [2010] and Herstein [1975], treat the cyclotomic polynomials
Φn as polynomials with rational coefficients, i.e., elements of Q[X]. They define Φn as a product
of factors from all complex n-th primitive roots of unity:

Φn =
n

∏
k = 1

(
X − e2πi k

n

)
with gcd(k, n) = 1 and i2 = −1

then proving that, due to pairs of complex conjugate factors and properties of complex n-th
primitive roots of unity, the resulting Φn’s have integer coefficients, i.e., they are indeed in
Z[X], a subring of Q[X]. Others, e.g., Herstein [1996] and Garrett [2004], simply define Φn

8See, e.g., [Bastida and Lyndon, 1984, Proposition 3.5.6], or [Newman, 2012, Theorem 5.3].

§4.4 Cyclotomic Polynomials 71

recursively by Equation (4.4) with h = 1. Either approach involves the use of a field (rationals Q

or complex C) which is not finite.
Within finite fields, we can prove that there is always one in which Equation (4.4) holds for

any positive n:

Theorem 95. For n 6= 0, the polynomial Xn − 1 is a product of cyclotomic factors of the
divisors of n in some finite field.

` 0 < n ⇒ ∃F . Xn − 1 = ∏ { Φm | m ∈ divisors n }

Proof. Given n, choose a prime p not a factor of n. Then gcd(n, p) = 1, and we can compute
d = ordern(p). This is the smallest exponent d > 0 such that pd ≡ 1 (mod n), so n | pd − 1.
By Theorem 83, there exists a finite field F of order pd, and |F∗| = pd − 1. Apply Theorem 94
with this finite field F to obtain the desired factorisation of Xn − 1.

4.4.2 Cyclotomic Factors of Xn − 1

The proof of the AKS Main Theorem (Theorem 115) requires the following result, an application
of finite fields:

Theorem 96. Let F be a finite field, n be positive, and d = ordern(|F|) with d > 1. Then
Xn − 1 has a monic irreducible factor h of degree d, with the order of X equals to n in the
quotient field F [X]/(h).

` FiniteField F ∧ 0 < n ∧ 1 < ordern(|F|) ⇒
∃h. monic h ∧ ipoly h ∧ h | Xn − 1 ∧ deg h = ordern(|F|) ∧ orderh(X) = n

Proof. Let d = ordern(|F|). This means |F|d ≡ 1 (mod n), or n | |F|d − 1. By Theorem 82,
there exists a monic irreducible polynomial z with deg z = d, giving a quotient field F [X]/(z)
of order |F|d.

Let E = F [X]/(z), the polynomial quotient field. Note that E has a subfield, the constant
polynomials, which is isomorphic to F . Therefore the finite field E can be taken as an extension
field of F (see Section 4.3.4). In the discussion that follows, we identify the subfield of constant
polynomials with F , i.e., treating F 4 E .

Note that |E∗| = |F|d − 1, and n | |E∗|. This fact is significant:

(a) Since Theorem 94 applies, the subfield polynomial Xn − 1 is a product of cyclotomic
factors. In particular, Φn | (Xn − 1).

(b) Moreover, Theorem 27 applies, giving some nonzero element a with order equal to n, i.e.,
a ∈ E∗ with orderE∗(a) = n.

Take h = ma, the minimal polynomial of this element a with order n. Then h is monic and
irreducible in F . Its degree is given by (see, e.g., [Belk, 2016, page 59, Corollary 7 and 8]):

` FiniteField E ∧ F 4 E ⇒ ∀ a. a ∈ E∗ ⇒ deg ma = orderorderE∗ (a)(|F|) (4.5)

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-1137
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-3749

72 Advanced Algebra

In other words, deg h = d. Note that Φn collects all the factors from elements of order n (see
Definition 92), so it is a product of all minimal polynomials of these elements:

` FiniteField E ∧ F 4 E ⇒ ∀n. Φn = ∏ { ma | a ∈ orders E∗ n } (4.6)

Thus h | Φn. With Φn | (Xn − 1), this implies h | (Xn − 1).
Now X is a root of h in the quotient field F [X]/(h) (Theorem 91). Note that deg h = deg z,

and both h and z are monic and irreducible. Their quotient fields are isomorphic by unique-
ness of finite fields of the same order (Theorem 88). Let Y ∈ E∗ be the isomorphic element
corresponding to X. Then Y is a root of h in E , where h | Φn. Therefore Y is also a root of
Φn. Again, Φn is a product of factors of elements with order equal to n (Definition 92), hence
orderh(Y) = n. Since X is the counterpart of Y, and isomorphism preserves element orders, we
have orderh(X) = n.

Note how this proof involves all the key topics in this chapter: existence and uniqueness of finite
fields, subfields, extension fields, minimal polynomials, and cyclotomic polynomials.

Scripts Scripts for the classification of finite fields are located in algebra/finitefield,
with ffBasic for basic properties, ffAdvanced for advanced properties, ffCyclo for cy-
clotomic polynomials, and ffExist for existence and uniqueness.

4.5 Summary

We treat a finite field as an extension of its subfields, using the vector space idea. We define the
degree of a finite field relative to its prime subfield (Section 4.1.3), and show that the cardinality
of a finite field is its characteristic raised to its degree (Theorem 77), i.e., alway a prime power.
Every element in a finite field is a linear combination of the basis from a subfield, showing
that every element is associated with a minimal polynomial (Section 4.3.1) which is monic and
irreducible when considered as a subfield polynomial. Counting monic irreducibles leads to the
existence of finite fields (Theorem 83) by quotient fields of irreducibles (Theorem 81). Mapping
minimal polynomials relative to prime subfields establish an isomorphism between two finite
fields of the same cardinality (Theorem 87, hence finite fields of the same cardinality are unique
up to isomorphism (Theorem 88). We define the cyclotomic polynomials, and establish their
product over field orders (Theorem 95). By working with this cyclotomic product, we find a
special irreducible factor h of Xk − 1 with orderh(X) = k (Theorem 96). With the existence of
this special irreducible h, we are ready to work on the proof of the AKS Main Theorem.

4.6 Remarks

Our formal proof of the classification of finite field, as well as subfields of finite fields, was
presented in Chan and Norrish [2019a]. We take this opportunity to review the abstract algebra

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffBasicScript.sml#lines-63
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffAdvancedScript.sml#lines-92
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffCycloScript.sml#lines-75
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-121

§4.6 Remarks 73

libraries in other theorem provers.
There is a long tradition in the formalisation of abstract algebra, starting with Peter Aczel’s

Galois project (Aczel [1995]). The LEGO system was developed, from which Barthe [1994]
gave a formal proof of the unsolvability of the symmetric group Sn with n ≥ 5 and Bailey
[1998] formalised part of Galois theory. These were pioneering efforts, with the first building
up from monoids to rings, and the second containing basic vector spaces.

There was another attempt to formalise the Fundamental Theorem of Galois theory by Curiel
[2011] in Isabelle/HOL. The work involved rings and fields, up to field automorphisms. Further
progress had difficulties with adapting a polynomial library for the more advanced work.

The formalisation of the Odd Order Theorem by Gonthier et al. [2013] in Coq was the
cumulative effort by many group theory experts. In this work, a great deal of abstract algebra was
developed, with Galois theory playing a vital role, and finite fields were essential ingredients.
Subjects covered by this project include vector spaces, extension fields, splitting fields, minimal
polynomials and cyclotomic polynomials. These became the Mathematical Components library
(Mahboubi and Tassi [2018]) in Coq.

The Isabelle/HOL Algebra Library (Ballarin et al. [2016]) is another substantial library for
abstract algebra work, including rings, ideals, quotient rings, fields and polynomials. Based
on polynomials and subfields of complex numbers, Thiemann and Yamada [2016] formalised
algebraic numbers in Isabelle/HOL. Their theorems were not restricted to finite fields. Ongoing
work on algebraic numbers in Coq based on field theory can be found in work done by Cohen
[2012].

The Mizar Mathematical Library (Bancerek et al. [2018]) has several results covered in this
chapter, including work on abelian groups, fields and vector spaces by Kusak et al. [1989], and
primitive roots of unity and cyclotomic polynomials by Arneson and Rudnicki [2003]. Note
that Arneson et al. [2003] formalised Witt’s proof of the Wedderburn Theorem9 using skew-
fields and vector spaces over skew-fields, which are not treated in our work.

9Skew fields are fields without the commutative requirement for multiplication, and Wedderburn Theorem asserts
that every finite skew field must be commutative, i.e., a field.

74 Advanced Algebra

Chapter 5

AKS Main Theorem

This chapter is devoted to this main result: given a number, if there is a finite field in which the
number satisfies certain criteria, then the number must be a power of the field’s characteristic.
It is the key to the correctness proof of the AKS algorithm. The proof involves an ingenious play
with various sets implied by the introspective relationship. Of particular interest is a finite set
related to the introspective polynomials, with polynomial coefficients taken as elements from the
finite field. The introspective checks put a condition on its cardinality, and the AKS parameters
turn this condition into an injective map between two finite sets. This guarantees the main result,
for otherwise the injective map would violate the Pigeonhole principle.

Reductio ad absurdum, which Euclid loved so much,
is one of a mathematician’s favourite weapons.

It is a far finer gambit than any chess gambit:
a chess player may offer the sacrifice of a pawn

or even a piece, but a mathematician offers the game.
— Godfrey Harold Hardy (1940)1

5.1 Main Theorem

We shall finish the proof that a number n passing the AKS tests must be prime (Theorem 73):

` aks n ⇒ prime n

by establishing this AKS Main Theorem:

[Theorem 115] If a number n satisfies the AKS criteria in a finite field F of prime cardinality,
then n is a power of the characteristic of the finite field.

` FiniteField F ∧ |F| = char(F) ⇒ ∀n k. aks_criteria F n k ⇒ n power_of char(F)

1From his book A Mathematician’s Apology.

75

76 AKS Main Theorem

Compared to a similar theorem we have proved before ([Chan and Norrish, 2015, Theorem
11]), there are two improvements. We proved the main theorem without developing advanced
features of finite fields (Chapter 4). Now the improvements require these topics: existence and
uniqueness of finite fields, and cyclotomic factors.

5.1.1 Improvement #1: nature of parameter k

As depicted in the dependency diagram (Figure 1.1, page 10), the whole purpose of Chapter 4
is to establish the existence of a special irreducible factor h of Xk − 1 such that orderh(X) = k
(Theorem 96). In Chan and Norrish [2015], we proved the main theorem by assuming the
parameter k is prime. This is in accordance with the original AKS paper (Agrawal et al. [2002])2

and makes the existence of such an irreducible h simple.
Pick any monic irreducible factor h of Xk − 1 with k > 1 and deg h > 1. Then in the

quotient field F [X]/(h), because h | Xk − 1, Xk − 1 ≡ 0 (mod h), so Xk ≡ 1 (mod h).
This shows that X raised to exponent k is the multiplicative identity in the multiplicative group
of the quotient field. The multiplicative order of X, which is orderh(X), must divide the exponent
k (Theorem 10). Since X 6≡ 1 (mod h), orderh(X) 6= 1.

Assuming k is prime, this gives immedidately orderh(X) = k for any monic irreducible factor
h with deg h > 1. This is [Chan and Norrish, 2015, Theorem 14]. Otherwise, we have to go
through Theorem 96 to obtain the special monic irreducible factor h. As noted after the proof
(page 71), that result depends on all the advanced topics in Chapter 4.

5.1.2 Improvement #2: use of cofactor q = n div p

In Chan and Norrish [2015], the constants formulated in the main theorem are roughly those in
the original AKS paper Agrawal et al. [2002], but the constants in the AKS Main Theorem here
are those in the revised AKS paper Agrawal et al. [2004]. The difference is a factor of 2, with the
new constants smaller. This reflects our effort to match the better constants in the AKS paper,
which can be seen by comparing Algorithm 1 with Algorithm 2.

The constants do not affect the main conclusion, that the input number n must be a power
of its special prime factor p. However, the constants do affect the paths taken to arrive at the
conclusion.

In Section 5.2, we shall define the introspective exponents, The bigger constants suit a proof
just using n and p as introspective exponents, while the smaller constants suit a proof using n, p
and cofactor q = n div p as introspective exponents. This is because two introspective exponents
x and y can generate the set (N̂ x y m) in Section 5.6. The choice for the generators affects the
constants in main theorem. The bigger constants correspond to taking x = n and y = p, and the
smaller constants take x = p and y = q.

That the cofactor q is an introspective exponent is proved in Theorem 102. In that proof, we
use the fact that Xk − 1 is a product of monic irreducible factors. This comes from the fact that
Xk − 1 is a product of cyclotomic factors (Section 4.4, Equation (4.4)), and each cyclotomic

2This has been discusse in Section 1.2.

§5.2 Introspective Relation 77

factor is a product of minimal polynomials (Section 4.4.2, Equation (4.6)), which are monic and
irreducible (Section 4.3.1). Thus the validity of the result depends on the advanced topics in
Chapter 4.

Before embarking on a proof of the AKS Main Theorem, we need a deeper understanding
of the introspective relationship.

5.2 Introspective Relation

As shown in Algorithm 1, the introspective checks take the following form in Equation (1.1):

∀ c. 0 < c ∧ c ≤ s ⇒ (X + c)n ≡ Xn + c (mod n, Xk − 1)

where s = (SQRT ϕ(k))dlog ne. In the context of the ring Zn, the first (mod n) equivalence
becomes an equality, e.g., x ≡ y (mod n) is the same as x = y in Zn. This leaves the
symbol (≡) to indicate the polynomial modulo equivalence in Zn[X], the ring of polynomials
with coefficients from Zn:

∀ c. 0 < c ∧ c ≤ s ⇒ (X + c)n ≡ Xn + c (mod Xk − 1) (5.1)

Thus the introspective checks can be viewed as polynomial modulo equivalence in Zn[X].
Rewriting using the notation of polynomial substitution, both sides are strikingly similar:

(X + c)nJXK ≡ (X + c)JXnK (mod Xk − 1) (5.2)

since for any polynomial p, substitution gives pJXK = p and (X + c)JpK = p + c. Superficially,
by simply sliding the exponent n across the substitution brackets, the left side is transformed
into the right side. We use a special notation for the introspective relationship:

Definition 97. An exponent n is introspective to a polynomial p under modulus (Xk − 1),
denoted by n k

./ p, when:

n k
./ p

def
= poly p ∧ pn ≡ pJXnK (mod Xk − 1)

Note that the symbol for introspective relation (
k
./) hides the underlying ring R, because we

would like to investigate this relationship in a general context, not just for Zn, The underlying

ring will be included as a subscript when it is of significance, e.g.,
k
./Zn .

With this notation, the introspective checks verify, for the input number n, the identities
n k

./ X + c in Zn[X]/(Xk − 1) for 0 < c ≤ s up to the introspective limit s. Moreover, the fact
that a prime is introspective to any monomial (Theorem 69) can be restated as:

Theorem 98. For a finite field, its characteristic is introspective to any monomial X + c.

` FiniteField F ∧ 0 < k ⇒ char(F) k
./ X + c

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSintroScript.sml#lines-231
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSintroScript.sml#lines-798

78 AKS Main Theorem

Proof. Let p = char(F), then p is prime (Theorem 26). Using Fermat’s Little Theorem for
monomials (Theorem 39) and polynomial evaluation,

(X + c)p ≡ Xp + c = (X + c)JXpK (mod p)

Their difference, 0 (mod p), is divisible by Xk − 1. By Definition 97, p k
./ X + c .

The introspective relation (
k
./) has some fundamental properties:

Theorem 99. Introspective relation is multiplicative for introspective exponents.

` Ring R ⇒ ∀ k. 0 < k ⇒ ∀m n p. n k
./ p ∧ m k

./ p ⇒ nm k
./ p

Proof. Given n k
./ p, this means pn ≡ pJXnK (mod Xk − 1).

Also m k
./ p means pm ≡ pJXmK (mod Xk − 1). Therefore:

(pJXKm − pJXmK) is divisible by (Xk − 1)

By substituting every X of the above statement by Xn,

(pJXnKm − pJ(Xn)mK) is divisible by ((Xn)k − 1)

Note that:

• First term pJXnKm ≡ (pn)m (mod Xk − 1) by n k
./ p above,

• Second term pJ(Xn)mK = pJXnmK by double exponentiation,

• Divisor (Xn)k − 1 = (Xk)n − 1 is also divisible by Xk − 1, by geometric series.3

Overall, pnm ≡ pJXnmK (mod Xk − 1). By Definition 97, nm k
./ p.

Theorem 100. Introspective relation is multiplicative for introspective polynomials.

` Ring R ⇒ ∀ k. 0 < k ⇒ ∀p q n. n k
./ p ∧ n k

./ q ⇒ n k
./ p × q

Proof. Given n k
./ p, this means pn ≡ pJXnK (mod Xk − 1).

Also given n k
./ q, this means qn ≡ qJXnK (mod Xk − 1).

Multiplying both polynomial congruences, and noting:
3The sum of a geometric sequence:

1 + r + r2 + · · ·+ rn−1 =
1− rn

1− r
corresponds to the following polynomial identity by long division:

Yn − 1 = (Y − 1)(Yn − 1 + · · ·+ Y2 + Y + 1)

Putting Y = Xk, this shows (Xk)n − 1 is divisible by Xk − 1.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSintroScript.sml#lines-296
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSintroScript.sml#lines-366

§5.3 Introspective Sets 79

• pn × qn = (p × q)n, and

• pJXnK × qJXnK = (p × q)JXnK

we have (p × q)n ≡ (p × q)JXnK (mod Xk − 1). By Definition 97, n k
./ p × q.

There are two advantages of working in a finite field F with characteristic p = char(F):

• We get, for free, the result: p k
./ X + c, by Theorem 98 since p is prime (Theorem 26).

• The modulus polynomial Xk − 1 shall have a special irreducible factor h by Theorem 96:4

` FiniteField F ∧ 0 < k ∧ 1 < orderk(|F|) ⇒
∃h. (monic h ∧ ipoly h ∧ h | Xk − 1) ∧ deg h = orderk(|F|) ∧ orderh(X) = k

Both will play significant roles in the following. Let us take a closer look.

5.3 Introspective Sets

Our first advantage means that we now have two members in the introspective relation
k
./, with

X + c for 0 < c ≤ s:

• n k
./ X + c, by introspective checks on n and shifting (Section 3.6).

• p k
./ X + c, by Theorem 98, where p = char(F).

In view of this, these two sets will be of interest.

Definition 101. The sets of introspective exponents and introspective polynomials.

N def
= { m | gcd(m, k) = 1 ∧ ∀ c. 0 < c ∧ c ≤ s ⇒ m k

./ X + c }
P def

= { p | poly p ∧ ∀m. m ∈ N ⇒ m k
./ p }

The introspective checks give the following introspective monomials:

∀ c. 0 < c ∧ c ≤ s ⇒ X + c ∈ P

Trivially, 1 ∈ P and X ∈ P . Note that gcd(n, k) = 1 by parameter good k, and gcd(p, k) = 1 by
prime p being a factor of n:

` 1 < n ∧ prime p ∧ p | n ⇒ ∀ k. gcd(n, k) = 1 ⇒ gcd(p, k) = 1

Hence there are at least two introspective exponents:

n ∈ N , and p ∈ N
4This special irreducible factor eliminates the need for the parameter k to be prime, see Section 5.1.1.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSsetsScript.sml#lines-265

80 AKS Main Theorem

Introspective:

number
k
./ polynomial

(X + c)n ≡ Xn + c mod (n, Xk − 1)

n
k
./ X + c

p
k
./ X + c

q
k
./ X + c

0 < c ≤ s

N = Numbers P = Polynomials

Mk = N (mod k) Qh = P (mod h)

k of Xk − 1 h | Xk − 1

piqj; i, j ≤ SQRT |Mk| deg poly < |Mk|

1 : 1 map

If order of X = k

1 : 1 map

If |Qh| > nSQRT |Mk |

Figure 5.1: Sketch of the AKS proof. The introspective relations of n and p, a prime divisor
of n, together with the cofactor q = n div p, give rise to two sets N and P (Section 5.3). By
taking modulo of k and h, an irreducible factor of Xk − 1, respectively, the sets N and P map,
correspondingly, to two finite setsMk and Qh (Section 5.4). Two finite subsets of N and P can
be crafted such that injective maps between finite sets can be constructed, as illustrated, if the
parameters k and s are suitably chosen to satisfy the “if” conditions (Section 5.5 and Section 5.6).
Once these “if” conditions are established, if n is not a perfect power of p, the grey set will have
more than |Mk| elements. This is impossible as the injective map on the left will contradict the
Pigeonhole Principle (Section 5.7). Therefore n must be a perfect power of its prime divisor p.

§5.4 Modulo Sets 81

Since p | n, the quotient q = n div p is of special interest. We shall call q the cofactor of p
with respective to n. Indeed, q is also an introspective exponent due to gcd(p, k) = 1:5

Theorem 102. Let a finite field have characteristic p. If n is an introspective exponent and p
divides n, then under certain circumstances q = n div p is also an introspective exponent.

` FiniteField F ∧ gcd(k, |F|) = 1 ∧ 1 < orderk(|F|) ∧ p = char(F) ∧ p | n ∧ n k
./ X + c ⇒

n div p k
./ X + c

Proof. 6 Let q = n div p. Working in (mod Xk − 1), the steps are:

((X + c)q)p ≡ (X + c)n by qp = n
≡ Xn + c by given n k

./ X + c

≡ (Xq)p + c by n = qp
≡ (Xq + c)p by Theorem 98 for Xq + c

The last result shows that ((X + c)q)p − (Xq + c)p ≡ 0. Note that p = char(F) is prime for
a finite field (Theorem 26). Using the binomial expansion with exponent a prime characteristic
(Theorem 40), we have ((X + c)q − (Xq + c))p ≡ 0. Since Xk − 1 has no repeated root, it is a
product of a set of monic irreducibles. The exponent p can be dropped by applying Theorem 22:

` Field F ∧ FINITE S ∧ miset S ∧ poly p ∧ pn ≡ 0 (mod ∏ S) ⇒ p ≡ 0 (mod ∏ S)

giving ((X + c)q − (Xq + c)) ≡ 0. Hence (X + c)q ≡ Xq + c. By Definition 97, q k
./ X + c.

Therefore, we have:

Corollary 103. In a finite field F , let p = char(F). If n ∈ N and p | n and other conditions are
satisfied, then N has both p and cofactor q = n div p.

` FiniteField F ∧ gcd(k, |F|) = 1 ∧ 1 < orderk(|F|) ∧ char(F) | n ∧ n ∈ N ⇒
char(F) ∈ N ∧ n div char(F) ∈ N

Recall the fundamental properties of the introspective relation, with multiplicative exponents
(Theorem 99) and multiplicative polynomials (Theorem 100). They imply that the sets N and P
are explosively large. Due to this, their finite counterparts are easier to investigate.

5.4 Modulo Sets

One way to get a finite counterpart from an infinite set is by looking at remainders after division,
or image of the set under some modulus. For the exponents set N , there is a natural modulus:

5This cofactor helps to match the constants in the AKS pseduocode, see Section 5.1.2.
6This proof is inspired via private communication with Terence Tao, who outlined an approach in Tao [2009].

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSintroScript.sml#lines-1364
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSsetsScript.sml#lines-372

82 AKS Main Theorem

following Section 3.3.2, we use the parameter k that provides a big-enough orderk(n). We then
defineMk to be the finite analogue of N :

Mk
def
= { n mod k | n ∈ N }

It is then easy to estimate the cardinality ofMk:

Theorem 104. The cardinality of set Mk is bounded by ϕ(k), and not smaller than orderk(n)
for any n ∈ N .

` Ring R ∧ 1 < k ⇒ ∀n. n ∈ N ⇒ orderk(n) ≤ |Mk| ∧ |Mk| ≤ ϕ(k)

Proof. For the upper bound, by Definition 101, an introspective exponent n ∈ N is coprime to
k. Its remainder under modulo k is less than k but still coprime to k:

` gcd(k, n) = if k = 0 then n else gcd(n mod k, k)

Since ϕ(k) is the count of coprimes not exceeding k, it follows that |Mk| ≤ ϕ(k).
For the lower bound, since n ∈ N implies ∀ j. nj ∈ N by Theorem 99, all their remainders

under modulo k are inMk. The number of such distinct remainders is, by definition, orderk(n).
Therefore orderk(n) ≤ |Mk|.

Similarly, our finite analogue of the polynomials set P is:

Qh
def
= { p mod h | p ∈ P }

where we make use of h, a special irreducible factor of Xk − 1 from the second advantage
(Section 5.2). Note that polynomial equivalences in modulus z = Xk − 1 are preserved when the
modulus z is changed to its factor h | z:

Theorem 105. Polynomial modulo equivalence holds for modulus factor.

` Field R ∧ poly z ∧ poly h ∧ z 6= 0 ∧ h 6= 0 ∧ h | z ⇒
∀p q. poly p ∧ poly q ∧ p ≡ q (mod z) ⇒ p ≡ q (mod h)

Proof. When the difference (p − q) is divisible by z, and h | z since h | z, the difference is also
divisible by h by transitivity of divisibility.

An irreducible polynomial h gives a polynomial modulo field F [X]/(h), and its nonzero
elements F ∗h [X] form a multiplicative group (Theorem 28):

` Field F ⇒ ∀h. ipoly h ⇒ Field F [X]/(h)
` Field F ⇒ ∀h. ipoly h ⇒ Group F ∗h [X]

Recall that the special irreducible factor h of Xk − 1 has the property orderh(X) = k. With this
condition we have:

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSsetsScript.sml#lines-854
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyDivisionScript.sml#lines-1399

§5.5 Reduced Polynomials 83

Theorem 106. In the polynomial modulo field, powers of X are distinct.

` Field F ∧ ipoly h ∧ 1 < deg h ⇒
∀m n. m < orderh(X) ∧ n < orderh(X) ⇒ (Xm ≡ Xn (mod h) ⇐⇒ m = n)

Proof. Since F is a field, the polynomials with coefficients from F by modulus h also form a
field:

` Field F ⇒ ∀h. ipoly h ⇒ Field F [X]/(h)

This polynomial field has a multiplicative group F ∗h [X]. For any group G, we have:

` Group G ⇒ ∀x. x ∈ G ⇒ ∀m n. m < orderG(x) ∧ n < orderG(x) ∧ xm = xn ⇒ m = n

since for x ∈ G order is the minimal exponent to give xorderG (x) = #e where #e is the group
identity. Note that X ∈ F ∗h [X].carrier by 1 < deg h. Therefore the powers of X are distinct.

We shall see how the distinct powers of X help to establish a lower bound for Qh.

5.5 Reduced Polynomials

With estimates of the cardinality ofMk given in Section 5.4, we turn to the cardinality of Qh.
Its upper bound equals the size of the finite polynomial field, but this is irrelevant to the AKS

proof. Only the lower bound is relevant, and for this we need another way to get something finite
from an infinite set, a finite subset of P:

P̂ def
= { p | p ∈ P ∧ deg p < |Mk| }

We shall prove that there is an injective map from P̂ to Qh, hence a lower bound on the cardi-
nality of P̂ will also be a lower bound for the cardinality of Qh.

First, note an interesting interaction fromMk to P , which is relevant to Qh since Qh ⊆ P:

Theorem 107. Each element in Mk corresponds to a root for a difference polynomial formed
by elements of P .

` Ring R ∧ 0 < k ∧ Ulead R h ∧ h | Xk − 1 ⇒
∀p q.

p ∈ P ∧ q ∈ P ∧ p ≡ q (mod h) ⇒
∀m. m ∈ Mk ⇒ (p − q)JXmK ≡ 0 (mod h)

Proof. Given m ∈ Mk, there is n ∈ N such that m = n mod k. For p ∈ P and q ∈ P , n k
./ p and

n k
./ q. Since Xk ≡ 1 (mod Xk − 1), it follows that:

` Ring R ⇒ ∀ k. 0 < k ⇒ ∀n. Xn ≡ Xn mod k (mod Xk − 1)

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyFieldModuloScript.sml#lines-4279
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSmapsScript.sml#lines-414

84 AKS Main Theorem

Let z = Xk − 1. This result shows Xn ≡ Xm (mod z). We can proceed:

pn ≡ pJXnK (mod z) by n k
./ p

and pJXnK ≡ pJXmK (mod z) by Xn ≡ Xm (mod z)
so pn ≡ pJXmK (mod z) by transitivity
or pn ≡ pJXmK (mod h) by Theorem 105, h | z — [1]
Similarly, qn ≡ qJXmK (mod h) from n k

./ q and Theorem 105 — [2]
Since pn ≡ qn (mod h) by given p ≡ q (mod h)
so pJXmK ≡ qJXmK (mod h) by [1] and [2] above
or (p − q)JXmK ≡ 0 (mod h) as claimed.

Due to this, an injective map between the two finite sets derived from P is possible:

Theorem 108. There is an injective map from P̂ to modulo set Qh.

` Field F ∧ 0 < k ∧ (monic h ∧ ipoly h ∧ h | Xk − 1) ∧ orderh(X) = k ⇒
(λ p. p mod h) : P̂ ↪→ Qh

Proof. From the special irreducible factor h of Xk − 1, we have orderh(X) = k. Let p ∈ P̂ and
q ∈ P̂ , with p ≡ q (mod h) in Qh. To show that the map is injective is to show p = q.

Since P̂ ⊆ P , p ∈ P and q ∈ P . Then Theorem 107 applies: each m ∈ Mk gives a root
Xm for the difference polynomial (p − q). These roots are distinct when orderh(X) = k by
Theorem 106, i.e., there are at least |Mk| distinct roots for (p − q). But p ∈ P̂ and q ∈ P̂ , hence
deg (p − q) < |Mk| by subtraction of polynomials. But a polynomial with coefficients from a
field cannot have more roots than its degree (Theorem 25). Thus the difference polynomial is 0,
i.e., p = q.

With this injective map we can estimate a lower bound for the cardinality of Qh.

Theorem 109. The modulo set Qh has a nice lower bound.

` FiniteField F ∧ (monic h ∧ ipoly h ∧ h | Xk − 1) ∧ orderh(X) = k ∧
1 < k ∧ 0 < s ∧ s < char(F) ⇒

2min s |Mk | ≤ |Qh|

Proof. The pre-conditions matches Theorem 108, hence there is an injective map from P̂ toQh.
This means |P̂ | ≤ |Qh|.

By its definition, |P̂ | is the count of polynomials p ∈ P having deg p < |Mk|. Since
1 < |Mk| by Theorem 104, P̂ has at least these monomials from P (see Section 5.3):

X + c with 0 < c ≤ s (5.3)

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSmapsScript.sml#lines-610
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSmapsScript.sml#lines-1522

§5.5 Reduced Polynomials 85

Including X ∈ P̂ , there are s + 1 monomials. By Theorem 100, any product of these s + 1
monomials is in P̂ , as long as the degree of the product is less than |Mk|. Thus a lower bound for
|P̂ | is to count those monomial products with degree d < |Mk|. Applying standard combinatorial

techniques, the count is
(
|Mk| + s
|Mk| − 1

)
. However, to avoid handling and later approximating

binomials, a crude expression for the lower bound suffices for our purpose.
Counting only products of monomials in (5.3) with the following form:

Xe0(X + 1)e1 . . . (X + c)ec . . . (X + s)es (5.4)

where the exponents e0, e1, . . . ec . . . es are 0 or 1, we consider two cases:

• If s < |Mk|, count all products in (5.4), since all constants have c ≤ s. Each product has a
degree less than |Mk|. There are 2s such products in this case.

• If |Mk| ≤ s, count only products in (5.4) with 0 < c ≤ |Mk|. There is a product taking
every monomial with constants in this range, which gives a degree equal to |Mk|, so this
must be excluded. However, 1 ∈ P̂ but 1 cannot be formed by multiplying monomials, so
this can be included. There are 2|Mk | elements in this case.

Considering both cases, we conclude that 2min s |Mk | ≤ |Qh|.

5.5.1 Parameters Condition

The AKS parameters provide a crucial inequality involving |Mk|:

Theorem 110. The AKS parameters a, k and s give an upper bound for an introspective expo-
nent n raised to (SQRT |Mk|) power.

` Ring R ∧ 1 < k ∧ 1 < n ∧ ¬(n power_of 2) ∧ a = dlog ne2 ∧
s = (SQRT ϕ(k))dlog ne ∧ a ≤ orderk(n) ∧ n ∈ N ⇒

nSQRT |Mk | < 2min s |Mk |

Proof. Let j = orderk(n), and m = dlog ne. Note that

j ≤ |Mk|, |Mk| < ϕ(k) and m2 ≤ j.

the first two come from the bounds on cardinality ofMk (Theorem 104), and the third is given.
Taking integer square roots, and reversing inequality directions,

SQRT |Mk| ≥ SQRT j, SQRT ϕ(k) ≥ SQRT |Mk| and SQRT j ≥ m.

Therefore:

• s = (SQRT ϕ(k))m ≥ m(SQRT |Mk|)

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSmapsScript.sml#lines-2463

86 AKS Main Theorem

• |Mk| ≥ (SQRT |Mk|2) ≥ (SQRT j)(SQRT |Mk|) ≥ m(SQRT |Mk|)

Thus min s |Mk| ≥ m(SQRT |Mk|). With 2m > n for integer logarithm, we have:

2min s |Mk | ≥ 2m(SQRT |Mk |) = (2m)SQRT |Mk | > nSQRT |Mk |.

5.6 Reduced Exponents

Having success in finding an injective map from P̂ toQh, we would like to find an injective map
toMk from a similar reduced subset of introspective exponents.

It turns out there is such a situation, with the following set of reduced exponents:

N̂ p q m def
= { piqj | i ≤ m ∧ j ≤ m } (5.5)

This reduced subset is generated by the two known elements p ∈ N and q ∈ N (Section 5.3),
with some cut-off m in their exponents. By multiplicative closure of introspective exponents
(Theorem 99), N̂ p q m ⊆ N . The following property for elements is obvious by monotonicity
of exponential function:

Theorem 111. An upper bound for an element in N̂ .

` 1 < p ∧ 1 < q ⇒ ∀n m. n ∈ N̂ p q m ⇒ n ≤ (pq)m

Proof. Each element n ∈ N̂ p q m can be expressed in the form n = piqj, where i, j ≤ m. Thus
n ≤ pmqm ≤ (pq)m.

Note another interesting interaction from Qh to N , which is relevant to N̂ p q m ⊆ N :

Theorem 112. Each element in Qh corresponds to a root for a special polynomial formed by
elements in N .

` Field F ∧ 0 < k ∧ monic h ∧ ipoly h ∧ h | Xk − 1 ⇒
∀n m.

n ∈ N ∧ m ∈ N ∧ n ≡ m (mod k) ⇒
∀p. p ∈ Qh ⇒ (Xn − Xm)JpK ≡ 0 (mod h)

Proof. Given p ∈ Qh, there is q ∈ P such that p = q mod h. For n ∈ N and m ∈ N , n k
./ q and

m k
./ q. Since Xk ≡ 1 (mod Xk − 1), it follows that:

` Ring R ⇒ ∀ k. 0 < k ⇒ ∀n m. n ≡ m (mod k) ⇒ Xn ≡ Xm (mod Xk − 1)

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSsetsScript.sml#lines-1329
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSmapsScript.sml#lines-920

§5.7 Punch Line 87

Let z = Xk − 1. This result shows Xn ≡ Xm (mod z). We can proceed:

qn ≡ qJXnK (mod z) by n k
./ q

qm ≡ qJXmK (mod z) by m k
./ q

and qJXmK ≡ qJXnK (mod z) by Xn ≡ Xm (mod z)
so qn ≡ qm (mod z) by equivalence
or qn − qm ≡ 0 (mod z) by subtraction
Since (Xn − Xm)JpK ≡ (Xn − Xm)JqK (mod h) by p = q mod h

and (Xn − Xm)JqK = qn − qm by substitution
so (Xn − Xm)JpK ≡ 0 (mod z) by combining above
or (Xn − Xm)JpK ≡ 0 (mod h) by Theorem 105, h | z.

Due to this, an injective map between the two finite sets derived from N is possible:

Theorem 113. There is an injective map from N̂ p q (SQRT |Mk|) to modulo set Mk, where
p, q are two introspective exponents.

` Field F ∧ monic h ∧ ipoly h ∧ h | Xk − 1 ⇒
∀p q.

1 < p ∧ 1 < q ∧ p ∈ N ∧ q ∈ N ∧ (pq)SQRT |Mk | < |Qh| ⇒
(λ m. m mod k) : N̂ p q (SQRT |Mk|) ↪→ Mk

Proof. Let i ∈ N̂ p q (SQRT |Mk|), and j ∈ N̂ p q (SQRT |Mk|) with i ≡ j (mod k). To
show the map is injective is to show i = j.

Since N̂ p q (SQRT |Mk|) ⊆ N, both i ∈ N and j ∈ N . Theorem 112 applies: every p ∈ Qh
is a root of Xi − Xj. Hence there are at least |Qh| roots. But i and j in N̂ n p (SQRT |Mk|) are
bounded by nSQRT |Mk | by Theorem 111. Therefore, with the pre-condition inequality, there are
more roots than degree for the polynomial Xi − Xj with coefficient from finite field F . This is
not possible by Theorem 25, unless it is 0, which means i = j.

5.7 Punch Line

The cardinality of N̂ p q m is simple to express when its generators have a special property:

Theorem 114. Cardinality of N̂ p q m when generators p, q are not related by perfect power.

` Field F ∧ 0 < k ∧ p ∈ N ∧ q ∈ N ∧ prime p ∧ 1 < q ∧ ¬(q power_of p) ⇒
∀m. |N̂ p q m| = (1 + m)2

Proof. Let f (i, j) = piqj, and t = {0, 1, . . . , m}. By definition (5.5), it is easy to see that N̂ p q m

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSmapsScript.sml#lines-1127
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSsetsScript.sml#lines-1496

88 AKS Main Theorem

is the image of t × t under f :

f Lt × tM = { piqj | i ≤ m ∧ j ≤ m } = N̂ p q m

More interesting is that the given conditions imply an injective map:

f : t × t ↪→ N̂ p q m

To show this map is injective, pick two ordered pairs y and z in t × t. Let y = (i,j), and
z = (u,v). Assume that piqj = puqv, we need to show y = z, i.e. i = u and j = v. This comes
down to case analysis:

• If i = u, the equality reduces to qj = qv, hence j = v.

• If i < u, the equality reduces to qj = pdqv, where d = u − i. Now j 6= v, for otherwise this
leaves with 1 = pd, which is impossible for prime p. Thus there are two sub-cases:

– If j < v, this becomes 1 = pdqe, where e = v − j, which is clearly impossible.

– If j > v, this will give qe = pd, where e = j − v. Since e 6= 0, Theorem 55 (page 38)
applies:

` prime p ∧ (∃x y. 0 < x ∧ px = qy) ⇒ q power_of p

Hence q is a power of p, contradicting the given ¬(q power_of p). This case is also
impossible.

• If i > u, this is similar to the case i < u by reversing i and u.

The only possible case makes this map injective.

This property is crucial to establish this key result:

Theorem 115. (AKS Main Theorem). If a number n satisfies the AKS criteria in a finite field
F of prime cardinality, then n is a power of the characteristic of the finite field.

` FiniteField F ∧ |F| = char(F) ⇒ ∀n k. aks_criteria F n k ⇒ n power_of char(F)

Proof. Let p = char(F), a = dlog ne2, and s = (SQRT ϕ(k))dlog ne. By the AKS criteria in a
finite field F (Definition 72), we have:

0 < n ∧ 0 < k ∧ 1 < orderk(p) ∧ p | n ∧ k < p ∧
a ≤ orderk(n) ∧ poly_intro_range F k n s

(5.6)

The goal is to show that n is a power of p.
A finite field F has its characteristic p prime. Note k 6= 1 since 1 < orderk(p), and n 6= 1

due to p | n. Therefore 1 < n and 1 < k. Since p | n, p ≤ n. If p = n, then certainly n is a

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/theories/AKScleanScript.sml#lines-536

§5.7 Punch Line 89

power of p. Otherwise, p < n. If n is a power 2, its only prime factor is 2, so p = 2 and n is a
power of p trivially.

Now that we have p < n and n is not a power of 2, it is time to introduce the sets N and
P , for introspective exponents and polynomials, respectively (Definition 101). The conditions
in (5.6) give poly_intro_range F k n s, and gcd(n, k) = 1 by 1 < orderk(n). Thus n ∈ N by
Definition 101. Using k > 1 and a special irreducible factor h of Xk − 1 such that orderh(X) = k
(Theorem 96), we have the setsMk andQh (Section 5.4) with k and h as modulus. Let t = |Mk|.
Since n ∈ N , a ≤ orderk(n), and n is not a power of 2, we have the following (Theorem 110):

nSQRT t < 2min s t

Note s ≤ k by gcd(k, n) = 1 and a ≤ orderk(n) (Theorem 68), and k < p from (5.6). Moreover,
0 < s since 1 < n and 1 < k, thus 0 < s < p. This provides a lower bound for |Qh| from
properties of the special irreducible factor h of Xk − 1 with orderh(X) = k (Theorem 109):

2min s t ≤ |Qh|

From these two inequalities,
nSQRT t < |Qh| (5.7)

Let q = n div p, then n = pq, and 1 < q since n 6= p. Since gcd(n, k) = 1 and p | n,
we have gcd(p, k) = 1 (Theorem 56, page 38), so 1 < orderk(p). Applying Corollary 103, we
have p ∈ N and q ∈ N . Use p and q to form the set N̂ p q (SQRT t). Note that pq = n, so
(pq)SQRT t < |Qh| by (5.7). This ensures an injective map toMk by Theorem 113:

(λ m. m mod k) : N̂ p q (SQRT t) ↪→ Mk (5.8)

With this injective map in place, we can show that n must be a power of p.
The proof proceeds by contradiction. Suppose n is not a power of p, then q is not a power of

p (Theorem 54, page 37). With prime p and 1 < q, the cardinality of N̂ p q (SQRT t) is given
by (Theorem 114):

|N̂ p q (SQRT t)| = (1 + SQRT t)2

Note that (1 + SQRT t)2 > t for integer square-roots, and t = |Mk|. Therefore:

|N̂ p q (SQRT t)| > |Mk|

revealing that the injective map in (5.8) between the same two finite sets N̂ p q (SQRT t) and
Mk would violate the Pigeonhole Principle. The only way to resolve this is that n is a power of
its prime factor p.

With AKS Main Theorem (Theorem 115) in place, the proof of Theorem 73 is complete:

` aks n ⇒ prime n

90 AKS Main Theorem

Together with Theorem 70:
` prime n ⇒ aks n

we conclude that the AKS algorithm is correct (Theorem 2):

` prime n ⇐⇒ aks n

Scripts Scripts for the correctness proof of the AKS Main Theorem have many versions. They
are located in aks/theories, with AKStheorem for the original Chan and Norrish [2015],
AKSrevised incorporting the first improvement (see Section 5.1), AKSimproved having
both improvements, and AKSclean a cleanup version for presentation.

5.8 Summary

We have shown that the three phases of the AKS algorithm correctly give a primality test for any
input number n. This is true especially for those n that enter into the third phase of introspective
checks, whereby the theory shifts its focus to a finite field F , whose characteristic p is a special
prime that divides n. We study the form of the introspective relation, then define the introspective
sets, with exponents on one hand, and polynomials on the other (Section 5.3). With the AKS
parameter k, and the special irreducible factor h of Xk − 1 having orderh(X) = k, we can define
their modular equivalent (Section 5.4). As a result of the interplay between these sets, injective
maps between their finite counterparts can be constructed through the conditions imposed by
the AKS algorithm (Theorems 108 and 113). In the end, if n can pass a sufficient number of
introspective checks, the Pigeonhole principle for injective map between finite sets enforces that
n must be a power of p (AKS Main Theorem 115). The power must be trivial because n is power
free after the check in phase 1, thus n = p, and n is prime. This concludes the second part of the
theory for the AKS algorithm. We venture to the next part, the computational complexity of the
AKS algorithm.

5.9 Remarks

All correctness proofs of the AKS algorithm, including ours, are elaborations of the proof given
in the AKS papers Agrawal et al. [2002, 2004]. The two improvements of Section 5.1 in the
revised paper are absent in the original paper, but they do not affect the main conclusion: that
the AKS algorithm is a deterministic polynomial-time primality test. Hence, depending on their
intended audience, not all of expositions of the AKS algorithm incorporate the improvements.
For example, both are absent in Dietzfelbinger [2004]; Rempe-Gillen and Waldecker [2014],
although the later had a section on cyclotomic polynomials and indicated in an exercise that the
parameter k need not be prime. Those including both improvements are Crandall and Pomerance
[2005]; Daleson [2006]. In Linowitz [2006] the fact that the cofactor q = n div p is introspective
was shown by applying the Chinese Remainder Theorem.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKStheoremScript.sml#lines-126
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSrevisedScript.sml#lines-122
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSimprovedScript.sml#lines-150
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKScleanScript.sml#lines-86

§5.9 Remarks 91

Following the proof in the AKS paper, these expositions first derive a lower bound for Qh

(Theorem 109), then derive an upper bound for Qh by assuming n is not a power of its prime
factor p, using the Pigeonhole principle. The incompatibility of the two bounds on Qh shows
that n must be a power of p.

In this thesis we take a slightly different approach, as described in Figure 5.1 and given
in Section 5.7. From the lower lower bound for Qh, we derive a further inequality from the
conditions on AKS parameters (Section 5.5.1, Theorem 110). The two inequalities combine to
give (5.7). When n is not a power of its prime factor p, we construct an injective map between
finite sets (Theorem 114), and show that (5.7) implies a violation of the Pigeonhole principle.

Our proof scripts include both approaches to prove the AKS Main Theorem (Theorem 115).
There are versions with and without one or two of the improvements.

When estimating a lower bound for Qh, the AKS paper used standard combinatorics to
obtain the bound as a single binomial coefficient, which was later simplified to (5.7). We show
directly (5.7) for simplicity.

Our formulation of the AKS Main Theorem in a finite field is distilled from the AKS paper.
In the AKS paper, although the proof is based on rings and finite fields, the statement of the
main theorem is in number-theoretic terms. Some expositions (Dietzfelbinger [2004]; Crandall
and Pomerance [2005]; Daleson [2006]; Shoup [2008]) state the main theorem in either Zn[X]
or Zp[X], while Bernstein [2002] uses the quotient ring Zn[X]/(Xk − 1). We seem to be the
first to state the main theorem (Theorem 115) in terms the properties of an abstract finite field.

92 AKS Main Theorem

Part III

Complexity

Part 3 is about the computational complexity of the AKS algorithm. We devise a
model of computation in monadic style, develop a general recurrence theory of loop
count, and apply the theory to analyse the AKS algorithm. The key idea is to break
down into subroutines, and examine each subroutine to formally conclude that the
AKS algorithm belongs to the polynomial-time class.

93

Chapter 6

Complexity Models

This chapter develops the models for the study of computational complexity. We use a logging
monad to keep track on computations built up from elementary operations, including a running
count of the number of steps. We define our complexity measure, introduce the O-notation, and
describe the elementary operations in our machine model, and how they are utilised to build
common subroutines. We illustrate our technique of complexity analysis by an example, from
which we can see the necessity of a general theory of recurrence in order to provide estimates
to bound the number of steps for various patterns of program loops. These will be our tools to
analyse the computational complexity of the AKS algorithm.

A Writer monad value is a pair: (computation, log).
Binding replaces the computation value

with the result of applying the bound function
to the previous value and appends any log data
from the computation to the existing log data.

— All About Monads, HaskellWiki1

6.1 Monadic Computation

Monads are generally captured by two functions:

(unit : α → α M)
(bind : α M → (α → β M) → β M)

where (α M) is the type of a monadic computation yielding a value of type α. The pretty do . . . od

notation is a syntactic sugar for combinations of bind calls. In particular,

do v ← m1; m2 od means bind m1(λ v. m2)

where v is presumably a free variable, present in m2. When this is written as do m1; m2 od

without v, it indicates that v is not present in m2 and the result of m1 is being ignored. This
1From https://wiki.haskell.org/All_About_Monads

95

https://wiki.haskell.org/All_About_Monads

96 Complexity Models

syntax can be extended to

do v1 ← m1; v2 ← m2; m3 od means bind m1(λ v1. bind m2 (λ v2. m3))

The monad we used is based on the “writer” model, similar to the Writer monad in Haskell. The
logging is used to keep track of the number of steps, called ticks, as a computation progresses.
The ticks are given a type counter = Count num, which is identical to the natural numbers.
We are cautious to separate ticks from any numerical computations.

With these ideas and notations, we introduce our basic ingredients of complexity analysis:

Definition 116. Components for monadic computation.

unit x def
= (x,Count 0)

tick c def
= ((),Count c)

valueOf (v,Count c) def
= v

stepsOf (v,Count c) def
= c

bind (v1,Count c1) f def
=

case f v1 of (v2,Count c2) . (v2,Count (c1 + c2))

As can be seen from this definition, tick is a primitive to advance the clock without returning
anything. Writing unit x as return x when x is the final result of a computation, we have, e.g.,
do tick 10; return 3 od giving this pair (3,Count 10). The components of the pair can be extracted
by the functions valueOf and stepsOf.

6.2 Complexity Analysis

To express the AKS computations with input n in monadic style, we shall design aksM n (see
Section 7.1). The result, valueOf (aksM n) is a boolean asserting whether n is prime. The number
of steps of computation, stepsOf (aksM n), is a function of the input n. Our aim is to measure
the growth of stepsOf (aksM n) in terms of the input size.

6.2.1 Complexity Measure

A convenient measure of the size of a number n is the length of its binary representation:

Definition 117. Except for n = 0 or 1, halving a number n reduces its binary length by 1.

size n def
= if n ≤ 1 then 1 else 1 + size (n div 2)

While size n is precise, it is not a familiar size measure. It is customary to use instead log n, the
base 2 logarithm of n. We shall use its integer round-up version dlog ne:

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countMonadScript.sml#lines-101
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/lib/bitsizeScript.sml#lines-422

§6.2 Complexity Analysis 97

Definition 118. For n > 0, dlog ne is the unique exponent e such that 2e is between n and 2n.

dlog 0e = 0
0 < n ⇒ ∀ e. dlog ne = e ⇐⇒ n ≤ 2e ∧ 2e < 2n

We define dlog 0e = 0, so that dlog ne is a total function. These two measures are almost the
same, as shown in Table 6.1.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
size n 1 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5
dlog ne 0 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5 5

Table 6.1: Comparison of measures size n and dlog ne.

When n is a power of 2, n = 2e for some exponent e. In this case, dlog ne = e, but the binary
representation of n has e zeroes with a leading 1, i.e., size n = e + 1. This explains the adjustment
of size n to dlog ne, and shows that they differ by at most 1:

` dlog ne ≤ size n ∧ size n ≤ 1 + dlog ne

We can pin this down precisely:

Theorem 119. The measure size n only differs from dlog ne by 1 at n = 0 and n a power of 2.

` size n = dlog ne + if n = 0 ∨ n power_of 2 then 1 else 0

We prefer the precise complexity measure by size n, and we shall derive the complexity classes
of algorithms based on this measure. The conversion to the customary complexity classes based
on dlog ne is trivial in view of the above result.

6.2.2 Complexity Notation

The complexity classes of an algorithm is expressed using the big-O notation:

Definition 120. The class O(f) is the set of functions asymptotically bounded by f , up to a
multiplicative constant.

O(f) def
= { g | ∃ k c. ∀n. k < n ⇒ g n ≤ c(f n) }

Thus if we have proved that ∀n. g n ≤ 3dlog ne2, we should conclude g ∈ O(λ n. dlog ne2).
This is conventionally written as g ∈ O(dlog ne2), with the λ-quantification being understood.

In the AKS paper some complexity results are expressed as, e.g., Õ(dlog ne2). This notation
ignores logarithmic powers of the variable, e.g.O(f (n)dlog ne3) is shortened to Õ(f (n)). We
do not formalise this notation, and use it only to quote results from literature.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-2533
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/lib/bitsizeScript.sml#lines-1008
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/lib/complexityScript.sml#lines-161

98 Complexity Models

With size n and dlog ne off by 1 at most (Theorem 119), we have this corollary:

Corollary 121. The class of polynomial size n is equal to the class of polynomial dlog ne.

` O((size n)k) = O(dlog nek)

For faithfulness in size measure, we shall first derive the bounds on computation steps in terms
of size n. We use the above corollary to convert the complexity class to be based on dlog ne, for
ease of comparison with results in literature.

6.3 Machine Model

To analyse the number of steps in a computation in a formal setting, we need to define precisely
what constitutes a step. The ultimate model of computation is the Turing machine, with each
step corresponding to a basic action of the machine. However, using Turing machines for the
AKS algorithm is too tedious. We therefore turn to a more convenient, but still low-level model
of computation.

In our model, we have a clock ticking off the progress of the computation. The number of
steps is expressed in ticks. We treat the basic arithmetical operations as elementary, and just
define the steps based on the bit-size of the numeric operands. Thus the steps are expressed in
terms of the size function.

These elementary operations are expressed in monadic style. The monad keeps track of the
ticks required for the computation, and returns the result of the computation as value.

Definition 122. Ticks and values of elementary arithmetic operations.

addM x y def
= do tick (max (size x) (size y)); return (x + y) od

subM x y def
= do tick (max (size x) (size y)); return (x − y) od

mulM x y def
= do tick (size x × size y); return (x × y) od

divM x y def
=

if y = 0 then return (x div 0)
else do tick (size x × size y); return (x div y) od

modM x y def
=

if y = 0 then return (x mod 0)
else do tick (size x × size y); return (x mod y) od

For division by 0, the monad just returns expressions like x div 0 and x mod 0, which are
valid expressions of type num in HOL4.2 Note that the ticks for these elementary arithmetic
operations are quite conservative. For example, long multiplication and division are used for the
estimate of their ticks. In addition or subtractiion, we take care to use the maximum of the two
input sizes.

2For divM x y and modM x y, the test y = 0 is needed for a total function in HOL4.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/lib/complexityScript.sml#lines-1388
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countMacroScript.sml#lines-359

§6.4 Subroutines 99

We also define basic list operations, and basic boolean operations:

Definition 123. Ticks and values of elementary list operations.

nullM ls def
= do tick 1; return (ls = []) od

headM ls def
= do tick 1; return (HD ls) od

tailM ls def
= do tick 1; return (TL ls) od

consM x ls def
= do tick 1; return (x::ls) od

Definition 124. Ticks and values of elementary boolean operations.

eqM x y def
= do tick (max (size x) (size y)); return (x = y) od

notM b def
= do tick 1; return (¬b) od

boolM b def
= do tick 1; return (if b then 1 else 0) od

Except for the equality check, these simple operations are 1 tick operations.

6.4 Subroutines

We develop several useful subroutines, in order to express algorithms better:

Definition 125. Subroutines in monadic style.

zeroM n def
= eqM n 0

oneM n def
= eqM 1 n

twiceM n def
= mulM n 2

halfM n def
= divM n 2

parityM n def
= modM n 2

evenM n def
= do z ← parityM n; zeroM z od

sqM n def
= mulM n n

incM n def
= addM n 1

decM n def
= subM n 1

leqM n m def
= do z ← subM n m; zeroM z od

Their values and number of steps are listed in Table 6.2. Other algorithms are built upon these
subroutines for formal correct proof and complexity analysis.

6.5 Integer Logarithm

We shall illustrate our approach to complexity analysis and design of an algorithm by working
through an example: the computation of dlog ne. Given an input n, the value of dlog ne is used
in all the phases of the AKS algorithm.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countMacroScript.sml#lines-429
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countMacroScript.sml#lines-469
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countMacroScript.sml#lines-508

100 Complexity Models

Value Number of Steps
` valueOf (zeroM n) ⇐⇒ n = 0 ` stepsOf (zeroM n) = size n
` valueOf (oneM n) ⇐⇒ n = 1 ` stepsOf (oneM n) = size n
` valueOf (twiceM n) = 2n ` stepsOf (twiceM n) = 2(size n)
` valueOf (halfM n) = n div 2 ` stepsOf (halfM n) = 2(size n)
` valueOf (parityM n) = n mod 2 ` stepsOf (parityM n) = 2(size n)
` valueOf (evenM n) ⇐⇒ EVEN n ` stepsOf (evenM n) = 2(size n) + 1
` valueOf (sqM n) = (n2) ` stepsOf (sqM n) = (size n)2

` valueOf (incM n) = n + 1 ` stepsOf (incM n) = size n
` valueOf (decM n) = n − 1 ` stepsOf (decM n) = size n
` valueOf (leqM n m) ⇐⇒ n ≤ m ` stepsOf (leqM n m) = size (max n m) + size (n − m)

Table 6.2: Subroutines values and number of steps.

6.5.1 Logarithm Computation

By reformulating Theorem 119, we can compute dlog ne:

Theorem 126. Computing dlog ne from size n with adjustment.

` dlog ne = if n = 0 then 0 else size n − if n power_of 2 then 1 else 0

This requires two subroutines: one to compute size n, and one to check if n is a power of 2. We
shall first consider the power check computation.

6.5.2 Power Check

Consider the definition of n power_of b (Definition 53, page 37):

n power_of b def
= ∃ e. n = be

This definition is not computationally effective, but we can check if n is a power of b using
repeated division by base b. This can be expressed in pseudo-code, which is recursive:

` n power_of b ⇐⇒
if n = 0 then b = 0
else if n = 1 then T

else if b = 0 then n ≤ 1
else if b = 1 then n = 1
else if n ≡ 0 (mod b) then n div b power_of b
else F

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/lib/bitsizeScript.sml#lines-1037

§6.5 Integer Logarithm 101

(6.1)

Implementing this in monadic style is straight-forward, using primitives and subroutines:

power_ofM b n def
=

do

n0 ← zeroM n;
n1 ← oneM n;
b0 ← zeroM b;
b1 ← oneM b;
if n0 then return b0

else if n1 then return T

else if b0 then return (n0 ∨ n1)
else if b1 then return n1

else

do

m ← modM n b;
gd ← zeroM m;
if gd then do q ← divM n b; power_ofM b q od

else return F

od

od

Given the resemblance of the implementation and the pseudo-code, we can establish:

` valueOf (power_ofM b n) ⇐⇒ n power_of b
` stepsOf (power_ofM b n) =

2(size n) + 2(size b) +

if n = 0 ∨ n = 1 ∨ b = 0 ∨ b = 1 then 0
else

(size n)(size b) + size (n mod b) +

if n 6≡ 0 (mod b) then 0
else

(size n)(size b) + stepsOf (power_ofM b (n div b))

We would like to obtain an upper bound for stepsOf (power_ofM b n), which at present is only
expressed recursively.

6.5.3 Size Computation

We have seen that the number of steps of the primitives, as well as subroutines in Table 6.2, are
expressed in terms of size n, with respect to an input n. It is ironic that, although size n is used

102 Complexity Models

to express the complexity results, we do need to analyse its own computational complexity.
As a function, size n can be computed recursively (Definition 117):

size n def
= if n ≤ 1 then 1 else 1 + size (n div 2)

By implementing this recursive procedure in monadic style as (sizeM n):

sizeM n def
=

do

b0 ← zeroM n;
b1 ← oneM n;
if b0 ∨ b1 then return 1
else do x ← halfM n; y ← sizeM x; incM y od

od

Again, given the resemblance of the implementation and the pseudo-code, we can prove:

` valueOf (sizeM n) = size n
` stepsOf (sizeM n) =

2(size n) +

if n ≤ 1 then 0
else 2(size n) + size (size n − 1) + stepsOf (sizeM (n div 2))

We would like to extract an upper bound for stepsOf (sizeM n) from this recursive expression.

6.5.4 Recurrence Pattern

The expression for stepsOf (sizeM n) can be recasted in the following form:

` let

body n = if n ≤ 1 then 2 else 4(size n) + size (size n − 1) ;
exit n = (n = 1)

in

∀n.
stepsOf (sizeM n) =

if n = 0 then 2
else body n + if exit n then 0 else stepsOf (sizeM (n div 2))

(6.2)

This shows better the conditions under which stepsOf (sizeM n) recurs with a smaller argument
stepsOf (sizeM (n div 2)). Basically, we identify the recursive argument n, and use a simple
condition (n = 0) on the recursive argument to differentiate between whether recursion will
occur or stop. We would like a simple condition on the recursive argument at the start in order

§6.6 Recurrence Loops 103

to apply the same pattern for all similar patterns of recursion.

If the stopping condition is not being satisfied for the argument n, we treat the subsequent
proceeding in two parts: a body and an exit check before actual recursion. In this case, the price
for a simple stopping condition n = 0 is a slightly complicated expression for body, and the
need for exit, but we have a recurrence pattern that fits well into others. For example, the same
pattern fits into a recasting of stepsOf (power_ofM b n):

` let

body n =
2(size n) + 2(size b) +

if n ≤ 1 ∨ b ≤ 1 then 0
else

(size n)(size b) + size (n mod b) +

if n 6≡ 0 (mod b) then 0 else (size n)(size b) ;
exit n = (n = 1 ∨ b = 0 ∨ b = 1 ∨ n 6≡ 0 (mod b))

in

∀n.
1 < b ⇒

stepsOf (power_ofM b n) =

if n = 0 then 2 + 2(size b)
else

body n + if exit n then 0 else stepsOf (power_ofM b (n div b))

(6.3)

We call these patterns of recurrence of stepsOf recurrence loops. With these examples in
mind, we shall develop a general theory for recurrence loops. Our aim is to solve the recurrence
for an explicit result, or, more commonly, to extract an upper bound for the result.

6.6 Recurrence Loops

We shall use loop x to denote a generic step-counting recurrence in argument x. The predicate
guard x is the stopping condition for recurrence: if guard x is true, the step-count is given by
quit x. If guard x is false, the step-count for each iteration is given by body x. In the simplest
form, we let the step-count to recur immediately with loop (modify x), where modify x changes
the argument x to bring it “closer” to satisfy guard x. Due to the cooperation between guard x
and modify x, the recurrence of loop x will terminate eventually. This is the general form of the
basic loop x recurrecnce:

∀x. loop x = if guard x then quit x else body x + loop (modify x) (6.4)

104 Complexity Models

To solve this recurrence, we first need to define the number of iterations through the loop. This
is readily provided by loop_count, parameterised by guard, modify, and x, which is modelled after
the behaviour of loop x:

Definition 127. The iteration count of loop for a well-defined relation R between guard and
modify.

WF R ∧ (∀x. ¬guard x ⇒ R (modify x) x) ⇒
∀x.

loop_count guard modify x =

if guard x then 0 else (1 + loop_count guard modify (modify x))

To ensure termination, we need a well-founded relation R, i.e., WF R with R (modify x) x
behaves like the “less-than” relation. Moreover, as long as guard x is false, the relation R shall
persist this “less-than” behaviour through successive iterations, so that eventually guard x is true,
and the recursion stops.

Bearing these prerequisites in mind, the counting process is straight-forward. This is simply
storing the recursion on the stack, then upon quit when the condition of guard is met, start the
count from 0, and as the stack unwinds, increment the count.

6.6.1 Basic Loop

The loop_count is useful for solving the recurrence, because we can unfold the recurrence until
guard z is true, where z = modifyn(x) and n = loop_count guard modify x:

loop x
= body x + loop (modify x)
= body x + body (modify x) + loop (modify (modify x))
= body x + body (modify x) + body (modify (modify x)) + loop (modify3(x))
= . . .
= body x + body (modify x) + body (modify (modify x)) + . . . + body z + quit z

This gives the basic theorem for a simple recurrence loop:

Theorem 128. Explicit solution of basic recurrence loop x of Equation (6.4).

` WF R ∧ (∀x. ¬guard x ⇒ R (modify x) x) ∧
(∀x. loop x = if guard x then quit x else body x + loop (modify x)) ⇒
∀x.

(let

n = loop_count guard modify x
in

loop x = quit (modifyn(x)) +

j<n

∑
j=0

(λ j. body (modifyj(x))))

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopScript.sml#lines-844
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopScript.sml#lines-1082

§6.6 Recurrence Loops 105

For application to complexity analysis of algorithms, we identify several types of recurrence
patterns for the step-counting loop x, see Table 6.3. The recurrence loop for list x makes use of
HD x, the head of x, and TL x, the tail of x.

Name Type of argument x guard x modify x condition for WF R
Decreaing Loop (x : num) x = 0 x − b 0 < b for termination
Increasing Loop (x : num) m ≤ x x + b 0 < b to exceed max m
Dividing Loop (x : num) x = 0 x div b 1 < b for termination
Multiplying Loop (x : num) m ≤ x bx 1 < b to exceed max m
List Reduction Loop (x : α poly) x = [] TL x TL x has shorter LENGTH x

Table 6.3: Types of Recurrence Loop
.

6.6.2 General Loop

The basic recurrence loop of Equation (6.4) can be extended in at least two ways. Sometimes
inside an iteration, after completing body x steps, the computation can abort when a condition
exit x is met (see the examples of stepsOf (power_ofM b n) and stepsOf (sizeM n)):

∀x. loop x = if guard x then quit xelse body x + if exit x then 0 else loop (modify x) (6.5)

If the function body x is complicated, its value may be dominated by another function cover x:

∀x. body x ≤ cover x

Thus the general recurrence results for step-counting loop x are:

Theorem 129. A bound for the step-counting loop x with ∀x. x ≤ modify x.

` WF R ∧ (∀x. ¬guard x ⇒ R (modify x) x) ∧ (∀x. x ≤ modify x) ∧
(∀x.

loop x =

if guard x then quit x
else body x + if exit x then 0 else loop (modify x)) ⇒

∀x cover.
(let

n = loop_count guard modify x
in

(∀x. body x ≤ cover x) ∧ (∀x y. x ≤ y ⇒ cover x ≤ cover y) ⇒
loop x ≤ quit (modifyn(x)) + n(cover (modifyn(x))))

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopScript.sml#lines-1188

106 Complexity Models

Theorem 130. A bound for the step-counting loop x with ∀x. modify x ≤ x.

` WF R ∧ (∀x. ¬guard x ⇒ R (modify x) x) ∧ (∀x. modify x ≤ x) ∧
(∀x.

loop x =

if guard x then quit x
else body x + if exit x then 0 else loop (modify x)) ⇒

∀x cover.
(let

n = loop_count guard modify x
in

(∀x. body x ≤ cover x) ∧ (∀x y. x ≤ y ⇒ cover x ≤ cover y) ⇒
loop x ≤ quit (modifyn(x)) + n(cover x))

Theorem 129 is suitable for increasing and multiplying loops. For decreasing and dividing loops,
Theorem 130 is more appropriate. For list reduction loop, the corresponding result is:

Theorem 131. A bound for the step-counting loop x with (x : α poly).

` (∀x. body x ≤ cover x) ∧ (∀x y. x ≤ y ⇒ cover x ≤ cover y) ∧
(∀x.

loop x =

if x = [] then c else body x + if exit x then 0 else loop (TL x)) ⇒
∀x. loop x ≤ c + (cover x)(LENGTH x)

Here (x : α poly) ≤ (y : α poly) denotes that x being a sublist of y.

6.6.3 Extended Loop

The AKS algorithm involves some sophisticated computations with stepsOf having more than
one varying argument. To handle this situation, we extend the basic recurrence loop x to take
two arguments x and y: loop x y.

We use transform x to modify the argument x, keeping modify y for argument y. The simple
loop iteration count loop_count x is extended in HOL4 as:

Definition 132. The iteration count of loop for two arguments x and y.

loop2_count guard modify transform x y def
=

loop_count (λ (x,y). guard x y)
(λ (x,y). (transform x,modify y)) (x,y)

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopScript.sml#lines-1297
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopListScript.sml#lines-770
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopScript.sml#lines-1417

§6.6 Recurrence Loops 107

from which we can show:

WF R ∧ (∀x y. ¬guard x y ⇒ R (transform x,modify y) (x,y)) ⇒
∀x y.

loop2_count guard modify transform x y =

if guard x y then 0
else (1 + loop2_count guard modify transform (transform x) (modify y))

Each recurrence type in Table 6.3 can be paired with

either ∀x. x ≤ transform x or ∀x. transform x ≤ x.

Typical generalisations of the upper bound for loop x (Theorems 129 and 130) become:

Theorem 133. A bound for the step-counting loop x y with ∀x. x ≤ transform x.

` WF R ∧ (∀x y. ¬guard x y ⇒ R (transform x,modify y) (x,y)) ∧
(∀x. x ≤ transform x) ∧ (∀x. modify x ≤ x) ∧
(∀x y.

loop x y =

if guard x y then quit x y
else

body x y + if exit x y then 0 else loop (transform x) (modify y)) ⇒
∀x y cover.

(let

n = loop2_count guard modify transform x y
in

(∀x y. body x y ≤ cover x y) ∧
(∀x1 y1 x2 y2. x1 ≤ x2 ∧ y1 ≤ y2 ⇒ cover x1 y1 ≤ cover x2 y2) ⇒

loop x y ≤
quit (transformn(x)) (modifyn(y)) + n(cover (transformn(x)) y))

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopScript.sml#lines-1675

108 Complexity Models

Theorem 134. A bound for the step-counting loop x y with ∀x. transform x ≤ x.

` WF R ∧ (∀x y. ¬guard x y ⇒ R (transform x,modify y) (x,y)) ∧
(∀x. transform x ≤ x) ∧ (∀x. x ≤ modify x) ∧
(∀x y.

loop x y =

if guard x y then quit x y
else

body x y + if exit x y then 0 else loop (transform x) (modify y)) ⇒
∀x y cover.

(let

n = loop2_count guard modify transform x y
in

(∀x y. body x y ≤ cover x y) ∧
(∀x1 y1 x2 y2. x1 ≤ x2 ∧ y1 ≤ y2 ⇒ cover x1 y1 ≤ cover x2 y2) ⇒

loop x y ≤
quit (transformn(x)) (modifyn(y)) + n(cover x (modifyn(y))))

There are similar results for list recurrences with (x : β poly) and (y : α poly). These are
the main tools to extract an upper bound for the number of steps in our algorithm analysis.

In a similar fashion, we can generalise the theory of recurrence loops further to handle
the situation of a step-counting loop with 3 varying arguments: loop x y z. Luckily, for the
complexity analysis of the AKS algorithm, just 2 varying arguments suffice.

6.7 Complexity Results

Continuing with the dlog ne computation example in Section 6.5, we shall apply the recurrence
theory to obtain bounds on the number of steps of the algorithms involved in the example.

6.7.1 Size Complexity

For the computation of size n using sizeM n, the recurrence of stepsOf (sizeM n), as shown
in Equation (6.2), fits into the pattern of recurrence by dividing loop (see Table 6.3), with the
divisor b = 2. Applying the recurrence loop theory of dividing loop, we find:

` stepsOf (sizeM n) ≤ 7(size n)2

This gives the complexity class:

Theorem 135. Our algorithm (see Section 6.5.3) to compute (size n) belongs to the polynomial-
time class.

` stepsOf ◦ sizeM ∈ O(dlog ne2)
Therefore the pseudocode of size n (see Definition 117) results in a polynomial-time algorithm.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopScript.sml#lines-1816
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countBasicScript.sml#lines-402

§6.7 Complexity Results 109

6.7.2 Power Check Complexity

As for the computation of n power_of b using power_ofM b n, Equation (6.3) shows that the
recurrence of stepsOf (power_ofM b n) is a dividing loop (see Table 6.3) with b as the divisor.
Applying the recurrence theory for dividing loops, we show that:

` stepsOf (power_ofM b n) ≤ 11(size b)(size n)2

Thus obtaining its complexity class:

Theorem 136. Our algorithm (see Section 6.5.2) to compute (n power_of b) belongs to the
polynomial-time class.

` stepsOf ◦ power_ofM b ∈ O(dlog ne2)

Hence the pseudocode of Equation (6.1) for testing whether n is the power of a base b leads to a
polynomial-time algorithm.

6.7.3 Logarithm Complexity

Recall the computation of dlog ne by size n (Theorem 126):

dlog ne = if n = 0 then 0 else size n − if n power_of 2 then 1 else 0 (6.6)

We have the sizeM n subroutine (Section 6.5.3). We can specialise the power_ofM n b subroutine
(Section 6.5.2) to base b = 2, getting:

power_twoM
def
= power_ofM 2

` stepsOf ◦ power_twoM ∈ O(dlog ne2)

Using these subroutines, dlog ne can be implemented in monadic style as logM n:

logM n def
=

do

gd ← zeroM n;
if gd then return 0
else

do

x ← sizeM n;
b ← power_twoM n;
y ← boolM b;
subM x y

od

od

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countBasicScript.sml#lines-720

110 Complexity Models

With the previous results of sizeM n and power_twoM n‘, we have:

` valueOf (logM n) = dlog ne
` stepsOf (logM n) ≤ 28(size n)2

This leads directly to its complexity class:

Theorem 137. Our computation of dlog ne by Equation (6.6) is polynomial-time.

` stepsOf ◦ logM ∈ O(dlog ne2)

Scripts For the formalisation of recurrence theory, refer to algorithm/loop. It depends
on library scripts in algorithm/lib, treating bit-size and the big-O notation. The complex-
ity analysis of dlog ne is given in aks/machine/countBasic.

6.8 Summary

For a formal study of computational complexity of algorithms, our starting point is a machine
with only elementary operations. Each computation is expressed in monadic style, relying on the
binding of Writer monads to count the number of steps. Our complexity measure is based on the
length of the binary representation of a number. We build subroutines, and implement recursive
algorithms using subroutines. In order to count the number of steps in recursive algorithms
modelled upon recursive definitions, we develop a theory of recurrence loop counts for some
typical loop patterns. The theory deals with the recurrence equation for the number of steps with
one or more varying parameters, and extracts an upper bound. With all necessary tools at hand,
we are ready to investigate the computational complexity of the AKS algorithms.

6.9 Remarks

Note that our complexity analysis is based on bounds on the number of steps, rather than relying
on composition of complexity classes of subroutines. This has certain advantages. For example,
consider the deterministic primality test by trial division looking for a factor:

` prime n ⇐⇒ 1 < n ∧ ∀ q. 1 < q ∧ q ≤ SQRT n ⇒ q 6 | n (6.7)

This test for prime n can be implemented in monadic style as primeM n. Since our loop recurrence
can provide estimates for either upper bound or lower bound, we can prove formally that:

` valueOf (primeM n) ⇐⇒ prime n
` prime n ⇒ SQRT n ≤ stepsOf (primeM n)

This confirms the primality test by Equation (6.7) is not a polynomial-time algorithm.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countBasicScript.sml#lines-984
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/lib/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countBasicScript.sml#lines-155

§6.9 Remarks 111

There are other developments in formalisation related to computational complexity. For
example, in a series of papers (Charguéraud and Pottier [2015, 2017]; Guéneau et al. [2018])
the authors described their formal proofs of amortized complexity and asymptotic complexity in
Coq. An informative summary of their work was presented by Armaël Guéneau [2017].

Manuel Eberl [2017] had formalised the Akra-Bazzi theorem in Isabelle/HOL. This is the
master theorem for the complexity analysis of divde-and-conquer algorithms. Applying this
work for imperative programs in Isabelle/HOL was done by Haslbeck and Zhan and Haslbeck
[2018]. Our work does not require such an advanced tool. The AKS algorithm can be im-
plemented with subroutines consisting of while-loops with up to two varying parameters (see
Chapter 7). These can be handled by the simple recurrence theory outlined in this chapter.

The asympotic big-O notation has been formalised in Avigad and Donnelly [2004] using the
Isabelle/HOL proof assistant. The work is base on ordered rings, and is applied to simplification
of expressions, e.g., obtaining the leading term of a serie expansion.

Maximilian Haslbeck and Nipkow [2018] formalised a meta theory in Isabelle/HOL to study
different Hoare logics for reasoning about time bound in the analysis of programs. The idea is to
extend the Hoare triple for program correctness with time credits to reason about the temporal
behaviour of the program. There are merits in this approach, especially the use of separation
logic, which we may pursue in future work.

112 Complexity Models

Chapter 7

AKS Complexity

This chapter delivers the proof about the computational complexity of the AKS algorithm. We
shall implement the AKS algorithm, with all necessary subroutines for each phase. We ensure
that each subroutine is correctly implemented, and apply the recurrence theory to provide an
upper bound for its number of steps. Based on these results, we prove the correctness of our
implementation, and show that it belongs to the class of polynomial-time algorithms.

We may say most aptly that
the Analytical Engine weaves algebraic patterns,

just as the Jacquard loom weaves flowers and leaves.
— Ada Lovelace (1843)1

7.1 AKS Implementation

We shall weave the 3 phases of the AKS algorithm in monadic style (see Definition 3) for an
implementation (compare with the pseudocode in Algorithm 1):

aksM n def
=

do

b ← power_freeM n;
if b then

do

c ← paramM n;
case c of

| nice k . eqM k n
| good k . poly_intro_rangeM n k k
| bad . return F

od

else return F

od

1In Notes on the Analytical Engine, her appendices to an account of Charles Babbage’s 1842 lectures in Turin.

113

114 AKS Complexity

(7.1)

Each phase is implemented as a subroutine, and further subroutines may arise through their
implementations. By analysing the computational complexity of each subroutine, we shall prove
that this AKS implementation is a polynomial-time algorithm.

7.2 Power Free Check

The power free test constitutes Phase 1 of the AKS algorithm. Recall the definition of power_free n
(Definition 59, page 45):

power_free n def
= ∀m e. n = me ⇒ m = n ∧ e = 1

This is not computationally effective, but the power free test (Theorem 61) is:

` power_free n ⇐⇒ 1 < n ∧ ∀ j. 1 < j ∧ j ≤ dlog ne ⇒ (ROOT j n)j 6= n (7.2)

To implement this, we need to develop a few subroutines:

(1) a computation of the limit dlog ne

(2) a computation of ROOT j n, the integer j-th root of n.

(3) a computation of nj, the j-th power of n.

We have developed the logM n subroutine (Section 6.5.1) to compute dlog ne. We shall first
consider the subroutine for exponentiation, i.e., nj, as this will be useful for the later ROOT j n.

7.2.1 Integer Exponentiation

The exponential form can be computed by “repeat squaring”:

` bn = if n = 0 then 1 else (if EVEN n then 1 else b) × (b2)n div 2

We could also check n = 1 and return the base b. This is optimisation, which can complicate the
complexity analysis. Our aim is just to establish the complexity class of an algorithm. We are
not interested to improve its performance, unless the improvement affects the complexity class.2

2We use repeat squaring for integer power precisely for this purpose.

§7.2 Power Free Check 115

Implementing this simple recursive form directly as (expM b n), we have:

` valueOf (expM b n) = bn

` let

body b n =

1 + 5(size n) + (size b)2 + if EVEN n then 0 else (size b)(size (b2)n div 2)
in

∀ b n.
stepsOf (expM b n) =

if n = 0 then 1 else body b n + stepsOf (expM (b2) (n div 2))
` stepsOf (expM b n) ≤ 15(max 1 n)3(size b)2(size n)2

The bound for stepsOf (expM b n) is a result of our theory of recurrence loops with 2 arguments.
Note the factor (max 1 n) in the bound. This is because the recurrence theory initially gives:

` stepsOf (expM b n) ≤ 1 + size n + 5(size n)2 + 8(size n)n3(size b)2

In order to simplify this for later use, either we have to make 0 < n a pre-condition, or simply
replace n by (max 1 n) to cater for the case n = 0. This upper bound shows:

Theorem 138. Computation of an integer raised to exponent n is polynomial-time in n
3
2 dlog ne.

` stepsOf ◦ expM b ∈ O((λ n. n3dlog ne2))

This result is for a fixed base b, and hides the constant (size b)2. When the exponent n is
bounded, but the base b varies, the complexity class becomes O(dlog be2).

7.2.2 Integer Root

Working out the k-th integer root of a number n by hand is well-known before the availability of
logarithmic tables or electronic calculators:

Definition 139. Extraction of the binary k-th root of n, bit by bit.

ROOT k n def
=

if k = 0 then ROOT 0 n
else if n = 0 then 0
else (let m = 2(ROOT k (n div 2k)) in m + if (1 + m)k ≤ n then 1 else 0)

(7.3)

This means m = 2(ROOT k (n div 2k)), which can be computed recursively, is a very good
approximation to ROOT k n. It differs from the true integer root only by 1, thus a simple check
can adjust the value to make it correct.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countPowerScript.sml#lines-695
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-517

116 AKS Complexity

To implement this, we need two subroutines: one to compute n div 2k and another to compute
nk. The subroutine power_ofM b n in Section 6.5.2 can be adapted to compute n div bk by
counting the number of divisions by base b. The subroutine expM n k in Section 7.2.1 computes
nk. With these subroutines, the computation of ROOT k n can be implemented in monadic style
as rootM k n:

` valueOf (rootM k n) = ROOT k n
` stepsOf (rootM k n) ≤ 157(max 1 k)3(size k)2(size n)3

The bound is obtained by recurrence theory of dividing loops with cover for body, leading to:

Theorem 140. Integer root extraction by Equation (7.3) is a polynomial-time algorithm.

` stepsOf ◦ rootM k ∈ O(dlog ne3)

Other algorithms to compute the integer k-th root of a number n are known (for example,
see [von zur Gathen and Gerhard, 2013, Section 9.5]). Newton’s method based on successive
approximation can be adapted to compute ROOT k n.3 Our integer root algorithm is well-suited
for our simple loop-counting method of complexity analysis. Note that an implementation of
integer square root n by bisection has been analysed by Haslbeck and Nipkow [2018] in an
example. This bisection algorithm was formally shown to be of the order O(dlog ne).

7.2.3 Power Free Complexity

We have all the subroutines logM n, rootM k n, and expM n k available. The power free test of
Equation (7.2) can be implemented in monadic style as power_freeM n, with:

` valueOf (power_freeM n) ⇐⇒ power_free n
` stepsOf (power_freeM n) ≤ 207(size n)9

The bound is obtained by recurrence theory of decreasing loop with cover for body, leading to:

Theorem 141. The Power Free Test of Equation (7.2) is a polynomial-time algorithm.

` stepsOf ◦ power_freeM ∈ O(dlog ne9)

The best known power-free test has run-time of Õ(dlog ne3), as given in Modern Computer
Algebra by [von zur Gathen and Gerhard, 2013, Theorem 9.28].

3Newton’s iteration to compute ROOT k n for k > 1 makes use of a sequence mj, where

m0 = n, and mj+1 =
(

k− 1)mj + n div (m(k−1)
j)

)
div k.

This sequence converges to the integer k-th root of n. When k = 2, this corresponds to the square-root iteration
mj+1 = (mj + n div mj) div 2, also known as integer square-root by bisection.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countPowerScript.sml#lines-1667
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countPowerScript.sml#lines-2291

§7.3 AKS Parameter 117

7.3 AKS Parameter

Phase 2 of the AKS algorithm is about searching a parameter k for the input number n. A
nice k is a divisor of n. A good k, useful for Phase 3, is a modulus. The condition is that the
multiplicative order of n in modulus k, orderk(n), is at least dlog ne2.

Before we can implement this parameter search, we need to build subroutines for modular
arithmetic from the primitives of machine model (Section 6.3).

7.3.1 Modular Arithmetic

We develop the library for modular arithmetic for a modulus m:

• Modular addition:

maddM m x y def
= do z ← addM x y; modM z m od

` valueOf (maddM m x y) = (x + y) mod m
` stepsOf (maddM m x y) ≤ 3(size m)(size (max x y))

• Modular subtraction:

msubM m x y def
= do z ← subM x y; modM z m od

` valueOf (msubM m x y) = (x − y) mod m
` stepsOf (msubM m x y) ≤ 2(size m)(size (max x y))

• Modular multiplication:

mmulM m x y def
= do z ← mulM x y; modM z m od

` valueOf (mmulM m x y) = xy mod m
` stepsOf (mmulM m x y) ≤ 3(size m)(size x)(size y)

For modular arithmetic, the number of steps is dominated by the final division to find the re-
mainder. In maddM m x y, it is to find the remainder of x + y, which is estimated to be less than
2(max x y). In msubM m x y, it is to find the remainder of x − y, which is known to be less than
x. This results in a slight difference in stepsOf (maddM m x y) and stepsOf (msubM m x y).

7.3.2 Modular Exponentiation

This is computed using basic modular arithmetic with repeating squaring:

` 1 < m ⇒
bn mod m =

if n = 0 then 1
else (let c = (b2)n div 2 mod m in if EVEN n then c else bc mod m)

118 AKS Complexity

Implementing this in monadic style as mexpM m b n, we formally prove that:

` valueOf (mexpM m b n) = bn mod m
` stepsOf (mexpM m b n) ≤ 17(size n)2(size m)2(size (max b m))2

The bound on steps is achieved by using a cover for the body. From this we obtain:

Theorem 142. Modular exponentiation can be implemented as a polynomial-time algorithm.

` stepsOf ◦ mexpM m b ∈ O(dlog ne2)

7.3.3 Multiplicative Order

Given a number n, and a modulus m, the multiplicative order of n in the ring Zm, denoted by
orderm(n), is given by:

Definition 143. The multiplicative orderm(n) is the least index k such that nk ≡ 1 (mod m).

1 < m ⇒
(orderm(n) = k ⇐⇒

nk ≡ 1 (mod m) ∧ ∀ j. 0 < j ∧ j < (if k = 0 then m else k) ⇒ nj mod m 6= 1)

The least requirement suggests the following basic search, with cutoff c and starting value j, and
compute orderm(n) by searching from 1 onwards to modulus m:

ordz_compute m n def
=

if m = 0 then order0(n)
else if m = 1 then 1
else ordz_seek m n m 1

where

ordz_seek m n c j def
=

if m = 0 ∨ c ≤ j then 0
else if nj ≡ 1 (mod m) then j
else ordz_seek m n c (1 + j)

(7.4)

Note that for a total function, we let m = 0 to give an undefined value order0(n).

Theorem 144. The order search by Equation (7.4) always yields the correct result.

` ordz_compute m n = orderm(n)

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countModuloScript.sml#lines-920
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringInstancesScript.sml#lines-1752
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeOrderScript.sml#lines-758

§7.3 AKS Parameter 119

Proof. The search range from 1 to modulus m is sufficient because orderm(n) ≤ m:

` 0 < m ⇒ (orderm(n) = 0 ⇐⇒ gcd(m, n) 6= 1)
` 0 < m ∧ 0 < orderm(n) ⇒ orderm(n) | ϕ(m)
` ϕ(m) ≤ m

The first two of the listed results show that there is room for optimisation: (i) we could first
check if gcd(m, n) = 1, otherwise orderm(n) = 0; (ii) we could have computed ϕ(m), then only
consider the divisors of ϕ(m). These optimisations, while improving performance, will intro-
duce more subroutines, making the computational analysis more complicated. The sequential
search to compute orderm(n) can be implemented in monadic style, giving:

` valueOf (ordz_seekM m n c j) = ordz_seek m n c j
` valueOf (ordzM m n) = orderm(n)
` stepsOf (ordz_seekM m n c j) ≤

26(max 1 c)(size (max j c))(size m)2(size (max n m))2(size c)3

` stepsOf (ordzM m n) ≤ 29(max 1 m)(size n)(size m)7

The last one shows that:

Theorem 145. Our computation of orderm(n) is a polynomial-time algorithm.

` stepsOf ◦ ordzM m ∈ O(dlog ne)

Note that this is the complexity to compute orderm(n) for a fixed modulus m. When the modulus
m varies, as this will happen in the AKS parameter search, we have to use the bound to see the
full picture, which is O((mdlog me)7).

7.3.4 Search for Parameter

To compute the parameter aks_param n, we use a straight-forward search from k = 2 onwards,
up to some cutoff c, and look for modulus k such that m ≤ orderk(n) for some maximum m.

We first check if k | n, or equivalently, if n ≡ 0 (mod k). If k | n, then n has a factor
k, which is a proper factor if k < n. This factor k certainly tells a lot about the primality of n,
and we label it as a nice k. Otherwise, k 6 | n, and because we are searching by k sequentially,
gcd(k, n) = 1, as any common divisor of k and n, if present, will have already been revealed.
Thus orderk(n) 6= 0, and its computation has been analysed in Section 7.3.3. The only question
is whether m ≤ orderk(n). If it does, we label it as a good k, and make use of this parameter for
Phase 3 of the AKS algorithm. Otherwise, we increment k and repeat this search. If the cutoff c
is reached without having any nice k or good k, we have the situation bad.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countOrderScript.sml#lines-758

120 AKS Complexity

These 3 possible situations are wrapped up as:

param_seek m c n k def
=

if k = 0 then bad

else if c ≤ k then bad

else if n ≡ 0 (mod k) then nice k
else if m ≤ orderk(n) then good k
else param_seek m c n (k + 1)

where

param n def
=

(let

m = dlog ne ;
c = 2 + m5 div 2

in

if m ≤ 1 then nice n else param_seek (m2) c n 2)

(7.5)

Note that, although we do not expect the caller of param_seek m c n k to give k = 0, for a total
function we have to deal with the situation when k = 0, so we just set that to bad. Similarly,
when m is too small the search is trivial, but then the result will just be nice k, not good k.

When param n puts the cutoff c = 2 + dlog ne5 div 2, only nice k or good k can result, due to:

` param n = aks_param n
` param n 6= bad

For details about the existence of parameter, see Section 3.3.2, especially Corollary 66.
The search for the AKS parameter is implemented in monadic style with paramM n calling

param_seekM m c n k with initial values. Our complexity analysis shows:

` valueOf (param_seekM m c n k) = param_seek m c n k
` valueOf (paramM n) = param n
` stepsOf (param_seekM m c n k) ≤

41(max 1 (c − k))(max 1 c)(size (max c k))(size m)(size n)(size c)7

` stepsOf (paramM n) ≤ 1418157969(size n)20

the last one shows this computational complexity result:

Theorem 146. Our AKS parameter search by (7.5) is a polynomial-time algorithm.

` stepsOf ◦ paramM ∈ O(dlog ne20)

The AKS paper analysed the parameter search, giving a run-time estimate of Õ(dlog ne7). The
discrepancy is due to our use of long multiplication in subroutines, see Section 7.5.1.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countParamScript.sml#lines-915

§7.4 Introspective Checks 121

7.4 Introspective Checks

In Phase 3 of the AKS algorithm, Equation (1.1) shows the introspective checks:

(X + c)n ≡ Xn + c (mod n, Xk − 1)

Since only remainders under modulus Xk − 1 are considered, the polynomial computations are
performed in the quotient ring Rn,k = Zn[X]/(Xk − 1), where polynomial equivalence (≡)
becomes equality (=) between remainders (see Section 5.2). In this section, we shall take this
view, and hide away the double moduli (mod n, Xk − 1) notation for brevity.

For the sake of simplifying introspective computations in Rn,k, we shall treat polynomials as
unnormalised remainders with respect to the modulus Xk − 1. We write weak p to represent an
unnormalised polynomial p, in contrast to its normalised counterpart poly p. Each unnormalised
polynomial in Rn,k is represented by a list of coefficients of length k, with the j-th entry being
the j-th coefficient (see Figure 7.1).

c 1 0 0 . . . 0 0 0 . . . 0 0 unnormalised X + c in Rn,k

Figure 7.1: Polynomial as a list of cofficients, with the least significant coefficient on the left.

A polynomial computation in this quotient ring Rn,k will give a result as another unnormalised
polynomial, i.e., another list of coefficients with the same length k. The computation of an
introspective check for a constant c proceed as (see Figure 7.2):

1. Start with a list representing the monomial z = X + c.

2. Prepare the final result with a list representing q = Xn + c in Rn,k.

3. Manipulate the list z to mimic the computation of p = (X + c)n in Rn,k.

4. If the two lists are equal, i.e., p = q, then this constant c passes the introsepctive check.

Table 7.1: Steps to perform introspective computations for unnormalised X + c.

Before implementing the algorithm for introspective checks, we shall develop subroutines for
unnormalised polynomials, tailored to computations in the quotient ring Rn,k.

7.4.1 Polynomial Equality

Two polynomials are equal if their coefficients are the same. Thus the equality check of two
polynomials p and q can be implemented recursively in monadic style as poly_eqM p q, based on

122 AKS Complexity

c 1 0 0 . . . 0 0 0 . . . 0 0 z = X + c

c 0 0 0 . . . 1 0 0 . . . 0 0 q = Xn + c in Rn,k

raise to exponent n p = (X + c)n in Rn,k

Figure 7.2: Polynomial introspective check: p = q in Rn,k = Zn[X]/(Xk − 1).

primitives for lists (see Definition 123):

poly_eqM p q
def
=

do

p0 ← nullM p;
q0 ← nullM q;
if p0 then return q0

else if q0 then return p0

else

do

h1 ← headM p;
t1 ← tailM p;
h2 ← headM q;
t2 ← tailM q;
e0 ← eqM h1 h2;
if e0 then poly_eqM t1 t2 else return F

od

od

Our complexity analysis of this implementation gives these results:

` valueOf (poly_eqM p q) ⇐⇒ p = q

` LENGTH p = k ∧ LENGTH q = k ∧ weak p ∧ weak q ⇒
stepsOf (poly_eqM p q) ≤ 9(max 1 k)(size n)

7.4.2 Polynomial Modular Addition

The unnormalised addition
⊕

n of two polynomials in the quotient ring Rn,k can be achieved by
pairwise addition of coefficients in (mod n):

p ⊕
n q def

= MAP2 (λ x y. (x + y) mod n) p q

§7.4 Introspective Checks 123

Implementing this in monadic style as poly_addM p q, the results are:

` weak p ∧ weak q ∧ LENGTH p = LENGTH q ⇒ valueOf (poly_addM n p q) = p
⊕

n q

` LENGTH p = k ∧ LENGTH q = k ∧ weak p ∧ weak q ⇒
stepsOf (poly_addM n p q) ≤ 12(max 1 k)(size n)2

7.4.3 Polynomial Modular Scalar Multiplication

In the quotient ring Rn,k, to multiply a polynomial by a scalar c, an operation denoted by
⊙

n,
corresponds to multiplying of each coefficient by c in (mod n):

c ⊙n p def
= MAP (λ x. cx mod n) p

Implementing this in monadic style as poly_cmultM c p, the results are:

` weak p ∧ c < n ⇒ valueOf (poly_cmultM n c p) = c ⊙n p

` LENGTH p = k ∧ weak p ⇒
stepsOf (poly_cmultM n c p) ≤ 8(max 1 k)(size (max c n))(size n)

7.4.4 Polynomial Modular Multiplication by X

The multiplication of an unnormalised polynomial of length k by X in Rn,k is equivalent to
shifting the coefficient of Xj to be the coefficient of Xj + 1, for 0 ≤ j < k, with the coefficient of
Xk to become the constant. We call this a turn for the polynomial:

turn p
def
= if p = [] then [] else LAST p::FRONT p

Implementing this in monadic style as poly_turnM p, the results are:

` valueOf (poly_turnM p) = turn p

` LENGTH p = k ⇒ stepsOf (poly_turnM p) ≤ 13(max 1 k)

7.4.5 Polynomial Modular Multiplication

Given an unnormalised polynomial q = h::t, the head h corresponds to the constant term, and
the tail t the quotient of q divided by X (see Figure 7.1). Hence q = t × X + [h], and the long
multiplication of two polynomials p and q is based on this identity, with a partial result r:

p × q + r = p × (t × X + [h]) + r = p × X × t + (h × p + r)

Define a function f (r, p, q) = p × q + r. The above identity can be expressed recursively:

f (r, p, q) = f (h × p + r, turn p, t)

124 AKS Complexity

where turn p is the multiplication of p by X (see Section 7.4.4). Initialising the partial result
r = zerok, a list of zeros with length k, the unnormalised multiplication

⊗
n,k of two polynomials

p and q in Rn,k is defined as:

p
⊗

n,k q
def
= iterate n zerok p q

where

iterate n p1 p2 []
def
= p1

iterate n p1 p2 (h::t) def
= iterate n (h ⊙

n p2
⊕

n p1) (turn p2) t

Implementing this in monadic style as poly_multM p q, the results are:

` 0 < n ∧ weak p ∧ weak q ∧ q 6= [] ∧ LENGTH p = k ⇒ valueOf (poly_multM n p q) = p
⊗

n,k q

` 0 < n ∧ LENGTH p = k ∧ LENGTH q = k ∧ weak p ∧ weak q ⇒
stepsOf (poly_multM n p q) ≤ 37(max 1 k)2(size n)2

Squaring a polynomial is just a special case of multiplication:

⊗2
n,k p

def
= p

⊗
n,k p

Implementing this in monadic style as poly_sqM p, the results are:

` 0 < n ∧ weak p ∧ p 6= [] ∧ LENGTH p = k ⇒ valueOf (poly_sqM n p) =
⊗2

n,k p

` 0 < n ∧ LENGTH p = k ∧ weak p ⇒ stepsOf (poly_sqM n p) ≤ 37(max 1 k)2(size n)2

7.4.6 Polynomial Modular Exponentiation

Raising an unnormalised polynomial p to exponent j in Rn,k, denoted by p ∆n,k j, is achieved by
repeated use of modular squaring, ⊗2

n,k :

p ∆n,k j def
=

if j = 0 then [1]
else (let q =

⊗2
n,k p ∆n,k (j div 2) in if EVEN j then q else p

⊗
n,k q)

Implementing this in monadic style as poly_expM n p j, the results are:

` 1 < n ∧ weak p ∧ p 6= [] ∧ LENGTH p = k ⇒ valueOf (poly_expM n p j) = p ∆n,k j
` 0 < n ∧ weak p ∧ LENGTH p = k ⇒

stepsOf (poly_expM n p j) ≤ 83(max 1 k)2(size j)2(size n)2

7.4.7 Modular Introspective Checks

In Figure 7.2 we describe the polynomial computation of introspective checks. It is obvious that
the initial z = X + c has the form Xj + c with exponent j = 1. The final q = Xn + c is also of the

§7.4 Introspective Checks 125

form Xj + c, but with exponent j = n mod k, due to:

` 1 < n ∧ 0 < k ⇒ Xn + c mod (n, Xk − 1) = Xn mod k + c

Instead of building the first z and final q individually, we construct the general Xm + c, which
is an unnormalised polynomial in the quotient ring Rn,k, in monadic style by the subroutine
poly_X_exp_addM n k m c. This subroutine takes the input exponent m and computes j = m mod k
internally to put 1 at the j-th coefficient, ensuring the result is in the quotient ring Rn,k. Using
our analysis, the number of steps for (poly_X_exp_addM n k m c) is given by:

` 0 < n ⇒
stepsOf (poly_X_exp_addM n k m c) ≤ 34(max 1 k)(size k)(size m)(size c)(size n)2

The initial z can be built as poly_X_exp_addM n k 1 c, and the final q can be built as
poly_X_exp_addM n k n c. With poly_expM n z n to compute zn in quotient ring Rn,k, the
introspective check of X + c can be put into monadic style as poly_introM n k c, in accordance
with the steps in Table 7.1:

poly_introM n k c def
=

do

z ← poly_X_exp_addM n k 1 c;
p ← poly_expM n z n;
q ← poly_X_exp_addM n k n c;
poly_eqM p q

od

We have these results by recurrence analysis:

` 1 < n ∧ 1 < k ⇒ (valueOf (poly_introM n k c) ⇐⇒ n
k
./Zn (X + c))

` 0 < n ⇒ stepsOf (poly_introM n k c) ≤ 160(max 1 k)2(size k)(size c)(size n)4

In order to collect all introspective checks over a range of constants c from 1 to a limit s, i.e.,
1 ≤ c ≤ s, we run poly_intro_rangeM n k s recursively with a decreasing s down to 1, and calling

126 AKS Complexity

the subroutine poly_introM n k s:

poly_intro_rangeM n k s def
=

do

c0 ← zeroM s;
if c0 then return T

else

do

b1 ← poly_introM n k s;
if b1 then do j ← decM s; poly_intro_rangeM n k j od

else return F

od

od

with these results by recurrence analysis:

` 1 < n ∧ 1 < k ⇒ (valueOf (poly_intro_rangeM n k s) ⇐⇒ poly_intro_range Zn k n s)
` 0 < n ⇒

stepsOf (poly_intro_rangeM n k s) ≤ 163(max 1 s)(max 1 k)2(size k)(size s)(size n)4

It is remarkable that all the modular polynomial subroutines can be implemented in monadic
style using list primitives, and be simple enough for analysis by our elementary recurrence loop
theory. There is no need to implemenat a general polynomial division algorithm to find the
remainder, due to the special form of the modulus Xk − 1 (see Section 7.4.4). This feature of
the AKS algorithm is very convenient, and is the key to our simplistic implementation.

§7.5 Complexity Analysis 127

7.5 Complexity Analysis

Recall that the AKS algorithm from Definition 3 can be expressed in monadic style:

aksM n def
=

do

b ← power_freeM n;
if b then

do

c ← paramM n;
case c of

| nice k . eqM k n
| good k . poly_intro_rangeM n k k
| bad . return F

od

else return F

od

(7.6)

Careful comparision of this implementaton with aks n definition in Section 3.5 (page 50) shows
a change in the introspective limit:

` aks n ⇐⇒
power_free n ∧
case aks_param n of

| nice k . k = n
| good k . poly_intro_range Zn k n (SQRT ϕ(k))dlog ne
| bad . F

(7.7)

In the definition of aks n, the introspective limit is s = (SQRT ϕ(k))dlog ne. In our aksM n
implementation (7.6), this limit is replaced by k. This is because s ≤ k (Theorem 68), and for
the introspective checks of X + c, a composite n will fail at some c ≤ s (Theorem 73), while a
prime n will pass regardless of the value of c (Theorem 69). By replacing the introspective limit
(SQRT ϕ(k))dlog ne by k, we can skip the analysis of an implementation to compute ϕ(n).

128 AKS Complexity

Indeed, we prove that this change of the introspective limit is valid:

Theorem 147. The introspective limit of the AKS algorithm, as a function of its parameter k
and input n, can be replaced by any value exceeding (SQRT ϕ(k))dlog ne.

` (∀ k. 0 < k ∧ dlog ne2 ≤ orderk(n) ⇒ (SQRT ϕ(k))dlog ne ≤ limit k n) ⇒
(prime n ⇐⇒

power_free n ∧
case aks_param n of

| nice k . k = n
| good k . ∀ c. 0 < c ∧ c ≤ limit k n ⇒ (X + c)n ≡ Xn + c (mod n, Xk − 1)
| bad . F)

Therefore, this modification of the introspective limit keeps the algorithm as a primality test. It
has an impact on the performance of the algorithm, but it simplifies the subsequent complexity
analysis.

With all the required subroutines for each phase ready, we can establish our goal:

Theorem 148. Our AKS implementation is correct, and shows the algorithm is polynomial-
time.

` valueOf (aksM n) ⇐⇒ aks n
` stepsOf ◦ aksM ∈ O(dlog ne21)

Proof. The correctness of the implementation aksM n in (7.6) follows from its resemblence
to the aks n definition in (7.7), and the change of the introspective limit to k is justified by
Theorem 147 due to s ≤ k (Theorem 68). The total number of steps for the AKS algorithm can
be deduced from these results, established previously:

• Phase 1 Power Free Test, from Theorem 141:

` stepsOf ◦ power_freeM ∈ O(dlog ne9)

• Phase 2 Parameter Search, from Theorem 146:

` stepsOf ◦ paramM ∈ O(dlog ne20)

• Phase 3 Introspective Checks, we have:

` 0 < n ⇒
stepsOf (poly_intro_rangeM n k s) ≤ 163(max 1 s)(max 1 k)2(size k)(size s)(size n)4

As explained before , our implementation takes s = k to have poly_intro_rangeM n k k. By
Corollary 66, the AKS parameter search never returns bad in Phase 2. A good k enters

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKScleanScript.sml#lines-1886
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countAKSScript.sml#lines-1331

§7.5 Complexity Analysis 129

Phase 3, with 0 < k < n. With these conditions on s and k, the bound on the number of
steps of poly_intro_rangeM n k s simplifies to:

` s ≤ k ∧ k < n ⇒ stepsOf (poly_intro_rangeM n k s) ≤ 163(max 1 k)3(size n)6

Thus the bound on the number of steps of poly_intro_rangeM n k k becomes:

stepsOf (poly_intro_rangeM n k k) ≤ 163k3(size n)6 (7.8)

The bounds on the parameter k are given by (from Corollary 66):

` 2 < n ∧ param n = nice k ⇒ k ≤ 1 + dlog ne5 div 2
` param n = good k ⇒ k ≤ 1 + dlog ne5 div 2

Substituting this bound for k, we have:

stepsOf (poly_intro_rangeM n k k) ≤ 4075(size n)21. (7.9)

Of the three phases in the algorithm, the number of steps is dominated by the introspective
checks with O((size n)21) in (7.9). Since O(size n) equals O(dlog ne) by Corollary 121, the
result follows.

We have achieved the formalisation of the AKS algorithm. The resulting order O(dlog ne21)
is rather high, when compared to the revised AKS paper showing an order of Õ(dlog ne 21

2) by
similar analysis of each phase. We outline the reason for this discrepancy.

7.5.1 Complexity Review

In the revised AKS paper, the computational complexities for the introspective checks in Phase
3, which dominates all other phases, is Õ(k 3

2 dlog ne3), where the parameter k is estimated to be
O(dlog ne5), giving the final result.

We deduced similarly that Phase 3 has a dominant order O(k3dlog ne6), given in (7.8). Our
exponents are twice of those in the AKS results. This is due to our multiplication subroutines,
both for numbers and polynomials. The AKS results assume fast numerical multiplication of
Õ(size n) for two n-bit numbers, and fast polynomial multiplication of Õ(k(size n)) for two
degree k polynomials with n-bit coefficients. We use long multiplication in both cases, and
our results are O((size n)2) (Definition 122) and O((k(size n))2) (Section 7.4.5), respectively.
Note that both exponents are twice of those derived from fast multiplications. We also have the
parameter k estimated to be O(dlog ne5) (Theorem 65), but the previous results ultimately give
an overall complexity of order O(dlog ne21).

Improvements of the AKS algorithm to order O(dlog ne6), but using Gaussian periods, is
described in [Crandall and Pomerance, 2005, Section 4.5.3]. Based on the AKS idea, but using

130 AKS Complexity

an introspective modulus of Xk − b, leads to a randomized primality test essentially of order
O(dlog ne4), as discussed in [Crandall and Pomerance, 2005, Section 4.5.4].

Scripts The upper bounds for the steps of various subroutines are formulated in scripts located
in the folder aks/machine. Each script analyses the number of steps for a certain class of
subroutines, e.g., parameter search in countParam, polynomials and introspective checks in
countPoly, and AKS computations in countAKS.

7.6 Summary

We formalise “PRIMES is in P”, by proving the correctness of an implemenation of the AKS
algorithm, and establishing its computational complexity in the order of polynomial time. All the
work has been done in the theorem-prover HOL4, backed up by various libraries we developed
for general use in algebraic topics, and simple recurrence loop analysis. We are proud of our
achievement, having formally verified a milestone in primality testing.

7.7 Remarks

The discussion of complexity analysis in the AKS paper occupies just half a page. A careful
analysis of the complexity of the AKS algorithm, including various versions and improvements,
is reported in Brent [2010].

A thorough and readable account of the AKS algorithm, including background, theory and
complexity analysis, is Primality Testing for Beginners by Rempe-Gillen and Waldecker [2014].
This simplified treatment takes a prime parameter k, and replaces the introspective limit by the
parameter k (see Theorem 147).

Improvements of the AKS algorithm by Hendrik W. Lenstra, Jr. and Carl Pomerance, first
published in Lenstra [2002], but updated as late as 2016, lower the effective time bound to
O(dlog ne6). Their method is based on Gaussian periods, which is more advanced than the
theory of finite fields.

We present only a formal implementation of the AKS algorithm for the purpose of analysing
its computational complexity. The implementation can run in HOL4, but only for very small
numbers. Because the introspective checks are independent, they can be carried out in parallel.
An investigation of a parallel implementation of the AKS algorithm is given in Bronder [2006].

Due to the high order Õ(dlog ne 21
2), the AKS algorithm is not a practical primality test.

Many practical primality tests have been formalised, some even using theories of rings and finite
fields, overlapping our work.

The formalisation of Lehmer’s primality criterion by Simon Wimmer [2013] in Isabelle/HOL
was based on ideals, ring homomorphisms, module and polynomials with coefficients from a
ring. They included a proof that the multiplicative group of a finite field is cyclic (Theorem 28)
from Euler’s ϕ-function identity (Theorem 58).

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countParamScript.sml#lines-75
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countPolyScript.sml#lines-76
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countAKSScript.sml#lines-209

§7.7 Remarks 131

A formal verification of the Miller-Rabin probabilistic primality test was carried out by Hurd
[2003] in HOL. The work relied on the group structure of modulo arithmetic, both addition and
multiplication, in a prime modulus. Although there was no explicit mention of fields, the two
groups are the main components of the finite field Zp for prime p. A proof of the cyclic nature
of the multiplicative group of Zp (Theorem 28) was given.

In Coq, Théry and Hanrot delivered Primality Proving with Elliptic Curves at TPHOL 2007
(Théry and Hanrot [2007]). They formalised elliptic curves defined over a field, and Théry
[2007] proved the group structure for “addition” of rational points on elliptic curves. The proof
made use of basic properties polynomials with coefficients from a ring. Their subsequent work
was based on the group law, and using prime certificates to derive a checker for elliptic curve
certificates.

It is worth mentioning that Pepin’s test for the primality of Fermat numbers was formalized
by Fujisawa et al. [1998] in Mizar. Their work was purely number-theoretic, but did involve the
role of order (see Section 2.2) for the invertibles in Zn.

132 AKS Complexity

Chapter 8

Conclusion

This conclusion examines the development of our work in formalising the AKS algorithm. We
step back and take a look at what paths have been taken, what alternate paths are possible, and
what lies ahead in our direction.

We shall not cease from exploration,
and the end of all our exploring

will be to arrive where we started
and know the place for the first time.

— Thomas Stearns Eliot (1942)1

8.1 Overall Summary

We shall return to the starting dependency diagram (reproduced in Figure 8.1) to see how far we
have explored the wonders of the AKS algorithm.

This thesis begins with the Introduction (Chapter 1), giving an overview. Starting with the 3-
phase description of the AKS algorithm, we discuss the breakthrough by the AKS team, review
the formalisation attempts by the theorem-proving community, formulate our main goals, and
indicate a path for our formalisation. The path consists of 3 parts.

Part 1 is about laying the foundation for the AKS algorithm, with two chapters.
Chapter 2 covers the basic abstract algebraic structures essential to develop the concepts

behind the operation of the AKS algorithm. The algebraic structures include monoids, groups,
rings, fields, and integral domains. We go further to discuss finite fields, showing that it has a
prime characteristic, and a cyclic multiplicative group, giving primitives for a finite field. We
than apply the algebraic results to the ring Zn of remainders modulus n. Useful properties
of this ring are derived, including the Fermat’s Little Theorem. We also prove several results
from Number Theory, including a bound for the consecutive LCM which is useful for the size
estimation of AKS parameter k.

Chapter 3 shows the pseudocode of the AKS algorithm, gives details of the power free test,
and establishes the existence of the AKS parameter k. Then we show that the AKS algorithm is

1From “Little Gidding V”, the fourth and final poem of his Four Quartets.

133

134 Conclusion

Formal definition: aks n Formal implementation: aksM n

Monoids Groups

Rings Fields

Polynomials

Quotient Rings

Number Theory

Finite Fields

Subfields Vector Spaces

Irreducibles Minimal Poly.

Existence Uniqueness

Cyclotomic Factors

Machine Model

Recurrence
Loops

Example:
logM n

power_free n

aks_param n

poly_intro_range Zn k n s

`prime n ⇒ aks n

poly_intro_range Zp k n s

`aks n ⇒ prime n

Introspective
Relation:

n k
./ X + c

N P

Mk Qh

Proof

power_freeM n

paramM n

poly_intro_rangeM n k s

aksM n: analysis

`prime n ⇐⇒ aks n
` valueOf (aksM n) ⇐⇒ aks n
` stepsOf ◦ aksM ∈ O(dlog ne21)

Ch 1: Introduction

Ch 2: Basic Algebra

Ch 3: AKS Algorithm

Ch 4: Advanced Algebra

Ch 5: AKS Main Theorem

Ch 6: Complexity Models

Ch 7: AKS Complexity

Ch 8: Conclusion

k

pFLTLCM bound
h

1 1

2
2

3

3

PHP

Figure 8.1: Dependency Diagram of Section 1.6, page 10.

§8.2 Formalisation Issues 135

indeed a primality test: it is easy to show that a prime must pass the tests of AKS, but to show the
other direction requires shifting the introspective checks from the ring Zn to a field Zp, where
p is a special prime factor of n. This prepares for the AKS Main Theorem, which is formulated
but not proved.

Part 2 is about the correctness proof of the AKS Main Theorem, with two chapters.

Chapter 4 gives the background necessary for the study of the AKS Main Theorem. These
are the advanced properties of finite fields, including subfields, prime fields, irreducibles, and
minimal polynomials. This leads to the existence of finite fields and uniqueness by cardinality
up to isomorphism. This enables an investigation of the cyclotomic factors of Xk − 1, the
polynomial modulus of the AKS algorithm, ultimately providing an irreducible factor h giving
a polynomial quotient field with the property that orderh(X) = k.

Chapter 5 delivers the proof of the AKS Main Theorem, by first identifying sets involving
introspective exponents and polynomials. The finite counterparts of these sets, under modulo k
for exponents and modulo h for polynomials, respectively, lead to a study of their cardinalities.
This in turn leads to a study of the injective maps between these finite sets, showing that if n can
pass all the introspective checks then n must be a power of its prime factor p: otherwise one of
the injective maps would violate the Pigeonhole principle. This conclusion by the AKS Main
Theorem, together with the power free test in phase 1 and the existence of parameter from phase
2, implies that n = p.

Part 3 is about the computational complexity of the AKS algorithm, with two chapters.

Chapter 6 develops our tools: a machine model and a theory of recurrence. The machine
model is based on a writer monad, to keep track of computations and accumulating step counts.
We state the properties of the primitives for our machine: elementary arithmetic, simple boolean
tests, and basic list operators. We build subroutines, and begin counting the number of steps
for each. We note the patterns of recurrence in step counting of loops, and devise a simple
recurrence theory to give upper bounds for the step counts.

Chpater 7 applies the techniques developed in Chapter 6 to analyse the AKS algorithm.
We code each phase in monadic style as subroutines, and weave the subroutines together as an
implementation of the AKS algorithm. We prove that the implementation accurately executes
the AKS algorithm, and for an input n, the number of steps is bounded as O(dlog ne21).

This Conclusion (Chapter 8) conveys the final verdict: through our mechanisation of the
AKS algorithm, “PRIMES is in P” is formally verified.

8.2 Formalisation Issues

Along the paths we have taken, we strive for elementary approaches and simple methods. We
make choices, and encounter various issues about formalisation.

136 Conclusion

8.2.1 Simple Numbers

In this formalisation work, we use only natural numbers, avoiding any use of integers, rationals,
real numbers and complex numbers. We make this choice despite the fact that HOL4 has well-
established libraries beyond the basic natural numbers. The initial reason is to keep our work
simple, but in the end it keeps our work elementary. There are two examples:

• No Prime Number Theorem.

We establish the consecutive LCM bound in the existence proof of parameter k by the
Leibniz Denominator Triangle (Section 2.7.4, Theorem 52). As noted in the remarks in
Section 3.9, this result is equivalent to a weak form of the Prime Number Theorem (PNT).
At the beginning of this work, we were not aware of this alternative. We had plans to
either rework the formalisation of PNT 2 in HOL4, or just incorporate the consecutive
LCM bound as a lemma, as was done in the AKS paper. The second choice will be
unsatisfactory from a completeness point of view, but the first choice will suggest using
the real libraries of HOL4. Our desire to use only natural numbers prompted us to look for
an elementary approach to prove the consecutive LCM bound. That we eventually found
the proof via the Leibniz Denominator Triangle is a big relief.

• No use of calculus.

Besides the episode of the consecutive LCM bound just mentioned, there is one occasion
where we almost have to use calculus: to show that Xk − 1 has no repeated roots. This
involves the idea of a derivative, treating Xk − 1 as a function in X. After consultating
the literature (e.g., Lidl and Niederreiter [1986]), we found the use of formal deriviative
of polynomials to solve this problem.

However, there are consequences for our insistence on using only natural numbers. Some of our
theorems cannot be formulated in full generality:

• Although our theories of algebraic structures are formulated with a generic type α, either
finite or infinite, we only work with finite instances of these structures. For example, we
only proved that Zn is a ring for n > 0 (Theorem 30). Since we do not use integers,
rationals, real or complex numbers, we lack the ring Z, and the fields Q, R, and C. The
multiplicative group of a field is cyclic, but we can prove only the version for finite fields
(Theorem 28). Without rationals, this is beyond our reach: the prime subfield of a field
with characteristic 0 is isomorphic to Q. The finite field version is proved (Theorem 85).

• The complex field C has elements of every order, by the primitive complex roots of the
cyclotomic equation. In a finite field, the order of elements are restricted (Theorem 27).
This restriction is reflected in our formalisation of the cyclotomic polynomials, which is
different from the textbook approach. See Section 4.4.1 for a thorough discussion.

2The Prime Number Theorem has been formalised by Avigad et al. in Isabelle Avigad et al. [2007] and independently
by John Harrison in HOL Light Harrison [2009].

§8.2 Formalisation Issues 137

8.2.2 Simple Methods

Generally, if there are several approaches to formalise a topic, we choose the simplest one.
Once an approach is committed but an obstacle appears, there is a dilemma: either abandon the
approach and start over, or endure and find a way out to the very end. Yet the simple methods
often keep our work elementary, as these examples show:

• Algebraic structures as records.

In Section 2.1, we have described our formulation of the hierarchy of algebraic structures
in HOL4. Our approach is based on records, e.g., G.carrier denotes the set of elements in a
group G. This is different from other group definitions already in HOL4 examples3 using
an ordered pair of a set G and a binary operator (×).

Using records is convenient because HOL4 has a parsing/printing mechanism that allows
additional functions to appear as if they are additional record fields. Indeed, we use this
mechanism to give the group record a .inv field for the inverse of an element.

So we cannot use the existing HOL4 libraries. We certainly cannot use algebra libraries
from another theorem prover. Our work is to be done with minimal support, which means
building a lot of libraries, especially algebraic ones, for this project from ground up. This
approach has an advantage: our self-developed libraries are well-tuned for this project.
We can keep reusing our own theorems, or polish our theorems to maximize reusability.

• Polynomial as lists.

Polynomials consist of coefficients (Section 2.5, (2.1)), but theorems about polynomials
are independent of the underlying representation. For simplicity, we just use a list of
coefficients to represent a polynomial, since there is a standard list library in HOL4. This
works fine until we come to define the degree of a polynomial. The constants, which are
singletons, have degree 0. The zero polynomial 0, represented by the empty list [], shall
have degree −1. Since we are not using integers (see Section 8.2.1), we define the degree
of 0 to be 0. The upshot is that for polynomial division in our library, a constant cannot be
a divisor, as the remainder 0 does not have a degree strictly less than that of the divisor.

Taking polynomials as lists means polynomial operations are defined recursively on lists.
These definitions look at the head and tail of a list, which is a very local view, as oppose
to the global view of a polynomial as a map of index to coefficients. As a result, it is a
chore to prove polynomial addition and multiplication are commutative and associative.
Moreover, keeping the intermediate polynomials always normalised is such a headache
that we end up with first defining these operations over unnormalised polynomials, then
normalise the final result.

We thought the library of unnormalised polynomials should be hidden once the library
of normalised polynomials is in full use, building theories of polynomial division, factors

3Joe Hurd et al. [2006] formalised elliptic curve cryptography based on a group structure in HOL.

138 Conclusion

and roots. It was a real surprise to find that the unnormalised polynomials are useful
when implementing the introspective checks for the AKS algorithm (see Section 7.4).
The list representation actually simplifies the implementation and analysis of polynomial
algorithms, since the recursive nature of lists fits well with our recurrence loop pattern
(see Table 6.3).

• Complexity analysis by loops.

The analysis of the complexity of algorithms often lead to recurrence equations. There
are many techniques to solve or extract bounds from such recurrences (see the remarks
in Section 6.9), e.g., the Akra-Bazzi theorem formalised by Manuel Eberl [2017]. We
use none of them in Section 6.6. To estimate an upper bound on the number of steps, we
just count the number of iterations in the recurrence loop, and multiply by the number
of steps of the most time-consuming iteration (Theorems 129 and 129). As a result, our
complexity results for various algorithms are far from the best.

Our simple recurrence theory of loops means we are really restrictive in the choice of
subroutines to use in a formal implementation of the AKS algorithm for analysis. There
is no Euclidean algorithm to compute the greatest commond divisor. There is also no fast
multiplication, and no Newton’s method for root extraction.

We emphasize that optimisation for performance is never our goal. Our aim is just to
establish “PRIMES is in P”, not the best algorithm for “PRIMES is in P”. In fact, most of
our algorithm implementations are plainly unoptimised. For example, in Section 7.2.1 our
computation of bn only checks b0 = 1 for exit, not bothering also checking b1 = b. This is
not because we are lazy, but because a single equality-exit check fits well with our simple
theory of recurrence loop (refer to guard x in Table 6.3).

8.2.3 Simple Types

We work within the simple types of the theorem prover HOL4. Every construct in a typed
system has a type. This works fine to keep statements about constructs to make sense, but it
causes difficulties during our formalisation of finite fields (Chapter 4). We find it hard to use
extension field as freely as we would like. This point has been fully discussed in Section 4.3.3.
This is not a weakness of HOL4, as this will happen for any typed system.

In traditional mathematics, the idea of the type of an extension field is very fluid. Take an
example from the “Bible”4: Finite Fields by Lidl and Niederreiter [1997]. In section 2.2, the
heading says, “Roots of irreducible polynomials”, but a polynomial with a root is reducible. Of
course, the Bible is serious. The irreducible ipoly h with coefficients from a field F has no root,
but it forms a quotient field E = F [X]/(h), and it is in this extension field E that the irreducible
has a root.

However, for a typed system, the quotient field E and the original field F have different
types. The irreducible h has only one type, so it cannot be a polynomial over both systems. The

4As referred to by an MAA reviewer, see https://www.maa.org/press/maa-reviews/lectures-on-finite-fields.

https://www.maa.org/press/maa-reviews/lectures-on-finite-fields

§8.3 Alternative Tactics 139

coefficients of h has to be lifted from F to E (each element in F becomes a constant in E), and
it is this lifted version of h that has a root in E . One can thus appreciate the trouble in a typed
system to straighten everything out.

We avoid these issues by sticking to a field/subfield pair, because both field and subfield
are of the same type, and share the same operations: (+) and (×). In the Bible, section 1.4
effectively says “F is called a subfield of E , and E is called an extension of F”. There is a subtle
difference for a typed system, which is carefully delineated in Section 4.3.4. Our resolution is
awkward, but accurate, as shown in the statement of Theorem 90 about the existence of finite
fields of an infinite type.

There is a flip side to this. Every finite field textbook reads like the Bible.5 Because we are
seeking an alternate route to formalise the classification theorems of finite fields, it is hard to find
resources not following the Bible. In the end, we manage to complete our work on Chapter 4 by
understanding the ideas in the lecture notes of Belk [2016].

8.3 Alternative Tactics

During our formalisation work, there are good times and bad times. We can forge ahead when
the supporting libraries are in good order. When we are blocked, we try alternate paths. Some
paths we have taken, some we trace but return empty-handed, and some we could have taken if
we have time. In hindsight, even the failed attempts suggest the correct direction.

8.3.1 On Finite Fields

During the formalisation of finite fields leading to their classification (Chapter 4), we have
pointed out (Section 8.2.3) that, due to type issues, we use a field/subfield pair instead of field
extensions. The following is a list of topics along this less familiar path:

• Subfield elements and polynomials.

Given a field/subfield pair S 4 F , a subfield polynomial polyS h is a polynomial h with all
its coefficients in the subfield S . For example, the minimal polynomial ma of an element
a ∈ F is a subfield polynomial (Section 4.3.1). The Frobenius map takes a field element x
to x|S|. A field element is in the subfield if and only if it is fixed by the Frobenius map:

` FiniteField F ⇒ ∀S . S 4 F ⇒ ∀x. x ∈ F ⇒ (x ∈ S ⇐⇒ x|S| = x)

This is the basis of the following, to check if a field polynomial is a subfield polynomial:

` FiniteField F ⇒ ∀S . S 4 F ⇒ ∀h. poly h ⇒ (polyS h ⇐⇒ h|S| = hJX|S|K)

We use the last criterion to establish the fact that the cyclotomic polynomials Φn have
integer coefficients (Section 4.4).

5Moreover, raising questions on finite fields on a math forum usually gets the answer, “refer to the Bible”.

140 Conclusion

• Conjugates and minimal polynomials.

With respect to a field/subfield pair S 4 F , the successive images of a field element under
the Frobenius map are its conjugates. The set of all conjugates of a field element a is
denoted by ConjS a:

ConjS a def
= { a|S|

n | n ∈ U (:num) }

The minimal polynomial ma of an element a is a product of its conjugate factors:

` FiniteField F ∧ S 4 F ⇒ ∀ a. a ∈ F ⇒ ma = ∏ { X − c × 1 | c ∈ ConjS a }

Many properties of the minimal polynomial of a finite field element, e.g., those given in
Section 4.3.1, are established through this expression for the minimal polynomial.

• Polynomials of special forms.

In Chapter 4, the equations (4.1), (4.2) and (4.4) are not isolated results. They are deduc-
tions from a study of polynomials of special forms: Xn − X and Xn − 1. For example, a
polynomial of the first form with exponent |F|d has all monic irreducibles of degree d as
factors:

` FiniteField F ⇒ ∀h. monic h ∧ ipoly h ⇒ h | X|F|
deg h

− X

and polynomials of the second form have an interesting divisibility condition depending
only on their exponents when the coefficients come from a non-trivial ring:

` Ring R ∧ 1 6= 0 ⇒ ∀n m. Xn − 1 | Xm − 1 ⇐⇒ n | m

This result provide a proof 6 to establish the classification of all subfields of a finite field:

` FiniteField F ⇒ ∀n. (∃S . S 4 F ∧ deg(S) = n) ⇐⇒ n | deg(F)

8.3.2 On Algebra

Finite fields are at the top of the hierarchy of algebraic structures (Section 2.1) in our library.
Besides the change to field/subfield perspective in Section 8.3.1, there are other meanders that
we go through to work out the whole hierarchy. We shall give a few examples.

• Cyclic Multiplicative Group.

Based on the properties of orders of an element in a field (Theorem 27), and an identity of
the Euler ϕ-function (Theorem 58), we have proved that the multiplicative group of finite
field is cyclic (Theorem 28). At first we cannot show the Euler ϕ-function identity, so we
get this result by another route. The proof 7 is based on the properties of a finite abelian
group, which is the case for F ∗ of a finite field.

6Such a proof is given in [McEliece, 1987, Theorem 6.6], or [Ireland and Rosen, 1990, Proposition 7.1.5].
7Such a proof is given in [Justesen and Høholdt, 2004, Theorem 2.1.2].

§8.3 Alternative Tactics 141

Let G be a finite abelian group. An element a ∈ G has an order, since the sequence
a, a2, a3, . . . must repeat. Of all the order of elements in G, the maximum is called the
maximal order of the finite group, denoted by maximal_order G. We can show that the
order of any group element must divide the maximal order:

` FiniteAbelianGroup G ⇒ ∀x. x ∈ G ⇒ orderG(x) | maximal_order G

Combining this result with the fact that a nonzero polynomial with coefficients from a
field has the number of its roots bounded by its degree (Theorem 25), the maximal order
must be equal to the cardinality of the group carrier G. Therefore, in a finite field F ,
the element with the maximal order in its multiplicative group F ∗ is a generator, giving
cyclic F ∗.

• Ideals, Quotient Rings and Fields.

We have briefly mentioned these entities in Section 4.2. We develope a whole theory
around these concepts, and establish some useful results. For example, denoting a ring
and an ideal pair by I � R, we prove that the quotient ringR div I is indeed a ring:

` Ring R ∧ I � R ⇒ Ring (R div I)

We define EuclideanRing R f for a ring R equipped with a norm function f , so that both
the quotient and remainder of division can be determined through the norm. We also
define PrincipalIdealRing R for a ring R where every ideal is generated by a ring element.
We prove that:

` EuclideanRing R f ⇒ PrincipalIdealRing R

Let R ' f S denote that rings R and S have a homomorphism f . Then the kernel of f
is an ideal ofR:

` R ' f S ⇒ kernel f R S � R

We also define the notion of a maximal ideal:

maximal R I def
= I � R ∧ ∀J . I � J ∧ J � R ⇒ I = J ∨ J = R

and prove that a quotient ring is a field if and only if the ideal is maximal:

` Ring R ⇒ ∀I . I � R ∧ Field (R div I) ⇐⇒ I 6= R ∧ maximal R I

This result is the basis of our original proof 8 of Theorem 81: the quotient ring by an
irreducible is a quotient field because the ideal by an irreducible is maximal.

• Finite Field Isomorphism.

Our first formalisation of the uniqueness of finite field (Theorem 88) is to make an effort to

8Our proof follows the approach given in [Herstein, 1996, Theorem 4.5.11].

142 Conclusion

construct an explicit isomorphism between two finite fields of equal cardinality. Although
the explicit isomorphic map is clumsy to express, it is essentially the chain of isomorphic
maps (4.3) given before the end of the proof given on page 65.

8.3.3 On Combinatorics

There are several occasions where we need some counting results for our theorems. We only use
bijection between finite sets and the rudimentary product rule. We could have develop a library
for combinatorics, but we are able to work around in each case.

• Möbius Inversion

In Section 4.2.1, we prove the existence of monic irreducible polynomials of any positive
degree Theorem 82 by a counting argument. Most textbooks9 arrive at the same result by
another route. After deducing Equation (4.1), the usual method is to equate the polynomial
degree on the left with the sum of counts of monic irreducibles on the right. By applying
Möbius inversion, one can extract the individual monic irreducibles counts, and show that
these counts are nonzero. Our proof avoids the use of Möbius inversion formula.

Note that Möbius inversion had been formalised, e.g., by Asperti and Armentano [2008].
In that paper, the authors offered a proof of an identity for Euler’s ϕ-function

∑
d | n

ϕ(d) = n

based on Möbius inversion. We use instead a counting argument (Theorem 58, page 39).

• Counting Monomial Products

In Section 5.5, when estimating a lower bound for the cardinality of Qh (Theorem 109),
we would like to count the number of monomial products with the following form:

Xe0(X + 1)e1 . . . (X + c)ec . . . (X + s)es

where the exponents are nonnegative, satisfying:

e0 + e1 + · · ·+ ec · · ·+ es < |Mk|

Using the technique “stars and bars”10, the exact count is:
(
|Mk| + s
|Mk| − 1

)
. In this case, we

did not attempt to obtain this exact count, as the advantage is minimal (see the remarks in
Section 5.9).

The theory of combinatorics is an active area of research, with many interesting results and
applications. Some results depend on the theory of finite partially ordered sets (posets), an
9See, e.g., Lidl and Niederreiter [1986], Ireland and Rosen [1990], and McEliece [1987].
10Popularized by William Feller in his classic book on probability (Feller [1968]).

§8.4 Future Work 143

algebraic structure that could be developed from our abstract algebra library. Refer to Singh
[2017] for recent works on formalisation of combinatorics in Coq.

8.4 Future Work

As one session draws to a close, another begins. This thesis presents a lot of ideas and view-
points, and covers a lot of ground. There are more topics for exploration. We list 3 possible
directions.

8.4.1 AKS Variations

There is a good discussion of AKS improvements in Bedodi [2010], including Berrizbeitia’s
Algorithms. The idea is simple, and interesting.

It is clear there is only one even prime, and Euclid11 showed that there are infinitely many
odd primes. The AKS algorithm is effectively testing if an odd n is prime, since any even n will
return a factor 2 at Phase 2 (see pseduocode in Algorithm 1).

Odd numbers have only two forms: either 4n + 1 or 4n + 3, for n = 0, 1, 2, 3, Since
there are an infinite number of primes in an arithmetic progression by Dirichlet’s theorem,12

the primes for each form is infinite. Only a prime of the first form can be the hypotenuse of
an integer right triangle, by Fermat’s Two Square Theorem.13 Thus primes of the first form are
called Pythagorean primes, and primes of the second form are non-Pythagorean primes.

Due to additional properties for Pythagorean and non-Pythagorean primes, adapting the AKS
algorithm to these number families results in some novel modifications. These have investigated
by Pedro Berrizbeitia [2005], producing two versions of AKS-like primality tests: one for each
form of odd numbers.

A formalisation of Berrizbeitia’s Algorithms is possible by extending our existing library.
There are other ideas from Berrizbeitia et al. [2004] concerning primality tests, so there should
be plenty of venues to explore in this area.

8.4.2 Complexity Improvements

In Section 7.5.1, we review the discrepancy between our AKS complexity order O(dlog ne21)
with Õ(dlog ne 21

2) in the AKS paper. To improve our complexity bounds, we might work on the
formalisation fast multiplication. For example, Karatsuba’s polynomial multiplication has been
implemented in Coq by Dénès et al. [2012].

It would be nice if the elementary steps in our machine model (see Section 6.3) could be
implemented in terms of some low-level operations. When this is done, the number of steps in
Definitions 122, 124 and 123 can be derived rather than defined. There are two ways to proceed:

11The product of all prime up to some maximum is even, adding 1 becomes odd.
12Dirichlet’s theorem has been formalised by John Harrison [2010] in HOL Light, and Mario Carneiro [2016] in

Metamath.
13This is #20 in the list of Formalizing 100 Theorems, at http://www.cs.ru.nl/~freek/100/.

http://www.cs.ru.nl/~freek/100/

144 Conclusion

• Using Machine Codes

It is possible to define instruction sets for execution, memory cells for storage, and use
separation logic to formally verify machine-code programs. Research work in this area
has been carried out by Myreen [2008], with a published book Myreen [2012].

• Using a Turing Machine

Turing Machines are the definitive models of computation, but it is a challenge to code
simple arithmetic algorithms for a Turing Machine. Nevertheless, formalisation work on
Turing Machines being done; one by Asperti and Ricciotti [2012] in Matita Theorem
Prover, and another using separation logic by Xu et al. [2013] in Isabelle/HOL.

We might also borrow some ideas from Asperti [2013], using a reverse methodological approach
to obtain a formal treatment of Complexity Theory at a comfortable level of abstraction and
logical rigor.

8.4.3 Library Applications

Every formalisation project takes time to accomplish, and the time and effort being spent is
crystallised as the development of an extensive collection of supporting libraries. Besides being
utilised for the original project, these libraries often find application in other projects.

Our library structure is documented in Section A.2:

• the aks folder (Section A.2.1) for the AKS development,

• the algebra folder (Section A.2.2) for our algebra library, and

• the algorithm folder (Section A.2.3) for complexity analysis.

The AKS development have been thoroughly discussed in Chapters 3 and 5. The rudimentary
algorithm library can be enhanced as suggested in Section 8.4.2.

Our algebra libraries contain enhancement to existing HOL libraries for numbers, sets, and
lists, as well as the hierarchy of algebraic structures introduced in Chapter 2. Part of the HOL
improvements have been incorported to current HOL releases, and the algebraic structures have
been extended to include finite fields, as described in Chapter 4, to support the improvements in
our AKS work (see Section 5.1). Our group library include subgroups, normal subgroups, group
homomorphisms, and group actions. We have proved the Orbit-Stabilizer Theorem, which has
been used to formalise a necklace proof of Fermat’s Little Theorem (see Chan and Norrish
[2013]).

Algebra libraries in other theorem provers (see Section 4.6) have been the foundation of
further formalisation of algebraic topics. For example, the formal construction of real algebraic
numbers in Coq by Cyril Cohen [2012], and the formalisation in Isabelle/HOL of Berlekamp-
Zassenhaus factorization by Jose Divasón et al. [2017]. In Mizar, there is work on commutative
algebra by Rudnicki et al. [2001], and lattice theory by Järvinen [2007].

§8.5 Afterword 145

We might make use of our abstract algebra libraries and do further researches on finite fields.
Already in an undergraduate research project, a student has made use of our group library to
prove the Correspondence Theorem.14 We could use our algebra library to establish the theory
of Galois Correspondence, thus completing the formalisation of the Fundamental Theorem of
Galois Theory, the current progress of which has been mentioned in Section 4.6.

8.5 Afterword

To formalise is to understand, in detail. De Bruijn challenged us to explain the mathematics to
a machine. Galois reminded us to study in order to seek the truth. We have been pursuing an
understanding of the AKS algorithm from theory to implementation, finding the beauty at heart.

A Milestone

Beauty is truth,
truth beauty.

— John Keats (1819)15

Beauty is in the eye of the beholder, but the following are definitely true:

` prime n ⇐⇒ aks n
` valueOf (aksM n) ⇐⇒ aks n
` stepsOf ◦ aksM ∈ O(dlog ne21)

They have been formalised, with a verification by the theorem-prover HOL4. It is a joy to
witness these results coming out from the theorem-prover with the verdict “goal proved.” The
beauty of formalisation is this: you can always rerun the scripts through the theorem-prover, and
relive the joy and excitement of the first time through.

These results mark a milestone in mechanisation: a formal proof of “PRIMES in P”. In 2006,
the AKS team was awarded the Gödel Prize for their “simple and elementary” 2004 paper of the
AKS algorithm. Now this thesis adds a finishing touch with our elementary formalisation of the
AKS algorithm.

14This is the bijection between the set of all subgroups of group G containing a normal subgroup N , and the set of
all subgroups of the quotient group G div N . The proof is contributed by Yiming Xu.

15From the ending lines of his poem, Ode on a Grecian Urn.

146 Conclusion

Appendix

A.1 Script References

This is a table listing the actual names of theorems in the repository scripts.16 The interactive
scripts have suffix .hol, and the HOL4 scripts have suffix .sml. The location of a script is
described by a folder path. Refer to Section A.2 for the organisation of the folders.

This thesis is prepared under the repository tag phd-thesis-02, and is compiled using
Holmakefile with HOL4 version tag 6711e409.

Location of . . . Script Name
Definition 1 aks/theories/AKSclean aks_def
Theorem 2 aks/theories/AKSclean aks_thm
Definition 3 aks/machine/countAKS aksM_def
Theorem 4 aks/machine/countAKS

aksM_steps_big_O
Definition 5 algebra/monoid/monoid Monoid_def
Definition 6 algebra/group/group

group_def_by_inverse
Definition 7 algebra/ring/ring Ring_def
Definition 8 algebra/field/field Field_def
Definition 9 algebra/monoid/monoidOrder order_alt
Theorem 10 algebra/monoid/monoidOrder

monoid_order_divides_exp
Theorem 11 algebra/monoid/monoidOrder

monoid_order_power_eqn
Definition 12 algebra/group/subgroup Subgroup_def
Theorem 13 algebra/group/subgroup subgroup_thm
Theorem 14 algebra/group/subgroup Lagrange_thm
Theorem 15 algebra/group/groupOrder

generated_group_card
Theorem 16 algebra/group/groupOrder

group_order_divides
Theorem 17 algebra/group/groupOrder

finite_group_Fermat

16Repository location: http://bitbucket.org/jhlchan/hol/src/. Names are hyperlinked to the actual script location.

147

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKScleanScript.sml#lines-745
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKScleanScript.sml#lines-992
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countAKSScript.sml#lines-1047
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countAKSScript.sml#lines-2155
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/monoid/monoidScript.sml#lines-170
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupScript.sml#lines-972
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringScript.sml#lines-358
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/field/fieldScript.sml#lines-511
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/monoid/monoidOrderScript.sml#lines-210
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/monoid/monoidOrderScript.sml#lines-319
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/monoid/monoidOrderScript.sml#lines-429
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/subgroupScript.sml#lines-214
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/subgroupScript.sml#lines-400
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/subgroupScript.sml#lines-957
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupOrderScript.sml#lines-871
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupOrderScript.sml#lines-905
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupOrderScript.sml#lines-922
http://bitbucket.org/jhlchan/hol/src/

148 Conclusion

Definition 18 algebra/ring/ring char_def
Theorem 19 algebra/ring/ringUnit

ring_units_group
Definition 20 algebra/ring/integralDomain

IntegralDomain_def
Theorem 21 algebra/field/field

finite_integral_domain_is_field
Theorem 22 algebra/polynomial/polyFieldModulo

poly_distinct_irreducibles_mod_exp_eq_zero
Theorem 23 algebra/polynomial/polyDivides

poly_root_factor_thm
Lemma 24 algebra/polynomial/polyRoot

poly_roots_count_id
Theorem 25 algebra/polynomial/polyRoot

poly_roots_count
Theorem 26 algebra/field/field

finite_field_char
Theorem 27 algebra/finitefield/ffUnity

field_orders_card
Theorem 28 algebra/finitefield/ffAdvanced

finite_field_mult_group_cyclic
Definition 29 algebra/field/fieldOrder

field_orders_primitive
Theorem 30 algebra/ring/ringInstances ZN_char
Theorem 31 algebra/ring/ringInstances

ZN_to_ZN_ring_homo
Definition 32 algebra/group/groupInstances Estar_alt
Theorem 33 algebra/ring/ringInstances

ZN_coprime_order_divides_phi
Theorem 34 algebra/group/groupInstances

Euler_Fermat_alt
Corollary 35 algebra/group/groupInstances

Fermat_little_eqn
Theorem 36 algebra/lib/binomial

prime_iff_divides_binomials
Corollary 37 algebra/lib/binomial

prime_iff_divides_binomials_alt
Theorem 38 algebra/group/groupInstances

Fermat_little_eqn
Theorem 39 algebra/polynomial/polyBinomial

poly_ZN_freshman_fermat

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringScript.sml#lines-2484
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringUnitScript.sml#lines-144
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/integralDomainScript.sml#lines-135
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/field/fieldScript.sml#lines-2494
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyFieldModuloScript.sml#lines-1321s
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyDividesScript.sml#lines-1902
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyRootScript.sml#lines-1307
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyRootScript.sml#lines-1062
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/field/fieldScript.sml#lines-2974
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffUnityScript.sml#lines-1035
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffAdvancedScript.sml#lines-1342
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/field/fieldOrderScript.sml#lines-601
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringInstancesScript.sml#lines-426
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringInstancesScript.sml#lines-1821
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupInstancesScript.sml#lines-612
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringInstancesScript.sml#lines-1112
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupInstancesScript.sml#lines-777
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupInstancesScript.sml#lines-805
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/binomialScript.sml#lines-714
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/binomialScript.sml#lines-724
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/group/groupInstancesScript.sml#lines-805
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyBinomialScript.sml#lines-1791

§A.1 Script References 149

Theorem 40 algebra/polynomial/polyBinomial
poly_freshman_thm, poly_freshman_thm_sub

Theorem 41 algebra/polynomial/polyBinomial
poly_ZN_prime_identity

Definition 42 algebra/lib/triangle list_lcm_def
Lemma 43 algebra/lib/triangle

list_lcm_lower_bound_alt
Theorem 44 algebra/lib/triangle

list_lcm_nonempty_lower_alt
Theorem 45 algebra/lib/binomial

binomial_horizontal_sum
Definition 46 algebra/lib/triangle leibniz_def
Theorem 47 algebra/lib/triangle

leibniz_horizontal_average_eqn
Theorem 48 algebra/lib/triangle

leibniz_triplet_property
Theorem 49 algebra/lib/triangle

leibniz_triplet_lcm
Definition 50 algebra/lib/triangle

leibniz_vertical, leibniz_up, leibniz_horizontal
Theorem 51 algebra/lib/triangle

leibniz_lcm_property
Theorem 52 algebra/lib/triangle

leibniz_vertical_lcm_lower
Definition 53 algebra/lib/logPower

perfect_power_def
Theorem 54 algebra/lib/logPower

perfect_power_cofactor_alt
Theorem 55 algebra/lib/logPower

perfect_power_condition
Theorem 56 algebra/lib/helperFunction

coprime_factor_coprime
Theorem 57 algebra/ring/ringInstances

ZN_order_gt_1_property
Theorem 58 algebra/lib/Gauss

Gauss_little_thm
Definition 59 algebra/lib/logPower power_free_def
Theorem 60 algebra/lib/logPower

prime_is_power_free
Theorem 61 algebra/lib/logPower

power_free_test_upto_ulog

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyBinomialScript.sml#lines-380
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyBinomialScript.sml#lines-398
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyBinomialScript.sml#lines-1751
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-1440
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-1610
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-1781
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/binomialScript.sml#lines-1047
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-848
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-2295
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-2383
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-2431
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-1878
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-1976
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-2054
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-2759
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/triangleScript.sml#lines-2807
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-1691
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-2078
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-2027
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/helperFunctionScript.sml#lines-2292
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringInstancesScript.sml#lines-1313
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/GaussScript.sml#lines-1503
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-2117
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-2185
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-3314

150 Conclusion

Definition 62 aks/compute/computeParam aks_param_alt
Theorem 63 aks/compute/computeParam aks_param_nice
Theorem 64 aks/compute/computeParam

aks_param_good_coprime_order
Theorem 65 aks/compute/computeParam

ZN_order_modulus_exists_4
Corollary 66 aks/compute/computeParam

aks_param_exists
Theorem 67 aks/compute/computeParam

aks_param_nice_for_prime
Theorem 68 aks/theories/AKSclean

aks_param_good_intro_limit_alt
Theorem 69 aks/theories/AKSintro

ZN_intro_range_by_prime
Theorem 70 algebra/theories/AKSclean aks_thm_1
Theorem 71 aks/theories/AKSshift

ring_homo_intro_range_ZN_to_ZN_X_add_c_alt
Definition 72 aks/theories/AKSclean

aks_criteria_def
Theorem 73 algebra/theories/AKSclean aks_thm_2
Definition 74 algebra/linear/VectorSpace VSpace_def
Theorem 75 algebra/finitefield/ffAdvanced

field_is_vspace_over_subfield
Theorem 76 algebra/finitefield/ffBasic

prime_field_minimal_subfield
Theorem 77 algebra/finitefield/ffAdvanced

finite_field_card_alt
Theorem 78 algebra/finitefield/ffExist

finite_field_card_eq_prime_power
Theorem 79 algebra/field/fieldMap

subfield_char
Theorem 80 algebra/field/fieldInstances

ZN_finite_field
Theorem 81 algebra/polynomial/polyFieldModulo

poly_mod_irreducible_finite_field
Theorem 82 algebra/finitefield/ffMaster

poly_monic_irreducible_exists_alt
Theorem 83 algebra/finitefield/ffExist

finite_field_card_prime_power_exists
Theorem 84 algebra/finitefield/ffConjugate

poly_master_eq_poly_minimal_product_alt

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeParamScript.sml#lines-1887
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/thm:aks-param-niceScript.sml#lines-2251
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeParamScript.sml#lines-2462
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeParamScript.sml#lines-1628
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeParamScript.sml#lines-2015
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeParamScript.sml#lines-2364
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKScleanScript.sml#lines-825
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSintroScript.sml#lines-1056
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/theories/AKScleanScript.sml#lines-915
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSshiftScript.sml#lines-360
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKScleanScript.sml#lines-390
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/theories/AKScleanScript.sml#lines-959
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/linear/VectorSpaceScript.sml#lines-172
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffAdvancedScript.sml#lines-225
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffBasicScript.sml#lines-515
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffAdvancedScript.sml#lines-454
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-412
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/field/fieldMapScript.sml#lines-1427
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/field/fieldInstancesScript.sml#lines-606
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyFieldModuloScript.sml#lines-1673
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffMasterScript.sml#lines-2899
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-541
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffConjugateScript.sml#lines-2458

§A.1 Script References 151

Theorem 85 algebra/finitefield/ffExist
finite_field_isomorphic_ZN_PF_alt

Theorem 86 algebra/finitefield/ffExist
finite_field_prime_field_isomorphic

Theorem 87 algebra/finitefield/ffExtend
poly_mod_ring_by_primitives_element_field_isomorphism

Theorem 88 algebra/finitefield/ffExist
finite_field_eq_card_isomorphic

Lemma 89 algebra/finitefield/ffExist A_LIST_BIJ_A
Theorem 90 algebra/finitefield/ffExist

finite_field_existence
Theorem 91 algebra/polynomial/polyFieldModulo

poly_field_mod_lift_has_root_X_alt
Definition 92 algebra/finitefield/ffCyclo poly_cyclo_alt
Theorem 93 algebra/finitefield/ffUnity

poly_cyclo_deg_eqn
Theorem 94 algebra/finitefield/ffUnity

poly_unity_eq_poly_cyclo_product_alt
Theorem 95 algebra/finitefield/ffExist

poly_unity_eq_poly_prod_image_cyclo_num
Theorem 96 algebra/finitefield/ffExist

poly_unity_special_factor_exists_alt
Definition 97 aks/theories/AKSintro poly_intro_def
Theorem 98 aks/theories/AKSintro

poly_intro_X_add_c_finite_field
Theorem 99 aks/theories/AKSintro

poly_intro_mult
Theorem 100 aks/theories/AKSintro

poly_intro_compose
Definition 101 aks/theories/AKSsets

setN_def, setP_def
Theorem 102 aks/theories/AKSintro

poly_intro_X_add_c_prime_char_3
Corollary 103 aks/theories/AKSsets

setN_has_char_and_cofactor
Theorem 104 aks/theories/AKSsets

modN_card_bounds_better
Theorem 105 algebra/polynomial/polyDivision

poly_mod_eq_divisor
Theorem 106 algebra/polynomial/polyFieldModulo

poly_mod_field_exp_eq_0

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-1797
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-1855
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExtendScript.sml#lines-1484
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-2557
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-344
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-1047
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyFieldModuloScript.sml#lines-3991
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffCycloScript.sml#lines-118
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffUnityScript.sml#lines-1204
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/pathScript.sml#lines-nnn
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-1137
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/finitefield/ffExistScript.sml#lines-3749
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSintroScript.sml#lines-231
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSintroScript.sml#lines-798
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSintroScript.sml#lines-296
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSintroScript.sml#lines-366
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSsetsScript.sml#lines-265
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSsetsScript.sml#lines-420
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSintroScript.sml#lines-1364
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSsetsScript.sml#lines-372
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSsetsScript.sml#lines-854
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyDivisionScript.sml#lines-1399
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/polynomial/polyFieldModuloScript.sml#lines-4279

152 Conclusion

Theorem 107 aks/theories/AKSmaps
setP_poly_modN_divisor_eq

Theorem 108 aks/theories/AKSmaps
reduceP_mod_modP_inj_1

Theorem 109 aks/theories/AKSmaps
modP_card_lower_1

Theorem 110 aks/theories/AKSmaps
modN_card_in_exp_lt_bound_3_alt

Theorem 111 aks/theories/AKSsets
reduceN_element_upper_better

Theorem 112 aks/theories/AKSmaps
setN_mod_eq_gives_modP_roots

Theorem 113 aks/theories/AKSmaps
reduceN_mod_modN_inj_2

Theorem 114 aks/theories/AKSsets
reduceN_card_field

Theorem 115 algebra/theories/AKSclean aks_main_punch
Definition 116 aks/machine/countMonad bind_alt
Definition 117 algorithm/lib/bitsize size_alt
Definition 118 algebra/lib/logPower ulog_def_alt
Theorem 119 algorithm/lib/bitsize

size_by_ulog_alt
Definition 120 algorithm/lib/complexity big_O_def
Corollary 121 algorithm/lib/complexity

big_O_size_eq_big_O_ulog
Definition 122 aks/machine/countMacro

addM_def, subM_def, mulM_def
Definition 123 aks/machine/countMacro

nullM_def, headM_def, tailM_def
Definition 124 aks/machine/countMacro

eqM_def, notM_def, boolM_def
Definition 125 aks/machine/countMacro

zeroM_def, oneM_def
Theorem 126 algorithm/lib/bitsize

ulog_by_size_eqn
Definition 127 algorithm/loop/loop

loop_count_thm
Theorem 128 algorithm/loop/loop

loop_modify_count_eqn_1
Theorem 129 algorithm/loop/loop

loop_rise_count_cover_exit_le

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSmapsScript.sml#lines-414
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSmapsScript.sml#lines-610
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSmapsScript.sml#lines-1522
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSmapsScript.sml#lines-2463
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSsetsScript.sml#lines-1329
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSmapsScript.sml#lines-920
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSmapsScript.sml#lines-1127
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKSsetsScript.sml#lines-1496
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/theories/AKScleanScript.sml#lines-536
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countMonadScript.sml#lines-101
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/lib/bitsizeScript.sml#lines-422
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-2533
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/lib/bitsizeScript.sml#lines-1008
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/lib/complexityScript.sml#lines-161
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/lib/complexityScript.sml#lines-1388
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countMacroScript.sml#lines-359
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countMacroScript.sml#lines-429
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countMacroScript.sml#lines-469
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countMacroScript.sml#lines-508
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/lib/bitsizeScript.sml#lines-1037
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopScript.sml#lines-844
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopScript.sml#lines-1082
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopScript.sml#lines-1188

§A.1 Script References 153

Theorem 130 algorithm/loop/loop
loop_fall_count_cover_exit_le

Theorem 131 algorithm/loop/loopList
loop_list_count_cover_exit_le

Definition 132 algorithm/loop/loop
loop2_count_def

Theorem 133 algorithm/loop/loop
loop2_rise_fall_count_cover_exit_le

Theorem 134 algorithm/loop/loop
loop2_fall_rise_count_cover_exit_le

Theorem 135 aks/machine/countBasic
sizeM_steps_big_O

Theorem 136 aks/machine/countBasic
power_ofM_steps_big_O

Theorem 137 aks/machine/countBasic
ulogM_steps_big_O

Theorem 138 aks/machine/countPower
expM_steps_big_O

Definition 139 algebra/lib/logPower ROOT_EVAL
Theorem 140 aks/machine/countPower

rootM_steps_big_O
Theorem 141 aks/machine/countPower

power_freeM_steps_big_O
Theorem 142 aks/machine/countModulo

mexpM_steps_big_O
Definition 143 algebra/ring/ringInstances

ZN_order_test_4
Theorem 144 aks/compute/computeOrder

ordz_compute_eqn
Theorem 145 aks/machine/countOrder

ordzM_steps_big_O
Theorem 146 aks/machine/countParam

paramM_steps_big_O
Theorem 147 aks/theories/AKSclean

aks_variation_thm
Theorem 148 aks/machine/countAKS

aksM_steps_big_O

Locations of Definition, Lemma, Theorem, and Corollary.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopScript.sml#lines-1297
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopListScript.sml#lines-770
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopScript.sml#lines-1417
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopScript.sml#lines-1675
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/loop/loopScript.sml#lines-1816
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countBasicScript.sml#lines-402
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countBasicScript.sml#lines-720
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countBasicScript.sml#lines-984
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countPowerScript.sml#lines-695
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/lib/logPowerScript.sml#lines-517
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countPowerScript.sml#lines-1667
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countPowerScript.sml#lines-2291
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countModuloScript.sml#lines-920
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/ring/ringInstancesScript.sml#lines-1752
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/compute/computeOrderScript.sml#lines-758
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countOrderScript.sml#lines-788
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countParamScript.sml#lines-915
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/theories/AKScleanScript.sml#lines-1886
https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/machine/countAKSScript.sml#lines-1331

154 Conclusion

A.2 Script Libraries

The repository library is well-organised and well-documented. The following is assembled from
various README files. The proof scripts make up a complete HOL417 development for the
thesis: mechanisation of the AKS Algorithm.

A.2.1 The aks folder

/aks — the theoretical basis and computational aspects of the AKS algorithm.

• /theory — for the theoretical basis of the AKS Main Theorem.

– /AKSintro, introspective relation essential to the AKS proof.

– /AKSshift, shifting introspective relation between rings.

– /AKSsets, sets involved in he AKS proof.

– /AKSmaps, mappings involved in the AKS proof.

– /AKStheorem, the main theorem in the AKS proof.

– /AKSrevised, revise the AKS proof for a general AKS parameter.

– /AKSimproved, improve the bound constants in the AKS proof.

– /AKSclean, a clean rewrite of the AKS proof.

• /compute — for a computational study of the AKS algorithm.

– /computeInteger, computations of dlog ne, the round-up value of log2 n.

– /computeBasic, computations of exponentials, root, powers and integer roots.

– /computeOrder, computation of the modular multiplicative order.

– /computeParam, computation of an AKS parameter.

– /computePoly, polynomial computations with modulus Xk − 1.

– /computeRing, modulo polynomial computations in ring Zn.

– /computeAKS, polynomial checks and all part of the AKS algorithm.

• /machine — for a computational complexity analysis of AKS algorithm.

– /countMonad, a monad to track computational values and counts.

– /countMacro, macro operations as subroutines in monadic style.

– /countBasic, basic arithmetic functions in monadic style.

– /countModulo, modulo arithmetic in monadic style.

17Avaliable at http://bitbucket.org/jhlchan/hol/src/, repository tag phd-thesis-02. This thesis is compiled
using Holmakefile with HOL4 version tag 6711e409. Folders are hyperlinked to the actual repository location.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/aks/
http://bitbucket.org/jhlchan/hol/src/

§A.2 Script Libraries 155

– /countPower, exponentiation, root extraction and power free test.

– /countPrime, traditional primality testing algorithm.

– /countOrder, modular exponentiation and multiplicative order.

– /countParam, parameter search for AKS algorithm.

– /countPoly, polynomial algorithmes for AKS algorithm.

– /countAKS, combine with polynomial checks for AKS algorithm.

A.2.2 The algebra folder

/algebra — various algebra topics to support the theory behind the AKS algorithm.

• /lib — the extension of existing HOL libraries.

– /helperNum, more theorems on arithmetic, divisibility, and GCD and LCM.

– /helperSet, more theorems about sets: mappings, sums and products.

– /helperList, more theorems about list manipulations, e.g., turn.

– /helperFunction, theorems on function equivalence.

– /binomial, properties of Pascal’s triangle, for binomial coefficients.

– /triangle, properties of Leibniz’s Denominator triangle, for consecutive LCM.

– /Euler, properties of number-theoretic sets, and Euler’s ϕ-function.

– /Gauss, more theorems about coprimes, ϕ-function, and an identity.

– /primes, properties of two-factors, and a primality test.

– /primePower, properties of prime powers and divisors, for consecutive LCM.

– /logPower, properties of perfect power, power free, and upper logarithm.

– /sublist, order-preserving sublist and properties.

• /monoid — an algebraic structure with a useful binary operation.

– /monoid, properties of a monoid with identity.

– /monoidInstances, examples of monoids, in particular modulo numbers.

– /monoidOrder, order of element in a monoid and its properties.

– /monoidMap, homomorphism and isomorphism between monoids.

– /submonoid, properties of submonoids of a monoid.

• /group — a monoid with all its elements invertible.

– /group, properties of group, as an invertible monoid.

– /groupInstances, examples of groups, in particular prime modulo systems.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algebra/

156 Conclusion

– /groupOrder, extends monoidOrder to groupOrder.

– /groupCyclic, theorems on cyclic group and generators.

– /subgroup, theorems on subgroups, including cosets.

– /quotientGroup, theorems of a group partitioned by a normal subgroup.

– /groupMap, homomorphism and isomorphism between groups.

– /congruences, application to number theory, mainly Fermat’s Little Theorem.

– /symmetryGroup, the group of all permutations of a set of symbols.

– /finiteGroup, properties of a finite group.

– /groupAction, action of a group on a target.

• /ring — an algebraic structure with two related binary operations.

– /ring, properties of a ring, made up of a group and a monoid.

– /ringInstances, examples of rings, in particular modulo arithmetic systems.

– /ringUnit, properties of invertible elements in a ring (they form a group).

– /ringDivides, theorems of division for invertible elements in a ring.

– /ringIdeal, the concept of a well-behaved sub-structure of a ring.

– /quotientRing, theorems of a ring partitioned by an ideal.

– /ringMap, homomorphism and isomorphism between rings.

– /ringInteger, the similarity of the multiples of ring unity and the integers.

– /ringBinomial, the binomial theorem in terms of ring integers.

– /integralDomain, properties of integral domain, a non-trivial ring without zero
divisors.

– /integralDomainInstances, examples of integral domains, e.g., arithmetic
in modulo prime.

• /field — a nontrivial ring with all nonzero elements invertible.

– /field, properties of a field, as an invertible (zero excluded) ring.

– /fieldInstances, examples of fields, mainly arithmetic in prime modulus.

– /fieldIdeal, extends the ringIdeal and quotientRing to fields.

– /fieldBinomial, extends the ring binomial theorem to fields.

– /fieldOrder, multiplicative order of elements in a field.

– /fieldMap, homomorphism and isomorphism between fields.

– /fieldProduct, product of a set of field elements.

– /symmetryField, the group of field automorphisms fixing a subfield.

§A.2 Script Libraries 157

• /polynomial — made up of coefficients taken from a ring or a field.

– /polyWeak, properties of un-normalized polynomials.

– /polynomial, properties of normalized polynomials.

– /polyRing, theorems for polynomials with coefficients from a ring.

– /polyField, theorems for polynomials with coefficients from a field.

– /polyDivision, theorems for polynomial division in general.

– /polyFieldDivision, theorems for field polynomial division.

– /polyRingModulo, theorems for ring polynomial division remainders.

– /polyFieldModulo, theorems for field polynomial division remainders.

– /polyRoot, properties of polynomial roots and factors.

– /polyMonic, properties of monic polynomials.

– /polyEval, polynomial evaluation, acting as a function.

– /polyBinomial, binomial theorem for polynomials.

– /polyDivides, divisibility of polynomials.

– /polyIrreducible, properties of irreducible polynomials.

– /polyDerivative,formal derivative for polynomials, symbolic term by term.

– /polyProduct, product of polynomials, properties, evaluation, and divisibility.

– /polyCyclic, properties of the quotient of Xn − 1 by X − 1.

– /polyGCD, greatest common divisor of polynomials.

– /polyMultiplicity, multiplicity of polynomial factors and roots.

– /polyMap, maps between polynomials, under homomorphism or isomorphism of
their coefficient rings or fields.

• /linear — the study of linear spaces.

– /VectorSpace, properties of vector space from its scalars and vectors.

– /SpanSpace, represents elements by linear combination of basis vectors.

– /LinearIndep, theorems for change of basis and linear independence.

– /FiniteVSpace, dimension over subspace and linear independent basis.

• /finitefield — an intricate structural theory due to its finite nature.

– /ffBasic, properties of the prime subfield of a finite field.

– /ffAdvanced, extend a finite field by an irreducible polynomial.

– /ffInstances, examples of finite field construction, e.g., GF4.

– /ffPoly, subring polynomials and roots of subfield polynomials.

158 Conclusion

– /ffMaster, master polynomials, relationship with irreducible polynomials of a
subfield.

– /ffCyclo, cyclotomic polynomials, the order of its roots.

– /ffUnity, roots of unity and the number of elements of each field order.

– /ffMinimal, minimal polynomials, its existence by linear independence, and its
properties.

– /ffConjugate, conjugates of field elements, their orders; also the product of
conjugate factors.

– /ffExist, the classification of finite fields: existence and uniqueness.

– /ffExtend, field extension by isomorphic subfield.

– /ffSplit, splitting field of a field polynomial.

A.2.3 The algorithm folder

/algorithm — computational complexity of algorithms to analyse the AKS algorithm.

• /lib — common library for basic notions of complexity.

– /bitsize, bit size of number representations.

– /complexity, big-O notation for complexity class.

– /recurrence, recurrence theory for step counting loops.

• /loop — library for patterns of loop recurrence.

– /loop, general theory of loop recurrence, with body and exit.

– /loopIncrease, recurrence theory of increasing loops.

– /loopDecrease, recurrence theory of decreasing loops.

– /loopDivide, recurrence theory of dividing loops.

– /loopMultiply, recurrence theory of multiplying loops.

– /loopList, recurrence theory of list reduction loops.

https://bitbucket.org/jhlchan/hol/src/9bf8123a9de4/algorithm/

Bibliography

AARONSON, S., 2003. The Prime Facts: From Euclid to AKS. http://www.scottaaronson.
com/writings/prime.pdf. (cited on page 1)

ACZEL, P., 1995. Galois: A Theory Development Project. Technical report, Manchester Uni-
versity, U.K. Available from http://www.cs.man.ac.uk/~petera/galois.ps.gz. (cited on
page 73)

AFFELDT, R.; GARRIGUE, J.; AND SAIKAWA, T., 2016. Formalization of Reed-Solomon codes
and progress report on formalization of LDPC codes. In The 2016 International Symposium
on Information Theory and Its Applications (ISITA 2016), 532–536. (cited on page 40)

AGRAWAL, M.; KAYAL, N.; AND SAXENA, N., 2002. PRIMES is in P. Original paper. (cited
on pages 1, 2, 55, 76, and 90)

AGRAWAL, M.; KAYAL, N.; AND SAXENA, N., 2004. PRIMES is in P. Annals of Mathematics,
160, 2 (September 2004), 781–793. (cited on pages xix, 1, 2, 31, 44, 49, 52, 55, 76, and 90)

ARNESON, B.; BAAZ, M.; AND RUDNICKI, P., 2003. Witt’s Proof of the Wedderburn Theorem.
Journal of Formalized Mathematics, 15 (December 2003). (cited on page 73)

ARNESON, B. AND RUDNICKI, P., 2003. Primitive Roots of Unity and Cyclotomic Polynomi-
als. Journal of Formalized Mathematics, 15 (December 2003). (cited on page 73)

ASPERTI, A., 2009. A survey on Iteractive Theorem Proving. http://cs.unibo.it/~asperti/
SLIDES/itp.pdf. Talk given at the Tata Institute of Technology, Mumbai, India. (cited on
page 9)

ASPERTI, A., 2013. A Formal Proof of Borodin-Trakhtenbrot’s Gap Theorem. In Cer-
tified Programs and Proofs, vol. 8307 of Lecture Notes in Computer Science, 163–177.
Springer International Publishing, Cham. doi:10.1007/978-3-319-03545-1_11. https:
//link.springer.com/chapter/10.1007/978-3-319-03545-1_11. (cited on page 144)

ASPERTI, A. AND ARMENTANO, C., 2008. A Page in Number Theory. Journal of Formal-
ized Reasoning, 1, 1 (2008), 1–23. doi:10.6092/issn.1972-5787/385. https://jfr.unibo.it/
article/view/385. (cited on pages 40 and 142)

ASPERTI, A. AND AVIGAD, J., 2011. Zen and the art of formalisation. Mathematical Structures
in Computer Science, 21, 4 (August 2011), 679–682. doi:10.1017/S0960129511000065.
(cited on page 1)

159

http://www.scottaaronson.com/writings/prime.pdf
http://www.scottaaronson.com/writings/prime.pdf
http://www.cs.man.ac.uk/~petera/galois.ps.gz
http://cs.unibo.it/~asperti/SLIDES/itp.pdf
http://cs.unibo.it/~asperti/SLIDES/itp.pdf
http://dx.doi.org/10.1007/978-3-319-03545-1_11
https://link.springer.com/chapter/10.1007/978-3-319-03545-1_11
https://link.springer.com/chapter/10.1007/978-3-319-03545-1_11
http://dx.doi.org/10.6092/issn.1972-5787/385
https://jfr.unibo.it/article/view/385
https://jfr.unibo.it/article/view/385
http://dx.doi.org/10.1017/S0960129511000065

160 BIBLIOGRAPHY

ASPERTI, A. AND RICCIOTTI, W., 2008. About the Formalization of Some Results by Cheby-
shev in Number Theory. In Types for Proofs and Programs, International Conference, TYPES
2008, Torino, Italy, March 26-29, 2008, Revised Selected Papers, 19–31. doi:10.1007/
978-3-642-02444-3_2. https://doi.org/10.1007/978-3-642-02444-3_2. (cited on page
55)

ASPERTI, A. AND RICCIOTTI, W., 2012. Formalizing Turing Machines. In Logic, Language,
Information and Computation, 1–25. Springer Berlin Heidelberg, Berlin, Heidelberg. doi:
10.1007/978-3-642-32621-9_1. (cited on page 144)

AVIGAD, J. AND DONNELLY, K., 2004. Formalizing O Notation in Isabelle/HOL. In Automated
Reasoning, vol. 3097 of Lecture Notes in Computer Science, 357–371. Springer Berlin Hei-
delberg, Berlin, Heidelberg. doi:10.1007/978-3-540-25984-8_27. https://link.springer.
com/chapter/10.1007/978-3-540-25984-8_27. IJCAR 2004. (cited on page 111)

AVIGAD, J.; DONNELLY, K.; GRAY, D.; AND RAFF, P., 2007. A Formally Verified Proof of
the Prime Number Theorem. ACM Transactions on Computational Logic, 9, 1 (December
2007). doi:10.1145/1297658.1297660. (cited on pages 55 and 136)

AVIGAD, J. AND HARRISON, J., 2014. Formally Verified Mathematics. Communications of the
ACM, 57, 4 (April 2014), 66–75. doi:10.1145/2591012. (cited on page 9)

AXLER, S., 2015. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer
International Publishing. ISBN 9783319307657. doi:10.1007/978-3-319-11080-6. ISBN:
9783319307657. (cited on page 60)

BAILEY, A., 1998. The Machine-Checked Literate Formalisation of Algebra in Type Theory.
Ph.D. thesis, Department of Computer Science, University of Manchester. (cited on page 73)

BALLARIN, C.; KAMMÜLLER, F.; AND PAULSON, L. C., 2016. The Isabelle/HOL Algebra
Library. Available from http://isabelle.in.tum.de/library/HOL/HOL-Algebra/index.html.
(cited on page 73)

BANCEREK, G.; BYLIŃSKI, C.; GRABOWSKI, A.; KORNIŁOWICZ, A.; MATUSZEWSKI, R.;
NAUMOWICZ, A.; AND PĄK, K., 2018. The Role of the Mizar Mathematical Library for
Interactive Proof Development in Mizar. Journal of Automated Reasoning, 61, 1 (June 2018),
9–32. doi:10.1007/s10817-017-9440-6. https://doi.org/10.1007/s10817-017-9440-6.
(cited on page 73)

BARTHE, G., 1994. A formal proof of the unsolvability of the symmetric group over a set with
five or more elements. Technical report, University of Nijmegen, the Netherlands. Available
from ftp://ftp.cs.ru.nl/pub/CompMath.Found/sn.ps.Z. (cited on page 73)

BARTZIA, E.-I. AND STRUB, P.-Y., 2014. A Formal Library for Elliptic Curves in the
Coq Proof Assistant. In Interactive Theorem Proving: 5th International Conference, ITP

http://dx.doi.org/10.1007/978-3-642-02444-3_2
http://dx.doi.org/10.1007/978-3-642-02444-3_2
https://doi.org/10.1007/978-3-642-02444-3_2
http://dx.doi.org/10.1007/978-3-642-32621-9_1
http://dx.doi.org/10.1007/978-3-642-32621-9_1
http://dx.doi.org/10.1007/978-3-540-25984-8_27
https://link.springer.com/chapter/10.1007/978-3-540-25984-8_27
https://link.springer.com/chapter/10.1007/978-3-540-25984-8_27
http://dx.doi.org/10.1145/1297658.1297660
http://dx.doi.org/10.1145/2591012
http://dx.doi.org/10.1007/978-3-319-11080-6
http://isabelle.in.tum.de/library/HOL/HOL-Algebra/index.html
http://dx.doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
ftp://ftp.cs.ru.nl/pub/CompMath.Found/sn.ps.Z

BIBLIOGRAPHY 161

2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
14-17, 2014. Proceedings, ITP 2014 (Vienna, Austria, 2014), 77–92. Springer Interna-
tional Publishing, Cham. doi:10.1007/978-3-319-08970-6_6. https://doi.org/10.1007/
978-3-319-08970-6_6. (cited on page 40)

BASTIDA, J. R. AND LYNDON, R., 1984. Field Extensions and Galois Theory. Encyclopedia
of Mathematics and its Applications. Cambridge University Press. ISBN 9781107340749.
doi:10.1017/CBO9781107340749. ISBN: 9781107340749. (cited on page 70)

BEDODI, A., 2010. Primality Tests in Polynomial Time. Master’s thesis, Universitá Degli Studi
Roma TRE. (cited on page 143)

BELK, J., 2016. Classification of Finite Fields. Number Theory Course: Math 318,
Bard College, (Spring 2016). Available from http://faculty.bard.edu/belk/math318/
ClassificationFiniteFieldsRevised.pdf. (cited on pages 62, 64, 65, 71, and 139)

BERNSTEIN, D. J., 2002. An Exposition of the Agrawal-Kayal-Saxena Primality Proving The-
orem. (cited on pages 1 and 91)

BERRIZBEITIA, P., 2005. Sharpening "Primes Is in P" for a Large Family of Numbers. Math-
ematics of Computation, 7, 252 (October 2005), 2043–2059. https://www.jstor.org/stable/
4100226. (cited on page 143)

BERRIZBEITIA, P.; MÜLLER, S.; AND WILLIAMS, H. C., 2004. Pseudocubes and Pri-
mality Testing. In Algorithmic Number Theory, vol. 3076 of Lecture Notes in Com-
puter Science, 102–116. Springer Berlin Heidelberg, Berlin, Heidelberg. doi:10.1007/
978-3-540-24847-7_7. (cited on page 143)

BORNEMANN, F., 2003. PRIMES Is in P: A Breakthrough for Everyman. Notices of the AMS,
50, 5 (May 2003), 545–552. (cited on page 2)

BRENT, R. P., 2000. Twenty years’ analysis of the Binary Euclidean Algorithm. In Millenial
Perspectives in Computer Science, Proceedings of the 1999 Oxford-Microsoft Symposium in
Honour of Professor Sir Antony Hoare, 41–53. (cited on page 45)

BRENT, R. P., 2010. Primality Testing. Technical report, Mathematical Sciences Institute,
ANU. Available from https://maths-people.anu.edu.au/~brent/pd/comp4600_primality.
pdf. (cited on page 130)

BRONDER, J. S., 2006. The AKS Class of Primality Tests: A Proof of Correctness and Parallel
Implemenation. Master’s thesis, The University of Maine. (cited on page 130)

CAMPOS, C.; MODAVE, F.; AND ROACH, S., 2004. Towards the Verification of the AKS
Primality Test in ACL2. Fifth International Conference on Intelligent Technologies. (cited
on pages 7 and 51)

http://dx.doi.org/10.1007/978-3-319-08970-6_6
https://doi.org/10.1007/978-3-319-08970-6_6
https://doi.org/10.1007/978-3-319-08970-6_6
http://dx.doi.org/10.1017/CBO9781107340749
http://faculty.bard.edu/belk/math318/ClassificationFiniteFieldsRevised.pdf
http://faculty.bard.edu/belk/math318/ClassificationFiniteFieldsRevised.pdf
https://www.jstor.org/stable/4100226
https://www.jstor.org/stable/4100226
http://dx.doi.org/10.1007/978-3-540-24847-7_7
http://dx.doi.org/10.1007/978-3-540-24847-7_7
https://maths-people.anu.edu.au/~brent/pd/comp4600_primality.pdf
https://maths-people.anu.edu.au/~brent/pd/comp4600_primality.pdf

162 BIBLIOGRAPHY

CARNEIRO, M., 2016. Formalization of the prime number theorem and Dirichlet’s theorem.
CICM 2016, FMM track, (August 2016). https://arxiv.org/abs/1608.02029. (cited on page
143)

CHAN, H. L. AND NORRISH, M., 2012. A String of Pearls: Proofs of Fermat’s Little Theorem.
In Proceedings of Certified Programs and Proofs, no. 7679 in LNCS, 188–207. Springer.
doi:10.1007/978-3-642-35308-6_16. (cited on page 40)

CHAN, H. L. AND NORRISH, M., 2013. A String of Pearls: Proofs of Fermat’s Little Theo-
rem. Journal of Formalized Reasoning, 6, 1 (December 2013), 63–87. doi:10.6092/issn.
1972-5787/3728. (cited on pages 40 and 144)

CHAN, H. L. AND NORRISH, M., 2015. Mechanisation of AKS Algorithm: Part 1 — the Main
Theorem. In Interactive Theorem Proving, ITP 2015, no. 9236 in LNCS, 117–136. Springer.
doi:10.1007/978-3-319-22102-1_8. (cited on pages 7, 76, and 90)

CHAN, H. L. AND NORRISH, M., 2016. Proof Pearl: Bounding Least Common Multiples with
Triangles. In Interactive Theorem Proving, ITP 2016, no. 9807 in LNCS, 140–150. Springer.
doi:10.1007/978-3-319-43144-4_9. (cited on page 36)

CHAN, H. L. AND NORRISH, M., 2019a. Classification of Finite Fields with Applica-
tions. Journal of Automated Reasoning, 63, 3 (October 2019), 667–693. doi:10.1007/
s10817-018-9485-1. (cited on page 72)

CHAN, H. L. AND NORRISH, M., 2019b. Proof Pearl: Bounding Least Common Multiples
with Triangles. Journal of Automated Reasoning, 62, 2 (February 2019), 171–192. doi:
10.1007/s10817-017-9438-0. (cited on pages 32, 40, and 55)

CHARGUÉRAUD, A. AND POTTIER, F., 2015. Machine-Checked Verification of the Correctness
and Amortized Complexity of an Efficient Union-Find Implementation. In Conference on
Interactive Theorem Proving (ITP), vol. 9236 of Lecture Notes in Computer Science, 137–
153. Springer. http://gallium.inria.fr/~fpottier/publis/chargueraud-pottier-uf.pdf. (cited
on page 111)

CHARGUÉRAUD, A. AND POTTIER, F., 2017. Verifying the Correctness and Amortized Com-
plexity of a Union-Find Implementation in Separation Logic with Time Credits. Journal
of Automated Reasoning, (September 2017). doi:10.1007/s10817-017-9431-7. https:
//link.springer.com/article/10.1007/s10817-017-9431-7. (cited on page 111)

COHEN, C., 2012. Construction of Real Algebraic Numbers in Coq. In Interactive Theorem
Proving, ITP 2012, no. 7406 in LNCS, 67–82. Springer. (cited on pages 73 and 144)

CRANDALL, R. AND POMERANCE, C., 2005. Prime Numbers: A Computational Perspective.
Springer. ISBN 9780387252827. (cited on pages 1, 55, 90, 91, 129, and 130)

https://arxiv.org/abs/1608.02029
http://dx.doi.org/10.1007/978-3-642-35308-6_16
http://dx.doi.org/10.6092/issn.1972-5787/3728
http://dx.doi.org/10.6092/issn.1972-5787/3728
http://dx.doi.org/10.1007/978-3-319-22102-1_8
http://dx.doi.org/10.1007/978-3-319-43144-4_9
http://dx.doi.org/10.1007/s10817-018-9485-1
http://dx.doi.org/10.1007/s10817-018-9485-1
http://dx.doi.org/10.1007/s10817-017-9438-0
http://dx.doi.org/10.1007/s10817-017-9438-0
http://gallium.inria.fr/~fpottier/publis/chargueraud-pottier-uf.pdf
http://dx.doi.org/10.1007/s10817-017-9431-7
https://link.springer.com/article/10.1007/s10817-017-9431-7
https://link.springer.com/article/10.1007/s10817-017-9431-7

BIBLIOGRAPHY 163

CURIEL, N., 2011. Formalizing Galois Theory: I automorphism groups of fields. Master’s the-
sis, California State University San Marcos. Available from http://csusm-dspace.calstate.
edu/handle/10211.8/107. (cited on page 73)

CURIEN, P.-L. (Ed.), 2011. Interactive Theorem Proving and the Formalisation of Mathematics.
Mathematical Structures in Computer Science. Cambridge University Press. (cited on page
9)

DALESON, G., 2006. Deterministic Primality Testing in Polynomial Time. Master’s thesis,
Portland State University. (cited on pages 55, 90, and 91)

DE MOURA, F. L. C. AND TADEU, R., 2008. The Correctness of the AKS Primality Test in
Coq. Available from http://www.cic.unb.br/~flavio/AKS.pdf. (cited on pages 7 and 51)

DÉNÈS, M.; MÖRTBERG, A.; AND SILES, V., 2012. A Refinement-Based Approach to Compu-
tational Algebra in Coq. In Interactive Theorem Proving, 83–98. Springer Berlin Heidelberg,
Berlin, Heidelberg. doi:10.1007/978-3-642-32347-8_7. (cited on page 143)

DIETZFELBINGER, M., 2004. Primality Testing in Polynomial Time: From Randomized Al-
gorithms to ‘PRIMES is in P’. Lecture Notes in Computer Science. Springer. ISBN
9783540403449. (cited on pages 1, 41, 90, and 91)

DIVASÓN, J.; JOOSTEN, S.; THIEMANN, R.; AND YAMADA, A., 2017. A Formalization of
the Berlekamp-Zassenhaus Factorization Algorithm. In Proceedings of the 6th ACM SIG-
PLAN Conference on Certified Programs and Proofs, CPP 2017 (Paris, France, 2017), 17–
29. ACM, New York, NY, USA. doi:10.1145/3018610.3018617. http://doi.acm.org/10.
1145/3018610.3018617. (cited on pages 40 and 144)

EATCS, 2006. Gödel Prize, by European Association for Theoretical Computer Science. http:
//eatcs.org/index.php/component/content/article/502. 33rd International Colloquium on
Automata, Languages and Programming, ICALP 2006. (cited on page 3)

EBERL, M., 2017. Proving Divide and Conquer Complexities in Isabelle/HOL. Journal of
Automated Reasoning, 58, 4 (April 2017), 483–508. doi:10.1007/s10817-016-9378-0.
https://doi.org/10.1007/s10817-016-9378-0. (cited on pages 111 and 138)

FELLER, W., 1968. An Introduction to Probability Theory and Its Applications, vol. 1 of Wiley
Series in Probability and Statistics. Wiley, 3 edn. ISBN 978-0-471-25708-0. (cited on page
142)

FUJISAWA, Y.; FUWA, Y.; AND SHIMIZU, H., 1998. Public-Key Cryptography and Pepin’s
Test for the Primality of Fermat Numbers. Journal of Formalized Mathematics, 10 (December
1998). (cited on page 131)

FUTA, Y.; OKAZAKI, H.; AND SHIDAMA, Y., 2013. Formalization of Definitions and The-
orems Related to an Elliptic Curve Over a Finite Prime Field by Using Mizar. Journal of

http://csusm-dspace.calstate.edu/handle/10211.8/107
http://csusm-dspace.calstate.edu/handle/10211.8/107
http://www.cic.unb.br/~flavio/AKS.pdf
http://dx.doi.org/10.1007/978-3-642-32347-8_7
http://dx.doi.org/10.1145/3018610.3018617
http://doi.acm.org/10.1145/3018610.3018617
http://doi.acm.org/10.1145/3018610.3018617
http://eatcs.org/index.php/component/content/article/502
http://eatcs.org/index.php/component/content/article/502
http://dx.doi.org/10.1007/s10817-016-9378-0
https://doi.org/10.1007/s10817-016-9378-0

164 BIBLIOGRAPHY

Automated Reasoning, 50, 2 (Febuary 2013), 161–172. doi:10.1007/s10817-012-9265-2.
https://doi.org/10.1007/s10817-012-9265-2. (cited on page 40)

GALOIS, É., 1830. On the theory of numbers. Bulletin des Sciences Mathématiques, Physiques
et Chimiques, 13 (June 1830), 428–435. Reprinted by Liouville in 1846, English translation
in Neumann [2013], pages 61–75. (cited on page 15)

GARRETT, P. B., 2004. The Mathematics of Coding Theory: Information, Compression, Er-
ror Correction, and Finite Fields. Pearson Prentice Hall, Upper Saddle River, NJ. ISBN
9780131019676. ISBN: 9780131019676. (cited on page 70)

GONTHIER, G.; ASPERTI, A.; AVIGAD, J.; BERTOT, Y.; COHEN, C.; GARILLOT, F.;
LE ROUX, S.; MAHBOUBI, A.; O’CONNOR, R.; OULD BIHA, S.; PASCA, I.; RIDEAU,
L.; SOLOVYEV, A.; TASSI, E.; AND THÉRY, L., 2013. A Machine-Checked Proof of
the Odd Order Theorem. In Interactive Theorem Proving: 4th International Conference,
ITP 2013, Rennes, France, July 22-26, 2013. Proceedings, 163–179. Springer Berlin Heidel-
berg, Berlin, Heidelberg. doi:10.1007/978-3-642-39634-2_14. https://doi.org/10.1007/
978-3-642-39634-2_14. (cited on page 73)

GRANVILLE, A., 2004. It is easy to determine whether a given integer is prime. Bulletin of the
American Mathematical Society, 42, 1 (September 2004), 3–38. (cited on page 41)

GUÉNEAU, A., 2017. Formal proofs of asymptotic complexity. http://gallium.inria.fr/
~agueneau/talks/masterclass_philippa_gardner.pdf. (cited on page 111)

GUÉNEAU, A.; CHARGUÉRAUD, A.; AND POTTIER, F., 2018. A Fistful of Dollars: For-
malizing Asymptotic Complexity Claims via Deductive Program Verification. In European
Symposium on Programming (ESOP), vol. 10801 of Lecture Notes in Computer Science,
533–560. Springer International Publishing, Cham. doi:10.1007/978-3-319-89884-1_19.
https://link.springer.com/chapter/10.1007/978-3-319-89884-1_19. (cited on page 111)

HARRISON, J., 1996. Formalized Mathematics. http://www.cl.cam.ac.uk/~jrh13/papers/
form-math3-times.ps.gz. Technical Report 36, Turku Centre for Computer Science
(TUCS). (cited on page 9)

HARRISON, J., 2002. Real Numbers in Real Applications. https://www.cl.cam.ac.uk/~jrh13/
slides/tpholsr-19aug02/slides.pdf. Theorem Proving in Higher Order Logics, 15th Inter-
national Conference. (cited on page 6)

HARRISON, J., 2009. Formalizing an analytic proof of the Prime Number Theorem. Journal of
Automated Reasoning, 43 (2009), 243–261. (cited on pages 55 and 136)

HARRISON, J., 2010. A formalized proof of Dirichlet’s theorem on primes in arithmetic progres-
sion. Journal of Formalized Reasoning, 2, 1 (2010), 63–83. doi:10.6092/issn.1972-5787/
1558. https://jfr.unibo.it/article/view/1558. (cited on page 143)

http://dx.doi.org/10.1007/s10817-012-9265-2
https://doi.org/10.1007/s10817-012-9265-2
http://dx.doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/978-3-642-39634-2_14
http://gallium.inria.fr/~agueneau/talks/masterclass_philippa_gardner.pdf
http://gallium.inria.fr/~agueneau/talks/masterclass_philippa_gardner.pdf
http://dx.doi.org/10.1007/978-3-319-89884-1_19
https://link.springer.com/chapter/10.1007/978-3-319-89884-1_19
http://www.cl.cam.ac.uk/~jrh13/papers/form-math3-times.ps.gz
http://www.cl.cam.ac.uk/~jrh13/papers/form-math3-times.ps.gz
https://www.cl.cam.ac.uk/~jrh13/slides/tpholsr-19aug02/slides.pdf
https://www.cl.cam.ac.uk/~jrh13/slides/tpholsr-19aug02/slides.pdf
http://dx.doi.org/10.6092/issn.1972-5787/1558
http://dx.doi.org/10.6092/issn.1972-5787/1558
https://jfr.unibo.it/article/view/1558

BIBLIOGRAPHY 165

HARRISON, J., 2013. A Survey of Automated Theorem Proving. https://www.lektorium.tv/
course/23011. PDMI Computer Science Club mini-course, St. Petersburg, Russia. (cited
on page 9)

HARRISON, J., 2015. Formalization of Mathematics for Fun and Profit. https://www.cl.cam.
ac.uk/~jrh13/slides/wollic-23jul15/slides.pdf. Invited talk at WoLLIC 2015, Indiana Uni-
versity, Bloomington. (cited on page 9)

HASLBECK, M. P. L. AND NIPKOW, T., 2018. Hoare Logics for Time Bounds: A Study in
Meta Theory. In Tools and Algorithms for the Construction and Analysis of Systems, 155–
171. Springer International Publishing, Cham. doi:10.1007/978-3-319-89960-2_9. (cited
on pages 111 and 116)

HERSTEIN, I. N., 1975. Topics In Algebra. John Wiley & Sons. ISBN 9780471010906. ISBN:
9780471010906. (cited on page 70)

HERSTEIN, I. N., 1996. Abstract Algebra. John Wiley & Sons. ISBN 9780471368793. ISBN:
9780471368793. (cited on pages 65, 68, 70, and 141)

HURD, J., 2003. Verification of the Miller-Rabin Probabilistic Primality Test. Elsevier
Science Inc., (2003). doi:10.1016/S1567-8326(02)00065-6. DOI: 10.1016/S1567-
8326(02)00065-6. (cited on pages 6 and 131)

HURD, J.; GORDON, M.; AND FOX, A., 2006. Formalized Elliptic Curve Cryptography. High
Confidence Software and Systems, (April 2006). (cited on pages 40 and 137)

IRELAND, K. AND ROSEN, M., 1990. A Classical Introduction to Modern Number Theory,
vol. 84 of Graduate Texts in Mathematics. Springer-Verlag New York. ISBN 9781441930941.
doi:10.1007/978-1-4757-2103-4. ISBN: 9781441930941. (cited on pages 69, 140,
and 142)

JÄRVINEN, J., 2007. Lattice Theory for Rough Sets, 400–498. Springer-Verlag, Berlin,
Heidelberg. ISBN 978-3-540-71200-8. doi:10.1007/978-3-540-71200-8_22. https:
//doi.org/10.1007/978-3-540-71200-8_22. (cited on page 144)

JUDSON, T. W., 1994. Abstract Algebra: Theory and Applications. The Prindle, Weber &
Schmidt Series in Advanced Mathematics. PWS Publishing Company. ISBN 9780534936846.
ISBN: 9780534936846. (cited on page 68)

JUSTESEN, J. AND HØHOLDT, T., 2004. A Course in Error-Correcting Codes. EMS Textbooks
in Mathematics. European Mathematical Society, New York, Berlin, Heidelberg, 2nd edn.
ISBN 3037190019. ISBN: 9783037190012. (cited on page 140)

KNUTH, D. E., 1998. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumeri-
cal Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. ISBN
9780201896848. (cited on page 45)

https://www.lektorium.tv/course/23011
https://www.lektorium.tv/course/23011
https://www.cl.cam.ac.uk/~jrh13/slides/wollic-23jul15/slides.pdf
https://www.cl.cam.ac.uk/~jrh13/slides/wollic-23jul15/slides.pdf
http://dx.doi.org/10.1007/978-3-319-89960-2_9
http://dx.doi.org/10.1016/S1567-8326(02)00065-6
http://dx.doi.org/10.1007/978-1-4757-2103-4
http://dx.doi.org/10.1007/978-3-540-71200-8_22
https://doi.org/10.1007/978-3-540-71200-8_22
https://doi.org/10.1007/978-3-540-71200-8_22

166 BIBLIOGRAPHY

KUSAK, E.; LEONCZUK, W.; AND MUZALEWSKI, M., 1989. Abelian Groups, Fields and
Vector Spaces. Journal of Formalized Mathematics, 1 (November 1989). (cited on page 73)

LENSTRA, H. W., 2002. Primality Testing with Gaussian Periods. In FST TCS 2002: Foun-
dations of Software Technology and Theoretical Computer Science, vol. 2556 of Lecture
Notes in Computer Science, 1–1. Springer Berlin Heidelberg, Berlin, Heidelberg. doi:
10.1007/3-540-36206-1_1. https://math.dartmouth.edu/~carlp/aks111216.pdf. (cited
on page 130)

LIDL, R. AND NIEDERREITER, H., 1986. Introduction to Finite Fields and Their Applications
(2nd Edition). Cambridge University Press, New York, NY, USA. ISBN 9780521460941.
ISBN: 9780521460941. (cited on pages 136 and 142)

LIDL, R. AND NIEDERREITER, H., 1997. Finite Fields (2nd Edition). No. 20 in Encyclopedia of
Mathematics and its Applications. Cambridge University Press, New York, NY, USA. ISBN
9780521392310. ISBN: 9780521392310. (cited on page 138)

LINOWITZ, B., 2006. An Exposition of the AKS Polynomial Time Primality Testing. Master’s
thesis, University of Pennsylvania. (cited on page 90)

MAGID, A. (Ed.), 2008. A Special Issue on Formal Proof, vol. 55, Issue 11 of Notices of the
AMS. American Mathematical Society. (cited on page 9)

MAHBOUBI, A. AND TASSI, E., 2018. Mathematical Components. https://math-comp.github.
io/mcb/. Available from https://math-comp.github.io/mcb/book.pdf. (cited on page 73)

MCELIECE, R. J., 1987. Finite Fields for Computer Scientists and Engineers. The Kluwer In-
ternational Series in Engineering and Computer Science. Springer, New York, Berlin, Heidel-
berg. ISBN 9781461291855. ISBN: 9781461291855. (cited on pages 24, 25, 140, and 142)

MYREEN, M. O., 2008. Formal Verification of Machine-Code Programs. Ph.D. thesis, Uni-
versity of Cambridge, Computer Laboratory, Trinity College. Supervised by Professor Mike
Gordon. (cited on page 144)

MYREEN, M. O., 2012. Formal Verification of Machine-Code Programs. Distinguished Dis-
sertation. BCS (February 14, 2011), 3 edn. ISBN 978-1906124816. (cited on page 144)

NEUMANN, P. M., 2013. The Mathematical Writings of Évariste Galois. Heritage of
European Mathematics. European Mathematical Society. ISBN 9783037191040. ISBN:
9783037191040. (cited on pages 15 and 164)

NEWMAN, S. C., 2012. A Classical Introduction to Galois Theory. John Wiley & Sons. ISBN
9781118091395. ISBN: 9781118091395. (cited on page 70)

REMPE-GILLEN, L. AND WALDECKER, R., 2014. Primality Testing for Beginners, vol. 70
of Student Mathematical Library. American Mathematical Society. ISBN 9780821898833.
(cited on pages 1, 90, and 130)

http://dx.doi.org/10.1007/3-540-36206-1_1
http://dx.doi.org/10.1007/3-540-36206-1_1
https://math.dartmouth.edu/~carlp/aks111216.pdf
https://math-comp.github.io/mcb/
https://math-comp.github.io/mcb/
https://math-comp.github.io/mcb/book.pdf

BIBLIOGRAPHY 167

ROBINSON, D. J. S., 2008. An Introduction to Abstract Algebra. De Gruyter Textbook. De
Gruyter. ISBN 9783110198164. ISBN: 9783110198164. (cited on page 68)

ROBINSON, S., 2002. New Method Said to Solve Key Problem In Math. Available from https:
//www.nytimes.com/2002/08/08/us/new-method-said-to-solve-key-problem-in-math.
html. (cited on page 2)

ROTMAN, J. J., 2010. Advanced Modern Algebra: Second Edition, vol. 114 of Graduate
Studies in Mathematics. American Mathematical Society. ISBN 9781470411763. ISBN:
9781470411763. (cited on page 70)

RUDNICKI, P.; SCHWARZWELLER, C.; AND TRYBULEC, A., 2001. Commutative Algebra
in the Mizar System. Journal of Symbolic Computation, 32, 1 (Jul. 2001), 143–169. doi:
10.1006/jsco.2001.0456. http://dx.doi.org/10.1006/jsco.2001.0456. Special issue on
computer algebra and mechanized reasoning: selected St. Andrews’ ISSAC/Calculemus 2000
contributions. (cited on page 144)

SAPTHARISHI, R., 2007. Primality Testing: the AKS Algorithm. https://www.cmi.ac.in/
~ramprasad/lecturenotes/algcomp/lecture12.pdf. (cited on page 1)

SCHOOF, R., 2008. Four primality testing algorithms. Algorithmic Number Theory MSRI Publi-
cations, 44 (May 2008). Available from http://www.mat.uniroma2.it/~schoof/05rene.pdf.
(cited on page 1)

SHOUP, V., 2008. A Computational Introduction to Number Theory and Algebra. Cambridge
University Press, 2nd edn. ISBN 9780511814549. doi:10.1017/CBO9780511814549.
(cited on pages 1, 41, and 91)

SIMON WIMMER, L. N., 2013. A Formalisation of Lehmer’s Primality Criterion. Archive of
Formal Proofs, Isabelle, (July 2013). (cited on page 130)

SINGH, A. K., 2017. Formalization of some central theorems in combinatorics of finite sets.
Kalpa Publications in Computing, 1 (2017), 43–57. LPAR-21S: IWIL Workshop and LPAR
Short Presentations. (cited on page 143)

TAO, T., 2009. The AKS primality test. In his blog at http://terrytao.wordpress.com/2009/
08/11/the-aks-primality-test/. (cited on pages 1, 55, and 81)

THÉRY, L., 2003. Proving Pearl: Knuth’s Algorithm for Prime Numbers. In Theorem Proving in
Higher Order Logics, 304–318. Springer Berlin Heidelberg, Berlin, Heidelberg. doi:https://
doi.org/10.1007/10930755_20. https://link.springer.com/chapter/10.1007/10930755_
20. (cited on page 6)

THÉRY, L., 2007. Proving the group law for elliptic curves formally. Technical Report RT-
0330, INRIA. https://hal.inria.fr/inria-00129237. Available from hhttps://hal.inria.fr/
inria-00129237/en/. (cited on page 131)

https://www.nytimes.com/2002/08/08/us/new-method-said-to-solve-key-problem-in-math.html
https://www.nytimes.com/2002/08/08/us/new-method-said-to-solve-key-problem-in-math.html
https://www.nytimes.com/2002/08/08/us/new-method-said-to-solve-key-problem-in-math.html
http://dx.doi.org/10.1006/jsco.2001.0456
http://dx.doi.org/10.1006/jsco.2001.0456
http://dx.doi.org/10.1006/jsco.2001.0456
https://www.cmi.ac.in/~ramprasad/lecturenotes/algcomp/lecture12.pdf
https://www.cmi.ac.in/~ramprasad/lecturenotes/algcomp/lecture12.pdf
http://www.mat.uniroma2.it/~schoof/05rene.pdf
http://dx.doi.org/10.1017/CBO9780511814549
http://terrytao.wordpress.com/2009/08/11/the-aks-primality-test/
http://terrytao.wordpress.com/2009/08/11/the-aks-primality-test/
http://dx.doi.org/https://doi.org/10.1007/10930755_20
http://dx.doi.org/https://doi.org/10.1007/10930755_20
https://link.springer.com/chapter/10.1007/10930755_20
https://link.springer.com/chapter/10.1007/10930755_20
https://hal.inria.fr/inria-00129237
hhttps://hal.inria.fr/inria-00129237/en/
hhttps://hal.inria.fr/inria-00129237/en/

168 BIBLIOGRAPHY

THÉRY, L. AND HANROT, G., 2007. Primality Proving with Elliptic Curves. In TPHOL
2007, vol. 4732 of LNCS, 319–333. Springer-Verlag, Kaiserslautern, Germany. doi:10.1007/
978-3-540-74591-4. https://hal.inria.fr/inria-00138382. (cited on page 131)

THIEMANN, R. AND YAMADA, A., 2016. Algebraic Numbers in Isabelle/HOL. In Inter-
active Theorem Proving: 7th International Conference, ITP 2016, Nancy, France, August
22-25, 2016, Proceedings, 391–408. Springer International Publishing, Cham. doi:10.1007/
978-3-319-43144-4_24. https://doi.org/10.1007/978-3-319-43144-4_24. (cited on
page 73)

TRYBULEC, A.; KORNILOWICZ, A.; NAUMOWICZ, A.; AND KUPERBERG, K. (Eds.), 2013.
Special Issue: Formal Mathematics for Mathematicians, vol. 50, Issue 2 of Journal of Auto-
mated Reasoning. Springer Netherlands. (cited on page 9)

URBAN, J., 2016. Advances in Formal Mathematics. http://prague_logic_2016.math.cas.
cz/slides/urban.pdf. (cited on page 9)

VON ZUR GATHEN, J. AND GERHARD, J., 2013. Modern Computer Algebra. Cambridge
University Press, 3 edn. ISBN 9781139856065. doi:10.1017/CBO9781139856065. (cited
on page 116)

WIEDIJK, F., 2003. John Harrison’s Formalization of the Agrawal-Kayal-Saxena Primality
Test. http://www.cs.ru.nl/~freek/talks/intercity.dvi. Intercity Number Theory Seminar, Ni-
jmegen. (cited on page 6)

XU, J.; ZHANG, X.; AND URBAN, C., 2013. Mechanising Turing Machines and Computability
Theory in Isabelle/HOL. In Interactive Theorem Proving, 147–162. Springer Berlin Heidel-
berg, Berlin, Heidelberg. doi:10.1007/978-3-642-32621-9_1. (cited on page 144)

ZHAN, B. AND HASLBECK, M. P. L., 2018. Verifying Asymptotic Time Com-
plexity of Imperative Programs in Isabelle. In Automated Reasoning, vol. 10900
of Lecture Notes in Computer Science, 532–548. Springer International Publishing,
Cham. doi:10.1007/978-3-319-94205-6_35. https://link.springer.com/chapter/10.
1007/978-3-319-94205-6_35. (cited on page 111)

http://dx.doi.org/10.1007/978-3-540-74591-4
http://dx.doi.org/10.1007/978-3-540-74591-4
https://hal.inria.fr/inria-00138382
http://dx.doi.org/10.1007/978-3-319-43144-4_24
http://dx.doi.org/10.1007/978-3-319-43144-4_24
https://doi.org/10.1007/978-3-319-43144-4_24
http://prague_logic_2016.math.cas.cz/slides/urban.pdf
http://prague_logic_2016.math.cas.cz/slides/urban.pdf
http://dx.doi.org/10.1017/CBO9781139856065
http://www.cs.ru.nl/~freek/talks/intercity.dvi
http://dx.doi.org/10.1007/978-3-642-32621-9_1
http://dx.doi.org/10.1007/978-3-319-94205-6_35
https://link.springer.com/chapter/10.1007/978-3-319-94205-6_35
https://link.springer.com/chapter/10.1007/978-3-319-94205-6_35

Index

Afterword, 145
AKS Complexity Theorem, 5
AKS Complexity Theorem: Proof, 128
AKS Correctness Theorem, 4
AKS Correctness Theorem: Proof⇐, 53
AKS Correctness Theorem: Proof⇒, 51
AKS Formalisation, 5
AKS Implementation, 113
AKS in Finite Field, 53
AKS Main Theorem, 75, 88
AKS Main Theorem, nature of parameter, 76
AKS Main Theorem, use of cofactor, 76
AKS Main Theorem: Proof, 88
AKS Parameter, 46
AKS Paremeter, 117
AKS Phases, 3
AKS Primality Test, 50
AKS Pseudocode, 43
Algebraic Structures, 15
Algebraic structures as records, 137

Basic Loop, 104

Complexity Analysis, 96
Complexity analysis by loops, 138
Complexity Measure, 96
Complexity Notation, 97
Complexity Results, 108
Complexity Review, 129
Complexity: AKS Algorithm, 127
Complexity: Logarithm, 109
Complexity: Power Check, 109
Complexity: Power Free Check, 116
Complexity: Size, 108

Conjugates and minimal polynomials, 140
Consecutive LCM, 31
Counting Irreducibles, 62
Counting Monomial Products, 142
Cyclic Multiplicative Group, 140
Cyclotomic Factors, 71
Cyclotomic Polynomials, 69

Definition
Field F , 17
Group G, 16
IntegralDomain D, 20
MonoidM, 16
ROOT k n, 115
Ring R, 17
VSpace S G op, 60
LCM `, 31
aksM n, 4
aks_criteria F n k, 53
aks_param n, 46
aks n, 4
loop2_count guard modify transform x y,

106
loop_count guard modify x, 104
ordz_compute m n, 118
param n, 120
power_free n, 45
size n, 96
H ≤ G, 19
n k

./ p, 77
n power_of b, 37
O(f), 97
Ln,k, 33
char(R), 20

169

170 INDEX

Z∗n, 27
Φn, 69
orderM(x), 18
orderm(n), 118
dlog ne, 96
introspective sets N and P , 79
modulo set Qh, 82
modulo setMk, 82
monad bind (v1,Count c1) f , 96
monad stepsOf (v,Count c), 96
monad tick c, 96
monad unit x, 96
monad valueOf (v,Count c), 96
path Ldown n, 36
path Lrow n, 36
path Lup n, 36
primitive in F , 25
reduced exponents N̂ p q m, 86
reduced polynomials P̂ , 83
subroutines, 99
values and steps: arithmetic operations, 98
values and steps: boolean operations, 99
values and steps: list operations, 99

Existence and Uniqueness, 66
Existence of Finite Fields, 61
Extended Loop, 106
Extension and Splitting Fields, 67

Fermat’s Little Theorem, 29
Field Group Cyclic, 25
Field Orders, 24
Field Primitives, 25
Finite Field Classification, 59
Finite Field Isomorphism, 141
Finite Fields, 24
Finite Fields of Finite Type, 69
Folder /aks, 154
Folder /algebra, 155
Folder /algorithm, 158
Formalisation, 1
Formalisation Issues, 135

From Pascal to Leibniz, 32
Future Work, 143

General Loop, 105

HOL4 Sources, 9

Ideals, Quotient Rings and Fields, 141
Integer Exponentiation, 114
Integer Logarithm, 99
Integer Root, 115
Integral Domains, 20
Introspective Checks, 49, 121
Introspective Relation, 77
Introspective Sets, 79
Introspective Shift, 51
Isomorphic Fields, 65

LCM Exchange, 34
LCM of Paths, 36
Leibniz Denominator Triangle, 33
Leibniz Triplet, 34
Logarithm Computation, 100
Lower Bound on consecutive LCM, 36

Machine Model, 98
Milestone, 145
Minimal Polynomials, 64
Modular Arithmetic, 117
Modular Exponentiation, 117
Modular Introspective Checks, 124
Modular Systems, 26
Modulo Sets, 81
Monadic Computation, 95
Monoids and Groups, 18
Multiplicative Order, 118
Möbius Inversion, 142

No Prime Number Theorem, 136
No use of calculus, 136
Notations, 11
Number Theory, 26

Our Contribution, 7

INDEX 171

Overall Summary, 133

Parameter Exists, 47
Parameter Search, 46, 119
Parameters Condition, 85
Pascal’s Triangle and Primes, 28
Phi Sum over Divisors, 39
Polynomial as lists, 137
Polynomial Equality, 121
Polynomial Modular Addition, 122
Polynomial Modular Exponentiation, 124
Polynomial Modular Multiplication, 123
Polynomial Modular Multiplication by X, 123
Polynomial Modular Scalar Multiplication, 123
Polynomial Modulus, 22
Polynomial Roots, 23
Polynomials, 21
Power Check, 100
Power Free Check, 114
Power Free Test, 45
Powers and Coprimes, 37
Prime Subfields, 61
PRIMES is in P, 2
Proof of AKS Main Theorem, 87

Recurrence Loops, 103
Recurrence Pattern, 102
Reduced Exponents, 86
Reduced Polynomials, 83
Rings and Fields, 20

Script Libraries, 154
Script References, 147
Simple Numbers, 136
Size Computation, 101
Subfield elements and polynomials, 139
Subfields, 60
Subroutines, 99

Thesis Structure, 8

Uniqueness of Finite Fields, 64
Using a Turing Machine, 144

Using Machine Codes, 144

Vector Spaces, 60

	Acknowledgments
	Abstract
	Contents
	Publications
	Introduction
	Formalisation
	PRIMES is in P
	AKS Phases
	AKS Formalisation
	Our Contribution
	Thesis Structure
	Summary
	Remarks
	Notation

	I Foundations
	Basic Algebra
	Algebraic Structures
	Monoids and Groups
	Rings and Fields
	Integral Domains
	Polynomials
	Finite Fields
	Number Theory
	Summary
	Remarks

	AKS Algorithm
	AKS Pseudocode
	Power Free Test
	AKS Parameter
	Introspective Checks
	AKS Primality Test
	Introspective Shift
	AKS in Finite Field
	Summary
	Remarks

	II Correctness
	Advanced Algebra
	Finite Field Classification
	Existence of Finite Fields
	Uniqueness of Finite Fields
	Cyclotomic Polynomials
	Summary
	Remarks

	AKS Main Theorem
	Main Theorem
	Introspective Relation
	Introspective Sets
	Modulo Sets
	Reduced Polynomials
	Reduced Exponents
	Punch Line
	Summary
	Remarks

	III Complexity
	Complexity Models
	Monadic Computation
	Complexity Analysis
	Machine Model
	Subroutines
	Integer Logarithm
	Recurrence Loops
	Complexity Results
	Summary
	Remarks

	AKS Complexity
	AKS Implementation
	Power Free Check
	AKS Parameter
	Introspective Checks
	Complexity Analysis
	Summary
	Remarks

	Conclusion
	Overall Summary
	Formalisation Issues
	Alternative Tactics
	Future Work
	Afterword

	Appendix
	Script References
	Script Libraries

	Bibliography
	Index

