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Abstract. We present a proof of the fact that 2n ≤ lcm{1, 2, 3, . . . , (n + 1)}. This result has a
standard proof via an integral, but our proof is purely number theoretic, requiring little more than list
inductions. The proof is based on manipulations of a variant of Leibniz’s Harmonic Triangle, itself a
relative of Pascal’s better-known Triangle.

1 Introduction

The least common multiple of the consecutive natural numbers has a lower bound1:

2n ≤ lcm{1, 2, 3, . . . , (n+ 1)}

This result is a minor (though important) part of the proof of the complexity of the “PRIMES is in P”
AKS algorithm (see below for more motivational detail). A short proof is given by Nair [10], based on a
sum expressed as an integral. That paper ends with these words:

It also seems worthwhile to point out that there are different ways to prove the identity implied
[...], for example, [...] by using the difference operator.

Nair’s remark indicates the possibility of an elementary proof of the above number-theoretic result. Nair’s
integral turns out to be an expression of the beta-function, and there is a little-known relationship between
the beta-function and Leibniz’s harmonic triangle [2]. The harmonic triangle can be described as the

difference table of the harmonic sequence: 1,
1
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,
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,
1

4
,
1

5
, . . . (e.g., as presented in [3]).

Exploring this connection, we work out an interesting proof of this result that is both clear and elegant.
Although the idea has been sketched in various sources (e.g., [9]), we put the necessary pieces together
in a coherent argument, and prove it formally in HOL4.

Overview We find that the rows of denominators in Leibniz’s harmonic triangle provide a trick to enable
an estimation of the lower bound of least common multiple (LCM) of consecutive numbers. The route
from this row property to the LCM bound is subtle: we exploit an LCM property of triplets of neighboring
elements in the denominator triangle. We shall show how this property gives a wonderful proof of the
LCM bound for consecutive numbers in HOL4:

Theorem 1. Lower bound for LCM of consecutive numbers.

` 2n ≤ list_lcm [1 .. n + 1]
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1 We use (n + 1) here since we allow n = 0.



where list_lcm is the obvious extension of the binary lcm operator to a list of numeric arguments. This
satisfies, for example, the following properties:

` list_lcm (h ::t) = lcm h (list_lcm t)
` list_lcm (l1 _ l2) = lcm (list_lcm l1) (list_lcm l2)
` list_lcm (REVERSE `) = list_lcm `

Motivation This work was initiated as part of our mechanization of the AKS algorithm [1], the first
unconditionally deterministic polynomial-time algorithm for primality testing. As part of its initial action,
the algorithm searches for a parameter k satisfying a condition dependent on the input number. The major
part of the AKS algorithm then involves a for-loop whose count depends on the size of k.

In our first paper on the correctness (but not complexity) of the AKS algorithm [4], we proved the
existence of such a parameter k on general grounds, but did not give a bound. Now wanting to also show
the complexity result for the AKS algorithm, we must provide a tight bound on k. As indicated in the
AKS paper [1, Lemma 3.1], the necessary bound can be derived from a lower bound on the LCM of
consecutive numbers.

Historical Notes Pascal’s arithmetic triangle (c1654) is well-known, but Leibniz’s harmonic triangle
(1672) has been comparatively neglected. As reported by Massa Esteve and Delshams [5], Pietro Mengoli
investigated certain sums of special form in 1659, using a combinatorial triangle identical to the harmonic
triangle. Those same sums are the basis of Euler’s beta-function (1730) defined by an integral.

In another vein, Hardy and Wright’s Theory of Numbers [7] related the LCM bound of consecutive
numbers to the Prime Number Theorem, which work was followed up by Nair [10], giving the bound in
Theorem 1 through application of the beta-function.

Our approach to prove Theorem 1 is inspired by Farhi [6], in which a binomial coefficient identity,
equivalent to our Theorem 6, was established using Kummer’s theorem. A direct computation to relate
both results of Nair and Farhi was given by Hong [8].

Paper Structure The rest of this paper is devoted to explaining the mechanised proof of this result. We
give some background to Pascal’s and Leibniz’s triangles in Section 2. Section 3 discusses two forms
of the Leibniz’s triangle: the harmonic form and the denominator form, and proves the important LCM
property for our Leibniz triplets. Section 4 shows how paths in the denominator triangle can make use
of an LCM exchange property, eventually proving that both the consecutive numbers and a row of the
denominator triangle share the same LCM. In Section 5, we apply this LCM relationship to give a proof
of Theorem 1, and conclude in Section 6.

HOL4 Notation All statements starting with a turnstile (`) are HOL4 theorems, automatically pretty-
printed to LATEX from the relevant theory in the HOL4 development. Generally, our notation allows an
appealing combination of quantifiers (∀, ∃), logical connectives (∧ for “and”,⇒ for “implies”, and⇐⇒
for “if and only if”). Lists are enclosed in square-brackets [], with members separated by semicolon (;),
using infix operators :: for “cons”, _ for append, and . . for inclusive range. Common list operators are:
LENGTH, SUM, REVERSE, MEM for list member, and others to be introduced as required. Given a binary
relationR, its reflexive and transitive closure is denoted byR∗.

HOL4 Sources Our proof scripts, one for the Binomial Theory and one for the Triangle Theory, can be
found at https://bitbucket.org/jhlchan/hol/src/, in the sub-folder algebra/lib.



2 Background

2.1 LCM Lower Bound for a List

The following observation is simple:

Theorem 2. The least common multiple of a list of positive numbers equals at least its average.

` (∀ x. MEM x ` ⇒ 0 < x) ⇒ SUM ` ≤ LENGTH ` × list_lcm `

Proof. For a list `, since every element is nonzero, list_lcm ` is also nonzero. There are LENGTH `
elements, and each element x ≤ list_lcm `. Therefore adding together LENGTH ` copies of list_lcm `
cannot be smaller than their sum, which is SUM `. ut

A naïve application of this theorem to the list of consecutive numbers gives a trivial and disappointing
LCM lower bound. For an ingenious application of the theorem to obtain the better LCM lower bound in
Theorem 1, we turn to Leibniz’s Triangles, close relatives of Pascal’s Triangle.

2.2 Pascal’s Triangle

Pascal’s well-known triangle (first in Figure 1) can be constructed as follows:

– Each boundary entry: always 1.
– Each inside entry: sum of two immediate parents.
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Fig. 1. Pascal’s and Leibniz’s Triangles

The entries of Pascal’s triangle (the k-th element on n-th row) are binomial coefficients
(
n

k

)
, with

the n-th row sum:
n∑

k=0

(
n

k

)
= 2n.

Since Leibniz’s triangle (see Section 2.3 below) will be defined using Pascal’s triangle, we include
the binomials as a foundation in our HOL4 implementation, proving the above result:

Theorem 3. Sum of a row in Pascal’s Triangle.

` SUM ( Prow n) = 2n

We use (Prow n) to represent the n-th row of the Pascal’s triangle, counting n from 0.



2.3 Leibniz’s Harmonic Triangle

Leibniz’s harmonic triangle (second in Figure 1) can be similarly constructed:

– Each boundary entry:
1

(n+ 1)
for the n-th row, with n starting from 0.

– Each entry (inside or not): sum of two immediate children.

With the boundary entries forming the harmonic sequence, this Leibniz’s triangle is closely related to

Pascal’s triangle. Denoting the harmonic triangle entries (also the k-th element on n-th row) by
[
n
k

]
, then

it is not hard to show (e.g., [2]) from the construction rules that:

–
[
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k

]
=

1
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(
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)
–

n∑
k=0

(
n

k

)[
n
k

]
= 1

Therefore all entries of the harmonic triangle are unit fractions. So, we choose to work with Leibniz’s
“Denominator Triangle”, by picking only the denominators of the entries. This allows us to deal with
whole numbers rather than rational numbers in HOL4.

3 Leibniz’s Denominator Triangle and Its Triplets

Taking the denominators of each entry of Leibniz’s Harmonic Triangle to form Leibniz’s Denominator
Triangle, denoted by L, we define its entries in HOL4 via the binomial coefficients:

Definition 1. Denominator form of Leibniz’s triangle: k-th entry at n-th row.

` L n k = (n + 1) ×
(
n

k

)

row n \ column k k = 0, k = 1, k = 2, k = 3, k = 4, k = 5, k = 6, · · ·
n = 0 1
n = 1 2 2
n = 2 3 6 3
n = 3 4 12 12 4
n = 4 5 20 30 20 5
n = 5 6 30 60 60 30 6
n = 6 7 42 105 140 105 42 7

Table 1. Leibniz’s Denominator Triangle. A typical triplet is marked.

The first few rows of the denominator triangle are shown (Table 1) in a vertical-horizontal format.
Evidently from Definition 1, the n-th horizontal row is just a multiple of the n-th row in Pascal’s triangle
by a factor (n+ 1), and the left vertical boundary consists of consecutive numbers:

` L n 0 = n + 1



Within this vertical-horizontal format, we identify L-shaped “Leibniz triplets” rooted at row n and
column k, involving three entries:

– the top of the triplet being αnk, and
– its two child entries as βnk and γnk on the next row.

· · · · · ·
row · · · · · · · · · · · ·
row n · · · αnk · · · · · · 1

αnk
· · ·

row (n+ 1) · · · βnk γnk · · · · · · 1

βnk
· · · 1

γnk
· · ·

row · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Denominator Triangle Harmonic Triangle

Table 2. The Leibniz triplet

In other words, we can define the constituents of a typical Leibniz triplet as:

` αnk = L n k

` βnk = L (n + 1) k ` γnk = L (n + 1) (k + 1)

Note that the values αnk, βnk and γnk occur as denominators in Leibniz’s original harmonic triangle,

corresponding to the situation that the entry
1

αnk

has immediate children
1

βnk

and
1

γnk

(refer to Table 2).

By the construction rule of harmonic triangle, we should have:

1

αnk

=
1

βnk

+
1

γnk

, or
1

γnk

=
1

αnk

−
1

βnk

which, upon clearing fractions, becomes:

αnk × βnk = γnk × (βnk − αnk)

Indeed, it is straightforward to show that our definition of (L n k) satisfies this property:

Theorem 4. Property of a Leibniz triple in Denominator Triangle.

` αnk × βnk = γnk × (βnk − αnk)

This identity for a Leibniz triplet is useful for computing the entry γnk from previously calculated
entries αnk and βnk. Indeed, the entire Denominator Triangle can be constructed directly out of such
overlapping triplets:

– Each left boundary entry: (n+ 1) for the n-th row, with n starting from 0.

– Each Leibniz triplet: γnk =
αnk × βnk

βnk − αnk

.

This is also the key for the next important property of the triplet.



3.1 LCM Exchange

A Leibniz triplet has an important property related to least common multiple:

Theorem 5. In a Leibniz triplet, the vertical pair [βnk; αnk] and the horizontal pair [βnk; γnk] both
share the same least common multiple.

` lcm βnk αnk = lcm βnk γnk

Proof. Let a = αnk, b = βnk, c = γnk. Recall from Theorem 4 that: ab = c(b− a).

lcm b c
= bc÷ gcd(b, c) by definition
= abc÷ (a× gcd(b, c)) introduce factor a above and below division
= bac÷ gcd(ab, ca) by common factor a, commutativity
= bac÷ gcd(c(b− a), ca) by Leibniz triplet property, Theorem 4
= bac÷ (c× gcd(b−a, a)) extract common factor c
= ba÷ gcd(b, a) apply GCD subtraction and cancel factor c
= lcm b a by definition.

ut

row n \ column k k = 0, k = 1, k = 2, k = 3, k = 4, k = 5, k = 6, · · ·
n = 0 1
n = 1 2 2
n = 2 3 6 3
n = 3 4 12 12 4
n = 4 5 20 30 20 5
n = 5 6 30 60 60 30 6
n = 6 7 42 105 140 105 42 7

Table 3. A column and a row intersecting at a left boundary entry of Denominator Triangle

We shall make good use of this LCM invariance through swapping vertical and horizontal pairs in
Leibniz triplets to establish an “enlarged” L-shaped LCM invariance involving columns and rows, as
shown in Table 3. Theorem 1 will be deduced from this extended LCM invariance.

4 Paths Through Triangles

Our theorem requires us to capture the notion of the least common multiple of a list of elements (a path
within the Denominator Triangle). We formalize paths as lists of numbers, without requiring the path to
be connected. However, the paths we work with will be connected and include (refer to Table 3):

– (Ldown n): the list [1 .. n + 1], which happens to be the first n + 1 elements of the leftmost
column of the Denominator Triangle, reading down;

– (Lup n): the reverse of Ldown n , or the leftmost column of the triangle reading up; and
– (Lrow n): the n-th row of the Denominator Triangle, reading from the left.



Then, due to the possibility of LCM exchange within a Leibniz triplet (Theorem 5), we can prove the
following:

Theorem 6. In the Denominator Triangle, consider the first element (at left boundary) of the n-th row.
Then the least common multiple of the column of elements above it is equal to the least common multiple
of elements in its row.

` list_lcm ( Ldown n) = list_lcm ( Lrow n)

The proof is done via a kind of zig-zag transformation, see Figure 2. In the Denominator Triangle, we
represent the entries for LCM consideration as a path of black discs, and indicate the Leibniz triplets by
discs marked with small gray dots. Recall that, by Theorem 5, the vertical pair of a Leibniz triplet can be
swapped with its horizontal pair without affecting the least common multiple.

step 1 step 2 step 3 step 4 step 5 step 6 step 7

Fig. 2. Transformation of a path from vertical to horizontal in the Denominator Triangle, stepping from left to right.
The path is indicated by entries with black discs. The 3 gray-dotted discs in L-shape indicate the Leibniz triplet,
which allows LCM exchange. Each step preserves the overall LCM of the path.

It takes a little effort to formalize such a transformation. We use the following approach in HOL4.

4.1 Zig-zag Paths

If a path happens to have a vertical pair, we can match the vertical pair with a Leibniz triplet and swap
with its horizontal pair to form another path, its zig-zag equivalent, which keeps the list LCM of the path.

Definition 2. Zig-zag paths are those transformable by a Leibniz triplet.

` p1  p2 ⇐⇒
∃n k x y. p1 = x _ [βnk; αnk] _ y ∧ p2 = x _ [βnk; γnk] _ y

Basic properties of zig-zag paths are:

Theorem 7. Zig-zag path properties.
` p1  p2 ⇒ ∀ x. [x] _ p1  [x] _ p2 zig-zag a congruence wrt (::)
` p1  p2 ⇒ list_lcm p1 = list_lcm p2 preserving LCM by exchange via triplet

4.2 Wriggle Paths

A path can wriggle to another path if there are zig-zag paths in between to facilitate the transformation.
Thus, wriggling is the reflexive and transitive closure of zig-zagging, giving the following:

Theorem 8. Wriggle path properties.
` p1  

∗ p2 ⇒ ∀ x. [x] _ p1  
∗ [x] _ p2 wriggle a congruence wrt (::)

` p1  ∗ p2 ⇒ list_lcm p1 = list_lcm p2 preserves LCM by zig-zags



4.3 Wriggling Inductions

We use wriggle paths to establish a key step2:

Theorem 9. In the Denominator Triangle, a left boundary entry with the entire row above it can wriggle
to its own row.

` [ L (n + 1) 0] _ Lrow n  ∗ Lrow (n + 1)

Proof. We prove a more general result by induction, with the step case given by the following lemma:

` k ≤ n ⇒
TAKE (k + 1) ( Lrow (n + 1)) _ DROP k ( Lrow n)  
TAKE (k + 2) ( Lrow (n + 1)) _ DROP (k + 1) ( Lrow n)

where the list operators TAKE and DROP extract, respectively, prefixes and suffixes of our paths.
In other words: in the Denominator Triangle, the two partial rows TAKE (k + 1) (Lrow (n + 1))
and DROP k (Lrow n) can zig-zag to a longer prefix of the lower row, with the upper row becoming
one entry shorter. This is because there is a Leibniz triplet at the zig-zag point (see, for example, Step 5 of
Figure 2), making the zig-zag condition possible. The subsequent induction is on the length of the upper
partial row. ut

With this key step, we can prove the whole transformation illustrated in Figure 2.

Theorem 10. In the Denominator Triangle, for any left boundary entry: its upward vertical path wriggles
to its horizontal path.

` Lup n  ∗ Lrow n

Proof. By induction on the path length n.
For the basis n = 0, both (Lup 0) and (Lrow 0) are [1], hence they wriggle trivially.
For the induction step, note that the head of (Lup (n + 1)) is (L (n + 1) 0). Then,

Lup (n + 1)
= [L (n + 1) 0] _ Lup n by taking apart head and tail
 ∗ [L (n + 1) 0] _ Lrow n by induction hypothesis and tail wriggle (Theorem 8)
 ∗ Lrow (n + 1) by key step of wriggling (Theorem 9).

ut

Now we can formally prove the LCM transform of Theorem 6.

` list_lcm ( Ldown n) = list_lcm ( Lrow n)

Proof. Applying path wriggling of Theorem 10 in the last step,

list_lcm (Ldown n)
= list_lcm (Lup n) by reverse paths keeping LCM
= list_lcm (Lrow n) by wriggle paths keeping LCM (Theorem 8).

ut
2 This is illustrated in Figure 2 from the middle (step 4) to the last (step 7).



5 LCM Lower Bound

Using the equality of least common multiples just proved for Theorem 6, here is the proof of Theorem 1:

` 2n ≤ list_lcm [1 .. n + 1]

Proof. Recall from Section 3 that the left vertical boundary of Leibniz’s Denominator Triangle consists
of consecutive numbers, thus (Ldown n) = [1 .. n + 1]. Also, the horizontal (Lrow n) is just a
multiple of (Prow n) by a factor (n+ 1). Therefore,

list_lcm [1 .. n + 1]
= list_lcm (Ldown n) as asserted
= list_lcm (Lrow n) by LCM transform (Theorem 6)
= (n + 1) × list_lcm (Prow n) by LCM common factor
= LENGTH (Prow n) × list_lcm (Prow n) by length of horizontal row
≥ SUM (Prow n) by Theorem 2
= 2n by binomial sum (Theorem 3).

ut

6 Conclusion

We have proved a lower bound for the least common multiple of consecutive numbers, using an interesting
application of Leibniz’s Triangle in denominator form. By elementary reasoning over natural numbers and
lists, we have not just mechanized what we believe to be a cute proof, but now have a result that will be
useful in our ongoing work on the mechanization of the AKS algorithm.

References

1. Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics, 160(2):781–793,
September 2004.

2. Ayoub B. Ayoub. The Harmonic Triangle and the Beta Function. Mathematics Magazine, 60(4):223–225,
October 1987.

3. Marjorie Bicknell-Johnson. Diagonal Sums in the Harmonic Triangle. The Fibonacci Quarterly, 19(3):196–199,
August 1981.

4. Hing-Lun Chan and Michael Norrish. Mechanisation of AKS Algorithm: Part 1 — the Main Theorem. In
Christian Urban and Xingyuan Zhang, editors, Interactive Theorem Proving, ITP 2015, number 9236 in LNCS,
pages 117–136. Springer, August 2015.

5. Ma Rosa Massa Esteve and Amadeu Delshams. Euler’s Beta Function in Pietro Mengoli’s Works. Archive for
History of Exact Sciences, 63(3):325–356, May 2009.

6. Bakir Farhi. An Identity involving the Least Common Multiple of Binomial Coefficients and its Application.
American Mathematical Monthly, 116(9):836–839, November 2009.

7. G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. 6th Edition. Oxford University Press,
2008. ISBN: 9780199219865.

8. Shaofang Hong. Nair’s and Farhi’s identities involving the least common multiple of binomial coefficients are
equivalent, July 2009. Available from http://arxiv.org/pdf/0907.3401.

9. Grigory M. Answer to: Is there a Direct Proof of this LCM identity?, August 2010. Question 1442 on Math
Stack Exchange: http://math.stackexchange.com/questions/1442/.

10. M. Nair. On Chebyshev-type Inequalities for Primes. American Mathematical Monthly, 89(2):126–129, February
1982.


