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Recap



Short Version AKS work

AKS mechanisation

PRIMES is in P

Manindra Agrawal Neeraj Kayal
Nitin Saxena®
Abstract
We present an unconditional deterministic polynomial-time algorithm that determines whether

an input number is prime or composite,

We will need the following simple fact about the lem of first m numbers (see, e.g., [Nai82] for a proof).
Lemma 3.1. Let LOM{m) denote the lemn of first m numbers. Form = 7:

LOM(m) = 2™,

Need to formalize this LCM lemma, but not using Nair’s integral-sum.
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Short Version Google Search

Math Stack Exchange

Google search leads to Leibniz’'s Harmonic Triangle.

Is there a direct proof of this lem identity?

The identity

oG 4 n’ n' 1 )
=X (n \ o = 12300. T
(n 4+ 1)lcm ( (O) (1) (n) ) lem(1,2,...n +1)

is probably not well-known. The only way I know how to prove it is by using Kummer's theorem
that the power of p dividing {‘“’b) is the number of carries needed to add @ and b in base p. Is there

a
7 a more direct proof, e.g. by showing that each side divides the other?

(number-theory) (binomial-coefficients)

at 4:18

share Cite Impros stian edited Aug 3'10at Biog asked Aug 3'1

3 Answers active  oldest  votes

Consider Leibniz harmonic triangle — a table that iz like «Pascal triangle reversed»: on it's sides lie
nurnbers ,17 and each number is the sum of two beneath it {see the picture].
19
One can easily proove by induction that m-th number in n-th row of Leibniz triangle is s
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Short Version Found the Key

Key Property

Theorem (LCM Exchange)

For a Leibniz triplet {a,b,c}, lcm b ¢ = lcm b a.

GCDxLCM = product

o) oa

N 4~ Euclidean Algorithm

— b — —

ax gcd(b, c) ¢ x gcd(b — a,a)
T

Leibniz trlplet L

gcd( ab ca) gcd(c(b — a), ca)

For a Leibniz triplet {a, b,c}, ab=c(b— a).
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Clever Idea

6x

OO bW =

1

Short Version Use the Key

2

6 3

12 12 4
20 30 20
30 60 60
5 10 10

5
30

5

6
1

Theorem (Lower Bound for the LCM of any list /)

For a list ¢ of positive numbers, SuM ¢ < LENGTH ¢ x list_lcm /.

J
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Short Version Use the Key

Clever ldea
2
6 3
12 12 4
20 30 20 5
30 60 60 30 6
6x 1 5 10 10 5 1
Theorem (Lower Bound for the LCM of any list /)
For a list ¢ of positive numbers, suM ¢ < LENGTH { x list_lcm /. J

@ Applying theorem to vertical list ... a disappointing lower bound.
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Short Version Use the Key

Clever Idea
]
2 2
3 6 3
4 12 12 4
5 20 30 20 5
6 30 60 60 30 6

6x 1 5 10 10 5 1

Theorem (Lower Bound for the LCM of any list ¢)
For a list ¢ of positive numbers, SuM ¢ < LENGTH ¢ x list_lcm /.

@ Applying theorem to vertical list ... a disappointing lower bound.
@ Applying theorem to horizontal list ... ??

Hing-Lun Chan & Michael Norrish (ANU) Bounding LCM with Triangles Aug 2016 6/24



Short Version Use the Key

Clever Idea
]
2) 2
3 6 3
4 12 12 4
5 20 30 20 5
6 30 60 60 30 6

6x 1 5 10 10 5 1

Theorem (Lower Bound for the LCM of any list ¢)
For a list ¢ of positive numbers, SuM ¢ < LENGTH ¢ x list_lcm /.

@ Applying theorem to vertical list ... a disappointing lower bound.
@ Applying theorem to horizontal list ... ??
This will work because both lists have the same LCM!
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The Journey

The Journey
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The Journey Searches

Google: Hits and Misses
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The Journey Searches

Google: Hits and Misses

@ Google: “LCM lower bound”
» May not get Q1442: Is there a Direct Proof of this LCM identity?
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The Journey Searches

Google: Hits and Misses

@ Google: “LCM lower bound”

» May not get Q1442: Is there a Direct Proof of this LCM identity?
@ Google: “LCM identity”

» Lucky to find Q1442, giving only a sketch of the proof.
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The Journey Searches

Google: Hits and Misses

@ Google: “LCM lower bound”

» May not get Q1442: Is there a Direct Proof of this LCM identity?
@ Google: “LCM identity”

» Lucky to find Q1442, giving only a sketch of the proof.
@ Many more things to search for:

» Leibniz harmonic triangle

» LCM and triangle
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The Journey Searches

Google: Hits and Misses

@ Google: “LCM lower bound”

» May not get Q1442: Is there a Direct Proof of this LCM identity?
@ Google: “LCM identity”

» Lucky to find Q1442, giving only a sketch of the proof.
@ Many more things to search for:

» Leibniz harmonic triangle — not much.

» LCM and triangle — no specific match.
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The Journey Searches

Google: Hits and Misses

@ Google: “LCM lower bound”

» May not get Q1442: Is there a Direct Proof of this LCM identity?
@ Google: “LCM identity”

» Lucky to find Q1442, giving only a sketch of the proof.
@ Many more things to search for:

» Leibniz harmonic triangle — not much.

» LCM and triangle — no specific match.

At some point, need to stop surfing and DIY.

3 Answers active  oldest  votes

Consider Leibniz harmonic friangle — a table that is like «Pascal triangle reversed»: on it's sides lie
numbers ,1—1 and each number is the sum of two beneath it (see the picture).
19
1
[v:+1](;;)

One can easily proove by induction that m-th number in n-th row of Leibniz triangle is
" So LHS of our identity is just led of fractions in n-th row of the triangle.

But it's not hard to see that any such number is an integer linear combination of fractions on
triangle's sides (i.e. 1/1,1/2,...,1/n) — and vice versa. So LHS is equal to led(1/1,... . 1/n) —
and that is exactly RH3.
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The Journey Induction
Induction Pattern
307 (* LCM Lenmna
308
309 (n+1) lem (C(n,0) to Cin,n)) = lem (1 to (n+l))
310
311 h—th number in the n-th row of Leibniz triangle is: 1/ (n+l)Cin,m)
31z
318 So LHS = led (1/1, 1/2, 1/3, ..., 1/n) = RHS = lem (1,2,3, ..., (n+l)).
k]
320 O-th row: 1
321 1-st row: 1/2  1/:2
322 Z-nd row: 1/3 1/6 1/3
323 3-rd row: G B N R Y L R
324 4-th row: 1/5 1/20 1/30 1/20 1/5
5 o
326 4-th row: 145 Ci4,m), Ci(4,m) = 1 4 6 4 1, hence 1/5 1/20 1/30 1/20 1/5
327 led (145 1720 1730 1720 1/5)
328 = lem (5, 20, 30, 20, 5)
329 = lem (5 C(4,0), 5 C(4,1), 5 C(4,2), 5 C(4,3), 5 C(4,4))
330 = 5 lem (Ci(4,00, C(4,1), Ci4,2), Ci4,3)1, Ci4,4))
331
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The Journey Induction

Induction Pattern

307 (* LCHM Lemms

308

309 (n+1) lem (C(n,0) to Cin,n)) = lem (1 to (n+l))

310

311 h—th number in the n-th row of Leibniz triangle is: 1/ (n+l)Cin,m)
31z

318 So LHS = led (1/1, 1/2, 1/3, ..., 1/n) = RHS = lem (1,2,3, ..., (n+l)).
k]

320 O-th row: 1

321 1-st row: 1/2  1/:2

322 Z-nd row: 1/3 1/6 1/3

323 3-rd row: G B N R Y L R

324 4-th row: 1/5 1/20 1/30 1/20 1/5

5 o

326 4-th row: 145 Ci4,m), Ci(4,m) = 1 4 6 4 1, hence 1/5 1/20 1/30 1/20 1/5
327 led (175 1720 1/30 1720 1/5)

328 = lem (5, 20, 30, 20, 5)

329 = lem (5 C(4,0), 5 C(4,1), 5 C(4,2), 5 C(4,3), 5 C(4,4))

330 = 5 lewm (Ci4,0), C(4,1), Ci4,2), Ci4,3), C(4,4))

331

@ How to prove the identity by induction? Need a pattern.
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The Journey Induction

Induction Pattern

307
305
309
310

[* LCHM Lemma

(n+1) lem (Cin,0) to Cin,n)) = lem (1 to (n+l))

311 h—th number in the n-th row of Leibniz triangle is: 1/ (n+l)Cin,m)

312

318
319
320
3z1
3z2a
323
3z4
325
326
327
328
329
330
331

%o LHS = led (1/1, 1/2, 1/3, ..., 1/n) = RHS = lem (1,2,3, ce Inm¥l) ).
O-th row: 1

1-st row: 1/z2  1/2

2-nd row: 1/3 1/6 1/3

3-rd row: G B N R Y L R

4-th row: 1/5 1/20 1/30 1/20 1/5

4-th row: 1/5 C(4,m), C(4,m) = 1 4 6 4 1, hence 1/5 1/20 1/30 1/20 1/5

led (1/5 1/20 1/30 1/20 1/5)
= lem (5, 20, 30, 20, 5)
= lem (5 C{4,0), 5 C(4,1), 5 C(4,2), 5 C(4,3), § C(4,4))
= 5 lem (C(4,00, Ci4,1), Ci4,2), C(4,3), C(4,4)]

How to prove the identity by induction? Need a pattern.

@ Assuming the identity, does it lead to the lower bound?
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The Journey Induction

Finding Pattern

528 ITheorem: In the Multiples Triangle, the wvertical-lem = horizontal-lcom.

529 i.e. lem (1, 2, 3) = lem (3, 6, 3) = @

530 lewm (1, 2, 3, 4) = lem (4, 12, 12, 4) = 12

531 lem (1, 2, 3, 4, §) = lem (5, 20, 30, 20, §) = &0

552 lewm (1, 2, 3, 4, &, &) = lem (6, 30, &0, 60, 30, &) = 60

533 Proof: With reference to Leibniz's Triangle, note: term = left-up - left

534 lewm (5, 20, 30, 20, 5)

535 = lem (5, 20, 3O hy reduce repetition

536 = lom (5, dil/20), d(1/30)) by denominator of fraction

537 = lem (5, diil/4 - 1/5), d(1/30)) by term = left-up - left

538 = lem (5, lem(4, 5), d(1/12 - 1/20)) by denominator of fraction subtraction
539 = lem (5, 4, lemilz, 20)) by lewm (&, lem (&, b)) = lcw (&, b)
540 = lem (5, 4, lemid(1l/12), d(1/20))) to fraction again

541 = lewm (5, 4, lewmid(l/3 - 1/4), dil/4 - 1/5))) by Leibniz's Triangle

542 = lem (5, 4, lewmilem(3,4), lemid, 511 hy fraction subtraction denominator
543 = lem (5, 4, lemi3, 4, 5)) hy lom merge

544 = lem (5, 4, 3) merge again

545 = lem (5, 4, 3, 2) by leom inelude factor (M1

546 = lem (5, 4, 3, 2, 1) by lew include 1

e

A sample of my investigation, by examples.
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The Journey Induction

Promising Result

363

364 lem (1 to 5) = 1xEZx3x4x5/2 = 60

3656 = 5 lem (1 4 68 4 1) =5 x 12

366 = lcm (1 4 &6 4 1) ——> unfold 5x to add & times
367 + lcm (1 4 6 4 1)

368 4+ lem (14 6 4 1)

362 + lem (1 4 6 4 1)

370 + lem (104 6 4 1)

371 >=1 4+ 4 +6 + 4 + 1 ——> pick one of each 5 Cin,mw), i.e. diagonal
372 = (1L + 1)*4 ——> fold back binomial

373 = 2%4 = 16

3749

375 Actually, can take 5 lewm (1 4 6 4 1) »>= 5 x 6 = 30,

376 but this will need estimation of C(n, n/2), or C{2Zn,n), i.e. Stirling's formula.
377

378 Theorem: lem (X ¥ z) »>= x or lewm (% ¥ 2) >= ¥ or lem (x ¥ 2] >= =

379

Figure out that the LCM identity leads to the desired lower bound.
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The Journey Induction

.
Hit an Idea
1021 (* The Idea:
i0za h
1023 Actually, lem s b = lem b o = lom o & for a ¢ in Leibniz Triangle.
1024 The only relationship is: o = ab/(a - b), or ab = c(a - b).
1025
1026 I= this a theorem: ab = cla - b) ==»> lcma b = lemb ¢ = lem o a
1027 Or in fractions, 1/z = 1/b - 1/a ==> lema b = lemb o = lem o & ?
i0z8
1029 lew a b
1030 = a b / {god a b)
1031 = c¢(a - b) / (god & (a - b))
1032 = ac(a - bl / god a (a-b) F a
1033 = lcm (a (a-b)) c / a
1034 = lem (ca cla-hb)) 7/ a
1035 = lem (ca ab) /&
1036 = locm b o
1037
1036 lew boo
1039 =b e / god b oo
1040 = a b ¢ / goed ath arce
1041 = a b c / god of (a-b) cfa
1042 = a b / god (a-b) s
1043 = ab / gecd b a
1044 = lcm (= h)
1045 = lem a b

Focus on a triplet . ..
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Hit an Idea

1021
1022
1023
1024
10&5
1026
10a7
i0zs
1029

(¥ The Idesa:

Aetually,

lem a b

The only relationship is:

I= this a theorem:

Or in fractions,

1030 =

1031
103z
1033
1034
1035

1036 =

1037
1038
1039
1040
1041
104z
1043
1044

1045 =

lem b o =

[

cia - h) ==»> lcm a b = lecm b o
/b - 1/a ==» lema b = lem b o

lew a b

a b / (god ab)

cia - bl / igod a - b
acia - b) / goed a (a-h) F oa
lem (a (a-h)) o / a

lew (ea cla-hb)) 7/ a

lew (ea sh) foa

lem b oo

lew b oo

beo/gedboe

ab o/ ged ath ate

ab o/ god cfia-b) c¥a
ab / god (a-h) oa

ab / gedbhoa

lcm (& b)

lem a kb

The Journey Induction
h
loem o oa for a o
abf (s - b), or ab = cla - b).

in Leibniz Triangle.

lem oo a
lewm ocoa ?

Focus on atriplet... hope: 1cm @ b=1cm b ¢c=1cm C a
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The Journey Induction

Volia

1021 (* The Idea:

1022 b

1023 Actually, lcma b = lcmb c = lecmc a for a ¢ in Leibniz Triangle.
1024 The only relationship is: c = ab/(a - k), or ab = ci{a - b).

1025

1026 Is this & theorem: &b = =lewmb o = leme a
1027 Or in fractions, 1/c = =lcmb ¢ = lcmc a ?
1028

1046

1047 lcm a o

1048 = a c / ged a o

1049 = a b o / god b'a b¥e

1050 = a b ¢ / god ot (a-b) b

1051 = a b / ged (a-b) b

1052 = a b / gcd a b

1053 = lem a b

1054

1055 Yes!

1056

1057 This is now in LCHM EXCHANGE:

1058 wval it = |- 'a b c. (a *b =¢c * (a - h))] ==> (lcma b = lcwm a c): thm
1059 *)

Success!
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The Journey Polishing

Polishing
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The Journey Polishing

Done and Dusted
@ Once the key is proved (SourceTree #1200), goal is within reach.

@ Had the picture of path transform, zig-zag and wriggle, for induction.
@ Just establish the LCM lower bound by brute-force induction (#1211).
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The Journey Polishing

Done and Dusted

@ Once the key is proved (SourceTree #1200), goal is within reach.
@ Had the picture of path transform, zig-zag and wriggle, for induction.
@ Just establish the LCM lower bound by brute-force induction (#1211).

98| Transform from Vertical LCM to Horizental LCM:

a3 leibniz_len_shift_one I- In k. k == n ==*

100 (lem (list lem (TAKE (SUC k) {leibmiz horizomtal (SUC nl)))

101 {list_lem (DROP k {leibmiz_horizemtal n)i) =

102 lem (list_lem (TAKE (SUC (SUC k)] (leibniz horizoncal (SDC ni)i)
103 {list_lcu (DROP (SUC k) (leibniz_horizontal n})))

104 leibniz lom shife |- 'n k. k <= BUC n ==»

108 (lew {list_lem (TEKE (SUC k) {leibniz_horizontal {(SUC nj))}

106 {list_lem (DROP k (leibniz horizontal m))) =

107 lem {SUC (SUC n}! (list_lem {leibniz_horizental n}i}

lo8 leibniz horizomval leom |- 'n. list_lem (leibmiz horizomeal (SUC mi) =

108 lem (SUC {SUC n)} {list_lem {leibniz_horizontal n))

110 leibniz_lem property |- 'n. list_lem ileibmiz_vervical m) = list_lew (leibniz_horizomtal n)
111

112  Einomial Horizemtal List:

113 binomial_ horizontal_def |- !n. binomial horizontal n = GENLIST (binomial n) (SUC n)

114  binomial_horizomtal 0 |- binomial_horizemtal O = [1]

115  binomial _horizental lem |- !n. LENGTH (binomial horizental n) = n + 1

116  binomial_horizental_pos |- !'m. EVERT {4x. O < x} (binomial _horizontal n!

117  binomial horizental sum |- !n. SUM (binomial horizemtal ni = 2 ** n

118

113 Lower Bound of Leibniz LCH:

1z0 leibniz_alt |- !m. leibmiz n = (\k. {n + 1} * ki o binomial n

1z1 leibniz horizomtal_alt |- In. leibmiz horizomeal m = MAP (\k. (n + 1] * k) (binomial horizoncal n)
lzz leibniz_horizontal lecm_alt I- In. list_lcm {leibniz_horizental n} =

123 tn + 13 * list_lem (binomial horizental n)

lz4 leibniz_horizontal lem lower_bound |- In. 2 ** n <= list_lem (leibmiz horizontal nj

1z8 leibniz wervical lem lower hound I- In. 2 ** n == listc_lem [leibniz vertical n)

126 *)
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The Journey Polishing

Back in Spotlight

@ Decide to submit a paper to ITP2016 (a fortnight before deadline).
@ Pick this LCM result for the category “Proof Pearl”.

@ Use a picture to illustrate the path transform steps.
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The Journey Polishing

Back in Spotlight

@ Decide to submit a paper to ITP2016 (a fortnight before deadline).
@ Pick this LCM result for the category “Proof Pearl”.

@ Use a picture to illustrate the path transform steps.

@ A good picture, but the proof script is bad — heaps of induction.
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The Journey Polishing

Back in Spotlight

@ Decide to submit a paper to ITP2016 (a fortnight before deadline).
@ Pick this LCM result for the category “Proof Pearl”.

@ Use a picture to illustrate the path transform steps.

@ A good picture, but the proof script is bad — heaps of induction.
@ Realize that zig-zags and wriggles are implicit in current proofs.
@ Replace brute-force induction bt explicit zig-zag and wriggle paths.
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The Journey Polishing

Major Changes

@ Formalize in HOL4: path transform, zig-zag and wriggle.

@ Reformulate the proofs based on such concepts (#1531).
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The Journey Polishing

Major Changes

@ Formalize in HOL4: path transform, zig-zag and wriggle.
@ Reformulate the proofs based on such concepts (#1531).
140
141  Using Triplet and Paths:
142 leibniz_zigzag_def |- !'pathl pathZ. pathl zigzag pathZ <=
143 In k partl partZ. {pathl = partl ++ [tri b] ++ [tri_a] ++ partZ) 7\
144 {path? = partl ++ [tri_h] ++ [tri_cl ++ part?)
145 leibniz_wriggle_def |- !pathl pathZ. pathl wriggle pathZ <=+
148 m £. (pathl = £ 0} /\ {pathZ = £m) /% lk. k < m ==> f k zigzag £ (3UC k)
147 leibniz_lew_triple |- 'n k. lem tri_b tri_a = lem tri_b tri_c
148 list_lem_zigzag |- !pathl pathZ. pathl zigsag path? ==> {list_lcm pathl = list_lcm pathZ}
143 list_lem wriggle |- !pachl pathZ. pathl wriggle pathZ ==» (list_lcm pathl = lisc_lcm pathZ)
150 leibniz_zigzag wriggle |- !pathl path®. pathl zigzagy pathZ === pathl wriggle pathZ
151 leibniz_zigzag tail |- Ipathl path?.  pathl =migzag path? ==+ lx. [x] ++ pathl =migzag [x] ++ path?
152 leibniz_wriggle tail |- !pathl pathZ. pathl wriggle path? === lx. [x] ++ pathl wriggle [x] + pathZ
153 leibniz_herizental _wriggle
154 |- !'n. [8UC {SUC n}] ++ leibniz_horizontal n wriggle leibniz_horizontal (SUC n}
155
156 leibniz_up_ 0 |- leibniz_up 0 = [1]
157 leibniz_up_len |- 'n. LENGTH {leibmiz up n} = SUC n
158 leibniz_up_cons |- In. leibniz_up (SUC n) = SUC (SUC n)::leibniz_up n
159 leibniz_triplet_0 |- leibniz_wp 1 zigzag leibniz_horizomtal 1
180 leibniz_up_wriggls horizontal |- Im. 0 < n ==> leibniz up n wriggle leibniz horizontal n
181 leibniz_lew_property |- !m. list_lcm {leibniz_vertical n) = list_lcm {leibniz_horizental n)
16z *)
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The Journey Polishing

Major Changes

140
Ll
142
143
144
145
l4g
Alile
l42
143
150
ERE
15z
152
154
1EE
156
1E57
158
159
10
16l
1z *)

Formalize in HOL4: path transform, zig-zag and wriggle.
Reformulate the proofs based on such concepts (#1531).

A 12-page draft, with wonderful diagrams, tables and proofs.

Using Triplet and Paths:
leibniz_zigzag_def |- !'pathl pathZ. pathl zigzag pathZ <=
In k partl partZ. {pathl = partl ++ [tri b] ++ [tri_a] ++ partZ) 7\
(path? = partl ++ [tri_b] ++ [tri_ec] ++ partZ)

leibniz_wriggle_def |- !pathl path?. pathl wriggle pathZ <=»

Tm £, (pethl = £ 0) /Y {path® = £ m) /% k. k < m ==> f k zigzag £ (SUC k)
leibniz_lem triple |- Ink. lem tri_b tri_a = lem tri b tri_c
list_lem zigzay |- !pathl pathZ. pathl zigzag pathZ ==> (list_lew pathl = list_lecwm pathZ)
list_lem wriggle |- !'pachl pathZ. pathl wriggle pathZ tlist_lecm pathl = lisc_lecm pathZ)
leibniz zigzag wriggle |- !pathl pathZ. pathl zigzag pathZ ==+ pathl wriggle pathZ
leibniz_zigzag tail |- Ipathl path?. pathl zigzag path? lx. [x] ++ pathl zigzag [¥] ++ path?

leibniz_wriggle tail |- !pathl path2. pathl wriggle path2
leibniz_herizental _wriggle
|- !'n. [8UC {SUC n}] ++ leibniz_horizontal n wriggle leibniz_horizontal (SUC n}

== lz. Izl ++ pathl wriggle [x] ++ pathZ

leibniz_up_0 |- leibniz_up 0 = [1]

leibniz up len |- !n. LENGTH {leibniz up n) = SUC n

leibniz_up_cons |- In_ leibniz_up (SUC n) = SUC (SUC n)::leibniz_up n

leibniz_triplet 0 |- leibniz up 1 zigzagy leibniz horizontal 1

leibniz_up_wriggls horizontal |- Im. 0 < n ==> leibniz up n wriggle leibniz horizontal n
leibniz_lcwm propertcy |- !n. list_lew {leibniz_vertical n) = list_lcm {leibniz_horizontal n)
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Final Touch

The Journey Polishing

My supervisor's masterstrokes:
@ Cut away half of the draft, keeping only 3 proofs (so 6 pages).
@ Re-package diagrams and tables side-by-side, use explicit triplet.
@ Wriggle is the reflexive transitive closure (RTC) of zig-zag (#1567).

151

152 Wriggle Paths in Leibmiz Triangle

153 leibniz_old_wriggle_def |- I1pl
154 T

155 list_lem old wriggle - pl
156 leibniz_zigzag old wriggle |- 'pl
157 leibniz_old wriggle tail - 1pl
ls8 leibniz old wriggle trans |- !pl
153 leibniz_horizontal old wriggle |
le0

lel

16Z Wriggle Paths in Leibniz Triangle

163 list_lem wriggle |- 1pl pz.
164 leibniz_zigzag wriggle |- Ipl pz.
165 leibniz_wriggle tail |- !'pl pz.
166 leibniz_wriggle trans |- 1pl pz
1e7

168 Back to Milestone Theorem:

les leibniz_triplet_0

170 leibniz_up_old wriggle horizoncal

171 leibniz_lem property |- tm. 1i
17z

17w

Hing-Lun Chan & Michael Norrish (ANU)

told):
pz. pl old_wriggle pZ <==
£ (pl = £ 0) /M (p2 = £ m)
p2. pl old_wriggle p2 ===

FATIRD: S0 S
tlist_lcm pl =

pZ. pl zigzayg pZ ==& pl old wriggle pZ
lx. [x] ++ pl old wriggle [x] ++ pZ
pZ p3. pl old wriggle p2 /% p2 old wriggle p3 ==+ pl old wriggle p3
- In. [leibniz (n + 1) 0] ++ leibniz_horizohtal n old wriggle

leibniz_horizomtal i{m + 1}

pz. pl old wriggle pZz ==»

(newr) -
pl wriggle pZ

pl zigzag pz
pl wriggle pZ

= otz [x]

++ pl wriggle

> £k migmag f

list_lem p2)

[x]

> {list_lem pl = list_lem p2)
pl wriggle pZ

++ pz

p3. pl wriggle p2 /% pZ wriggle p3 ==> pl wriggle p3

st_lom {leibniz_vertical n)

Bounding LCM with Triangles

|- leibniz_up 1 zigzay leibniz_horizontal 1
|= 'm. 0 = n ==r leibniz_up n old wriggle leibniz_horizontal n

= list_lem {leibniz horizontal n}
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Final Touch

The Journey Polishing

My supervisor's masterstrokes:
@ Cut away half of the draft, keeping only 3 proofs (so 6 pages).
@ Re-package diagrams and tables side-by-side, use explicit triplet.
@ Wriggle is the reflexive transitive closure (RTC) of zig-zag (#1567).
@ Last day: can’t complete RTC induction. Help!

151

152 Wriggle Paths in Leibmiz Triangle

153 leibniz_old_wriggle_def |- I1pl
154 T
155 list_lem old wriggle - pl
156 leibniz_zigzag old wriggle |- 'pl
157 leibniz_old wriggle tail - 1pl
ls8 leibniz old wriggle trans |- !pl
153 leibniz_horizontal old wriggle

le0

lel

16Z Wriggle Paths in Leibniz Triangle
163 list_lem wriggle |- 1pl pz.
164 leibniz_zigzag wriggle |- Ipl pz.
165 leibniz_wriggle tail |- !'pl pz.
166 leibniz_wriggle trans |- 1pl pz
1e7

168 Back to Milestone Theorem:

les leibniz_triplet_0

170 leibniz_up_old wriggle horizoncal
171 leibniz_lem property =

17z

17w

Hing-Lun Chan & Michael Norrish (ANU)

told):
pz. pl old_wriggle pZ <==
£ (pl = £ 0) /M (p2 = £ m)
p2. pl old_wriggle p2 ===

FATIRD: S0 S
tlist_lcm pl =

pZ. pl zigzayg pZ ==& pl old wriggle pZ
lx. [x] ++ pl old wriggle [x] ++ pZ
pZ p3. pl old wriggle p2 /% p2 old wriggle p3 ==+ pl old wriggle p3

pz. pl old wriggle pZz ==»

leibniz_horizental in + 1]

(newr) -
pl wriggle pZ

pl zigzag pz
pl wriggle pZ

= otz [x]

++ pl wriggle

> £k migmag f

list_lem p2)

[x]

> {list_lem pl = list_lem p2)
pl wriggle pZ

++ pz

|- 'n. [leibniz in + 1) 01 ++ leibniz_horizontal n old_wriggle

p3. pl wriggle p2 /% pZ wriggle p3 ==> pl wriggle p3

|= 'm. 0 = n ==r leibniz_up n old wriggle leibniz_horizontal n

In. list_lem {leibniz_wertical n}

Bounding LCM with Triangles

|- leibniz_wp 1 zigsag leibniz_horizental 1

= list_lem {leibniz horizontal n}
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Reviews

Review #1, Expertise: high

This paper presents a “proof pearl”, a short and clever proof
that2" < lem(1,...,n+1). This is not a trivial result: Nair’s
proof of this fact was published in 1982, and Google search
reveals some recent strengthenings and generalizations, but it
seems that there is no published elementary proof of this fact.
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[...], the authors have provided an elegant proof of an
interesting result, and have formalized it. It certainly fits the
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Review #1, Expertise: high

This paper presents a “proof pearl”, a short and clever proof
that2" < lem(1,...,n+1). This is not a trivial result: Nair’s
proof of this fact was published in 1982, and Google search
reveals some recent strengthenings and generalizations, but it
seems that there is no published elementary proof of this fact.

[...], the authors have provided an elegant proof of an
interesting result, and have formalized it. It certainly fits the
description of a proof pearl.

The wording of Theorem 5 is confusing. [...] How about
saying this: [...]

The reference to the “unrolling” in Section 5 makes it
mysterious, and the proof is needlessly baroque. The
argument is simply this: [...]
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Reviews

Review #2, Expertise: medium

The authors describe a (mechanised) proof of a
number-theoretic fact: 2" < lem(1,...,n+ 1). The proof is not
new, but the paper is advertised as a pear|.
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Review #2, Expertise: medium

The authors describe a (mechanised) proof of a
number-theoretic fact: 2" < lem(1,...,n+ 1). The proof is not
new, but the paper is advertised as a pear|.

In the past | have reviewed several papers that were
advertised as pearls, but that in my opinion were not pearls.
That is not the case with this paper. | found the text engaging,
and easy to follow. The proof is non-trivial, but the authors
made it easy to understand for me, and | thought that the
mechanisation was presented at a suitable level of detail.
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Reviews

Review #2, Expertise: medium

The authors describe a (mechanised) proof of a
number-theoretic fact: 2" < lem(1,...,n+ 1). The proof is not
new, but the paper is advertised as a pear|.

In the past | have reviewed several papers that were
advertised as pearls, but that in my opinion were not pearls.
That is not the case with this paper. | found the text engaging,
and easy to follow. The proof is non-trivial, but the authors
made it easy to understand for me, and | thought that the
mechanisation was presented at a suitable level of detail.

I strongly recommend the paper for publication.
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Reviews

Review #3, Expertise: medium

This proof pearl shows a lower bound for the least common
multiple of the first n integers [...]
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Reviews

Review #3, Expertise: medium

This proof pearl shows a lower bound for the least common
multiple of the first n integers [...]

Although the inequality is quite specific, this paper
demonstrates that it is worth to search for elegant proofs
rather than to apply the golden hammer of a complicated
theory. Indeed, the formalised proof is very elementary
compared to the published proofs | know of. The authors have
done a good job of bringing together the proof ingredients
(which have been known) and explaining the proof idea.
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Reviews

Review #3, Expertise: medium

This proof pearl shows a lower bound for the least common
multiple of the first n integers [...]

Although the inequality is quite specific, this paper
demonstrates that it is worth to search for elegant proofs
rather than to apply the golden hammer of a complicated
theory. Indeed, the formalised proof is very elementary
compared to the published proofs | know of. The authors have
done a good job of bringing together the proof ingredients
(which have been known) and explaining the proof idea.

In summary, | think that this paper makes a nice proof pearl,
and | therefore recommend acceptance.
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Conclusion

Conclusion

This talk is dedicated to
Michael Norrish,

my supervisor.

@ Scripts
https://bitbucket.org/jhlchan/hol/src/
subfolder: algebra/lib.

@ Paper
https://bitbucket.org/jhlchan/hol/downloads
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