Bounding LCM with Triangles - Behind the Scenes How the Proof becomes a Pearl

Hing-Lun Chan and Michael Norrish

College of Engineering and Computer Science
Australian National University

August 2016, ANU.

Recap

AKS mechanisation

PRIMES is in P
Manindra Agrawal Neeraj Kayal
Nitin Saxena*

Abstract

We present an unconditional deterministic polynomial-time algorithm that determines whether an input number is prime or composite.

We will need the following simple fact about the lcm of first m numbers (see, e.g., [Nai82] for a proof).
Lemma 3.1. Let $L C M(m)$ denote the lcm of first m numbers. For $m \geq 7$:

$$
L C M(m) \geq 2^{m} .
$$

Need to formalize this LCM lemma, but not using Nair's integral-sum.

Math Stack Exchange

Google search leads to Leibniz's Harmonic Triangle.

Is there a direct proof of this lcm identity?

The identity
$(n+1) \operatorname{lcm}\left(\binom{n}{0},\binom{n}{1}, \ldots\binom{n}{n}\right)=\operatorname{lcm}(1,2, \ldots n+1)$
is probably not well-known. The only way I know how to prove it is by using Kummer's theorem that the power of p dividing $\binom{a+b}{a}$ is the number of carries needed to add a and b in base p. Is there a more direct proof, e.g. by showing that each side divides the other?
(number-theory) (binomial-coefficients)
share cite improve this question
edited Aug 3'10 at 8:04 asked Aug $3^{\prime} 10$ at 4:18

3 Answers
active oldest votes

Consider Leibniz harmonic triangle - a table that is like «Pascal triangle reversed»: on it's sides lie numbers $\frac{1}{n}$ and each number is the sum of two beneath it (see the picture).

1 One can easily proove by induction that m -th number in n -th row of Leibniz triangle is \qquad

Key Property

Theorem (LCM Exchange)

For a Leibniz triplet $\{a, b, c\}, \quad l \mathrm{~cm} b c=1 \mathrm{~cm} b a$.

For a Leibniz triplet $\{a, b, c\}, \quad a b=c(b-a)$.

Clever Idea

	1					
2	2					
3	6	3				
4	12	12	4			
5	20	30	20	5		
	6	30	60	60	30	6
$6 \times$	1	5	10	10	5	1

Theorem (Lower Bound for the LCM of any list ℓ)
For a list ℓ of positive numbers, SUM $\ell \leq$ LeNGTH $\ell \times$ list_lcm ℓ.

Clever Idea

Theorem (Lower Bound for the LCM of any list ℓ)
For a list ℓ of positive numbers, SUM $\ell \leq$ LENGTH $\ell \times$ list_lcm ℓ.

- Applying theorem to vertical list \ldots. a disappointing lower bound.

Clever Idea

	1					
2	2					
3	6	3				
4	12	12	4			
5	20	30	20	5		
6	30	60	60	30	6	
$6 \times$	1	5	10	10	5	1

Theorem (Lower Bound for the LCM of any list ℓ)
For a list ℓ of positive numbers, sum $\ell \leq$ Length $\ell \times$ list_lcm ℓ.

- Applying theorem to vertical list ... a disappointing lower bound.
- Applying theorem to horizontal list ... ??

Clever Idea

Theorem (Lower Bound for the LCM of any list ℓ)
For a list ℓ of positive numbers, SUM $\ell \leq$ LengTh $\ell \times$ list_lcm ℓ.

- Applying theorem to vertical list ... a disappointing lower bound.
- Applying theorem to horizontal list ... ??

This will work because both lists have the same LCM!

The Journey

Google: Hits and Misses

Google: Hits and Misses

- Google: "LCM lower bound"
- May not get Q1442: Is there a Direct Proof of this LCM identity?

Google: Hits and Misses

- Google: "LCM lower bound"
- May not get Q1442: Is there a Direct Proof of this LCM identity?
- Google: "LCM identity"
- Lucky to find Q1442, giving only a sketch of the proof.

Google: Hits and Misses

- Google: "LCM lower bound"
- May not get Q1442: Is there a Direct Proof of this LCM identity?
- Google: "LCM identity"
- Lucky to find Q1442, giving only a sketch of the proof.
- Many more things to search for:
- Leibniz harmonic triangle
- LCM and triangle

Google: Hits and Misses

- Google: "LCM lower bound"
- May not get Q1442: Is there a Direct Proof of this LCM identity?
- Google: "LCM identity"
- Lucky to find Q1442, giving only a sketch of the proof.
- Many more things to search for:
- Leibniz harmonic triangle - not much.
- LCM and triangle - no specific match.

Google: Hits and Misses

- Google: "LCM lower bound"
- May not get Q1442: Is there a Direct Proof of this LCM identity?
- Google: "LCM identity"
- Lucky to find Q1442, giving only a sketch of the proof.
- Many more things to search for:
- Leibniz harmonic triangle - not much.
- LCM and triangle - no specific match.

At some point, need to stop surfing and DIY.

Consider Leibniz harmonic triangle - a table that is like «Pascal triangle reversed»: on it's sides lie numbers $\frac{1}{n}$ and each number is the sum of two beneath it (see the picture).

One can easily proove by induction that m-th number in n-th row of Leibniz triangle is $\frac{1}{(n+1)\binom{n}{m}}$.
So LHS of our identity is just led of fractions in n-th row of the triangle.
But it's not hard to see that any such number is an integer linear combination of fractions on triangle's sides (i.e. $1 / 1,1 / 2, \ldots, 1 / n$) - and vice versa. So LHS is equal to $l c d(1 / 1, \ldots, 1 / n)-$ and that is exactly RHS.

Induction Pattern

```
307 (* LCM Lerma
308
309(n+1) lcm (C(n,0) to C(n,n))=1cm (1 to (n+1))
310
311 m-th number in the n-th row of Leibniz triangle is: 1/ (n+1)C (n,m)
312
318 So LHS = lcd (1/1, 1/2, 1/3, ..., 1/n) = RHS = lcm (1,2,3, ..., (n+1)).
319
320 0-th row: 1
321 1-st row: 1/2 1/2
322 2-nd row: 1/3 1/6 1/3
323 3-rd row: }1/4\quad1/12 1/12 1/
324 4-th row: 1/5 1/20 1/30}1/20 1/5
325
326 4-th row: 1/5 C(4,m), C(4,m)=14 4 6 4 1, hence 1/5 1/20 1/30 1/20 1/5
327 lcd (1/5 1/20 1/30 1/20 1/5)
328=1cm (5, 20, 30, 20, 5)
329=1cm (5C(4,0), 5C(4,1),5C(4,2),5C(4,3),5C(4,4))
330=5 lcm (C (4,0),C(4,1),C(4,2),C(4,3),C(4,4))
331
```


Induction Pattern

```
307 (* LCM Lerma
308
309(n+1) lcm (C(n,0) to C(n,n))=1cm (1 to (n+1))
310
311 m-th number in the n-th row of Leibniz triangle is: 1/ (n+1)C (n,m)
312
318 So LHS = lcd (1/1, 1/2, 1/3, ..., 1/n) = RHS = lcm (1,2,3, ..., (n+1)).
319
320 0-th row: 1
321 1-st row: 1/2 1/2
322 2-nd row: 1/3 1/6
323 3-rd row: }1/4\quad1/12 1/12 1/
324 4-th row: 1/5 1/20 1/30}1/20 1/5
325
326 4-th row: 1/5 C(4,m), C(4,m)=144 6 4 1, hence 1/5 1/20 1/30 1/20 1/5
327 lcd (1/5 1/20 1/30 1/20 1/5)
328=1cm (5, 20, 30, 20, 5)
329=1cm (5C(4,0),5C(4,1),5C(4,2),5C(4,3),5C(4,4))
330=5 lcm (C (4,0),C(4,1),C(4,2),C(4,3),C(4,4))
331
```

- How to prove the identity by induction? Need a pattern.

Induction Pattern

```
307 (* LCM Lemma
308
309(n+1) lcm (C(n,0) to C(n,n))=1cm (1 to (n+1))
310
311 m-th number in the n-th row of Leibniz triangle is: 1/ (n+1)C (n,m)
312
318 So LHS = lcd (1/1, 1/2, 1/3, ..., 1/n) = RHS = lcm (1,2,3, ..., (n+1)).
319
320 0-th row: 1
321 1-st row: 1/2 1/2
322 2-nd row: 1/3 1/6 1/3
323 3-rd row: }1/4\quad1/12 1/12 1/
324 4-th row: 1/5 1/20 1/30}1/20 1/5
325
326 4-th row: 1/5 C(4,m), C(4,m)=14 4 6 4 1, hence 1/5 1/20 1/30 1/20 1/5
327 lcd (1/5 1/20 1/30 1/20 1/5)
328=1cm (5, 20, 30, 20, 5)
329=1cm (5C(4,0), 5C(4,1),5C(4,2), 5C(4,3),5C(4,4))
330=5 lcm (C (4,0),C(4,1),C(4,2),C(4,3),C(4,4))
```

331

- How to prove the identity by induction? Need a pattern.
- Assuming the identity, does it lead to the lower bound?

Finding Pattern

```
528 Theorem: In the Multiples Triangle, the vertical-lcm = horizontal-lcm.
529 i.e. }\quad\operatorname{lcm}(1,2,3)=1\textrm{cm}(3,6,3)=
530 lcm (1, 2, 3, 4) = lcm (4, 12, 12, 4) = 12
531 lcm (1, 2, 3, 4, 5) = lcm (5, 20, 30, 20, 5) = 60
532 lcm (1, 2, 3, 4, 5, 6) = lcm (6, 30,60,60, 30, 6) = 60
533 Proof: With reference to Leibniz's Triangle, note: term = left-up - left
534 lcm (5, 20, 30, 20, 5)
535=lcm (5, 20, 30) by reduce repetition
536=lcm (5, d(1/20), d(1/30)) by denominator of fraction
537=lcm (5,d(1/4-1/5), d(1/30)) by term = left-up - left
538= lcm (5, lcm(4, 5), d(1/12 - 1/20)) by denominator of fraction subtraction
539 = lcm (5, 4, lcm(12, 20)) by lcm (a, lcm (a, b)) = lcm (a, b)
540= lcm (5, 4, lcm(d(1/12), d(1/20))) to fraction again
541 = lcm (5,4, lcm(d(1/3 - 1/4), d(1/4 - 1/5))) by Leibniz's Triangle
542 = lcm (5,4, lcm(lcm(3,4), lcm(4,5))) by fraction subtraction denominator
543 = lcm (5,4, lcm(3, 4, 5)) by lcm merge
544=1\textrm{cm}(5,4,3) merge again
545=lcm (5, 4, 3, 2) by lcm include factor (!!!)
546=1\textrm{cm}(5,4,3,2,1) by lcm include 1
```

547

A sample of my investigation, by examples.

Promising Result

```
363
364 lcm (1 to 5) = 1\times2 }
365=5 lcm (1 4 6 4 1) = 5 < 12
366=1\textrm{cm}(\begin{array}{lllll}{1}&{4}&{6}&{4}&{1}\end{array})\quad-->\mathrm{ unfold }5x\mathrm{ to add }5\mathrm{ times}
367+1cm(1 4 6 4 1)
368+lcm(1 4 6 4 1)
369+1cm(1 4 6 4 1)
370+\operatorname{lcm}(146441)
371>= 1+4+6+4+1 - >> pick one of each 5 C (n,m), i.e. diagonal
372 = (1 + 1)^4 - -> fold back binomial
373= 2^4
= 16
374
375 Actually, can take 5 lcm (1 4 6 4 1) >= 5 x 6 = 30,
376 but this will need estimation of C(n, n/2), or C(2n,n), i.e. Stirling's formula.
3 7 7
378 Theorem: lcm (x y z) >= x or lcm (x y z) >= y or lcm (x y z) >= z
379
```

Figure out that the LCM identity leads to the desired lower bound.

Hit an Idea

```
1021 (* The Idea:
1022 b
1023 Actually, lcm a b = lcm b c = lcm c a for a c in Leibniz Triangle.
1024 The only relationship is: c = ab/(a-b), or ab = c(a - b).
1025
1026 Is this a theorem: ab =c(a-b) ==> lcm a b = lcm b c = lcm c a
1027 Or in fractions, 1/c = 1/b - 1/a ==> lcm a b = lcm b c = lcm c a ?
1028
1029 lcm a b
1030 = a b / (gcd a b)
1031=c(a - b) / (gcd a (a - b))
1032 = ac(a - b) / gcd a (a-b) / a
1033 = 1cm (a (a-b)) c / a
1034=1cm (ca c(a-b)) /a
1035 = 1cm (ca ab) / a
1036 = 1cm b c
1037
1038 lcm b c
1039 = b c / gcd b c
1040 = a b c/gcd a*b a*c
1041 = a b c / gcd c*(a-b) c*a
1042 = a b / gcd (a-b) a
1043 = a b / gcd b a
1044 = lcm (a b)
1045 = 1cm a b
```


Focus on a triplet ...

Hit an Idea

```
1021 (* The Idea:
1022 b
1023 Actually, lcm a b = lcm b c = lcm c a for a c in Leibniz Triangle.
1024 The only relationship is: c = ab/(a-b), or ab = c(a-b).
1025
1026 Is this a theorem: ab =c(a-b) ==> lcm a b = lcm b c = lcm c a
1027 Or in fractions, 1/c = 1/b - 1/a ==> lcm a b = lcm b c = lcm c a ?
1028
1029 lcm a b
1030 = a b / (gcd a b)
1031 = c(a - b) / (gcd a (a - b))
1032 = ac(a - b) / gcd a (a-b) / a
1033 = 1cm (a (a-b)) c / a
1034=1cm (ca c(a-b)) /a
1035 = 1cm (ca ab) / a
1036 = lcm b c
1 0 3 7
1038 lcm b c
1039 = b c / gcd b c
1040 = a b c / gcd a*b a*c
1041 = a b c / gcd c*(a-b) c*a
1042 = a b / gcd (a-b) a
1043 = a b / gcd b a
1044 = lcm (a b)
1045 = 1cm a b
```

Focus on a triplet ... hope: $1 \mathrm{~cm} a b=1 \mathrm{~cm} \quad b \quad c=1 \mathrm{~cm} \quad c \quad a$.

Voliá

```
1021 (* The Idea:
1022 b
1023 Actually, lcm a b = lcm b c = lcm c a for a c in Leibniz Triangle.
1024 The only relationship is: c = ab/(a - b), or ab = c(a - b).
1025
1026 Is this a theorem: ab =c(a-b) ==> lcm a b = lcm b c = lcm c a
1027 Or in fractions, 1/c = 1/b - 1/a ==> lcm a b = lcm b c = 1cm c a ?
1028
1046
1047 lcm a c
1048 = a c / gcd a c
1049 = a b c//gcd b*a b*c
1050 = a b c / gcd c*(a-b) b*c
1051 = a b / gcd (a-b) b
1052 = a b / gcd a b
1053 = 1cm a b
1054
1055 Yes!
1056
1057 This is now in LCM_EXCHANGE:
1058 val it = |- !a b c. (a * b = c * (a - b)) ==> (lcm a b = lcm a c): thm
1059 *)
```


Success!

Polishing

Done and Dusted

- Once the key is proved (SourceTree \#1200), goal is within reach.
- Had the picture of path transform, zig-zag and wriggle, for induction.
- Just establish the LCM lower bound by brute-force induction (\#1211).

Done and Dusted

- Once the key is proved (SourceTree \#1200), goal is within reach.
- Had the picture of path transform, zig-zag and wriggle, for induction.
- Just establish the LCM lower bound by brute-force induction (\#1211).

```
98|
9 9
100
101
102
103
104
105
106
107
108
109
110
1 1 1
112
113
114
115
116
117
118
119
120
121
122
123
124
125
```

```
Transform from Vertical LCM to Horizontal LCM
```

Transform from Vertical LCM to Horizontal LCM
leibniz_lcm_shift_one |- !nk. k<= n ==>
leibniz_lcm_shift_one |- !nk. k<= n ==>
(lcm (list_lcm (TAKE (SUC k) (leibniz_horizontal (SUC n))))
(lcm (list_lcm (TAKE (SUC k) (leibniz_horizontal (SUC n))))
(list_lcm (DROP k (leibniz_horizontal n))) =
(list_lcm (DROP k (leibniz_horizontal n))) =
lcm (list_lcm (TAKB (SUC (SUC k)) (leibniz_horizontal (SUC n))))
lcm (list_lcm (TAKB (SUC (SUC k)) (leibniz_horizontal (SUC n))))
(list_lcm (DROP (SUC k) (leibniz_horizontal n))))
(list_lcm (DROP (SUC k) (leibniz_horizontal n))))
leibniz_lcIn_shift |- !nk.k<= SUC n ==>
leibniz_lcIn_shift |- !nk.k<= SUC n ==>
(lcm (list_lcm (TAKE (SUC k) (leibniz_horizontal (SUC n))))
(lcm (list_lcm (TAKE (SUC k) (leibniz_horizontal (SUC n))))
(list_lcm (DROP k (leibniz_horizontal n))) =
(list_lcm (DROP k (leibniz_horizontal n))) =
lcm (SUC (SUC n)) (list_lcm (leibniz_horizontal n)))
lcm (SUC (SUC n)) (list_lcm (leibniz_horizontal n)))
leibniz_horizontal_lcm I- !n. list_lcm (leibniz_horizontal (SUC n)) =
leibniz_horizontal_lcm I- !n. list_lcm (leibniz_horizontal (SUC n)) =
lcm (SUC (SUC n)) (list_lcm (leibniz_horizontal n))
lcm (SUC (SUC n)) (list_lcm (leibniz_horizontal n))
leibniz_lcm_property
leibniz_lcm_property
|- !n. list_lcm (leibniz_vertical n) = list_lcm (leibniz_horizontal n)
|- !n. list_lcm (leibniz_vertical n) = list_lcm (leibniz_horizontal n)
Binomial Horizontal List:
Binomial Horizontal List:
binomial_horizontal_def 1- !n. binomial_horizontal n = GENLIST (binomial n) (SUC n)
binomial_horizontal_def 1- !n. binomial_horizontal n = GENLIST (binomial n) (SUC n)
binomial_horizontal_0 |- binomial_horizontal 0 = [1]
binomial_horizontal_0 |- binomial_horizontal 0 = [1]
binomial_horizontal_len l- !n. LENGTH (binomial_horizontal n) = n + l
binomial_horizontal_len l- !n. LENGTH (binomial_horizontal n) = n + l
binomial_horizontal_pos 1- !n. EVERY (\x. 0 < x) (binomial_horizontal n)
binomial_horizontal_pos 1- !n. EVERY (\x. 0 < x) (binomial_horizontal n)
binomial_horizontal_sum 1- !n. SUM (binomial_horizontal n) = 2 ** n
binomial_horizontal_sum 1- !n. SUM (binomial_horizontal n) = 2 ** n
Lower Bound of Leibniz LCM:
Lower Bound of Leibniz LCM:
leibniz_alt |- !n. leibniz n = (\k. (n + l) * k) o binomial n

```
leibniz_alt |- !n. leibniz n = (\k. (n + l) * k) o binomial n
```



```
leibniz_horizontal_lcm_alt |- !n. list_lcm (leibniz_horizontal n) =
```

leibniz_horizontal_lcm_alt |- !n. list_lcm (leibniz_horizontal n) =
(n + 1) * list_lcm (binomial_horizontal n)
(n + 1) * list_lcm (binomial_horizontal n)
leibniz_horizontal_lcm_lower_bound l- !n. 2 ** n <= list_lcm (leibniz_horizontal n)
leibniz_horizontal_lcm_lower_bound l- !n. 2 ** n <= list_lcm (leibniz_horizontal n)
leibniz_vertical_lcm_lower_bound 1- !n. 2 ** n <= list_lcm (leibniz_vertical n)

```
    leibniz_vertical_lcm_lower_bound 1- !n. 2 ** n <= list_lcm (leibniz_vertical n)
```

126 *
*)

Back in Spotlight

- Decide to submit a paper to ITP2016 (a fortnight before deadline).
- Pick this LCM result for the category "Proof Pearl".
- Use a picture to illustrate the path transform steps.

Back in Spotlight

- Decide to submit a paper to ITP2016 (a fortnight before deadline).
- Pick this LCM result for the category "Proof Pearl".
- Use a picture to illustrate the path transform steps.

Back in Spotlight

- Decide to submit a paper to ITP2016 (a fortnight before deadline).
- Pick this LCM result for the category "Proof Pearl".
- Use a picture to illustrate the path transform steps.

- A good picture, but the proof script is bad - heaps of induction.

Back in Spotlight

- Decide to submit a paper to ITP2016 (a fortnight before deadline).
- Pick this LCM result for the category "Proof Pearl".
- Use a picture to illustrate the path transform steps.

- A good picture, but the proof script is bad - heaps of induction.
- Realize that zig-zags and wriggles are implicit in current proofs.
- Replace brute-force induction bt explicit zig-zag and wriggle paths.

Major Changes

- Formalize in HOL4: path transform, zig-zag and wriggle.
- Reformulate the proofs based on such concepts (\#1531).

Major Changes

- Formalize in HOL4: path transform, zig-zag and wriggle.
- Reformulate the proofs based on such concepts (\#1531).

```
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162 *
```


Major Changes

- Formalize in HOL4: path transform, zig-zag and wriggle.
- Reformulate the proofs based on such concepts (\#1531).
- A 12-page draft, with wonderful diagrams, tables and proofs.

```
140
```

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162 *
Using Triplet and Paths:
leibniz_zigzag_def $1-$!pathl path2. pathl zigzag path2 <<>
?nk partl part2. (pathl $=$ partl ++ [tri_b] ++ [tri_a] ++ part2) /
(path2 $=$ partl ++ [tri_b] ++ [tri_c] ++ part2)
leibniz_wriggle_def 1- !pathl path2. pathl wriggle path2 < $<>$

leibniz_lcm_triple \quad - !nk. lcm tri_b tri_a $=$ lcm tri_b tri_c
list_lcm_zigzag $\quad 1-\quad$!pathl path2. pathl zigzag path2 $==$) (list_lcm pathl = list_lcm path2)
list_lcm_wriggle $\quad \mid-\quad$!pathl path2. pathl wriggle path2 ==> (list_lcm pathl = list_lcm path2)
leibniz_zigzag_wriggle $\quad 1-$!pathl path2. pathl zigzag path2 ==> pathl wriggle path2
leibniz_zigzag_tail |- !pathl path2. pathl zigzag path2 ==> !x. [x] ++ pathl zigzag [x] ++ path2
leibniz_wriggle_tail \quad - !pathl path2. pathl wriggle path2 ==> !x. [x] ++ pathl wriggle [x] ++ pathz
leibniz_horizontal_wriggle
I- !n. [SUC (SUC n)] ++ leibniz_horizontal n wriggle leibniz_horizontal (SUC n)
leibniz_up_0 \quad |- leibniz_up $0=$ [1]
leibniz_up_len $\quad 1-$!n. LENGTH (leibniz_up n) $=\operatorname{SUC} n$
leibniz_up_cons $\quad 1-$!n. leibniz_up (SUC n) = SUC (SUC n): : leibniz_up n
leibniz_triplet_0 |- leibniz_up 1 zigzag leibniz_horizontal 1

leibniz_lcm_property $\mid-\quad$!n. list_lcm (leibniz_vertical n) = list_lcm (leibniz_horizontal n)

Final Touch

My supervisor's masterstrokes:

Final Touch

My supervisor's masterstrokes:

- Cut away half of the draft, keeping only 3 proofs (so 6 pages).

Final Touch

My supervisor's masterstrokes:

- Cut away half of the draft, keeping only 3 proofs (so 6 pages).
- Re-package diagrams and tables side-by-side, use explicit triplet.

Final Touch

My supervisor's masterstrokes:

- Cut away half of the draft, keeping only 3 proofs (so 6 pages).
- Re-package diagrams and tables side-by-side, use explicit triplet.
- Wriggle is the reflexive transitive closure (RTC) of zig-zag (\#1567).

Final Touch

My supervisor's masterstrokes:

- Cut away half of the draft, keeping only 3 proofs (so 6 pages).
- Re-package diagrams and tables side-by-side, use explicit triplet.
- Wriggle is the reflexive transitive closure (RTC) of zig-zag (\#1567).

[^0]172 *

```
Wriggle Paths in Leibniz Triangle (old):
leibniz_old_wriggle_def |- !pl p2. pl old_wriggle p2 <=>
    ?m f. {pl=f0) A (p2 = fm; A |k.k<m==> f k zigzag f (SUC k)
list_lcm_old_wriggle |- !pl p2. pl old_wriggle p2 ==> (list_lcm pl = list_lcm p2)
leibniz_zigzag_old_wriggle 1- !pl p2. pl zigzag p2 ==> pl old_wriggle p2
leibniz_old_wriggle_tail |- !pl p2. pl old_wriggle p2 ==> !x. [x] ++ pl old_wriggle [x] ++ p2
leibniz_old_wriggle_trans |- !pl p2 p3. pl old_wriggle p2 / p2 old_wriggle p3 ==> pl old_wriggle p3
leibniz_horizontal_old_wriggle |- !n. [leibniz (n + l) 0] ++ leibniz_horizontal n old_wriggle
    leibniz_horizontal (n + 1)
Wriggle Paths in Leibniz Triangle (new):
list_lcm_wriggle I- !pl p2. pl wriggle p2 ==> (list_lcm pl = list_lcm p2)
leibniz_zigzag_wriggle 1- !pl p2. pl zigzag p2 ==> pl wriggle p2
leibniz_wriggle_tail |- !pl p2. pl wriggle p2 ==> !x. [x] ++ pl wriggle [x] ++ p2
leibniz_wriggle_trans |- !pl p2 p3. pl wriggle p2 A p2 wriggle p3 ==> pl wriggle p3
Back to Milestone Theorem:
leibniz_triplet_0 I- leibniz_up l zigzag leibniz_horizontal 1
leibniz_up_old_wriggle_horizontal |- !n. 0 < n ==> leibniz_up n old_wriggle leibniz_horizontal n
leibniz_lcm_property |- !n. list_lcm (leibniz_vertical n) = list_lcm (leibniz_horizontal n)
```


Final Touch

My supervisor's masterstrokes:

- Cut away half of the draft, keeping only 3 proofs (so 6 pages).
- Re-package diagrams and tables side-by-side, use explicit triplet.
- Wriggle is the reflexive transitive closure (RTC) of zig-zag (\#1567).
- Last day: can't complete RTC induction. Help!

```
Wriggle Paths in Leibniz Triangle (old):
leibniz_old_wriggle_def |- !pl p2. pl old_wriggle p2 <=>
    ?m f. (pl=f 0) A (p2 = fm) /\ !k.k<m==> fk zigzag f (SUC k)
list_lcm_old_wriggle |- !pl p2. pl old_wriggle p2 ==> (list_lcm pl = list_lcm p2)
leibniz_zigzag_old_wriggle 1- !pl p2. pl zigzag p2 ==> pl old_wriggle p2
leibniz_old_wriggle_tail |- !pl p2. pl old_wriggle p2 ==> !x. [x] ++ pl old_wriggle [x] ++ p2
leibniz_old_wriggle_trans |- !pl p2 p3. pl old_wriggle p2 / p2 old_wriggle p3 ==> pl old_wriggle p3
leibniz_horizontal_old_wriggle |- !n. [leibniz (n + l) 0] ++ leibniz_horizontal n old_wriggle
                                    leibniz_horizontal (n + 1)
Wriggle Paths in Leibniz Triangle (new):
list_lcm_wriggle I- !pl p2. pl wriggle p2 ==> (list_lcm pl = list_lcm p2)
leibniz_zigzag_wriggle 1- !pl p2. pl zigzag p2 ==> pl wriggle p2
leibniz_wriggle_tail |- !pl p2. pl wriggle p2 ==> !x. [x] ++ pl wriggle [x] ++ p2
leibniz_wriggle_trans |- !pl p2 p3. pl wriggle p2 A p2 wriggle p3 ==> pl wriggle p3
Back to Milestone Theorem:
leibniz_triplet_0 |- leibniz_up l zigzag leibniz_horizontal l
leibniz_up_old_wriggle_horizontal |- !n. 0 < n ==> leibniz_up n old_wriggle leibniz_horizontal n
leibniz_lcm_property |- !n. list_lcm (leibniz_vertical n) = list_lcm (leibniz_horizontal n)
```


Reviews

Review \#1, Expertise: high

This paper presents a "proof pearl", a short and clever proof that $2^{n} \leq \operatorname{Icm}(1, \ldots, n+1)$. This is not a trivial result: Nair's proof of this fact was published in 1982, and Google search reveals some recent strengthenings and generalizations, but it seems that there is no published elementary proof of this fact.

Review \#1, Expertise: high

This paper presents a "proof pearl", a short and clever proof that $2^{n} \leq \operatorname{lcm}(1, \ldots, n+1)$. This is not a trivial result: Nair's proof of this fact was published in 1982, and Google search reveals some recent strengthenings and generalizations, but it seems that there is no published elementary proof of this fact.
[...], the authors have provided an elegant proof of an interesting result, and have formalized it. It certainly fits the description of a proof pearl.

Review \#1, Expertise: high

This paper presents a "proof pearl", a short and clever proof that $2^{n} \leq \operatorname{lcm}(1, \ldots, n+1)$. This is not a trivial result: Nair's proof of this fact was published in 1982, and Google search reveals some recent strengthenings and generalizations, but it seems that there is no published elementary proof of this fact.
[...], the authors have provided an elegant proof of an interesting result, and have formalized it. It certainly fits the description of a proof pearl.

The wording of Theorem 5 is confusing. [...] How about saying this: [...]

The reference to the "unrolling" in Section 5 makes it mysterious, and the proof is needlessly baroque. The argument is simply this: [...]

Review \#2, Expertise: medium

The authors describe a (mechanised) proof of a number-theoretic fact: $2^{n} \leq \operatorname{Icm}(1, \ldots, n+1)$. The proof is not new, but the paper is advertised as a pearl.

Review \#2, Expertise: medium

The authors describe a (mechanised) proof of a number-theoretic fact: $2^{n} \leq \operatorname{Icm}(1, \ldots, n+1)$. The proof is not new, but the paper is advertised as a pearl.

In the past I have reviewed several papers that were advertised as pearls, but that in my opinion were not pearls. That is not the case with this paper. I found the text engaging, and easy to follow. The proof is non-trivial, but the authors made it easy to understand for me, and I thought that the mechanisation was presented at a suitable level of detail.

Review \#2, Expertise: medium

The authors describe a (mechanised) proof of a number-theoretic fact: $2^{n} \leq \operatorname{Icm}(1, \ldots, n+1)$. The proof is not new, but the paper is advertised as a pearl.

In the past I have reviewed several papers that were advertised as pearls, but that in my opinion were not pearls. That is not the case with this paper. I found the text engaging, and easy to follow. The proof is non-trivial, but the authors made it easy to understand for me, and I thought that the mechanisation was presented at a suitable level of detail.

I strongly recommend the paper for publication.

Review \#3, Expertise: medium

This proof pearl shows a lower bound for the least common multiple of the first n integers [...]

Review \#3, Expertise: medium

This proof pearl shows a lower bound for the least common multiple of the first n integers [...]

Although the inequality is quite specific, this paper demonstrates that it is worth to search for elegant proofs rather than to apply the golden hammer of a complicated theory. Indeed, the formalised proof is very elementary compared to the published proofs I know of. The authors have done a good job of bringing together the proof ingredients (which have been known) and explaining the proof idea.

Review \#3, Expertise: medium

This proof pearl shows a lower bound for the least common multiple of the first n integers [...]

Although the inequality is quite specific, this paper demonstrates that it is worth to search for elegant proofs rather than to apply the golden hammer of a complicated theory. Indeed, the formalised proof is very elementary compared to the published proofs I know of. The authors have done a good job of bringing together the proof ingredients (which have been known) and explaining the proof idea.

In summary, I think that this paper makes a nice proof pearl, and I therefore recommend acceptance.

Epilog

Conclusion

This talk is dedicated to

Michael Norrish,

my supervisor.

- Scripts
https://bitbucket.org/jhlchan/hol/src/
subfolder: algebra/lib.
- Paper
https://bitbucket.org/jhlchan/hol/downloads

[^0]: 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171 172

