Bounding LCM with Triangles How the Proof becomes a Pearl

Hing-Lun Chan and Michael Norrish

College of Engineering and Computer Science
Australian National University

October 17, 2018, ANU.

Refresh

How to play with numbers

$$
\begin{array}{lllll}
1 & 2 & 3 & \ldots & n
\end{array}
$$

How to play with numbers

$$
\begin{array}{rrrr}
1 & 2 & 3 & \ldots
\end{array} \quad n
$$

How to play with numbers

$$
\frac{1 \quad 2 \quad 3 \quad \ldots \quad n}{\frac{1}{2} n^{2} \leq 1+2+3+\ldots+n=\frac{1}{2} n(n+1)}
$$

How to play with numbers

$$
\begin{gathered}
1 \quad 2 \quad 3 \quad \ldots \quad n \\
\frac{1}{2} n^{2} \leq 1+2+3+\ldots+n=\frac{1}{2} n(n+1) \\
1 \times 2 \times 3 \times \ldots \times n
\end{gathered}
$$

How to play with numbers

$$
\begin{array}{r}
1 \quad 2 \quad 3 \quad \ldots \quad n \\
\frac{1}{2} n^{2} \leq 1+2+3+\ldots+n=\frac{1}{2} n(n+1) \\
\sqrt{2 \pi} \sqrt{n}(n / e)^{n} \leq 1 \times 2 \times 3 \times \ldots \times n \leq e \sqrt{n}(n / e)^{n}
\end{array}
$$

How to play with numbers

$1 \quad 2 \quad 3 \quad \ldots \quad n$

$\frac{1}{2} n^{2} \leq$
$\sqrt{2 \pi} \sqrt{n}(n / e)^{n} \leq$
$1 \times 2 \times 3+\ldots+n=\frac{1}{2} n(n+1)$
$1 \circ 2 \circ 3 \circ \ldots \times n \leq e \sqrt{n}(n / e)^{n}$

$a \circ b=\operatorname{gcd}(a, b)$, their greatest common divisor.

How to play with numbers

$$
\begin{aligned}
& 1 \quad 2 \quad 3 \quad \ldots \quad n \\
& \hline \frac{1}{2} n^{2} \leq 1+2+3+\ldots+n=\frac{1}{2} n(n+1) \\
& \sqrt{2 \pi} \sqrt{n}(n / e)^{n} \leq 1 \times 2 \times 3 \times \ldots \times n \leq e \sqrt{n}(n / e)^{n} \\
& 1=1 \circ 2 \circ 3 \circ \ldots \circ n=1
\end{aligned}
$$

$a \circ b=\operatorname{gcd}(a, b)$, their greatest common divisor.

How to play with numbers

$$
\begin{gathered}
1 \quad 2 \quad 3 \quad \ldots \quad n \\
\begin{aligned}
& \frac{1}{2} n^{2} \leq 1+2+3+\ldots+n=\frac{1}{2} n(n+1) \\
& \sqrt{2 \pi} \sqrt{n}(n / e)^{n} \leq 1 \times 2 \times 3 \times \ldots \times n \leq e \sqrt{n}(n / e)^{n} \\
& 1= 1 \circ 2 \circ 3 \circ \ldots \circ n=1 \\
& 1 \diamond 2 \diamond 3 \diamond \ldots \diamond n
\end{aligned}
\end{gathered}
$$

$a \circ b=\operatorname{gcd}(a, b)$, their greatest common divisor. $a \diamond b=1 \mathrm{~cm}(a, b)$, their least common multiple.

How to play with numbers

$$
\begin{aligned}
& 1 \quad 2 \quad 3 \quad \ldots \quad n \\
& \hline \frac{1}{2} n^{2} \leq 1+2+3+\ldots+n=\frac{1}{2} n(n+1) \\
& \sqrt{2 \pi} \sqrt{n}(n / e)^{n} \leq 1 \times 2 \times 3 \times \ldots \times n \leq e \sqrt{n}(n / e)^{n} \\
& 1=1 \circ 2 \circ 3 \circ \ldots \circ n=1 \\
& \frac{1}{2} 2^{n} \leq 1 \diamond 2 \diamond 3 \diamond \ldots \diamond n \leq 4^{n}
\end{aligned}
$$

$a \circ b=\operatorname{gcd}(a, b)$, their greatest common divisor. $a \diamond b=1 \mathrm{~cm}(a, b)$, their least common multiple.

How to play with numbers

$$
\begin{aligned}
& 1 \quad 2 \quad 3 \quad \ldots \quad n \\
& \hline \frac{1}{2} n^{2} \leq 1+2+3+\ldots+n=\frac{1}{2} n(n+1) \\
& \sqrt{2 \pi} \sqrt{n}(n / e)^{n} \leq 1 \times 2 \times 3 \times \ldots \times n \leq e \sqrt{n}(n / e)^{n} \\
& 1=1 \circ 2 \circ 3 \circ \ldots \circ n=1 \\
& \frac{1}{2} 2^{n} \leq 1 \diamond 2 \diamond 3 \diamond \ldots \diamond n \leq 4^{n}
\end{aligned}
$$

$a \circ b=\operatorname{gcd}(a, b)$, their greatest common divisor. $a \diamond b=1 \mathrm{~cm}(a, b)$, their least common multiple.

Theorem (Lower Bound for Consecutive LCM)
$\vdash \operatorname{LCM}[1 \ldots(n+1)] \geq 2^{n}$

How to play with triangles

Pascal's Triangle

- Boundary entry: always 1.
- Inside entry: sum of two immediate parents.

How to play with triangles

Pascal's Triangle

- Boundary entry: always 1.
- Inside entry: sum of two immediate parents.

How to play with triangles

Pascal's Triangle

- Boundary entry: always 1.
- Inside entry: sum of two immediate parents.

Sum of the n-th row:

$$
\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}
$$

Triangle Pattern

Pascal's Triangle: symmetrical to vertical-horizontal.

Triangle Pattern

Pascal's Triangle: symmetrical to vertical-horizontal. Turns a triplet (entry with parents) into an inverted-L.

Playing with Patterns

Multiplying each row by the number of elements in that row.

Playing with Patterns

Multiplying each row by the number of elements in that row.

Playing with Patterns

1							$\Leftarrow \times 1$	1					
2	2						$\Leftarrow \times 2$	1	1				
3	6	3					$\Leftarrow \times 3$	1	2				
4	12	12	4				$\Leftarrow \times 4$	1	3	3			
5	20	30	20	5			$\Leftarrow \times 5$	1	4			1	
6	30	60	60	30	6		$\Leftarrow \times 6$	1				5	1
7	42	105	140	105	42	7	$\Leftarrow \times 7$	1	6		5	15	61

Multiplying each row by the number of elements in that row. Result: Leibniz's Triangle, in denominator form.

Leibniz's Harmonic Triangle

Leibniz's Triangle in usual form (e.g., Wikipedia).

Leibniz's Harmonic Triangle

Leibniz's Triangle in usual form (e.g., Wikipedia). Build-up unit: L-triplet (an entry with children).

Leibniz's Harmonic Triangle

Leibniz's Triangle in usual form (e.g., Wikipedia). Build-up unit: L-triplet (an entry with children).

For a Leibniz triplet $\binom{a}{b c}: \quad \frac{1}{a}=\frac{1}{b}+\frac{1}{c}$

Consecutive LCM

How does this triangle relate to our goal?

Consecutive LCM

1					
2	2				
3	6	3			
4	12	12	4		
5	20	30	20	5	
6	30	60	60	30	6

How does this triangle relate to our goal?
Amazing: LCM (vertical column) = LCM (horizontal row).

Consecutive LCM

How does this triangle relate to our goal?
Amazing: LCM (vertical column) = LCM (horizontal row).
This is LCM exchange for big-L, and LCM (horizontal row) is easier to estimate.

Proof Idea for LCM $[1 \ldots(n+1)] \geq 2^{n}$

Proof Idea for LCM $[1 \ldots(n+1)] \geq 2^{n}$

Proof Idea for LCM $[1 \ldots(n+1)] \geq 2^{n}$

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

	$\operatorname{LCM}[1,2,3,4,5]$	
$=$	$\operatorname{LCM}[5,20,30,20,5]$	by LCM exchange for big-L
$=$	$5 \times \operatorname{LCM}[1,4,6,4,1]$	taking out common factor

Proof Idea for LCM $[1 \ldots(n+1)] \geq 2^{n}$

Proof Idea for LCM $[1 \ldots(n+1)] \geq 2^{n}$

Proof Idea for LCM $[1 \ldots(n+1)] \geq 2^{n}$

Motivation

AKS mechanisation

PRIMES is in P
Manindra Agrawal Neeraj Kayal
Nitin Saxena*

Abstract
We present an unconditional deterministic polynomial-time algorithm that determines whether an input number is prime or composite.

AKS mechanisation

PRIMES is in P

Manindra Agrawal Neeraj Kayal
 Nitin Saxena*

Abstract
We present an unconditional deterministic polynomial-time algorithm that determines whether an input number is prime or composite,
... [the first lemma] ...
We will need the following simple fact about the 1 cm of first m numbers (see, e.g., [Nai82] for a proof).
Lemma 3.1. Let $L C M(m)$ denote the lcm of first m numbers. For $m \geq 7$:

$$
L C M(m) \geq 2^{m}
$$

Need to formalise this LCM lemma, so look up Nair's paper.

Nair’s Paper (1982)

ON CHEBYSHEV-TYPE INEQUALITIES FOR PRIMES

M. Nair
 Department of Mathematics, University of Glasgow, Glasgow, Scotland

Proof. For $1 \leqslant m \leqslant n$, consider the integral

$$
\begin{equation*}
I=I(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-m} d x=\sum_{r=0}^{n-m}(-1)^{r}\binom{n-m}{r} \frac{1}{m+r} . \tag{7}
\end{equation*}
$$

Clearly, $\mathrm{Id}_{n} \in \mathbb{N}$. On the other hand, repeated integration by parts yields

$$
\begin{equation*}
I=1 / m\binom{n}{m} . \tag{8}
\end{equation*}
$$

"Clearly" the integral I, multiplied by $d_{n}=\operatorname{LCM}[1 \ldots n]$, is an integer.

Nair's Paper (1982)

ON CHEBYSHEV-TYPE INEQUALITIES FOR PRIMES

M. Nair
Department of Mathematics, University of Glasgow, Glasgow, Scotland

Proof. For $1 \leqslant m \leqslant n$, consider the integral

$$
\begin{equation*}
I=I(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-m} d x=\sum_{r=0}^{n-m}(-1)^{r}\binom{n-m}{r} \frac{1}{m+r} \tag{7}
\end{equation*}
$$

Clearly, $\mathrm{Id}_{n} \in \mathbb{N}$. On the other hand, repeated integration by parts yields

$$
\begin{equation*}
I=1 / m\binom{n}{m} \tag{8}
\end{equation*}
$$

In conclusion, it is perhaps appropriate to point out that Theorem 3 can also be proved by the standard methods of proof. The interest here lies essentially in the rather curious nature of this proof. It is unexpected to use (i) to prove (ii), and it certainly is strange that there is no mention of primes in the proof of Theorem 3. It also seems worthwhile to point out that there are different ways to prove the identity implied by equations (7) and (8), for example, by expressing $1 / x(x+1) \cdots(x+m)$ in partial fractions or by using the difference operator.

$$
\text { "Clearly" the integral } I \text {, multiplied by } d_{n}=\mathrm{LCM}[1 \ldots n] \text {, is an integer. }
$$

The Journey

Math about LCM

- Google: "LCM lower bound"
- Google: "LCM identity"

Math about LCM

- Google: "LCM lower bound"
- Google: "LCM identity"
- Found this question on Math Stack Exchange:

Is there a direct proof of this lcm identity?

The identity
$(n+1) \operatorname{lcm}\left(\binom{n}{0},\binom{n}{1}, \ldots\binom{n}{n}\right)=\operatorname{lcm}(1,2, \ldots n+1)$
is probably not well-known. The only way I know how to prove it is by using Kummer's theorem that the power of p dividing $\binom{a+b}{a}$ is the number of carries needed to add a and b in base p. Is there a more direct proof, e.g. by showing that each side divides the other?
(number-theory) (binomial-coefficients)
share cite improve this question

Math Stack Exchange

Consider Leibniz harmonic triangle - a table that is like «Pascal triangle reversed»: on it's sides lie numbers $\frac{1}{n}$ and each number is the sum of two beneath it (see the picture).

One can easily proove by induction that m-th number in n-th row of Leibniz triangle is $\frac{1}{(n+1)\binom{n}{m}}$.
So LHS of our identity is just led of fractions in n-th row of the triangle.
But it's not hard to see that any such number is an integer linear combination of fractions on triangle's sides (i.e. $1 / 1,1 / 2, \ldots, 1 / n)-$ and vice versa. So LHS is equal to $\operatorname{lcd}(1 / 1, \ldots, 1 / n)-$ and that is exactly RHS.
share cite improve this answer
edited Aug 20'11 at 13:23
t.b.

54 k - 6 回 162 A 237
answered Aug 5'10 at 19:44

Math Stack Exchange

Consider Leibniz harmonic triangle - a table that is like «Pascal triangle reversed»: on it's sides lie numbers $\frac{1}{n}$ and each number is the sum of two beneath it (see the picture).

One can easily proove by induction that m-th number in n-th row of Leibniz triangle is $\frac{1}{(n+1)\binom{n}{m}}$.
So LHS of our identity is just led of fractions in n-th row of the triangle.
But it's not hard to see that any such number is an integer linear combination of fractions on triangle's sides (i.e. $1 / 1,1 / 2, \ldots, 1 / n$) - and vice versa. So LHS is equal to $\operatorname{lcd}(1 / 1, \ldots, 1 / n)-$ and that is exactly RHS.
share cite improve this answer
edited Aug 20'11 at 13:23
t.b.
$54 k$ - 6 - 162 A 237
answered Aug 5'10 at 19:44
Grigory M
11.6k-3■ 41 A 90

Cryptic "difference operator" means Leibniz's Harmonic Triangle! Leibniz triplet: $\binom{a}{b c}: \quad \frac{1}{a}=\frac{1}{b}+\frac{1}{c}, \quad$ or $\quad \frac{1}{c}=\frac{1}{a}-\frac{1}{b}$.

Induction Pattern

```
307 (* LCM Lerma
308
309(n+1) lcm (C(n,0) to C(n,n))=1cm (1 to (n+1))
310
311 m-th number in the n-th row of Leibniz triangle is: 1/ (n+1)C (n,m)
312
318 So LHS = lcd (1/1, 1/2, 1/3, ..., 1/n) = RHS = lcm (1,2,3, ..., (n+1)).
319
320 0-th row: 1
321 1-st row: 1/2 1/2
322 2-nd row: 1/3 1/6 1/3
323 3-rd row: }1/4\quad1/12 1/12 1/
324 4-th row: 1/5 1/20 1/30}1/20 1/5
325
326 4-th row: 1/5 C(4,m), C(4,m)=14 4 6 4 1, hence 1/5 1/20 1/30 1/20 1/5
327 lcd (1/5 1/20 1/30 1/20 1/5)
328=1cm (5, 20, 30, 20, 5)
329=1cm (5C(4,0), 5C(4,1),5C(4,2),5C(4,3),5C(4,4))
330=5 lcm (C (4,0),C(4,1),C(4,2),C(4,3),C(4,4))
331
```


Induction Pattern

```
307 (* LCM Lerma
308
309(n+1) lcm (C(n,0) to C(n,n))=1cm (1 to (n+1))
310
311 m-th number in the n-th row of Leibniz triangle is: 1/ (n+1)C (n,m)
312
318 So LHS = lcd (1/1, 1/2, 1/3, ..., 1/n) = RHS = lcm (1,2,3, ..., (n+1)).
319
320 0-th row: 1
321 1-st row: 1/2 1/2
322 2-nd row: 1/3 1/6
323 3-rd row: }1/4\quad1/12 1/12 1/
324 4-th row: 1/5 1/20 1/30}1/20 1/5
325
326 4-th row: 1/5 C(4,m), C(4,m)=144 6 4 1, hence 1/5 1/20 1/30 1/20 1/5
327 lcd (1/5 1/20 1/30 1/20 1/5)
328=1cm (5, 20, 30, 20, 5)
329=1cm (5C(4,0),5C(4,1),5C(4,2),5C(4,3),5C(4,4))
330=5 lcm (C (4,0),C(4,1),C(4,2),C(4,3),C(4,4))
331
```

- How to prove the identity by induction? Need a pattern.

Induction Pattern

```
307 (* LCM Lemma
308
309(n+1) lcm (C(n,0) to C(n,n))=1cm (1 to (n+1))
310
311 m-th number in the n-th row of Leibniz triangle is: 1/ (n+1)C (n,m)
312
318 So LHS = lcd (1/1, 1/2,1/3, ..., 1/n) = RHS = lcm (1,2,3, ..., (n+1)).
319
320 0-th row: 1
321 1-st row: 1/2 1/2
322 2-nd row: 1/3 1/6 1/3
323 3-rd row: }1/4\quad1/12 1/12 1/
324 4-th row: 1/5 1/20 1/30}1/20 1/5
325
326 4-th row: 1/5 C(4,m), C(4,m)=144 6 4 1, hence 1/5 1/20 1/30 1/20 1/5
327 lcd (1/5 1/20 1/30 1/20 1/5)
328=1cm (5, 20, 30, 20, 5)
329=1cm (5C(4,0),5C(4,1),5C(4,2),5C(4,3),5C(4,4))
330=5 lcm (C (4,0),C(4,1),C(4,2),C(4,3),C(4,4))
```

331

- How to prove the identity by induction? Need a pattern.
- Assuming the identity, does it lead to the lower bound?

Finding Pattern

```
528 Theorem: In the Multiples Triangle, the vertical-lcm = horizontal-lcm.
529 i.e. }\quad\operatorname{lcm}(1,2,3)=1\textrm{cm}(3,6,3)=
530 lcm (1, 2, 3, 4) = lcm (4, 12, 12, 4) = 12
531 lcm (1, 2, 3, 4, 5) = lcm (5, 20, 30, 20, 5) = 60
532 lcm (1, 2, 3, 4, 5, 6) = lcm (6, 30,60,60, 30, 6) = 60
533 Proof: With reference to Leibniz's Triangle, note: term = left-up - left
534 lcm (5, 20, 30, 20, 5)
535=lcm (5, 20, 30) by reduce repetition
536=1cm (5, d(1/20), d(1/30)) by denominator of fraction
537 = lcm (5, d(1/4-1/5), d(1/30)) by term = left-up - left
538= lcm (5, lcm(4, 5), d(1/12 - 1/20)) by denominator of fraction subtraction
539=lcm (5,4, lcm(12, 20)) by lcm (a, lcm (a,b)) = lcm (a, b)
540= lcm (5, 4, lcm(d(1/12), d(1/20))) to fraction again
541 = lcm (5,4, lcm(d(1/3 - 1/4), d(1/4 - 1/5))) by Leibniz's Triangle
542 = lcm (5,4, lcm(lcm(3,4), lcm(4,5))) by fraction subtraction denominator
543 = lcm (5,4, lcm(3, 4, 5)) by lcm merge
544=lcm (5,4,3) merge again
545=lcm (5, 4, 3, 2) by lcm include factor (!!!)
546=1\textrm{cm}(5,4,3,2,1) by lcm include 1
```

547

A sample of my investigation, by examples.

Promising Result

```
363
364 lcm (1 to 5) = 1\times2 }
365=5 lcm (1 4 6 4 1) = 5 < 12
366=1cm(1 4 6 4 1) (1) m unfold 5x to add 5 times
367+1cm(1 4 6 4 1)
368+lcm(1 4 6 4 1)
369+1cm(1 4 6 4 1)
370+\operatorname{lcm}(146441)
371>= 1+4+6+4+1 - >> pick one of each 5 C (n,m), i.e. diagonal
372 = (1 + 1)^4 - -> fold back binomial
373= 2^4
= 16
374
375 Actually, can take 5 lcm (1 4 6 4 1) >= 5 x 6 = 30,
376 but this will need estimation of C(n, n/2), or C(2n,n), i.e. Stirling's formula.
3 7 7
378 Theorem: lcm (x y z) >= x or lcm (x y z) >= y or lcm (x y z) >= z
379
```

Figure out that the LCM identity leads to the desired lower bound.

Hit an Idea

```
1021 (* The Idea:
1022 b
1023 Actually, lcm a b = lcm b c = lcm c a for a c in Leibniz Triangle.
1024 The only relationship is: c = ab/(a-b), or ab = c(a - b).
1025
1026 Is this a theorem: ab =c(a-b) ==> lcm a b = lcm b c = lcm c a
1027 Or in fractions, 1/c = 1/b - 1/a ==> lcm a b = lcm b c = lcm c a ?
1028
1029 lcm a b
1030 = a b / (gcd a b)
1031=c(a - b) / (gcd a (a - b))
1032 = ac(a - b) / gcd a (a-b) / a
1033 = 1cm (a (a-b)) c / a
1034 = 1cm (ca c(a-b)) /a
1035 = 1cm (ca ab) / a
1036 = 1cm b c
1037
1038 lcm b c
1039 = b c / gcd b c
1040 = a b c / gcd a*b a*c
1041 = a b c / gcd c*(a-b) c*a
1042 = a b / gcd (a-b) a
1043 = a b / gcd b a
1044 = lcm (a b)
1045 = 1cm a b
```


Focus on a triplet ...

Hit an Idea

```
1021 (* The Idea:
1022 b
1023 Actually, lcm a b = lcm b c = lcm c a for a c in Leibniz Triangle.
1024 The only relationship is: c = ab/(a-b), or ab = c(a - b).
1025
1026 Is this a theorem: ab =c(a-b) ==> lcm a b = lcm b c = lcm c a
1027 Or in fractions, 1/c = 1/b - 1/a ==> lcm a b = lcm b c = lcm c a ?
1028
1029 lcm a b
1030 = a b / (gcd a b)
1031 = c(a - b) / (gcd a (a - b))
1032 = ac(a - b) / gcd a (a-b) / a
1033 = 1cm (a (a-b)) c / a
1034=1cm (ca c(a-b)) /a
1035 = 1cm (ca ab) / a
1036 = lcm b c
1 0 3 7
1038 lcm b c
1039 = b c / gcd b c
1040 = a b c / gcd a*b a*c
1041 = a b c / gcd c*(a-b) c*a
1042 = a b / gcd (a-b) a
1043 = a b / gcd b a
1044 = lcm (a b)
1045 = 1cm a b
```

Focus on a triplet ... hope: $1 \mathrm{~cm} a b=1 \mathrm{~cm} \quad b \quad c=1 \mathrm{~cm} \quad c \quad a$.

Voliá

```
1021 (* The Idea:
1022 b
1023 Actually, lcm a b = lcm b c = lcm c a for a c in Leibniz Triangle.
1024 The only relationship is: c = ab/(a - b), or ab = c(a - b).
1025
1026 Is this a theorem: ab =c(a-b) ==> lcm a b = lcm b c = lcm c a
1027 Or in fractions, 1/c = 1/b - 1/a ==> lcm a b = lcm b c = 1cm c a ?
1028
1046
1047 lcm a c
1048 = a c / gcd a c
1049 = a b c//gcd b*a b*c
1050 = a b c / gcd c*(a-b) b*c
1051 = a b / gcd (a-b) b
1052 = a b / gcd a b
1053 = 1cm a b
1054
1055 Yes!
1056
1057 This is now in LCM_EXCHANGE:
1058 val it = |- !a b c. (a * b = c * (a - b)) ==> (lcm a b = lcm a c): thm
1059 *)
```


Success!

Key Property

Theorem (LCM Exchange)

For a Leibniz triplet $\binom{a}{b c}, \quad 1 \mathrm{~cm} \quad b \quad c=1 \mathrm{~cm} \quad b \quad a$.

Triplets in Triangle

Triplets are the building blocks of Leibniz's triangle:

Triplets in Triangle

1					
2	2				
3	6	3			
4	12	12	4		
5	20	30	20	5	
6	30	60	60	30	6

Triplets are the building blocks of Leibniz's triangle:

Triplets in Triangle

Triplets are the building blocks of Leibniz's triangle:

- Each triplet has a vertical pair and a horizontal pair.

Triplets in Triangle

Triplets are the building blocks of Leibniz's triangle:

- Each triplet has a vertical pair and a horizontal pair.
- We have: LCM (vertical pair) = LCM (horizontal pair)

Triplets in Triangle

1					
2	2				
3	6	3			
4	12	12	4		
5	20	30	30	5	
6	30	60	60	60	6

Triplets are the building blocks of Leibniz's triangle:

- Each triplet has a vertical pair and a horizontal pair.
- We have: LCM (vertical pair) = LCM (horizontal pair)

This is LCM exchange for small-L.

Zig-zag Paths

Zig-zag Paths

- Extending a Leibniz triplet, keeping the overall LCM.

Zig-zag Paths

- Extending a Leibniz triplet, keeping the overall LCM.

Zig-zag Paths

- Extending a Leibniz triplet, keeping the overall LCM.
- A path can zig-zag to another by a suitable Leibniz triplet.

Zig-zag Paths

- Extending a Leibniz triplet, keeping the overall LCM.
- A path can zig-zag to another by a suitable Leibniz triplet.

By Leibniz triplet property,
Theorem
$\vdash p_{1} \rightsquigarrow p_{2} \Rightarrow \operatorname{LCM} p_{1}=\operatorname{LCM} p_{2}$

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

Wriggle Paths

(1)				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform by successive zig-zags, keeping the overall LCM.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform by successive zig-zags, keeping the overall LCM.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform by successive zig-zags, keeping the overall LCM.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform by successive zig-zags, keeping the overall LCM.

Wriggle Paths

- Transform by successive zig-zags, keeping the overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform by successive zig-zags, keeping the overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

- Transform by successive zig-zags, keeping the overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

- Transform by successive zig-zags, keeping the overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

- Transform by successive zig-zags, keeping the overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform by successive zig-zags, keeping the overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform by successive zig-zags, keeping the overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform by successive zig-zags, keeping the overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform by successive zig-zags, keeping the overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform by successive zig-zags, keeping the overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform by successive zig-zags, keeping the overall LCM.
- A path can wriggle to another by successive zig-zags.

By Leibniz triplet property,

Theorem

$\vdash p_{1} \rightsquigarrow^{*} p_{2} \Rightarrow L C M p_{1}=L C M p_{2}$

Polishing

Done and Dusted

- Once the key is proved (SourceTree \#1200), back to AKS work.
- Did not bother to formulate path transform: zig-zag and wriggle.
- Establish the LCM lower bound by brute-force induction (\#1211).

Done and Dusted

- Once the key is proved (SourceTree \#1200), back to AKS work.
- Did not bother to formulate path transform: zig-zag and wriggle.
- Establish the LCM lower bound by brute-force induction (\#1211).

```
98|
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126 *
Transform from Vertical LCM to Horizontal LCM:
leibriz_lcm_shift_one |- !nk.k <= n ==>
    (lcm (list_lcm (TAKE (SUC k) (leibniz_horizontal (SUC n))))
                                    (list_lcm (DROP k (leibniz_horizontal n))) =
lcm (list_lcm (TAKE (SUC (SUC k)) (leibniz_horizontal (SUC n))))
    list_lcm (DROP (SUC k) (leibniz_horizontal n))))
leibniz_lcm_shift |- !n k. k <= SUC n ==>
    (lcm (list_lcm (TAKE (SUC k) (leibniz_horizontal (SUC n))))
        (list_lcm (DROP k (leibniz_horizontal n))) =
    lcm (SUC (SUC n)) (list_lcm (leibniz_horizontal n)))
leibniz_horizontal_lcm |- !n. list_lcm (leibniz_horizontal (SUC-n)) =
            lcm (SUC (SUC n)) (list_lcm (leibniz_horizontal n))
leibniz_lcm_property
|- !n. list_lcm (leibniz_vertical n) = list_lcm (leibniz_horizontal n)
Binomial Horizontal List:
binomial_horizontal_def l- !n. binomial_horizontal n = GENLIST (binomial n) (SUC n)
binomial_horizontal_0 1- binomial_horizontal 0 = [1]
binomial_horizontal_len |- !n. LENGTH (binomial_horizontal n) = n + l
binomial_horizontal_pos 1- !n. EVERY (\x. 0< x) (binomial_horizontal n)
binomial_horizontal_sum l- !n. SUM (binomial_horizontal n) = 2 ** n
Lower Bound of Leibniz LCM:
leibniz_alt |- !n. leibniz n = (\k. (n + l) * k) o binomial n
```



```
leibniz_horizontal_lcm_alt |- !n. list_lcm (leibniz_horizontal n) =
    (n + 1) * list_lcm (binomial_horizontal n)
leibniz_horizontal_lcm_lower_bound l- !n. 2 ** n <= list_lcm (leibniz_horizontal n)
leibniz_vertical_lcm_lower_bound l- !n. 2 ** n <= list_lcm (leibniz_vertical n)
```


Back in Spotlight

- Our AKS work, Part 1, was published in ITP2015.
- Plan to submit a paper to ITP2016: on AKS work, Part 2.
- A fortnight before deadline, still working on proof scripts.

Back in Spotlight

- Our AKS work, Part 1, was published in ITP2015.
- Plan to submit a paper to ITP2016: on AKS work, Part 2.
- A fortnight before deadline, still working on proof scripts.
- Pick this LCM result for the category "Proof Pearl".
- Explain the proof by drawing this picture:

Back in Spotlight

- Our AKS work, Part 1, was published in ITP2015.
- Plan to submit a paper to ITP2016: on AKS work, Part 2.
- A fortnight before deadline, still working on proof scripts.
- Pick this LCM result for the category "Proof Pearl".
- Explain the proof by drawing this picture:

Good picture, but the proof script is bad — heaps of induction.

Major Changes

- Formalize in HOL4: path transform, zig-zag and wriggle.
- Reformulate the theorems based on such concepts (\#1531).

Major Changes

- Formalize in HOL4: path transform, zig-zag and wriggle.
- Reformulate the theorems based on such concepts (\#1531).

```
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
1 6 1
162 *)
```


Major Changes

- Formalize in HOL4: path transform, zig-zag and wriggle.
- Reformulate the theorems based on such concepts (\#1531).

```
140
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162 *)
```

```
141 Using Triplet and Paths:
```

141 Using Triplet and Paths:

```
leibniz_zigzag_def 1- !pathl path2. pathl zigzag path2 <<>
```

leibniz_zigzag_def 1- !pathl path2. pathl zigzag path2 <<>
?n k partl part2. (pathl = partl ++ [tri_b] ++ [tri_a] ++ part2) A
?n k partl part2. (pathl = partl ++ [tri_b] ++ [tri_a] ++ part2) A
(path2 = part1 ++ [tri_b] ++ [tri_c] ++ part2)
(path2 = part1 ++ [tri_b] ++ [tri_c] ++ part2)
leibniz_wriggle_def 1- !pathl path2. pathl wriggle path2 <=>
leibniz_wriggle_def 1- !pathl path2. pathl wriggle path2 <=>
?m f. (pathl = f 0) \ (path2 = fm) \ !k.k<m ==> fk zigzag f (SUC k)
?m f. (pathl = f 0) \ (path2 = fm) \ !k.k<m ==> fk zigzag f (SUC k)
leibniz_lcm_triple 1- !nk. lcm tri_b tri_a = lcm tri_b tri_c
leibniz_lcm_triple 1- !nk. lcm tri_b tri_a = lcm tri_b tri_c
list_lcm_zigzag 1- !pathl path2. pathl zigzag path2 ==> (list_lcm path1 = list_lcm path2)
list_lcm_zigzag 1- !pathl path2. pathl zigzag path2 ==> (list_lcm path1 = list_lcm path2)
list_lcm_wriggle 1- !pathl path2. pathl wriggle path2 ==> (list_lcm pathl = list_lcm path2)
list_lcm_wriggle 1- !pathl path2. pathl wriggle path2 ==> (list_lcm pathl = list_lcm path2)
leibniz_zigzag_wriggle 1- !pathl path2. pathl zigzag path2 ==> pathl wriggle path2
leibniz_zigzag_wriggle 1- !pathl path2. pathl zigzag path2 ==> pathl wriggle path2
leibniz_zigzag_tail 1- !pathl path2. pathl zigzag path2 ==> !x. [x] ++ pathl zigzag [x] ++ path2
leibniz_zigzag_tail 1- !pathl path2. pathl zigzag path2 ==> !x. [x] ++ pathl zigzag [x] ++ path2
leibniz_wriggle_tail l- !pathl path2. pathl wriggle path2 ==> !x. [x] ++ pathl wriggle [x] ++ path2
leibniz_wriggle_tail l- !pathl path2. pathl wriggle path2 ==> !x. [x] ++ pathl wriggle [x] ++ path2
leibniz_horizontal_wriggle
leibniz_horizontal_wriggle
I- !n. [SUC (SUC n)] ++ leibniz_horizontal n wriggle leibniz_horizontal (SUC n)
I- !n. [SUC (SUC n)] ++ leibniz_horizontal n wriggle leibniz_horizontal (SUC n)
leibniz_up_0 1- leibniz_up 0 = [1]
leibniz_up_0 1- leibniz_up 0 = [1]
leibniz_up_len 1- !n. LENGTH (leibniz_up n) = SUC n
leibniz_up_len 1- !n. LENGTH (leibniz_up n) = SUC n
leibniz_up_cons I- !n. leibniz_up (SUC n) = SUC (SUC n)::leibniz_up n
leibniz_up_cons I- !n. leibniz_up (SUC n) = SUC (SUC n)::leibniz_up n
leibniz_triplet_0 |- leibniz_up l}\mathrm{ zigzag leibniz_horizontal l
leibniz_triplet_0 |- leibniz_up l}\mathrm{ zigzag leibniz_horizontal l
leibniz_up_wriggle_horizontal 1- !n. 0 < n ==> leibniz_up n wriggle leibniz_horizontal n
leibniz_up_wriggle_horizontal 1- !n. 0 < n ==> leibniz_up n wriggle leibniz_horizontal n
leibniz_lcm_property 1- !n. list_lcm (leibniz_vertical n) = list_lcm (leibniz_horizontal n)
leibniz_lcm_property 1- !n. list_lcm (leibniz_vertical n) = list_lcm (leibniz_horizontal n)
*)

```

A 12-page draft, with wonderful diagrams, tables and proofs.

\section*{Final Touch (by supervisor)}
- Cut away half of the draft, keeping only 3 proofs (so 6 pages).
- Define properly a Leibniz triplet, re-arrange diagrams and tables.
- Wriggle is the reflexive transitive closure (RTC) of zig-zag (\#1567).

\section*{Final Touch (by supervisor)}
- Cut away half of the draft, keeping only 3 proofs (so 6 pages).
- Define properly a Leibniz triplet, re-arrange diagrams and tables.
- Wriggle is the reflexive transitive closure (RTC) of zig-zag (\#1567).

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171 172
\(172 * 1\)
```

Wriggle Paths in Leibniz Triangle (old):
leibniz_old_wriggle_def |- !pl p2. pl old_wriggle p2 <<>
?m f. (pl=f0) A (p2=fm) \ !k.k<m==> fk zigzag f (SUC k)
list_lcm_old_wriggle |- !pl p2. pl old_wriggle p2 ==> (list_lcm pl = list_lcm p2)
leibniz_zigzag_old_wriggle 1- !pl p2. pl zigzag p2 ==> pl old_wriggle p2
leibniz_old_wriggle_tail |- !pl p2. pl old_wriggle p2 ==> !x. [x] ++ pl old_wriggle [x] ++ p2
leibniz_old_wriggle_trans 1- !pl p2 p3. pl old_wriggle p2 A p2 old_wriggle p3 ==> pl old_wriggle p3
leibniz_horizontal_old_wriggle l- !n. [leibniz (}n+1) 0] ++ leibniz__horizontal n old_wriğgle
leibniz_horizontal (n + 1)
Wriggle Paths in Leibniz Triangle (new):
list_lcm_wriggle 1- !pl p2. pl wriggle p2 ==> (list_lcm pl = list_lcm p2)
leibniz_zigzag_wriggle 1- !pl p2. pl zigzag p2 ==> pl wriggle p2
leibniz_wriggle_tail |- !pl p2. pl wriggle p2 ==> !x. [x] ++ pl wriggle [x] ++ p2
leibniz_wriggle_trans l- !pl p2 p3. pl wriggle p2 A p2 wriggle p3 ==> pl wriggle p3
Back to Milestone Theorem:
leibniz_triplet_0 |- leibniz_up 1 zigzag leibniz_horizontal 1
leibniz_up_old_wriggle_horizontal |- !n. 0 < n ==> leibniz_up n old_wriggle leibniz_horizontal n
leibniz_lcm_property |- !n. list_lcm (leibniz_vertical n) = list_lcm (leibniz_horizontal n)

```

\section*{Final Touch (by supervisor)}
- Cut away half of the draft, keeping only 3 proofs (so 6 pages).
- Define properly a Leibniz triplet, re-arrange diagrams and tables.
- Wriggle is the reflexive transitive closure (RTC) of zig-zag (\#1567).

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171 172 172 *
```

Wriggle Paths in Leibniz Triangle (old):
leibniz_old_wriggle_def |- !pl p2. pl old_wriggle p2 <<>
?m f. (pl = f 0) \ (p2 = fm) A !k.k<m ==> fk zigzag f (SUC k)
list_lcm_old_wriggle |- !pl p2. pl old_wriggle p2 ==> (list_lcm pl = list_lcm p2)
leibniz_zigzag_old_wriggle 1- !pl p2. pl zigzag p2 ==> pl old_wriggle p2
leibniz_old_wriggle_tail |- !pl p2. pl old_wriggle p2 ==> !x. [x] ++ pl old_wriggle [x] ++ p2
leibniz_old_wriggle_trans 1- !pl p2 p3. pl old_wriggle p2 A p2 old_wriggle p3 ==> pl old_wriggle p3
leibniz_horizontal_old_wriggle l- !n. [leibniz`` (n + 1) 0] ++ leibniz_horizontal n old_wriggle
leibniz_horizontal (n + 1)
Wriggle Paths in Leibniz Triangle (new):
list_lcm_wriggle 1- !pl p2. pl wriggle p2 ==> (list_lcm pl= list_lcm p2)
leibniz_z_igzag_wriggle 1- !pl p2. pl zigzag p2 ==> pl wrig
leibniz_wriggle_tail |- !pl p2. pl wriggle p2 ==> !x. [x] ++ pl wriggle [x] ++ p2
leibniz_wriggle_trans 1- !pl p2 p3. pl wriggle p2 A p2 wriggle p3 ==> pl wriggle p3
Back to Milestone Theorem:
leibniz_triplet_0 |- leibniz_up 1 zigzag leibniz_horizontal 1
leibniz_up_old_wriggle_horizontal I- !n. 0 < n ==> leibniz_up n old_wriggle leibniz_horizontal n
leibniz_lcm_property l- !n. list_lcm (leibniz_vertical n) = list_lcm (leibniz_horizontal n)

```

Last day: can't complete the RTC induction for wriggle. Help!

\section*{ITP2016}

\section*{Springer Link}


\section*{Proof Pearl: Bounding Least Common Multiples with Triangles}

Authors
Authors and affiliations
Hing-Lun Chan \(\triangle\), Michael Norrish

Conference paper
First Online: 07 August 2016


Part of the Lecture Notes in Computer Science book series (LNCS, volume 9807)

\section*{Abstract}

We present a proof of the fact that \(2^{n} \leq \operatorname{lcm}\{1,2,3, \ldots,(n+1)\}\). This result has a standard proof via an integral, but our proof is purely number theoretic, requiring little more than list inductions. The proof is based on manipulations of a variant of Leibniz's Harmonic Triangle, itself a relative of Pascal's better-known Triangle.

\section*{Reviews}

\section*{Review \#1, Expertise: high}

This paper presents a "proof pearl", a short and clever proof that \(2^{n} \leq \operatorname{Icm}(1, \ldots, n+1)\). This is not a trivial result: Nair's proof of this fact was published in 1982, and Google search reveals some recent strengthenings and generalizations, but it seems that there is no published elementary proof of this fact.

\section*{Review \#1, Expertise: high}

This paper presents a "proof pearl", a short and clever proof that \(2^{n} \leq \operatorname{lcm}(1, \ldots, n+1)\). This is not a trivial result: Nair's proof of this fact was published in 1982, and Google search reveals some recent strengthenings and generalizations, but it seems that there is no published elementary proof of this fact.
[...], the authors have provided an elegant proof of an interesting result, and have formalized it. It certainly fits the description of a proof pearl.

\section*{Review \#1, Expertise: high}

This paper presents a "proof pearl", a short and clever proof that \(2^{n} \leq \operatorname{lcm}(1, \ldots, n+1)\). This is not a trivial result: Nair's proof of this fact was published in 1982, and Google search reveals some recent strengthenings and generalizations, but it seems that there is no published elementary proof of this fact.
[...], the authors have provided an elegant proof of an interesting result, and have formalized it. It certainly fits the description of a proof pearl.

The wording of Theorem 5 is confusing. [...] How about saying this: [...]

The reference to the "unrolling" in Section 5 makes it mysterious, and the proof is needlessly baroque. The argument is simply this: [...]

\section*{Review \#2, Expertise: medium}

The authors describe a (mechanised) proof of a number-theoretic fact: \(2^{n} \leq \operatorname{Icm}(1, \ldots, n+1)\). The proof is not new, but the paper is advertised as a pearl.

\section*{Review \#2, Expertise: medium}

The authors describe a (mechanised) proof of a number-theoretic fact: \(2^{n} \leq \operatorname{Icm}(1, \ldots, n+1)\). The proof is not new, but the paper is advertised as a pearl.

In the past I have reviewed several papers that were advertised as pearls, but that in my opinion were not pearls. That is not the case with this paper. I found the text engaging, and easy to follow. The proof is non-trivial, but the authors made it easy to understand for me, and I thought that the mechanisation was presented at a suitable level of detail.

\section*{Review \#2, Expertise: medium}

The authors describe a (mechanised) proof of a number-theoretic fact: \(2^{n} \leq \operatorname{Icm}(1, \ldots, n+1)\). The proof is not new, but the paper is advertised as a pearl.

In the past I have reviewed several papers that were advertised as pearls, but that in my opinion were not pearls. That is not the case with this paper. I found the text engaging, and easy to follow. The proof is non-trivial, but the authors made it easy to understand for me, and I thought that the mechanisation was presented at a suitable level of detail.

I strongly recommend the paper for publication.

\section*{Review \#3, Expertise: medium}

This proof pearl shows a lower bound for the least common multiple of the first \(n\) integers [...]

\section*{Review \#3, Expertise: medium}

This proof pearl shows a lower bound for the least common multiple of the first \(n\) integers [...]

Although the inequality is quite specific, this paper demonstrates that it is worth to search for elegant proofs rather than to apply the golden hammer of a complicated theory. Indeed, the formalised proof is very elementary compared to the published proofs I know of. The authors have done a good job of bringing together the proof ingredients (which have been known) and explaining the proof idea.

\section*{Review \#3, Expertise: medium}

This proof pearl shows a lower bound for the least common multiple of the first \(n\) integers [...]

Although the inequality is quite specific, this paper demonstrates that it is worth to search for elegant proofs rather than to apply the golden hammer of a complicated theory. Indeed, the formalised proof is very elementary compared to the published proofs I know of. The authors have done a good job of bringing together the proof ingredients (which have been known) and explaining the proof idea.

In summary, I think that this paper makes a nice proof pearl, and I therefore recommend acceptance.

\section*{Epilog}

\section*{Epilog}

\section*{Conclusion}

This talk is dedicated to

\section*{Michael Norrish,}

\author{
my supervisor.
}
- Scripts
https://bitbucket.org/jhlchan/hol/src/
subfolder: algebra/lib.
- Paper
https://bitbucket.org/jhlchan/hol/downloads```

