Least Common Multiples and Triangles based on ITP 2016: Proof Pearl

Hing Lun Chan and Michael Norrish

College of Engineering and Computer Science
Australian National University

August 2016, Nancy, France.

How to play with numbers

Given the numbers: $1,2,3,4,5,6,7,8,9,10$. What can you do with them?

How to play with numbers

Given the numbers: $1,2,3,4,5,6,7,8,9,10$. What can you do with them?

- add them: $1+2+3+4+5+6+7+8+9+10=$ $\operatorname{Add}[1,2,3,4,5,6,7,8,9,10]=55$

How to play with numbers

Given the numbers: $1,2,3,4,5,6,7,8,9,10$.
What can you do with them?

- add them: $1+2+3+4+5+6+7+8+9+10=$ Add $[1,2,3,4,5,6,7,8,9,10]=55$
- multiply them: $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10=$ Multiply $[1,2,3,4,5,6,7,8,9,10]=3628800$

How to play with numbers

Given the numbers: $1,2,3,4,5,6,7,8,9,10$.
What can you do with them?

- add them: $1+2+3+4+5+6+7+8+9+10=$ Add $[1,2,3,4,5,6,7,8,9,10]=55$
- multiply them: $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10=$ Multiply $[1,2,3,4,5,6,7,8,9,10]=3628800$
- combine by GCD: GCD $[1,2,3,4,5,6,7,8,9,10]=1$

How to play with numbers

Given the numbers: $1,2,3,4,5,6,7,8,9,10$.
What can you do with them?

- add them: $1+2+3+4+5+6+7+8+9+10=$ Add $[1,2,3,4,5,6,7,8,9,10]=55$
- multiply them: $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10=$ Multiply $[1,2,3,4,5,6,7,8,9,10]=3628800$
- combine by GCD: GCD[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] =1
- combine by LCM: LCM[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] $=2520$

How to play with numbers

Given the numbers: $1,2,3,4,5,6,7,8,9,10$.
What can you do with them?

- add them: $1+2+3+4+5+6+7+8+9+10=$ Add $[1,2,3,4,5,6,7,8,9,10]=55$
- multiply them: $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10=$ Multiply[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] $=3628800$
- combine by GCD: GCD[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] $=1$
- combine by LCM: LCM[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] $=2520$

Theorem

$$
\vdash \operatorname{GCD}[1,2,3, \ldots, n]=1
$$

True, but not interesting. ©

Math Formula

Math is about patterns.

Math Formula

Math is about patterns. ... Beauty is in the eye of the beholder.

Math Formula

Math is about patterns. ... Beauty is in the eye of the beholder.

- $\operatorname{Add}[1,2,3, \ldots, n]=n(n+1) / 2$, or $n^{2} / 2 \leq \operatorname{Add}[1,2,3, \ldots, n] \leq(n+1)^{2} / 2$ known from antiquity.

Math Formula

Math is about patterns. ... Beauty is in the eye of the beholder.

- Add $[1,2,3, \ldots, n]=n(n+1) / 2$, or $n^{2} / 2 \leq \operatorname{Add}[1,2,3, \ldots, n] \leq(n+1)^{2} / 2$ known from antiquity.
- $\sqrt{2 \pi} \sqrt{n}(n / e)^{n} \leq \operatorname{Multiply}[1,2,3, \ldots, n] \leq e \sqrt{n}(n / e)^{n}$ known as Stirling's approximation.

Math Formula

Math is about patterns. ... Beauty is in the eye of the beholder.

- Add $[1,2,3, \ldots, n]=n(n+1) / 2$, or $n^{2} / 2 \leq \operatorname{Add}[1,2,3, \ldots, n] \leq(n+1)^{2} / 2$ known from antiquity.
- $\sqrt{2 \pi} \sqrt{n}(n / e)^{n} \leq \operatorname{Multiply}[1,2,3, \ldots, n] \leq e \sqrt{n}(n / e)^{n}$ known as Stirling's approximation.
- $\operatorname{GCD}[1,2,3, \ldots, n]=1$

Math Formula

Math is about patterns. ... Beauty is in the eye of the beholder.

- $\operatorname{Add}[1,2,3, \ldots, n]=n(n+1) / 2$, or $n^{2} / 2 \leq \operatorname{Add}[1,2,3, \ldots, n] \leq(n+1)^{2} / 2$ known from antiquity.
- $\sqrt{2 \pi} \sqrt{n}(n / e)^{n} \leq \operatorname{Multiply}[1,2,3, \ldots, n] \leq e \sqrt{n}(n / e)^{n}$ known as Stirling's approximation.
- $\operatorname{GCD}[1,2,3, \ldots, n]=1$
- $2^{n} / 2 \leq \operatorname{LCM}[1,2,3, \ldots, n] \leq 4^{n}$ useful for my PhD work.

Math Formula

Math is about patterns. ... Beauty is in the eye of the beholder.

- Add $[1,2,3, \ldots, n]=n(n+1) / 2$, or $n^{2} / 2 \leq \operatorname{Add}[1,2,3, \ldots, n] \leq(n+1)^{2} / 2$ known from antiquity.
- $\sqrt{2 \pi} \sqrt{n}(n / e)^{n} \leq \operatorname{Multiply}[1,2,3, \ldots, n] \leq e \sqrt{n}(n / e)^{n}$ known as Stirling's approximation.
- $\operatorname{GCD}[1,2,3, \ldots, n]=1$
- $2^{n} / 2 \leq \operatorname{LCM}[1,2,3, \ldots, n] \leq 4^{n}$ useful for my PhD work.

Theorem

$$
\vdash 2^{n} \leq \operatorname{LCM}[1,2,3, \ldots,(n+1)]
$$

True, and interesting! ©

LCM of a List

$\operatorname{LCM}[1,2]$
$\operatorname{LCM}[1,2,3]$
LCM [1, 2, 3, 4]
LCM [1, 2, 3, 4, 5]
$\operatorname{LCM}[1,2,3,4,5,6]$

LCM of a List

$$
\begin{aligned}
& \operatorname{LCM}[1,2]=2 \\
& \operatorname{LCM}[1,2,3]=6 \\
& \operatorname{LCM}[1,2,3,4]=12 \\
& \operatorname{LCM}[1,2,3,4,5]=60 \\
& \operatorname{LCM}[1,2,3,4,5,6]=60
\end{aligned}
$$

LCM of a List

$$
\begin{aligned}
& \operatorname{LCM}[1,2]=2 \\
& \operatorname{LCM}[1,2,3]=6 \\
& \operatorname{LCM}[1,2,3,4]=12 \\
& \operatorname{LCM}[1,2,3,4,5]=60 \\
& \operatorname{LCM}[1,2,3,4,5,6]=60
\end{aligned}
$$

Note that the LCM is a multiple of each element, or each element is less than the overall LCM.

LCM of a List

$$
\begin{array}{ll}
\operatorname{LCM}[1,2]=2 & \geq 2^{1}=2 \\
\operatorname{LCM}[1,2,3]=6 & \geq 2^{2}=2 \times 2=4 \\
\operatorname{LCM}[1,2,3,4]=12 & \geq 2^{3}=2 \times 2 \times 2=8 \\
\operatorname{LCM}[1,2,3,4,5]=60 & \geq 2^{4}=2 \times 2 \times 2 \times 2=16 \\
\operatorname{LCM}[1,2,3,4,5,6]=60 & \geq 2^{5}=2 \times 2 \times 2 \times 2 \times 2=32
\end{array}
$$

Note that the LCM is a multiple of each element, or each element is less than the overall LCM.

LCM of a List

$$
\begin{array}{ll}
\operatorname{LCM}[1,2]=2 & \geq 2^{1}=2 \\
\operatorname{LCM}[1,2,3]=6 & \geq 2^{2}=2 \times 2=4 \\
\operatorname{LCM}[1,2,3,4]=12 & \geq 2^{3}=2 \times 2 \times 2=8 \\
\operatorname{LCM}[1,2,3,4,5]=60 & \geq 2^{4}=2 \times 2 \times 2 \times 2=16 \\
\operatorname{LCM}[1,2,3,4,5,6]=60 & \geq 2^{5}=2 \times 2 \times 2 \times 2 \times 2=32
\end{array}
$$

Note that the LCM is a multiple of each element, or each element is less than the overall LCM.

Theorem
$\vdash \operatorname{LCM}[1 \ldots n+1] \geq 2^{n}$

LCM of a List

$$
\begin{array}{ll}
\operatorname{LCM}[1,2]=2 & \geq 2^{1}=2 \\
\operatorname{LCM}[1,2,3]=6 & \geq 2^{2}=2 \times 2=4 \\
\operatorname{LCM}[1,2,3,4]=12 & \geq 2^{3}=2 \times 2 \times 2=8 \\
\operatorname{LCM}[1,2,3,4,5]=60 & \geq 2^{4}=2 \times 2 \times 2 \times 2=16 \\
\operatorname{LCM}[1,2,3,4,5,6]=60 & \geq 2^{5}=2 \times 2 \times 2 \times 2 \times 2=32
\end{array}
$$

Note that the LCM is a multiple of each element, or each element is less than the overall LCM.

Theorem

$$
\vdash \operatorname{LCM}[1 \ldots n+1] \geq 2^{n}
$$

How to prove this interesting result?

LCM of a List

$$
\begin{array}{ll}
\operatorname{LCM}[1,2]=2 & \geq 2^{1}=2 \\
\operatorname{LCM}[1,2,3]=6 & \geq 2^{2}=2 \times 2=4 \\
\operatorname{LCM}[1,2,3,4]=12 & \geq 2^{3}=2 \times 2 \times 2=8 \\
\operatorname{LCM}[1,2,3,4,5]=60 & \geq 2^{4}=2 \times 2 \times 2 \times 2=16 \\
\operatorname{LCM}[1,2,3,4,5,6]=60 & \geq 2^{5}=2 \times 2 \times 2 \times 2 \times 2=32
\end{array}
$$

Note that the LCM is a multiple of each element, or each element is less than the overall LCM.

Theorem

$$
\vdash \operatorname{LCM}[1 \ldots n+1] \geq 2^{n}
$$

How to prove this interesting result? ... use Triangles! \square

Yang Hui＇s Triangle

图方亲七法古

Pascal's Triangle

Pascal's Triangle

- Each boundary entry: always 1 .

Pascal's Triangle

- Each boundary entry: always 1 .
- Each inside entry: sum of two immediate parents.

Pascal's Triangle

- Each boundary entry: always 1 .
- Each inside entry: sum of two immediate parents.

Pascal's Triangle

- Each boundary entry: always 1 .
- Each inside entry: sum of two immediate parents.

Pascal's Triangle

- Each boundary entry: always 1 .
- Each inside entry: sum of two immediate parents.

Sum of the n-th row:

$$
\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}
$$

Pascal's Triangle - Row Sum

Meaning of:

$$
\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}
$$

Pascal's Triangle - Row Sum

Meaning of:

$$
\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}
$$

Pascal's Triangle - Row Sum

Meaning of:

$$
\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}
$$

Pascal's Triangle - Row Sum

Meaning of:

$$
\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}
$$

Pascal's Triangle - Row Sum

Meaning of:

$$
\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}
$$

Pascal's Triangle - Row Sum

Meaning of:

$$
\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}
$$

Pascal's Triangle - Row Sum

$$
\begin{aligned}
& 1 \\
& 1+1 \\
& 1+2+1 \\
& 1+3+3+1 \\
& 1+4+6+4+1 \\
& 1+5+10+10+5+1=32=2^{5} \\
& \begin{array}{lllllll}
1 & 6 & 15 & 20 & 15 & 6 & 1
\end{array}
\end{aligned}
$$

Meaning of:

$$
\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}
$$

Pascal's Triangle - Row Sum

$$
\begin{array}{rrr}
r & \text { Row sum her } \\
1+1 & =2=2^{1} \\
1+2+1 & =4=2^{2} \\
1+3+3+1 & =8=2^{3} \\
1+4+6+4+1 & =16=2^{4} \\
1+5+10+10+5+1 & =32=2^{5} \\
1+6+15+20+15+6+1 & =64=2^{6}
\end{array}
$$

Meaning of:

$$
\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}
$$

Triangle Pattern

From symmetrical form to vertical-horizontal form.

Leibniz's Denominator Triangle

Leibniz's Denominator Triangle

Leibniz's Denominator Triangle

Leibniz's Denominator Triangle

1				$\Leftarrow \times 1$	1				
2	2								
3	6	3	$\Leftarrow \times 2$	1	1				
		$\Leftarrow \times 3$	1	2	1				
1	3	3	1						
			6	4	1				
		5	10	10	5	1			
		6	15	20	15	6	1		

Leibniz's Denominator Triangle

1					$\Leftarrow \times 1$	1			
2	2								
3	6	3			$\Leftarrow \times 2$	1	1		
4	12	12	4		$\Leftarrow \times 3$	1	2	1	
					3	3	1		
			4	6	4	1			
			5	10	10	5	1		
			6	15	20	15	6	1	

Leibniz's Denominator Triangle

Leibniz's Denominator Triangle

Leibniz's Denominator Triangle

$\left.\begin{array}{lccccccccccc}1 & & & & & & & \Leftarrow \times 1 & 1 & & & \\ 2 & 2 & & & & & & & & \Leftarrow \times 2 & 1 & 1\end{array}\right]$

Leibniz's Denominator Triangle

Multiplying each row by the number of elements of that row, the result is Leibniz's Triangle, in denominator form.

Consecutive LCM

1					
2	2				
3	6	3			
4	12	12	4		
5	20	30	20	5	
6	30	60	60	30	6

How does this triangle relate to our goal?

Consecutive LCM

1					
2	2				
3	6	3			
4	12	12	4		
5	20	30	20	5	
6	30	60	60	30	6

How does this triangle relate to our goal?
We shall show this: LCM (vertical column) = LCM (horizontal row).

Consecutive LCM

1					
2	2				
3	6	3			
4	12	12	4		
5	20	30	20	5	
6	30	60	60	30	6

How does this triangle relate to our goal?
We shall show this: LCM (vertical column) $=$ LCM (horizontal row).
This is LCM exchange for big-L,
and LCM (horizontal row) is easier to estimate.

Triplets in Triangle

1					
2	2				
3	6	3			
4	12	12	4		
5	20	30	20	5	
6	30	60	60	30	6

Building blocks of Leibniz's triangle: the small-Ls, called triplets.

Triplets in Triangle

1					
2	2				
3	6	3			
4	12	12	4		
5	20	30	20	5	
6	30	60	60	30	6

Building blocks of Leibniz's triangle: the small-Ls, called triplets.

Triplets in Triangle

1					
2	2				
3	6	3			
4	12	12	4		
5	20	30	20	5	
6	30	60	60	30	6

Building blocks of Leibniz's triangle: the small-Ls, called triplets.

- Each triplet has a vertical pair and a horizontal pair.

Triplets in Triangle

Building blocks of Leibniz's triangle: the small-Ls, called triplets.

- Each triplet has a vertical pair and a horizontal pair.
- We will show: LCM (vertical pair) = LCM (horizontal pair)

Triplets in Triangle

1					
2	2				
3	6	3			
4	12	12	4		
5	20	30	30	5	
6	30	60	60	60	6

Building blocks of Leibniz's triangle: the small-Ls, called triplets.

- Each triplet has a vertical pair and a horizontal pair.
- We will show: LCM (vertical pair) = LCM (horizontal pair)

This is LCM exchange for small-L.

Leibniz Triplet Property

a
b c

For a Leibniz triplet $\{a, b, c\}, \quad a b=c(b-a)$.

Leibniz Triplet Property

Theorem (LCM Exchange)
For a Leibniz triplet $\{a, b, c\}, \quad 1 \mathrm{~cm} b \quad c=1 \mathrm{~cm} b a$.

a
 b c

For a Leibniz triplet $\{a, b, c\}, \quad a b=c(b-a)$.

Leibniz Triplet Property

Theorem (LCM Exchange)

For a Leibniz triplet $\{a, b, c\}, \quad 1 \mathrm{~cm} b \quad c=1 \mathrm{~cm} b a$.

For a Leibniz triplet $\{a, b, c\}, \quad a b=c(b-a)$.

Zig-zag Paths

Zig-zag Paths

- Arms of a Leibniz triplet extend to paths, keeping overall LCM.

Zig-zag Paths

- Arms of a Leibniz triplet extend to paths, keeping overall LCM.

Zig-zag Paths

- Arms of a Leibniz triplet extend to paths, keeping overall LCM.
- A path can zig-zag to another by a suitable Leibniz triplet.

Zig-zag Paths

- Arms of a Leibniz triplet extend to paths, keeping overall LCM.
- A path can zig-zag to another by a suitable Leibniz triplet.

By Leibniz triplet property,

Theorem

$\vdash p_{1} \rightsquigarrow p_{2} \Rightarrow \operatorname{LCM} p_{1}=\operatorname{LCM} p_{2}$

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

Wriggle Paths

(1)				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform a path by successive zig-zags keeps overall LCM.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform a path by successive zig-zags keeps overall LCM.

Wriggle Paths

1			
2	2		
3	6	3	
4	12	12	4
5	20	30	20

- Transform a path by successive zig-zags keeps overall LCM.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform a path by successive zig-zags keeps overall LCM.

Wriggle Paths

- Transform a path by successive zig-zags keeps overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1

- Transform a path by successive zig-zags keeps overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

- Transform a path by successive zig-zags keeps overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

- Transform a path by successive zig-zags keeps overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform a path by successive zig-zags keeps overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform a path by successive zig-zags keeps overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform a path by successive zig-zags keeps overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform a path by successive zig-zags keeps overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform a path by successive zig-zags keeps overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1

2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform a path by successive zig-zags keeps overall LCM.
- A path can wriggle to another by successive zig-zags.

Wriggle Paths

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

- Transform a path by successive zig-zags keeps overall LCM.
- A path can wriggle to another by successive zig-zags.

By Leibniz triplet property,
Theorem
$\vdash p_{1} \rightsquigarrow^{*} p_{2} \Rightarrow L C M p_{1}=L C M p_{2}$

Proof Idea for $2^{n} \leq \operatorname{LCM}[1, \ldots,(n+1)]$

Proof Idea for $2^{n} \leq \operatorname{LCM}[1, \ldots,(n+1)]$

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

$$
\begin{aligned}
& \operatorname{LCM}[1,2,3,4,5] \\
= & \operatorname{LCM}[5,20,30,20,5] \quad \text { by wriggling path transform }
\end{aligned}
$$

Proof Idea for $2^{n} \leq \operatorname{LCM}[1, \ldots,(n+1)]$

1				
2	2			
3	6	3		
4	12	12	4	
5	20	30	20	5

$$
\begin{array}{rll}
& \operatorname{LCM}[1,2,3,4,5] & \\
= & \operatorname{LCM}[5,20,30,20,5] & \text { by wriggling path transform } \\
= & 5 \times \operatorname{LCM}[1,4,6,4,1] & \text { taking out common factor }
\end{array}
$$

Proof Idea for $2^{n} \leq \operatorname{LCM}[1, \ldots,(n+1)]$

Proof Idea for $2^{n} \leq \operatorname{LCM}[1, \ldots,(n+1)]$

Proof Idea for $2^{n} \leq \operatorname{LCM}[1, \ldots,(n+1)]$

Reference

Summary

- ITP 2016 (Interactive Theorem Proving)
https://itp2016.inria.fr
Click "Program" to find the original slides.

Reference

Summary

- ITP 2016 (Interactive Theorem Proving)
https://itp2016.inria.fr
Click "Program" to find the original slides.
- Paper
https://bitbucket.org/jhlchan/hol/downloads/
lcmTheorem.pdf

Reference

Summary

- ITP 2016 (Interactive Theorem Proving)
https://itp2016.inria.fr
Click "Program" to find the original slides.
- Paper
https://bitbucket.org/jhlchan/hol/downloads/
lcmTheorem.pdf
- What have you learnt?

Leibniz's denominator triangle has LCM exchange.

Reference

Summary

- ITP 2016 (Interactive Theorem Proving)
https://itp2016.inria.fr
Click "Program" to find the original slides.
- Paper
https://bitbucket.org/jhlchan/hol/downloads/
lcmTheorem.pdf
- What have you learnt?

Leibniz's denominator triangle has LCM exchange.

- Google: LCM chan hing lun

