Part 1 — the Main Theorem

Hing-Lun Chan¹ Michael Norrish²

joseph.chan@anu.edu.au Australian National University

Michael.Norrish@nicta.com.au Canberra Research Lab., NICTA; also, Australian National University

ITP 2015, Nanjing, China

Basic Primality Test

Theorem (Basic Primality Test.)

$$\vdash 1 < n \land \gcd(\boldsymbol{c}, n) = 1 \Rightarrow (\text{prime } n \iff (X + \boldsymbol{c})^n \equiv (X^n + \boldsymbol{c}) \pmod{n})$$

Proof.

(⇒) Apply Freshman's Theorem:

prime $n \wedge \text{poly } p \wedge \text{poly } q \Rightarrow (p + q)^n \equiv p^n + q^n \pmod{n}$ by identifying p as X and q as c,

then apply Fermat's Little Theorem: prime $n \Rightarrow \boldsymbol{c}^n \equiv \boldsymbol{c} \pmod{n}$

Basic Primality Test

Theorem (Basic Primality Test.)

$$\vdash 1 < n \land \gcd(c, n) = 1 \Rightarrow (prime \ n \iff (X + \mathbf{c})^n \equiv (X^n + \mathbf{c}) \pmod{n})$$

Proof.

(⇒) Apply Freshman's Theorem:

prime $n \wedge \text{poly } p \wedge \text{poly } q \Rightarrow (p + q)^n \equiv p^n + q^n \pmod{n}$

by identifying p as X and q as c,

then apply Fermat's Little Theorem: prime $n \Rightarrow \boldsymbol{c}^n \equiv \boldsymbol{c} \pmod{n}$

(⇐) Can be shown by properties of binomial coefficients.

Making a Primality Test

Theorem (Basic Primality Test.)

$$\vdash 1 < n \land \gcd(c, n) = 1 \Rightarrow (prime \ n \iff (X + c)^n \equiv (X^n + c) \pmod{n})$$

Given a number n > 1, is n a prime?

- Since gcd(1, n) = 1, pick c = 1, then this theorem applies.
- Perform one Freshman-Fermat identity check in \mathbb{Z}_n , *i.e.*, prime $n \iff (X + 1)^n \equiv X^n + 1 \pmod{n}$.

This is a deterministic primality test, however:

Making a Primality Test

Theorem (Basic Primality Test.)

$$\vdash 1 < n \land \gcd(c, n) = 1 \Rightarrow (prime \ n \iff (X + c)^n \equiv (X^n + c) \pmod{n})$$

Given a number n > 1, is n a prime?

- Since gcd(1, n) = 1, pick c = 1, then this theorem applies.
- Perform one Freshman-Fermat identity check in \mathbb{Z}_n , *i.e.*, prime $n \iff (X + 1)^n \equiv X^n + 1 \pmod{n}$.

This is a deterministic primality test, however:

- upon binomial expansion, perform about *n* checks in mod *n*.
- worse than simple trial divisions with \sqrt{n} checks!

Making a Primality Test

Theorem (Basic Primality Test.)

$$\vdash 1 < n \land \gcd(c, n) = 1 \Rightarrow (prime \ n \iff (X + c)^n \equiv (X^n + c) \pmod{n})$$

Given a number n > 1, is n a prime?

- Since gcd(1, n) = 1, pick c = 1, then this theorem applies.
- Perform one Freshman-Fermat identity check in \mathbb{Z}_n , *i.e.*, prime $n \iff (X + 1)^n \equiv X^n + 1 \pmod{n}$.

This is a deterministic primality test, however:

- upon binomial expansion, perform about *n* checks in mod *n*.
- worse than simple trial divisions with \sqrt{n} checks!

Enter Manindra Agrawal, Neeraj Kayal, and Nitin Saxena (AKS).

The AKS team modifies the Freshman-Fermat identity check:

- Perform the polynomial identity checks in (mod n, $\mathbf{X}^k \mathbf{1}$) for some suitably chosen k.
- Check a range of coprime values c, for $0 < c \le \ell$, up to some maximum limit ℓ .

The AKS team modifies the Freshman-Fermat identity check:

- Perform the polynomial identity checks in (mod n, $\mathbf{X}^k \mathbf{1}$) for some suitably chosen k. Remainder has only up to k terms.
- Check a range of coprime values c, for $0 < c \le \ell$, up to some maximum limit ℓ . Provide more ways to weed out composites.

The AKS team modifies the Freshman-Fermat identity check:

- Perform the polynomial identity checks in (mod n, $\mathbf{X}^k \mathbf{1}$) for some suitably chosen k. Remainder has only up to k terms.
- Check a range of coprime values c, for $0 < c \le \ell$, up to some maximum limit ℓ . Provide more ways to weed out composites.

The AKS choice of parameters k and ℓ :

- order_k $(n) > (2 (\log n + 1))^2$
- $\bullet \ell = 2\sqrt{k} (\log n + 1)$

The AKS team modifies the Freshman-Fermat identity check:

- Perform the polynomial identity checks in (mod n, $\mathbf{X}^k \mathbf{1}$) for some suitably chosen k. Remainder has only up to k terms.
- Check a range of coprime values c, for $0 < c \le \ell$, up to some maximum limit ℓ . Provide more ways to weed out composites.

The AKS choice of parameters k and ℓ :

- order_k $(n) \ge (2 (\log n + 1))^2$, *i.e.*, search for k given n.
- $\ell = 2\sqrt{k} (\log n + 1)$, i.e., compute ℓ from k and n.

The AKS team modifies the Freshman-Fermat identity check:

- Perform the polynomial identity checks in $(\text{mod } n, \mathbf{X}^k \mathbf{1})$ for some suitably chosen k. Remainder has only up to k terms.
- Check a range of coprime values c, for $0 < c \le \ell$, up to some maximum limit ℓ . Provide more ways to weed out composites.

The AKS choice of parameters k and ℓ :

- order_k $(n) > (2 (\log n + 1))^2$, i.e., search for k given n.
- $\ell = 2\sqrt{k} (\log n + 1)$, i.e., compute ℓ from k and n.

The AKS result:

- Modifications $\Rightarrow n = p^e$ where prime $p \mid n$ for some exponent e.
- Include a power check: if *n* is power free, then *n* must be prime.

The AKS Main Theorem

The AKS primality test is based on the following theorem:

```
Theorem (The AKS Main Theorem.)
```

The AKS Main Theorem

The AKS primality test is based on the following theorem:

```
Theorem (The AKS Main Theorem.)
```

```
 \begin{array}{l} \vdash \text{ prime } n \iff \\ 1 < n \land \text{ power\_free } n \land \\ \exists k. \\ \text{ prime } k \land (2 (\log n + 1))^2 \leq \operatorname{order}_k(n) \land \\ (\forall j. \ 0 < j \land j \leq k \land j < n \Rightarrow \gcd(n,j) = 1) \land \\ (k < n \Rightarrow \\ \forall c. \\ 0 < c \land c \leq 2\sqrt{k} (\log n + 1) \Rightarrow \\ (\textbf{\textit{X}} + \textbf{\textit{c}})^n \equiv (\textbf{\textit{X}}^n + \textbf{\textit{c}}) \pmod{n}, \ \textbf{\textit{X}}^k - 1)) \end{array}
```

Note the checks: power free, GCD tests and Polynomial modulo tests.

The AKS Algorithm

The AKS Main theorem corresponds to the following algorithm:

Input: integer n > 1.

- If $(n = b^m \text{ for some base } b \text{ with } m > 1)$, return COMPOSITE.
- Search for a prime k satisfying $\operatorname{order}_k(n) \geq (2(\log n + 1))^2.$
- 3 For each (i = 1 to k) if (i = n) break, else if $(\gcd(j, n) \neq 1)$, return COMPOSITE.
- 4 If (k > n), return PRIME.
- **5** For each $(c = 1 \text{ to } \ell)$ where $\ell = 2\sqrt{k} (\log n + 1)$, if $(\boldsymbol{X} + \boldsymbol{c})^n \not\equiv (\boldsymbol{X}^n + \boldsymbol{c}) \pmod{n}, \boldsymbol{X}^k - 1$, return COMPOSITE.
- return PRIME.

AKS Algorithm

- Found in August 2002 by the team: Agrawal, Kayal and Saxena.
- The first deterministic polynomial-time primality-testing algorithm.
- Correctness of algorithm relies on a new theorem in finite fields.

AKS Algorithm

- Found in August 2002 by the team: Agrawal, Kayal and Saxena.
- The first deterministic polynomial-time primality-testing algorithm.
- Correctness of algorithm relies on a new theorem in finite fields.

Its Mechanisation

- Show the correctness of AKS Main Theorem in a theorem-prover.
- Establish upper bounds on the parameters of AKS algorithm.
- Demonstrate that AKS algorithm is indeed polynomial-time.

AKS Algorithm

- Found in August 2002 by the team: Agrawal, Kayal and Saxena.
- The first deterministic polynomial-time primality-testing algorithm.
- Correctness of algorithm relies on a new theorem in finite fields.

Its Mechanisation

- Show the correctness of AKS Main Theorem in a theorem-prover.
- Establish upper bounds on the parameters of AKS algorithm.
- Demonstrate that AKS algorithm is indeed polynomial-time.

These correspond to Part 1, Part 2, and Part 3 of our work.

Easy and Hard

The if-part (\Rightarrow) is easy:

- prime $n \Rightarrow \gcd(c, n) = 1$ for $1 \le c \le \ell$, when $\ell < n$.
- Thus the if-part of Basic Primality Test applies, *i.e.*, $(X + c)^n \equiv (X^n + c) \pmod{n}$ for $1 \le c \le \ell$.
- \bullet or, $(\boldsymbol{X} + \boldsymbol{c})^n \equiv (\boldsymbol{X}^n + \boldsymbol{c}) \pmod{n}, \boldsymbol{X}^k 1$ for $1 \leq c \leq \ell$.

Easy and Hard

The if-part (\Rightarrow) is easy:

- prime $n \Rightarrow \gcd(c, n) = 1$ for $1 < c < \ell$, when $\ell < n$.
- Thus the if-part of Basic Primality Test applies, i.e., $(\mathbf{X} + \mathbf{c})^n \equiv (\mathbf{X}^n + \mathbf{c}) \pmod{n}$ for $1 \leq c \leq \ell$.
- or, $(\boldsymbol{X} + \boldsymbol{c})^n \equiv (\boldsymbol{X}^n + \boldsymbol{c}) \pmod{n}, \ \boldsymbol{X}^k 1$ for $1 \leq c \leq \ell$.

The only-if part (\Leftarrow) is hard:

- There is not much we can assert for a general n > 1.
- Except that n > 1 must have a prime factor p that divides n.
- AKS modifications $\Rightarrow n = p^e$ where prime $p \mid n$ for some e.
- This is shown by a wonderful idea discovered by the AKS team.
- Once this is shown, power free check ensures n = p, a prime.

AKS polynomial identity checks involve double moduli:

$$(\boldsymbol{X} + \boldsymbol{c})^n \equiv (\boldsymbol{X}^n + \boldsymbol{c}) \pmod{n, \boldsymbol{X}^k - 1}$$

AKS polynomial identity checks involve double moduli:

$$(\boldsymbol{X} + \boldsymbol{c})^n \equiv (\boldsymbol{X}^n + \boldsymbol{c}) \pmod{n, \boldsymbol{X}^k - 1}$$

In the context of \mathbb{Z}_n , which is a ring for a general n:

$$(\boldsymbol{X} + \boldsymbol{c})^n \equiv \boldsymbol{X}^n + \boldsymbol{c} \pmod{\boldsymbol{X}^k - 1}$$

AKS polynomial identity checks involve double moduli:

$$(\boldsymbol{X} + \boldsymbol{c})^n \equiv (\boldsymbol{X}^n + \boldsymbol{c}) \pmod{n, \boldsymbol{X}^k - 1}$$

In the context of \mathbb{Z}_n , which is a ring for a general n:

$$(\boldsymbol{X} + \boldsymbol{c})^n \equiv \boldsymbol{X}^n + \boldsymbol{c} \pmod{\boldsymbol{X}^k - 1}$$

Rewriting with polynomial substitution, for a general ring R:

$$(\mathbf{X} + \mathbf{c})^n[\mathbf{X}] \equiv (\mathbf{X} + \mathbf{c})[\mathbf{X}^n] \pmod{\mathbf{X}^k - 1}$$

AKS polynomial identity checks involve double moduli:

$$(\boldsymbol{X} + \boldsymbol{c})^n \equiv (\boldsymbol{X}^n + \boldsymbol{c}) \pmod{n, \boldsymbol{X}^k - 1}$$

In the context of \mathbb{Z}_n , which is a ring for a general n:

$$(\boldsymbol{X} + \boldsymbol{c})^n \equiv \boldsymbol{X}^n + \boldsymbol{c} \pmod{\boldsymbol{X}^k - 1}$$

Rewriting with polynomial substitution, for a general ring R:

$$(\mathbf{X} + \mathbf{c})^n[\mathbf{X}] \equiv (\mathbf{X} + \mathbf{c})[\mathbf{X}^n] \pmod{\mathbf{X}^k - 1}$$

Denote $n \bowtie p$: n is *introspective* to polynomial p, when:

$$\vdash n \bowtie p \iff \text{poly } p \land 0 < k \land p^n \equiv p[X^n] \pmod{X^k - 1}$$

AKS Idea

The hard-part of AKS Main Theorem is proved by:

- Shifting the perspective from \mathbb{Z}_n to \mathbb{Z}_p , where prime $p \mid n$.
- Showing that introspective relationship is preserved:

$$n \bowtie_{\mathbb{Z}_n} X + c \Rightarrow n \bowtie_{\mathbb{Z}_p} X + c$$

- Freshman-Fermat provides for free: $p \bowtie_{\mathbb{Z}_n} X + c$
- Construct sets based on these pair of introspective identities.
- Note that $\mathbf{X}^k \mathbf{1} \in \mathcal{F}[X]$ has a monic irreducible factor \mathbf{h} .
- Construct finite sets based on parameter k and irreducible h.
- By the choices of k and ℓ , squeeze out: $n = p^e$ for some e.

$$\begin{array}{c} \text{number}\bowtie \text{polynomial}\\ (\pmb{X}+\pmb{c})^n\equiv \pmb{X}^n+\pmb{c} \pmod{\pmb{X}^k-\pmb{1}} \end{array}$$

$$\begin{array}{l}
n \bowtie (\mathbf{X} + \mathbf{c}) \\
p \bowtie (\mathbf{X} + \mathbf{c}) \\
0 < c \le \ell
\end{array}$$

HOL Mechanisation

Straightforward Approach + Overloading:

Followed by:

```
val _ = overload_on ("*", ''g.op'');
val _ = overload_on ("#e", ''g.id'');
val _ = overload_on ("G", ''g.carrier'');
```

Some Line Counts

Underlying Algebra Library 49272

AKS specific scripts 21835

Some Line Counts

Underlying Algebra Library 49272

AKS specific scripts 21835

Core HOL 150741