Formal Proof that PRIMES is in P with a taste of HOL4

Hing-Lun Chan

College of Engineering and Computer Science
Australian National University
joseph.chan@anu.edu.au

23 Oct 2015, COMP2600/6260

Outline

(1) Primality Testing

- Examples
- PRIMES in P
- AKS Algorithm
- AKS Theorem
(2) Formalization
- Formal Proof
- Theorem Prover
- Theory Library
(3) HOL4 Session
- Live Demo

Is 91 prime?

Is 91 prime?

Trial division (known since antiquity)

- Check: Is 91 divisible by a smaller prime?

Is 91 prime?

Trial division (known since antiquity)

- Check: Is 91 divisible by a smaller prime?
- not divisible by 2,3,5,
- but divisible by 7 , hence 91 is COMPOSITE.
- n is prime iff it has no proper divisor.

Is 91 prime?

Trial division (known since antiquity)

- Check: Is 91 divisible by a smaller prime?
- not divisible by 2,3,5,
- but divisible by 7 , hence 91 is COMPOSITE.
- n is prime iff it has no proper divisor.

Fermat's method (around 1640)

- Check: Can 91 be expressed as $x^{2}-y^{2}$ with $x-y \neq 1$?

Is 91 prime?

Trial division (known since antiquity)

- Check: Is 91 divisible by a smaller prime?
- not divisible by 2,3,5,
- but divisible by 7 , hence 91 is COMPOSITE.
- n is prime iff it has no proper divisor.

Fermat's method (around 1640)

- Check: Can 91 be expressed as $x^{2}-y^{2}$ with $x-y \neq 1$?
- $91=100-9=10^{2}-3^{2}$, hence 91 must be composite.

Is 91 prime?

Trial division (known since antiquity)

- Check: Is 91 divisible by a smaller prime?
- not divisible by 2,3,5,
- but divisible by 7 , hence 91 is COMPOSITE.
- n is prime iff it has no proper divisor.

Fermat's method (around 1640)

- Check: Can 91 be expressed as $x^{2}-y^{2}$ with $x-y \neq 1$?
- $91=100-9=10^{2}-3^{2}$, hence 91 must be COMPOSITE.
- By $x^{2}-y^{2}=(x-y)(x+y)$,
$91=(10-3)(10+3)=7 \times 13$.
- n is prime iff it is not a difference of two non-consecutive squares.

Is 91 prime?

AKS method (August 2002)

- Check that the number n is power-free, i.e., not square, cube, etc.
- Find a suitable parameter k, and compute ℓ based on k and n.
- GCD checks: if $\operatorname{gcd}(n, j)=1$ for $j=1 \ldots k$.
- Polynomial checks: if $(x+c)^{n} \equiv x^{n}+c\left(\bmod n, x^{k}-1\right)$ for $c=1 \ldots \ell$.

Is 91 prime?

AKS method (August 2002)

- Check that the number n is power-free, i.e., not square, cube, etc.
- Find a suitable parameter k, and compute ℓ based on k and n.
- GCD checks: if $\operatorname{gcd}(n, j)=1$ for $j=1 \ldots k$.
- Polynomial checks: if $(x+c)^{n} \equiv x^{n}+c\left(\bmod n, x^{k}-1\right)$ for $c=1 \ldots \ell$.
- For power-free 91, parameter $k=37, \ell=36$.
- GCD checks: found $\operatorname{gcd}(91,7) \neq 1$, so composite 91.

Is 91 prime?

AKS method (August 2002)

- Check that the number n is power-free, i.e., not square, cube, etc.
- Find a suitable parameter k, and compute ℓ based on k and n.
- GCD checks: if $\operatorname{gcd}(n, j)=1$ for $j=1 \ldots k$.
- Polynomial checks: if $(x+c)^{n} \equiv x^{n}+c\left(\bmod n, x^{k}-1\right)$ for $c=1 \ldots \ell$.
- For power-free 91, parameter $k=37, \ell=36$.
- GCD checks: found $\operatorname{gcd}(91,7) \neq 1$, so composite 91.
- Even if this is missed, Polynomial checks give:

$$
(x+1)^{91} \not \equiv x^{91}+1\left(\bmod 91, x^{37}-1\right)
$$

- Again COMPOSIte 91.

Is 91 prime?

AKS method (August 2002)

- Check that the number n is power-free, i.e., not square, cube, etc.
- Find a suitable parameter k, and compute ℓ based on k and n.
- GCD checks: if $\operatorname{gcd}(n, j)=1$ for $j=1 \ldots k$.
- Polynomial checks: if $(x+c)^{n} \equiv x^{n}+c\left(\bmod n, x^{k}-1\right)$ for $c=1 \ldots \ell$.
- For power-free 91, parameter $k=37, \ell=36$.
- GCD checks: found $\operatorname{gcd}(91,7) \neq 1$, so composite 91.
- Even if this is missed, Polynomial checks give:

$$
(x+1)^{91} \not \equiv x^{91}+1\left(\bmod 91, x^{37}-1\right)
$$

- Again composite 91.
- n is prime iff it passes all AKS checks.

Is 97 prime?

Is 97 prime?

Trial division (known since antiquity)

- not divisible by $2,3,5,7$,
- since $\sqrt{97} \approx 9.85$, so 97 is PRIME.

Is 97 prime?

Trial division (known since antiquity)

- not divisible by $2,3,5,7$,
- since $\sqrt{97} \approx 9.85$, so 97 is PRIME.

Fermat's method (around 1640)

- note $10^{2}=100$ is nearest to 97 , try $97=10^{2}-y^{2}$, fail.
- fail $97=11^{2}-y^{2}=\cdots=48^{2}-y^{2}$ where $48 \approx \frac{97}{2}$, so PRIME 97 .

Is 97 prime?

Trial division (known since antiquity)

- not divisible by $2,3,5,7$,
- since $\sqrt{97} \approx 9.85$, so 97 is PRIME.

Fermat's method (around 1640)

- note $10^{2}=100$ is nearest to 97 , try $97=10^{2}-y^{2}$, fail.
- fail $97=11^{2}-y^{2}=\cdots=48^{2}-y^{2}$ where $48 \approx \frac{97}{2}$, so PRIME 97 .

AKS method (August 2002)

- for power-free 97, parameter $k=41, \ell=37$.
- GCD checks: pass all $\operatorname{gcd}(97, j)=1$, for $1 \leq j \leq 41$.
- Polynomial checks:
- $(x+1)^{97} \equiv x^{97}+1\left(\bmod 97, x^{41}-1\right)$ pass,
- $(x+2)^{97} \equiv x^{97}+2\left(\bmod 97, x^{41}-1\right)$ pass, \cdots, up to
- $(x+37)^{97} \equiv x^{97}+37\left(\bmod 97, x^{41}-1\right)$, all pass.
- hence 97 is PRIME.

Primality Tests Comparison

What is PRIMES in P?

PRIMES = the problem of Primality Testing

- Given an integer $n>1$, determine if n is prime.
$\mathrm{P}=$ the class of Polynomial-time Algorithm
- When step count is bounded by a polynomial of input size $(\log n)$.
- Such polynomial-time algorithms are deemed practical (or useful).

What is PRIMES in P?

PRIMES = the problem of Primality Testing

- Given an integer $n>1$, determine if n is prime.
$\mathrm{P}=$ the class of Polynomial-time Algorithm
- When step count is bounded by a polynomial of input size $(\log n)$.
- Such polynomial-time algorithms are deemed practical (or useful).

PRIMES $\in P$? = a long-standing Question

- PRIMES $\in P$ - if you can find one such class P algorithm.
- PRIMES $\notin P$ - if you can prove no such class P algorithm exists.

What is PRIMES in P?

PRIMES = the problem of Primality Testing

- Given an integer $n>1$, determine if n is prime.
$\mathrm{P}=$ the class of Polynomial-time Algorithm
- When step count is bounded by a polynomial of input size $(\log n)$.
- Such polynomial-time algorithms are deemed practical (or useful).

PRIMES $\in P$? = a long-standing Question

- PRIMES $\in P$ - if you can find one such class P algorithm.
i.e., if you can find an algorithm and prove it is in class P.
- PRIMES $\notin P$ - if you can prove no such class P algorithm exists.

What is PRIMES in P?

PRIMES = the problem of Primality Testing

- Given an integer $n>1$, determine if n is prime.
$\mathrm{P}=$ the class of Polynomial-time Algorithm
- When step count is bounded by a polynomial of input size $(\log n)$.
- Such polynomial-time algorithms are deemed practical (or useful).

PRIMES $\in P$? = a long-standing Question

- PRIMES $\in P$ - if you can find one such class P algorithm. i.e., if you can find an algorithm and prove it is in class P.
- PRIMES $\notin P$ - if you can prove no such class P algorithm exists.

Failure to show PRIMES $\in P$ promotes the belief: PRIMES $\notin P \ldots$

AKS: PRIMES is in P

PRIMES

- Given an integer $n>1$, determine if n is prime.

Methods

- Trial division (since antiquity), takes up to \sqrt{n} steps, i.e., $O(n)$.
- Fermat's method (around 1640), takes up to $\frac{n}{2}$ steps, i.e., $O(n)$.

AKS: PRIMES is in P

PRIMES

- Given an integer $n>1$, determine if n is prime.

Methods

- Trial division (since antiquity), takes up to \sqrt{n} steps, i.e., $O(n)$.
- Fermat's method (around 1640), takes up to $\frac{n}{2}$ steps, i.e., $O(n)$.
- AKS method (August 2002), can be shown to be $O\left((\log n)^{7 \frac{1}{2}}\right)$.

AKS: PRIMES is in P

PRIMES

- Given an integer $n>1$, determine if n is prime.

Methods

- Trial division (since antiquity), takes up to \sqrt{n} steps, i.e., $O(n)$.
- Fermat's method (around 1640), takes up to $\frac{n}{2}$ steps, i.e., $O(n)$.
- AKS method (August 2002), can be shown to be $O\left((\log n)^{7 \frac{1}{2}}\right)$. Analysis
- size of $n=$ number of digits to represent n, measured by $\log n$.
- $O(n)=O\left(2^{\log n}\right)$ is an exponential function of $(\log n)$.
- $O\left((\log n)^{7 \frac{1}{2}}\right)$ is a polynomial function of $(\log n)$.

AKS: PRIMES is in P

PRIMES

- Given an integer $n>1$, determine if n is prime.

Methods

- Trial division (since antiquity), takes up to \sqrt{n} steps, i.e., $O(n)$.
- Fermat's method (around 1640), takes up to $\frac{n}{2}$ steps, i.e., $O(n)$.
- AKS method (August 2002), can be shown to be $O\left((\log n)^{7 \frac{1}{2}}\right)$. Analysis
- size of $n=$ number of digits to represent n, measured by $\log n$.
- $O(n)=O\left(2^{\log n}\right)$ is an exponential function of $(\log n)$.
- $O\left((\log n)^{7 \frac{1}{2}}\right)$ is a polynomial function of $(\log n)$.

Title of AKS's 2002 paper: PRIMES is in P.
First known deterministic polynomial-time primality-testing algorithm.

The AKS Algorithm

6 steps in pseudo-code:
Input: integer $n>1$.
(1) If ($n=b^{m}$ for some base b with $m>1$), return COMPOSITE.
(2) Search for a prime k satisfying $\operatorname{order}_{k}(n) \geq(2(\log n+1))^{2}$.
(3) For each $(j=1$ to $k)$ if $(j=n)$ break, else if $(\operatorname{gcd}(n, j) \neq 1)$, return COMPOSITE.
(4) If $(k \geq n)$, return PRIME.
(5) For each $(c=1$ to $\ell)$ where $\ell=2 \sqrt{k}(\log n+1)$, if $(\boldsymbol{X}+\boldsymbol{c})^{n} \not \equiv\left(\boldsymbol{X}^{n}+\boldsymbol{c}\right)\left(\bmod n, \boldsymbol{X}^{k}-1\right)$, return COMPOSITE.
(6) return PRIME.

The AKS Main Theorem

The AKS algorihtm works because it is based on:
Theorem (The AKS Main Theorem.)
\vdash prime n

$$
1<n \wedge \text { power_free } n \wedge
$$

$$
\exists k .
$$

prime $k \wedge(2(\log n+1))^{2} \leq \operatorname{order}_{k}(n) \wedge$
$(\forall j .0<j \wedge j \leq k \wedge j<n \Rightarrow \operatorname{gcd}(n, j)=1) \wedge$
($k<n \Rightarrow$
$\forall c$.
$0<c \wedge c \leq 2 \sqrt{k}(\log n+1) \Rightarrow$
$\left.(\boldsymbol{X}+\boldsymbol{c})^{n} \equiv\left(\boldsymbol{X}^{n}+\boldsymbol{c}\right)\left(\bmod n, \boldsymbol{X}^{k}-1\right)\right)$

The AKS Main Theorem

The AKS algorihtm works because it is based on:
Theorem (The AKS Main Theorem.)
\vdash prime n

$$
1<n \wedge \text { power_free } n \wedge
$$

$$
\exists k .
$$

```
prime k ^ (2 (log n+1)) 2}\leq\mp@subsup{\operatorname{order}}{k}{(n)}
```

 \((\forall j .0<j \wedge j \leq k \wedge j<n \Rightarrow \operatorname{gcd}(n, j)=1) \wedge\)
 (\(k<n \Rightarrow\)
 \(\forall c\).
 $0<c \wedge c \leq 2 \sqrt{k}(\log n+1) \Rightarrow$
$\left.(\boldsymbol{X}+\boldsymbol{c})^{n} \equiv\left(\boldsymbol{X}^{n}+\boldsymbol{c}\right)\left(\bmod n, \boldsymbol{X}^{k}-1\right)\right)$

Proof.

ITP2015 http://www.inf.kcl.ac.uk/staff/urbanc/itp-2015/, a joint paper with my suprevisor, Michael Norrish.

Formal Proof

A Theorem

- pre-conditions \Rightarrow conclusion

A Mathematical Proof

- presents a series of logical arguments.
- "understood" by peers.
- using high-level concepts.

Formal Proof

A Theorem

- pre-conditions \Rightarrow conclusion

A Mathematical Proof

- presents a series of logical arguments.
- "understood" by peers.
- using high-level concepts.

A Formal Proof

- presents a series of logical deductions.
- "understood" by theorem-prover.
- work out all the details.

Formal Proof

A Theorem

- pre-conditions \Rightarrow conclusion

A Mathematical Proof

- presents a series of logical arguments.
- "understood" by peers.
- using high-level concepts.

A Formal Proof

- presents a series of logical deductions.
- "understood" by theorem-prover.
- work out all the details.

A Special Issue on Formal Proof
Notices of the American Mathematical Society, December 2008.
http://www.ams.org/notices/200811/

Formal Proof Examples

Four Colour Theorem	proposed by Francis Guthrie (1852) computer-aided proof: Appel \& Haken (1976) formalized by Gonthier's team (2000-2005)

Formal Proof Examples

Four Colour Theorem	proposed by Francis Guthrie (1852) computer-aided proof: Appel \& Haken (1976) formalized by Gonthier's team (2000-2005)
Odd Order Theorem	conceived by William Burnside (1911) proof (255 pages): Feit \& Thompson (1963) formalized by Gonthier's team (2006-2012)

Formal Proof Examples

Four Colour Theorem	proposed by Francis Guthrie (1852) computer-aided proof: Appel \& Haken (1976) formalized by Gonthier’s team (2000-2005)
Odd Order Theorem	conceived by William Burnside (1911) proof (255 pages): Feit \& Thompson (1963) formalized by Gonthier's team (2006-2012)
3D Sphere Packing	stated by Johannes Kepler (1611) computer-aided proof: Thomas Hales (1998) formalized in Flyspeck project (2003-2014)

Formal Proof Examples

Four Colour Theorem	proposed by Francis Guthrie (1852) computer-aided proof: Appel \& Haken (1976) formalized by Gonthier’s team (2000-2005)
Odd Order Theorem	conceived by William Burnside (1911) proof (255 pages): Feit \& Thompson (1963) formalized by Gonthier's team (2006-2012)
3D Sphere Packing	stated by Johannes Kepler (1611) computer-aided proof: Thomas Hales (1998) formalized in Flyspeck project (2003-2014)
AKS Primality Testing	found by Agrawal, Kayal and Saxena (2002) if-part verified: de Moura and Tadeu (2008) formalized AKS Main Theorem only (2015)

Formal Proof Examples

Four Colour Theorem	proposed by Francis Guthrie (1852) computer-aided proof: Appel \& Haken (1976) formalized by Gonthier’s team (2000-2005)
Odd Order Theorem	conceived by William Burnside (1911) proof (255 pages): Feit \& Thompson (1963) formalized by Gonthier's team (2006-2012)
3D Sphere Packing	stated by Johannes Kepler (1611) computer-aided proof: Thomas Hales (1998) formalized in Flyspeck project (2003-2014)
AKS Primality Testing	found by Agrawal, Kayal and Saxena (2002) if-part verified: de Moura and Tadeu (2008) formalized AKS Main Theorem only (2015)

I still have to formalize the AKS algorithm, and show it is indeed in P!

Formal Proof in HOL4

What is HOL4?

- an interactive theorem-prover, or proof-assistant.
- a descendent of the original HOL (Higher Order Logic) from 1988.

Formal Proof in HOL4

What is HOL4?

- an interactive theorem-prover, or proof-assistant.
- a descendent of the original HOL (Higher Order Logic) from 1988.
- can be installed in Unix, Mac OS X, or Windows PC/laptop.
- runs on top of Standard ML (a programming language).

Formal Proof in HOL4

What is HOL4?

- an interactive theorem-prover, or proof-assistant.
- a descendent of the original HOL (Higher Order Logic) from 1988.
- can be installed in Unix, Mac OS X, or Windows PC/laptop.
- runs on top of Standard ML (a programming language).
- starts up with Basic Libraries on sets, maps, numbers, lists, etc.
- includes an extensive collection of additional Libraries for work on specific topics.

Formal Proof in HOL4

What is HOL4?

- an interactive theorem-prover, or proof-assistant.
- a descendent of the original HOL (Higher Order Logic) from 1988.
- can be installed in Unix, Mac OS X, or Windows PC/laptop.
- runs on top of Standard ML (a programming language).
- starts up with Basic Libraries on sets, maps, numbers, lists, etc.
- includes an extensive collection of additional Libraries for work on specific topics.

HOL4 (sources on GitHub)
http://hol-theorem-prover.org/
http://github.com/HOL-Theorem-Prover/HOL/

AKS Source Repository

Source:

http://bitbucket.org/jhlchan/hol/src/aks/theories

- Helper Theories
- AKSinteger - integer square-root and integer logarithm.
- AKSpoly - polynomial evaluation by polynomial substitution.
- AKScyclo - special properties of cyclotomic polynomials.
- AKS Theories
- AKSintro - introspective relation essential to AKS proof.
- AKSshift - shifting introspective relation between Rings.
- AKSsets - sets involved in AKS proof.
- AKSmaps - mappings involved in AKS proof.
- AKSorder - the existence of an AKS parameter related to order.
- AKStheorem - the main theorem in AKS proof.

AKS Source Repository

Source:

http://bitbucket.org/jhlchan/hol/src/aks/theories

- Helper Theories
- AKSinteger - integer square-root and integer logarithm.
- AKSpoly - polynomial evaluation by polynomial substitution.
- AKScyclo - special properties of cyclotomic polynomials.
- AKS Theories
- AKSintro - introspective relation essential to AKS proof.
- AKSshift - shifting introspective relation between Rings.
- AKSsets - sets involved in AKS proof.
- AKSmaps - mappings involved in AKS proof.
- AKSorder - the existence of an AKS parameter related to order.
- AKStheorem - the main theorem in AKS proof.

These are built upon other libraries:
algebraic structures, polynomials, finite fields, vector space, etc.

HOL Demo

First, set up the goal to be proved in HOL4 Proof Manager.

```
> g `1 + 1 = 2`;
val it =
    Proof manager status: 1 proof.
1. Incomplete goalstack:
    Initial goal:
        1+1=2
```

: proof

Then, apply one or more tactics to prove the goal:

```
> e (DECIDE_TAC);
```

OK. .
val it = Initial goal proved.
|-1 + 1 = 2: proof

