Formal Proof that PRIMES is in P with a taste of HOL4

Hing-Lun Chan

College of Engineering and Computer Science Australian National University joseph.chan@anu.edu.au

23 Oct 2015, COMP2600/6260

Outline

Primality Testing

- Examples
- PRIMES in P
- AKS Algorithm
- AKS Theorem

Formalization

- Formal Proof
- Theorem Prover
- Theory Library

3 HOL4 Session• Live Demo

Examples

Is 91 prime?

Trial division (known since antiquity)

• Check: Is 91 divisible by a smaller prime?

Trial division (known since antiquity)

- Check: Is 91 divisible by a smaller prime?
 - not divisible by 2, 3, 5,
 - but divisible by 7, hence 91 is COMPOSITE.
- *n* is prime iff it has no proper divisor.

Trial division (known since antiquity)

- Check: Is 91 divisible by a smaller prime?
 - not divisible by 2, 3, 5,
 - but divisible by 7, hence 91 is COMPOSITE.
- *n* is prime iff it has no proper divisor.

Fermat's method (around 1640)

• Check: Can 91 be expressed as $x^2 - y^2$ with $x - y \neq 1$?

Examples

Is 91 prime?

Trial division (known since antiquity)

- Check: Is 91 divisible by a smaller prime?
 - not divisible by 2, 3, 5,
 - but divisible by 7, hence 91 is COMPOSITE.
- *n* is prime iff it has no proper divisor.

Fermat's method (around 1640)

- Check: Can 91 be expressed as $x^2 y^2$ with $x y \neq 1$?
 - ▶ $91 = 100 9 = 10^2 3^2$, hence 91 must be COMPOSITE.

Examples

Is 91 prime?

Trial division (known since antiquity)

- Check: Is 91 divisible by a smaller prime?
 - not divisible by 2, 3, 5,
 - but divisible by 7, hence 91 is COMPOSITE.
- *n* is prime iff it has no proper divisor.

Fermat's method (around 1640)

- Check: Can 91 be expressed as $x^2 y^2$ with $x y \neq 1$?
 - ▶ $91 = 100 9 = 10^2 3^2$, hence 91 must be COMPOSITE.

• By
$$x^2 - y^2 = (x - y)(x + y)$$
,
91 = (10 - 3)(10 + 3) = 7 × 13.

• *n* is prime iff it is not a difference of two non-consecutive squares.

AKS method (August 2002)

- Check that the number *n* is power-free, *i.e.*, not square, cube, *etc*.
- Find a suitable parameter k, and compute ℓ based on k and n.
- GCD checks: if gcd(n, j) = 1 for $j = 1 \dots k$.
- Polynomial checks: if $(x + c)^n \equiv x^n + c \pmod{n, x^k 1}$ for $c = 1 \dots \ell$.

AKS method (August 2002)

- Check that the number *n* is power-free, *i.e.*, not square, cube, *etc*.
- Find a suitable parameter k, and compute ℓ based on k and n.
- GCD checks: if gcd(n, j) = 1 for $j = 1 \dots k$.
- Polynomial checks: if $(x + c)^n \equiv x^n + c \pmod{n, x^k 1}$ for $c = 1 \dots \ell$.
 - For power-free 91, parameter k = 37, $\ell = 36$.
 - GCD checks: found $gcd(91,7) \neq 1$, so COMPOSITE 91.

AKS method (August 2002)

- Check that the number *n* is power-free, *i.e.*, not square, cube, *etc*.
- Find a suitable parameter k, and compute ℓ based on k and n.
- GCD checks: if gcd(n, j) = 1 for $j = 1 \dots k$.
- Polynomial checks: if $(x + c)^n \equiv x^n + c \pmod{n, x^k 1}$ for $c = 1 \dots \ell$.
 - For power-free 91, parameter k = 37, $\ell = 36$.
 - GCD checks: found $gcd(91,7) \neq 1$, so COMPOSITE 91.
 - Even if this is missed, Polynomial checks give:

$$(x+1)^{91} \not\equiv x^{91} + 1 \pmod{91}, x^{37} - 1$$

► Again COMPOSITE 91.

AKS method (August 2002)

- Check that the number *n* is power-free, *i.e.*, not square, cube, *etc*.
- Find a suitable parameter k, and compute ℓ based on k and n.
- GCD checks: if gcd(n, j) = 1 for $j = 1 \dots k$.
- Polynomial checks: if $(x + c)^n \equiv x^n + c \pmod{n, x^k 1}$ for $c = 1 \dots \ell$.
 - For power-free 91, parameter k = 37, $\ell = 36$.
 - GCD checks: found $gcd(91,7) \neq 1$, so COMPOSITE 91.
 - Even if this is missed, Polynomial checks give:

$$(x+1)^{91} \not\equiv x^{91} + 1 \pmod{91}, x^{37} - 1$$

- ► Again COMPOSITE 91.
- *n* is prime iff it passes all AKS checks.

Examples

Is 97 prime?

Trial division (known since antiquity)

- not divisible by 2, 3, 5, 7,
- since $\sqrt{97} \approx 9.85$, so 97 is prime.

Trial division (known since antiquity)

- not divisible by 2, 3, 5, 7,
- since $\sqrt{97} \approx 9.85$, so 97 is PRIME.

Fermat's method (around 1640)

• note $10^2 = 100$ is nearest to 97, try $97 = 10^2 - y^2$, fail.

• fail
$$97 = 11^2 - y^2 = \cdots = 48^2 - y^2$$
 where $48 \approx \frac{97}{2}$, so PRIME 97.

Trial division (known since antiquity)

- not divisible by 2, 3, 5, 7,
- since $\sqrt{97} \approx 9.85$, so 97 is PRIME.

Fermat's method (around 1640)

• note $10^2 = 100$ is nearest to 97, try $97 = 10^2 - y^2$, fail.

• fail $97 = 11^2 - y^2 = \cdots = 48^2 - y^2$ where $48 \approx \frac{97}{2}$, so PRIME 97.

AKS method (August 2002)

- for power-free 97, parameter $k = 41, \ell = 37$.
- GCD checks: pass all gcd(97, j) = 1, for $1 \le j \le 41$.
- Polynomial checks:

•
$$(x+1)^{97} \equiv x^{97} + 1 \pmod{97}, x^{41} - 1$$
 pass,

- $(x+2)^{97} \equiv x^{97} + 2 \pmod{97}, x^{41} 1$ pass, ..., up to
- $(x+37)^{97} \equiv x^{97}+37 \pmod{97}, x^{41}-1$, all pass.

• hence 97 is PRIME.

Primality Testing

Examples

Primality Tests Comparison

PRIMES = the problem of Primality Testing

- Given an integer n > 1, determine if *n* is prime.
- P = the class of Polynomial-time Algorithm
 - When step count is bounded by a polynomial of input size (log *n*).
 - Such polynomial-time algorithms are deemed practical (or useful).

PRIMES = the problem of Primality Testing

- Given an integer n > 1, determine if *n* is prime.
- P = the class of Polynomial-time Algorithm
 - When step count is bounded by a polynomial of input size (log *n*).
 - Such polynomial-time algorithms are deemed practical (or useful).

 $\mathsf{PRIMES} \in \mathbf{P} ? = a \text{ long-standing Question}$

- PRIMES $\in P$ if you can find one such class P algorithm.
- PRIMES $\notin P$ if you can prove no such class P algorithm exists.

PRIMES = the problem of Primality Testing

- Given an integer n > 1, determine if n is prime.
- P = the class of Polynomial-time Algorithm
 - When step count is bounded by a polynomial of input size (log *n*).
 - Such polynomial-time algorithms are deemed practical (or useful).

 $\mathsf{PRIMES} \in \textit{P} \texttt{?} = \mathsf{a} \text{ long-standing Question}$

- PRIMES ∈ P if you can find one such class P algorithm.
 i.e., if you can find an algorithm and prove it is in class P.
- PRIMES $\notin P$ if you can prove no such class P algorithm exists.

PRIMES = the problem of Primality Testing

- Given an integer n > 1, determine if n is prime.
- P = the class of Polynomial-time Algorithm
 - When step count is bounded by a polynomial of input size (log *n*).
 - Such polynomial-time algorithms are deemed practical (or useful).

 $\mathsf{PRIMES} \in \textit{P} \texttt{?} = \mathsf{a} \text{ long-standing Question}$

- PRIMES ∈ P if you can find one such class P algorithm.
 i.e., if you can find an algorithm and prove it is in class P.
- PRIMES $\notin P$ if you can prove no such class P algorithm exists.

Failure to show PRIMES $\in P$ promotes the belief: PRIMES $\notin P \dots$

AKS: PRIMES is in P

PRIMES

• Given an integer n > 1, determine if *n* is prime.

Methods

- Trial division (since antiquity), takes up to \sqrt{n} steps, *i.e.*, O(n).
- Fermat's method (around 1640), takes up to $\frac{n}{2}$ steps, *i.e.*, O(n).

AKS: PRIMES is in P

PRIMES

• Given an integer n > 1, determine if *n* is prime.

Methods

- Trial division (since antiquity), takes up to \sqrt{n} steps, *i.e.*, O(n).
- Fermat's method (around 1640), takes up to $\frac{n}{2}$ steps, *i.e.*, O(n).
- AKS method (August 2002), can be shown to be $O((\log n)^{7\frac{1}{2}})$.

AKS: PRIMES is in P

PRIMES

• Given an integer n > 1, determine if *n* is prime.

Methods

- Trial division (since antiquity), takes up to \sqrt{n} steps, *i.e.*, O(n).
- Fermat's method (around 1640), takes up to $\frac{n}{2}$ steps, *i.e.*, O(n).
- AKS method (August 2002), can be shown to be $O((\log n)^{7\frac{1}{2}})$. Analysis
 - size of n = number of digits to represent n, measured by log n.
 - $O(n) = O(2^{\log n})$ is an exponential function of $(\log n)$.
 - $O((\log n)^{7\frac{1}{2}})$ is a polynomial function of $(\log n)$.

PRIMES in P

AKS: PRIMES is in P

PRIMES

• Given an integer n > 1, determine if n is prime.

Methods

- Trial division (since antiquity), takes up to \sqrt{n} steps, *i.e.*, O(n).
- Fermat's method (around 1640), takes up to $\frac{n}{2}$ steps, *i.e.*, O(n).
- AKS method (August 2002), can be shown to be $O((\log n)^{7\frac{1}{2}})$. Analysis
 - size of n = number of digits to represent n, measured by log n.
 - $O(n) = O(2^{\log n})$ is an exponential function of $(\log n)$.
 - $O((\log n)^{7\frac{1}{2}})$ is a polynomial function of $(\log n)$.

Title of AKS's 2002 paper: PRIMES is in P. First known deterministic *polynomial-time* primality-testing algorithm.

The AKS Algorithm

6 steps in pseudo-code:

Input: integer n > 1. If $(n = b^m$ for some base b with m > 1), return COMPOSITE. Search for a prime k satisfying order_k(n) > $(2(\log n + 1))^2$. Solution (i = 1 to k) if (i = n) break, else if $(gcd(n, j) \neq 1)$, return COMPOSITE. • If (k > n), return PRIME. **5** For each $(c = 1 \text{ to } \ell)$ where $\ell = 2\sqrt{k} (\log n + 1)$, if $(\mathbf{X} + \mathbf{c})^n \not\equiv (\mathbf{X}^n + \mathbf{c}) \pmod{n}, \mathbf{X}^k - 1$, return COMPOSITE. return PRIME.

The AKS Main Theorem

The AKS algorihtm works because it is based on:

```
Theorem (The AKS Main Theorem.)
 \vdash prime n \iff
          1 < n \land power free n \land
          \exists k.
              prime k \wedge (2(\log n + 1))^2 \leq \operatorname{order}_k(n) \wedge
               (\forall j. 0 < j \land j \leq k \land j < n \Rightarrow gcd(n,j) = 1) \land
               (k < n \Rightarrow
                    \forall c.
                        0 < c \land c < 2\sqrt{k} (\log n + 1) \Rightarrow
                            (\boldsymbol{X} + \boldsymbol{c})^n \equiv (\boldsymbol{X}^n + \boldsymbol{c}) \pmod{n, \boldsymbol{X}^k - 1}
```

The AKS Main Theorem

The AKS algorihtm works because it is based on:

```
Theorem (The AKS Main Theorem.)
 \vdash prime n \iff
          1 < n \land power free n \land
          \exists k.
              prime k \wedge (2(\log n + 1))^2 \leq \operatorname{order}_k(n) \wedge
               (\forall j. 0 < j \land j \leq k \land j < n \Rightarrow gcd(n,j) = 1) \land
               (k < n \Rightarrow
                    \forall c.
                        0 < c \land c < 2\sqrt{k} (\log n + 1) \Rightarrow
                            (\boldsymbol{X} + \boldsymbol{c})^n \equiv (\boldsymbol{X}^n + \boldsymbol{c}) \pmod{n}, \ \boldsymbol{X}^k - 1)
```

Proof.

ITP2015 http://www.inf.kcl.ac.uk/staff/urbanc/itp-2015/, a joint paper with my suprevisor, Michael Norrish.

Formal Proof

A Theorem

- pre-conditions \Rightarrow conclusion
- A Mathematical Proof
 - presents a series of logical arguments.
 - "understood" by peers.
 - using high-level concepts.

Formal Proof

- A Theorem
 - pre-conditions \Rightarrow conclusion
- A Mathematical Proof
 - presents a series of logical arguments.
 - "understood" by peers.
 - using high-level concepts.
- A Formal Proof
 - presents a series of logical deductions.
 - "understood" by theorem-prover.
 - work out all the details.

Formal Proof

- A Theorem
 - pre-conditions \Rightarrow conclusion
- A Mathematical Proof
 - presents a series of logical arguments.
 - "understood" by peers.
 - using high-level concepts.
- A Formal Proof
 - presents a series of logical deductions.
 - "understood" by theorem-prover.
 - work out all the details.

A Special Issue on Formal Proof Notices of the American Mathematical Society, December 2008. http://www.ams.org/notices/200811/

Four Colour Theorem	proposed by Francis Guthrie (1852) computer-aided proof: Appel & Haken (1976) formalized by Gonthier's team (2000-2005)

Four Colour Theorem	proposed by Francis Guthrie (1852)
	computer-aided proof: Appel & Haken (1976)
	formalized by Gonthier's team (2000-2005)
Odd Order Theorem	conceived by William Burnside (1911)
	proof (255 pages): Feit & Thompson (1963)
	formalized by Gonthier's team (2006-2012)

Four Colour Theorem	proposed by Francis Guthrie (1852) computer-aided proof: Appel & Haken (1976) formalized by Gonthier's team (2000-2005)
Odd Order Theorem	conceived by William Burnside (1911) proof (255 pages): Feit & Thompson (1963) formalized by Gonthier's team (2006-2012)
3D Sphere Packing	stated by Johannes Kepler (1611) computer-aided proof: Thomas Hales (1998) formalized in Flyspeck project (2003-2014)

Four Colour Theorem	proposed by Francis Guthrie (1852)
	computer-aided proof: Appel & Haken (1976)
	formalized by Gonthier's team (2000-2005)
Odd Order Theorem	conceived by William Burnside (1911)
	proof (255 pages): Feit & Thompson (1963)
	formalized by Gonthier's team (2006-2012)
3D Sphere Packing	stated by Johannes Kepler (1611)
	computer-aided proof: Thomas Hales (1998)
	formalized in Flyspeck project (2003-2014)
AKS Primality Testing	found by Agrawal, Kayal and Saxena (2002)
	if-part verified: de Moura and Tadeu (2008)
	formalized AKS Main Theorem only (2015)

Four Colour Theorem	proposed by Francis Guthrie (1852)
	computer-aided proof: Appel & Haken (1976)
	formalized by Gonthier's team (2000-2005)
Odd Order Theorem	conceived by William Burnside (1911)
	proof (255 pages): Feit & Thompson (1963)
	formalized by Gonthier's team (2006-2012)
3D Sphere Packing	stated by Johannes Kepler (1611)
	computer-aided proof: Thomas Hales (1998)
	formalized in Flyspeck project (2003-2014)
AKS Primality Testing	found by Agrawal, Kayal and Saxena (2002)
	if-part verified: de Moura and Tadeu (2008)
	formalized AKS Main Theorem only (2015)

I still have to formalize the AKS algorithm, and show it is indeed in P!

Formal Proof in HOL4

What is HOL4?

- an interactive theorem-prover, or proof-assistant.
- a descendent of the original HOL (Higher Order Logic) from 1988.

Theorem Prover

Formal Proof in HOL4

What is HOL4?

- an interactive theorem-prover, or proof-assistant.
- a descendent of the original HOL (Higher Order Logic) from 1988.
- can be installed in Unix, Mac OS X, or Windows PC/laptop.
- runs on top of Standard ML (a programming language).

Formal Proof in HOL4

What is HOL4?

- an interactive theorem-prover, or proof-assistant.
- a descendent of the original HOL (Higher Order Logic) from 1988.
- can be installed in Unix, Mac OS X, or Windows PC/laptop.
- runs on top of Standard ML (a programming language).
- starts up with Basic Libraries on sets, maps, numbers, lists, etc.
- includes an extensive collection of additional Libraries for work on specific topics.

Formal Proof in HOL4

What is HOL4?

- an interactive theorem-prover, or proof-assistant.
- a descendent of the original HOL (Higher Order Logic) from 1988.
- can be installed in Unix, Mac OS X, or Windows PC/laptop.
- runs on top of Standard ML (a programming language).
- starts up with Basic Libraries on sets, maps, numbers, lists, etc.
- includes an extensive collection of additional Libraries for work on specific topics.

HOL4 (sources on GitHub)

```
http://hol-theorem-prover.org/
http://github.com/HOL-Theorem-Prover/HOL/
```

AKS Source Repository

Source:

http://bitbucket.org/jhlchan/hol/src/aks/theories

- Helper Theories
 - AKSinteger integer square-root and integer logarithm.
 - AKSpoly polynomial evaluation by polynomial substitution.
 - AKScyclo special properties of cyclotomic polynomials.
- AKS Theories
 - AKSintro introspective relation essential to AKS proof.
 - AKSshift shifting introspective relation between Rings.
 - AKSsets sets involved in AKS proof.
 - AKSmaps mappings involved in AKS proof.
 - AKSorder the existence of an AKS parameter related to order.
 - AKStheorem the main theorem in AKS proof.

AKS Source Repository

Source:

http://bitbucket.org/jhlchan/hol/src/aks/theories

- Helper Theories
 - AKSinteger integer square-root and integer logarithm.
 - AKSpoly polynomial evaluation by polynomial substitution.
 - AKScyclo special properties of cyclotomic polynomials.
- AKS Theories
 - AKSintro introspective relation essential to AKS proof.
 - AKSshift shifting introspective relation between Rings.
 - AKSsets sets involved in AKS proof.
 - AKSmaps mappings involved in AKS proof.
 - AKSorder the existence of an AKS parameter related to order.
 - AKStheorem the main theorem in AKS proof.

These are built upon other libraries:

algebraic structures, polynomials, finite fields, vector space, etc.

HOL Demo

First, set up the goal to be proved in HOL4 Proof Manager.

```
> g '1 + 1 = 2';
val it =
    Proof manager status: 1 proof.
1. Incomplete goalstack:
    Initial goal:
    1 + 1 = 2
```

: proof

Then, apply one or more tactics to prove the goal:

```
> e (DECIDE_TAC);
```

```
OK..
val it = Initial goal proved.
|-1 + 1 = 2: proof
```