Formal Proof that PRIMES is in P with a taste of HOL4

Hing-Lun Chan

College of Engineering and Computer Science Australian National University joseph.chan@anu.edu.au

19 Oct 2016, COMP2600.

Outline

- Primality Testing
 - Examples
 - PRIMES in P
 - AKS Algorithm
 - AKS Theorem
- Formalization
 - Formal Proof
 - Theorem Prover
 - Script Library
- 3 HOL4 Session
 - Live Demo

Trial division (known since antiquity)

• Check: Is 91 divisible by a smaller prime?

Trial division (known since antiquity)

- Check: Is 91 divisible by a smaller prime?
 - ▶ not divisible by 2, 3, 5,
 - ▶ but divisible by 7, hence 91 is COMPOSITE.
- *n* is prime iff it has no proper divisor.

Trial division (known since antiquity)

- Check: Is 91 divisible by a smaller prime?
 - not divisible by 2, 3, 5,
 - ▶ but divisible by 7, hence 91 is COMPOSITE.
- *n* is prime iff it has no proper divisor.

Fermat's method (around 1640)

• Check: Can 91 be expressed as $x^2 - y^2$ with $x - y \neq 1$?

Trial division (known since antiquity)

- Check: Is 91 divisible by a smaller prime?
 - ▶ not divisible by 2, 3, 5,
 - ▶ but divisible by 7, hence 91 is COMPOSITE.
- n is prime iff it has no proper divisor.

Fermat's method (around 1640)

- Check: Can 91 be expressed as $x^2 y^2$ with $x y \ne 1$?
 - ▶ $91 = 100 9 = 10^2 3^2$, hence 91 must be COMPOSITE.

Trial division (known since antiquity)

- Check: Is 91 divisible by a smaller prime?
 - ▶ not divisible by 2, 3, 5,
 - ▶ but divisible by 7, hence 91 is COMPOSITE.
- n is prime iff it has no proper divisor.

Fermat's method (around 1640)

- Check: Can 91 be expressed as $x^2 y^2$ with $x y \neq 1$?
 - ▶ $91 = 100 9 = 10^2 3^2$, hence 91 must be COMPOSITE.
- By $x^2 y^2 = (x y)(x + y)$, $91 = (10 - 3)(10 + 3) = 7 \times 13$.
- n is prime iff it is not a difference of two non-consecutive squares.

AKS method (August 2002)

- Check that the number n is power-free, i.e., not square, cube, etc.
- Find a suitable parameter k, and compute ℓ based on k and n.
- GCD checks: if gcd(n, j) = 1 for j = 1 ... k.
- Polynomial checks: if $(x+c)^n \equiv x^n + c \pmod{n, x^k 1}$ for $c = 1 \dots \ell$.

AKS method (August 2002)

- Check that the number n is power-free, i.e., not square, cube, etc.
- Find a suitable parameter k, and compute ℓ based on k and n.
- GCD checks: if gcd(n, j) = 1 for j = 1 ... k.
- Polynomial checks: if $(x+c)^n \equiv x^n + c \pmod{n, x^k 1}$ for $c = 1 \dots \ell$.
 - For power-free 91, parameter k = 59, $\ell = 48$.
 - ▶ GCD checks: found $gcd(91,7) \neq 1$, so COMPOSITE 91.

AKS method (August 2002)

- Check that the number n is power-free, i.e., not square, cube, etc.
- Find a suitable parameter k, and compute ℓ based on k and n.
- GCD checks: if gcd(n, j) = 1 for $j = 1 \dots k$.
- Polynomial checks: if $(x+c)^n \equiv x^n + c \pmod{n, x^k 1}$ for $c = 1 \dots \ell$.
 - ▶ For power-free 91, parameter k = 59, $\ell = 48$.
 - ▶ GCD checks: found $gcd(91,7) \neq 1$, so COMPOSITE 91.
 - ▶ Even if this is missed, Polynomial checks give:

$$(x+1)^{91} \not\equiv x^{91} + 1 \pmod{91, x^{59} - 1}$$

► Again COMPOSITE 91.

AKS method (August 2002)

- Check that the number n is power-free, i.e., not square, cube, etc.
- Find a suitable parameter k, and compute ℓ based on k and n.
- GCD checks: if gcd(n, j) = 1 for $j = 1 \dots k$.
- Polynomial checks: if $(x+c)^n \equiv x^n + c \pmod{n, x^k 1}$ for $c = 1 \dots \ell$.
 - ▶ For power-free 91, parameter k = 59, $\ell = 48$.
 - ▶ GCD checks: found $gcd(91,7) \neq 1$, so COMPOSITE 91.
 - ▶ Even if this is missed, Polynomial checks give:

$$(x+1)^{91} \not\equiv x^{91} + 1 \pmod{91, x^{59} - 1}$$

- ▶ Again COMPOSITE 91.
- *n* is prime iff it passes all AKS checks.

Trial division (known since antiquity)

- not divisible by 2, 3, 5, 7, (any more?)
- since $\sqrt{97} \approx 9.85$, so 97 is PRIME.

Trial division (known since antiquity)

- not divisible by 2, 3, 5, 7, (any more?)
- since $\sqrt{97} \approx 9.85$, so 97 is PRIME.

Fermat's method (around 1640)

- note $10^2 = 100$ is nearest to 97, try $97 = 10^2 y^2$, fail.
- fail $97 = 11^2 y^2 = \cdots = 48^2 y^2$ where $48 \approx \frac{97}{2}$, so PRIME 97.

Trial division (known since antiquity)

- not divisible by 2, 3, 5, 7, (any more?)
- since $\sqrt{97} \approx 9.85$, so 97 is PRIME.

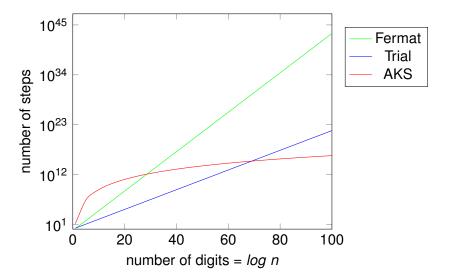
Fermat's method (around 1640)

- note $10^2 = 100$ is nearest to 97, try $97 = 10^2 y^2$, fail.
- fail $97 = 11^2 y^2 = \cdots = 48^2 y^2$ where $48 \approx \frac{97}{2}$, so PRIME 97.

AKS method (August 2002)

- for power-free 97, parameter $k = 59, \ell = 48$.
- GCD checks: pass all gcd(97, j) = 1, for $1 \le j \le 59$.
- Polynomial checks:
 - $(x+1)^{97} \equiv x^{97} + 1 \pmod{97, x^{59} 1}$ pass,
 - $(x+2)^{97} \equiv x^{97} + 2 \pmod{97}, x^{59} 1$ pass, ..., up to
 - $(x + 48)^{97} \equiv x^{97} + 48 \pmod{97, x^{59} 1}$, all pass.
- hence 97 is PRIME.

Primality Tests Comparison



AKS paper

PRIMES is in P

Manindra Agrawal Neeraj Kayal Nitin Saxena*

Abstract

We present an unconditional deterministic polynomial-time algorithm that determines whether an input number is prime or composite.

Annals of Mathematics, volume 160, number 2: pages 781-793, 2004.

AKS paper

PRIMES is in P

Manindra Agrawal Neeraj Kayal Nitin Saxena*

Abstract

We present an unconditional deterministic polynomial-time algorithm that determines whether an input number is prime or composite.

Annals of Mathematics, volume 160, number 2: pages 781-793, 2004.

Manindra Agrawal Home Page.

http://www.cse.iitk.ac.in/users/manindra/

AKS paper

PRIMES is in P

Manindra Agrawal Neeraj Kayal Nitin Saxena^{*}

Abstract

We present an unconditional deterministic polynomial-time algorithm that determines whether an input number is prime or composite.

Annals of Mathematics, volume 160, number 2: pages 781-793, 2004.

Manindra Agrawal Home Page.

http://www.cse.iitk.ac.in/users/manindra/

- algebra/primality_original.pdf (2002)
- algebra/primality_v6.pdf (revised, 2004)

PRIMES = the problem of Primality Testing

- Given an integer n > 1, determine if n is prime.
- P = the class of Polynomial-time Algorithm
 - When step count is bounded by a polynomial of input size (log *n*).
 - Such polynomial-time algorithms are deemed practical (or useful).

PRIMES = the problem of Primality Testing

- Given an integer n > 1, determine if n is prime.
- P = the class of Polynomial-time Algorithm
 - When step count is bounded by a polynomial of input size (log *n*).
 - Such polynomial-time algorithms are deemed practical (or useful).

$PRIMES \in P$? = a long-standing Question

- PRIMES $\in P$ if you can find one such class P algorithm.
- PRIMES $\notin P$ if you can prove no such class P algorithm exists.

PRIMES = the problem of Primality Testing

- Given an integer n > 1, determine if n is prime.
- P = the class of Polynomial-time Algorithm
 - When step count is bounded by a polynomial of input size (log *n*).
 - Such polynomial-time algorithms are deemed practical (or useful).

$PRIMES \in P$? = a long-standing Question

- PRIMES ∈ P if you can find one such class P algorithm.
 i.e., if you can find an algorithm and prove it is in class P.
- PRIMES $\notin P$ if you can prove no such class P algorithm exists.

PRIMES = the problem of Primality Testing

- Given an integer n > 1, determine if n is prime.
- P = the class of Polynomial-time Algorithm
 - When step count is bounded by a polynomial of input size (log *n*).
 - Such polynomial-time algorithms are deemed practical (or useful).

$PRIMES \in P$? = a long-standing Question

- PRIMES $\in P$ if you can find one such class P algorithm. *i.e.*, if you can find an algorithm and prove it is in class P.
- PRIMES $\notin P$ if you can prove no such class P algorithm exists.

Failure to show PRIMES $\in P$ promotes the belief: PRIMES $\notin P \dots$

PRIMES

• Given an integer n > 1, determine if n is prime.

Methods

- Trial division (since antiquity), takes up to \sqrt{n} steps, i.e., O(n).
- Fermat's method (around 1640), takes up to $\frac{n}{2}$ steps, *i.e.*, O(n).

PRIMES

• Given an integer n > 1, determine if n is prime.

Methods

- Trial division (since antiquity), takes up to \sqrt{n} steps, *i.e.*, O(n).
- Fermat's method (around 1640), takes up to $\frac{n}{2}$ steps, *i.e.*, O(n).
- AKS method (August 2002), can be shown to be $O((\log n)^{7\frac{1}{2}})$.

PRIMES

• Given an integer n > 1, determine if n is prime.

Methods

- Trial division (since antiquity), takes up to \sqrt{n} steps, i.e., O(n).
- Fermat's method (around 1640), takes up to $\frac{n}{2}$ steps, i.e., O(n).
- AKS method (August 2002), can be shown to be $O((\log n)^{7\frac{1}{2}})$.

Analysis

- size of n = number of digits to represent n, measured by $\log n$.
- $O(n) = O(2^{\log n})$ is an **exponential** function of $(\log n)$.
- $O((\log n)^{7\frac{1}{2}})$ is a **polynomial** function of $(\log n)$.

PRIMES

• Given an integer n > 1, determine if n is prime.

Methods

- Trial division (since antiquity), takes up to \sqrt{n} steps, *i.e.*, O(n).
- Fermat's method (around 1640), takes up to $\frac{n}{2}$ steps, *i.e.*, O(n).
- AKS method (August 2002), can be shown to be $O((\log n)^{7\frac{1}{2}})$.

Analysis

- size of n = number of digits to represent n, measured by $\log n$.
- $O(n) = O(2^{\log n})$ is an **exponential** function of $(\log n)$.
- $O((\log n)^{7\frac{1}{2}})$ is a **polynomial** function of $(\log n)$.

Title of AKS's paper: PRIMES is in P.

First known deterministic *polynomial-time* primality-testing algorithm.

The AKS Algorithm

Pseudo-code:

Input: an integer n > 1.

- If $(n = b^m \text{ for some base } b \text{ with } m > 1)$, return COMPOSITE.
- ② For each (k = 2 to m) where $m = 2 + \lceil \log n \rceil * (\lceil \log n \rceil^4 / 2)$,
 - if $(gcd(n, k) \neq 1)$, if (k = n) return PRIME, else return COMPOSITE.
 - if $(\operatorname{order}_k(n) \ge \lceil \log n \rceil^2)$, break (use this *k* for next step).
- **3** For each $(c = 1 \text{ to } \ell)$ where $\ell = \sqrt{\varphi(k)} * \lceil \log n \rceil$,
 - if $(\mathbf{X} + \mathbf{c})^n \not\equiv (\mathbf{X}^n + \mathbf{c}) \pmod{n}$, $\mathbf{X}^k 1$, return COMPOSITE.
- return PRIME.

The AKS Algorithm

Pseudo-code:

Input: an integer n > 1.

- If $(n = b^m \text{ for some base } b \text{ with } m > 1)$, return COMPOSITE.
- **2** For each (k = 2 to m) where $m = 2 + \lceil \log n \rceil * (\lceil \log n \rceil^4 / 2)$,
 - if $(gcd(n, k) \neq 1)$, if (k = n) return PRIME, else return COMPOSITE.
 - ▶ if $(\operatorname{order}_k(n) \ge \lceil \log n \rceil^2)$, break (use this *k* for next step).
- **3** For each $(c = 1 \text{ to } \ell)$ where $\ell = \sqrt{\varphi(k)} * \lceil \log n \rceil$,
 - ▶ if $(\boldsymbol{X} + \boldsymbol{c})^n \not\equiv (\boldsymbol{X}^n + \boldsymbol{c}) \pmod{n}$, $\boldsymbol{X}^k 1$, return COMPOSITE.
- return PRIME.

Implementation:

Check $n = b^m$, compute: gcd(n, k), order_k(n), $\varphi(k)$, polynomials.

The AKS Main Theorem

The AKS Algorithm is based on:

```
Theorem (The AKS Main Theorem.)
```

The AKS Main Theorem

The AKS Algorithm is based on:

```
Theorem (The AKS Main Theorem.)
```

```
 \begin{array}{l} \vdash \text{ prime } n \iff \\ 1 < n \land \text{ power\_free } n \land \\ \exists k. \\ 1 < k \land (\log n + 1)^2 \leq \operatorname{order}_k(n) \land \\ (\forall j. \ 0 < j \land j \leq k \land j < n \Rightarrow \gcd(n,j) = 1) \land \\ (k < n \Rightarrow \\ \forall c. \\ 0 < c \land c \leq \sqrt{\varphi(k)} (\log n + 1) \Rightarrow \\ (\textbf{\textit{X}} + \textbf{\textit{c}})^n \equiv (\textbf{\textit{X}}^n + \textbf{\textit{c}}) \pmod{n}, \textbf{\textit{X}}^k - 1) ) \end{array}
```

Proof.

To be written up in a joint paper with my suprevisor, Michael Norrish.

A Theorem

ullet pre-conditions \Rightarrow conclusion

A Theorem

pre-conditions ⇒ conclusion

A Mathematical Proof

- presents a series of logical arguments.
- "understood" by peers.
- using high-level concepts.

A Theorem

pre-conditions ⇒ conclusion

A Mathematical Proof

- presents a series of logical arguments.
- "understood" by peers.
- using high-level concepts.

A Formal Proof

- presents a series of logical deductions.
- "understood" by theorem-prover.
- work out all the details.

A Theorem

pre-conditions ⇒ conclusion

A Mathematical Proof

- presents a series of logical arguments.
- "understood" by peers.
- using high-level concepts.

A Formal Proof

- presents a series of logical deductions.
- "understood" by theorem-prover.
- work out all the details.

A Special Issue on Formal Proof

Notices of the American Mathematical Society, December 2008.

http://www.ams.org/notices/200811/

- Yes
 - This is proved in the AKS papers (2002 and 2004).
 - ► The paper has been published in Annals of Mathematics.
 - A reputable journal with papers reviewed by experts.
 - I believe that the experts had done a good job.

- Yes
 - ► This is proved in the AKS papers (2002 and 2004).
 - The paper has been published in Annals of Mathematics.
 - A reputable journal with papers reviewed by experts.
 - I believe that the experts had done a good job.
- Skeptic
 - Maybe the experts just miss a flaw · · ·

- Yes
 - This is proved in the AKS papers (2002 and 2004).
 - ► The paper has been published in Annals of Mathematics.
 - A reputable journal with papers reviewed by experts.
 - I believe that the experts had done a good job.
- Skeptic
 - Maybe the experts just miss a flaw · · ·
- Joseph
 - I have formalized the AKS algorithm, based on AKS Main Theorem.
 - You can run or re-run the formalized proof scripts in HOL4.
 - ▶ **HOL4** is a very reliable theorem-prover, with a vast user base.

- Yes
 - This is proved in the AKS papers (2002 and 2004).
 - The paper has been published in Annals of Mathematics.
 - A reputable journal with papers reviewed by experts.
 - ▶ I believe that the experts had done a good job.
- Skeptic
 - Maybe the experts just miss a flaw · · ·
- Joseph
 - I have formalized the AKS algorithm, based on AKS Main Theorem.
 - You can run or re-run the formalized proof scripts in HOL4.
 - ▶ HOL4 is a very reliable theorem-prover, with a vast user base.
- Nitpicker
 - Maybe all the users just miss a bug · · ·

- Yes
 - This is proved in the AKS papers (2002 and 2004).
 - The paper has been published in Annals of Mathematics.
 - A reputable journal with papers reviewed by experts.
 - I believe that the experts had done a good job.
- Skeptic
 - ► Maybe the experts just miss a flaw · · · (in 9 pages of math)
- Joseph
 - I have formalized the AKS algorithm, based on AKS Main Theorem.
 - You can run or re-run the formalized proof scripts in HOL4.
 - ▶ **HOL4** is a very reliable theorem-prover, with a vast user base.
- Nitpicker
 - Maybe all the users just miss a bug · · ·

- Yes
 - This is proved in the AKS papers (2002 and 2004).
 - The paper has been published in Annals of Mathematics.
 - A reputable journal with papers reviewed by experts.
 - I believe that the experts had done a good job.
- Skeptic
 - ► Maybe the experts just miss a flaw · · · (in 9 pages of math)
- Joseph
 - I have formalized the AKS algorithm, based on AKS Main Theorem.
 - You can run or re-run the formalized proof scripts in HOL4.
 - ▶ **HOL4** is a very reliable theorem-prover, with a vast user base.
- Nitpicker
 - Maybe all the users just miss a bug · · · (in a small code kernel)

"PRIMES is in P" — Do you believe in this?

- Yes
 - This is proved in the AKS papers (2002 and 2004).
 - ► The paper has been published in Annals of Mathematics.
 - A reputable journal with papers reviewed by experts.
 - I believe that the experts had done a good job.
- Skeptic
 - ► Maybe the experts just miss a flaw · · · (in 9 pages of math)
- Joseph
 - I have formalized the AKS algorithm, based on AKS Main Theorem.
 - You can run or re-run the formalized proof scripts in HOL4.
 - ▶ **HOL4** is a very reliable theorem-prover, with a vast user base.
- Nitpicker
 - Maybe all the users just miss a bug · · · (in a small code kernel)

Given enough eyeballs, all bugs are shallow. (Linus's Law)

Four Colour Theorem	proposed by Francis Guthrie (1852) computer-aided proof: Appel & Haken (1976) formalized by Gonthier's team (2000-2005)

Four Colour Theorem	proposed by Francis Guthrie (1852)
	computer-aided proof: Appel & Haken (1976)
	formalized by Gonthier's team (2000-2005)
Odd Order Theorem	conceived by William Burnside (1911)
	proof (255 pages): Feit & Thompson (1963)
	formalized by Gonthier's team (2006-2012)

Four Colour Theorem	proposed by Francis Guthrie (1852)
	computer-aided proof: Appel & Haken (1976)
	formalized by Gonthier's team (2000-2005)
Odd Order Theorem	conceived by William Burnside (1911)
	proof (255 pages): Feit & Thompson (1963)
	formalized by Gonthier's team (2006-2012)
3D Sphere Packing	stated by Johannes Kepler (1611)
	computer-aided proof: Thomas Hales (1998)
	formalized in Flyspeck project (2003-2014)

Four Colour Theorem	proposed by Francis Guthrie (1852)
	computer-aided proof: Appel & Haken (1976)
	formalized by Gonthier's team (2000-2005)
Odd Order Theorem	conceived by William Burnside (1911)
	proof (255 pages): Feit & Thompson (1963)
	formalized by Gonthier's team (2006-2012)
3D Sphere Packing	stated by Johannes Kepler (1611)
	computer-aided proof: Thomas Hales (1998)
	formalized in Flyspeck project (2003-2014)
AKS Primality Testing	found by Agrawal, Kayal and Saxena (2002)
	if-part verified: de Moura and Tadeu (2008)
	formalized AKS Theorem and Algo'm (2016)

Four Colour Theorem	proposed by Francis Guthrie (1852)
	computer-aided proof: Appel & Haken (1976)
	formalized by Gonthier's team (2000-2005)
Odd Order Theorem	conceived by William Burnside (1911)
	proof (255 pages): Feit & Thompson (1963)
	formalized by Gonthier's team (2006-2012)
3D Sphere Packing	stated by Johannes Kepler (1611)
	computer-aided proof: Thomas Hales (1998)
	formalized in Flyspeck project (2003-2014)
AKS Primality Testing	found by Agrawal, Kayal and Saxena (2002)
	if-part verified: de Moura and Tadeu (2008)
	formalized AKS Theorem and Algo'm (2016)

I still have to formalize the AKS steps, to show algorithm is indeed in P!

What is HOL4?

- an interactive theorem-prover, or proof-assistant.
- a descendent of the original HOL (Higher Order Logic) from 1988.

What is HOL4?

- an interactive theorem-prover, or proof-assistant.
- a descendent of the original HOL (Higher Order Logic) from 1988.
- can be installed in Unix, Mac OS X, or Windows PC/laptop.
- runs on top of Standard ML (a programming language).

What is HOL4?

- an interactive theorem-prover, or proof-assistant.
- a descendent of the original HOL (Higher Order Logic) from 1988.
- can be installed in Unix, Mac OS X, or Windows PC/laptop.
- runs on top of Standard ML (a programming language).
- starts up with Basic Libraries on sets, maps, numbers, lists, etc.
- includes an extensive collection of additional Libraries for work on specific topics.

What is HOL4?

- an interactive theorem-prover, or proof-assistant.
- a descendent of the original HOL (Higher Order Logic) from 1988.
- can be installed in Unix, Mac OS X, or Windows PC/laptop.
- runs on top of Standard ML (a programming language).
- starts up with Basic Libraries on sets, maps, numbers, lists, etc.
- includes an extensive collection of additional Libraries for work on specific topics.

HOL4 (sources on GitHub)

```
http://hol-theorem-prover.org/
http://github.com/HOL-Theorem-Prover/HOL/
```

AKS Source Repository

Source:

http://bitbucket.org/jhlchan/hol/src/aks/theories

- Helper Theories
 - AKSinteger integer square-root and integer logarithm.
 - AKSorder the existence of an AKS parameter related to order.
 - ▶ AKSpoly polynomial evaluation by polynomial substitution.
- AKS Theories
 - AKSintro introspective relation essential to AKS proof.
 - AKSshift shifting introspective relation between Rings.
 - AKSsets sets involved in AKS proof.
 - AKSmaps mappings involved in AKS proof.
 - ▶ AKStheorem the proof of AKS Main Theorem.
 - ▶ AKSimproved the proof of termination of AKS algorithm.

AKS Source Repository

Source:

http://bitbucket.org/jhlchan/hol/src/aks/theories

- Helper Theories
 - AKSinteger integer square-root and integer logarithm.
 - AKSorder the existence of an AKS parameter related to order.
 - AKSpoly polynomial evaluation by polynomial substitution.
- AKS Theories
 - AKSintro introspective relation essential to AKS proof.
 - AKSshift shifting introspective relation between Rings.
 - AKSsets sets involved in AKS proof.
 - AKSmaps mappings involved in AKS proof.
 - AKStheorem the proof of AKS Main Theorem.
 - AKSimproved the proof of termination of AKS algorithm.

These are built upon other libraries:

algebraic structures, polynomials, finite fields, vector space, etc.

HOL Demo

First, set up the goal to be proved in HOL4 Proof Manager.

```
> q '1 + 1 = 2';
val it =
   Proof manager status: 1 proof.
1. Incomplete goalstack:
     Initial goal:
     1 + 1 = 2
: proof
Then execute by applying one or more tactics to prove the goal:
> e (DECIDE TAC);
OK..
val it = Initial goal proved.
```

|-1+1=2: proof