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Abstract. The AKS algorithm (by Agrawal, Kayal and Saxena) is a significant theoretical result
proving “PRIMES in P”, as well as a brilliant application of ideas from finite fields. This paper
describes the first step towards the goal of a full mechanisation of this result: a mechanisation of the
AKS Main Theorem, which justifies the correctness (but not the complexity) of the AKS algorithm.

1 Introduction

The AKS algorithm is a decision procedure for primality testing. That is, given a number n, it returns
“true” if n is prime and “false” otherwise. As per the title of AKS paper [3],“PRIMES is in P”, the
significance of their work is that the number of steps for the verification is bounded by some polynomial
function of the size of n, measured by log2 n.

There have been several attempts to formalize the AKS Main Theorem (see Section 6), but so far
none is complete. In this paper, we describe the first complete mechanization of this result. In subsequent
work, we aim to demonstrate that the algorithm built on top of this result does indeed compute its answer
in polynomial time.

1.1 Overview

A number n is a perfect-power of another number m if there exists an exponent e such that n = me , and
n is power-free if it is a trivial perfect power, i.e., if n = me then e = 1 and m = n . Given a number
n , the smallest positive exponent j such that nj ≡ 1 (mod k) is denoted by orderk (n). Computation
in (mod n, Xk − 1) means that all numerical as well as polynomial computational results are reduced
to remainders after divisions by n and by Xk − 1. The constant polynomial arising from constant c is
denoted by boldface c. More notation will be covered in Section 1.2. Here is a peek at our HOL4 result.

Theorem 1. The AKS Main Theorem.

` prime n ⇐⇒
1 < n ∧ power_free n ∧
∃ k.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧
(∀ j. 0 < j ∧ j ≤ k ∧ j < n ⇒ gcd(n, j ) = 1) ∧
(k < n ⇒
∀ c.

0 < c ∧ c ≤ 2
√
k (log n + 1) ⇒

(X + c)n ≡ (Xn + c) (mod n, Xk − 1))
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Research Council through the ICT Centre of Excellence Program.



This theorem then justifies the following algorithm1 for primality testing:

Input: integer n > 1.

1. If (n = bm for some base b with m > 1), return COMPOSITE.
2. Search for a prime k satisfying orderk (n) ≥ (2(log n + 1))2.
3. For each (j = 1 to k) if (j = n) break, else if (gcd(j ,n) 6= 1), return COMPOSITE.
4. If (k ≥ n), return PRIME.
5. For each (c = 1 to 2

√
k (log n + 1)) if (X + c)n 6≡ (Xn + c) (mod n, Xk − 1),

return COMPOSITE.
6. return PRIME.

Given a number n , this version of the AKS algorithm requires a search for another prime k in Step 2.
Step 4 suggests that it is not always true that k < n. Nevertheless, the theorem can still be viewed as a
well-founded recursive definition because it turns out that k is roughly bounded by (log n)5 [3]. So, for
sufficiently large values of n , there will always be a k < n . For smaller n (effectively the base cases of
recursion), a look-up table might be used.

The rest of this paper is devoted to explaining the mechanised proof of this result. Section 2 covers
some necessary background. Sections 3 and 4 describe the proof of the AKS Main Theorem. Section 5
discusses our mechanisation experience. Section 6 compares our work with others. Finally, we conclude
in Section 7.

1.2 Notation

All statements starting with a turnstile (`) are HOL4 theorems, automatically pretty-printed to LATEX from
the relevant theory in the HOL4 development. Generally, our notation allows an appealing combination
of quantifiers (∀, ∃), set notation (∈, ∪ and comprehensions such as {x | x < 6}), and functional
programming (λ for function abstraction, and juxtaposition for function application).

The cardinality of a set s is written |s|; the image of set s under the mapping f is written f LsM; we
write f : s ↪→ t to mean that function f is injective from set s to set t.

Number-theoretic Notation With n a natural number,
√
n is its square-root, and log n its logarithm to

base 2. Both logarithm and square-root are integer functions, being the floor value of the corresponding
real functions. We use ϕ(n) to denote the Euler ϕ-function of n, the count of coprime numbers less than
n. We write n | m when n divides m .

For the AKS algorithm, we shall use n for the input number, p for its prime factor, k for the prime
(existentially quantified) “parameter” of the Main Theorem, and ` = 2

√
k (log n + 1) for a computed

parameter (the limit for a range of constants). Note that orderk (n) is nonzero whenever gcd(k ,n) = 1.

Ring, Field, and Polynomial Notation A ringR has carrier set R, with 1 and 0 its one and zero. The char-
acteristic of a ringR is written as χ(R), often abbreviated to χ for a generic ring. A ring homomorphism
from a ringR to another ring S via a map f is denoted by f : R 7→r S.

We write R[X] to denote the ring of polynomials with coefficients drawn from the underlying ring
R. Similarly, the ring F [X] has polynomials with coefficients from a field F . Polynomials from those
rings are written with the sans-serif font, e.g., p, q, h. The constant polynomial c (in bold) is derived
from adding 1 repeatedly c times. The degree of p is written deg p, its leading coefficient is lead p, and

1 The constants involved in this algorithm are based on [10, Algorithm 8.2.1]. They are slightly different from those
in the AKS papers [2, 3], but such variations do not affect the conclusion of “PRIMES is in P”.



monic p means its leading coefficient is 1. The polynomial X is the monomial (monic of degree 1) with
zero constant. The polynomial field quotiented by modulus with an irreducible polynomial h is Fh[X],
with multiplicative group F∗h [X].

Arithmetic (addition, subtraction, multiplication, remainders) on polynomials is written with usual
symbols (+,−, ∗, mod etc.), e.g., Xk − 1 is the unity polynomial of degree k. Here we can see HOL4’s
overloading facilities at work: constant polynomials one and zero are 1 and 0, the same as those for a ring.
More aggressively, we use overloading to conceal “implicit” parameters such as the underlying ringR in
terms such as p ∗q (polynomial product).

We write pJqK to denote the substitution of q for every X in p. We use roots p for the set of p’s roots,
and ipoly p to mean that p is an irreducible polynomial, both with respect to its underlying ring R. The
quotient ring formed by R[X] and irreducible polynomial h is denoted by Rh[X], which can be shown to
be a field. Its multiplicative group is R∗h[X]. The order of an element in this group, e.g., X, is denoted by
orderh(X).

HOL4 Sources All our proof scripts can be found at http://bitbucket.org/jhlchan/hol/
src/aks/theories.

2 Background

A glance at the algorithm in Section 1.1 shows its most prominent feature: polynomial identity tests in
modulo Xk − 1. To understand this we need to get a feel for the motivation behind the AKS algorithm.

2.1 Finite Fields

The AKS Main Theorem has a setting in finite fields, since the characteristic of a finite field is always
prime. A field is also a ring, and a ring with prime characteristic enjoys some wonderful properties.

Theorem 2. The Freshman-Fermat Theorem

` Ring R ∧ prime χ ⇒ ∀ c. (X + c)χ = Xχ + c

Proof. This follows directly from two theorems, (a) Freshman’s Theorem:

` Ring R ∧ prime χ ⇒ ∀p q. poly p ∧ poly q ⇒ (p + q)χ = pχ + qχ

and (b) Fermat’s Little Theorem for polynomials:

` Ring R ∧ prime χ ⇒ ∀ c. cχ = c

Both theorems (a) and (b) have been mechanized in a previous paper by the same authors [6]. ut

The converse, suitably formulated, is also true:

Theorem 3. A ring has its characteristic prime iff a Freshman-Fermat identity holds for any constant
coprime with the characteristic.

` Ring R ⇒ ∀ c. gcd(c,χ) = 1 ⇒ (prime χ ⇐⇒ 1 < χ ∧ (X + c)χ = Xχ + c)

Given a number n > 1, we can identifyR with Zn , and χ(Zn) = n . Since gcd(1,n) = 1 always,
pick c = 1, then this theorem applies, and whether n is prime is just one check of a Freshman-Fermat
polynomial identity in Zn , i.e., (mod n).

Therefore, this theorem amounts to a deterministic primality test. But there is a catch: the left-side,
upon expansion, contains n + 1 terms. Thus this is an impractical primality test for large values of n .

The AKS idea begins with checking such Freshman-Fermat identities, with two twists:



– Instead of just checking in (mod n), perform the computations in (mod n, Xk − 1) for a suitably
chosen parameter k . Since results are always the remainder after division by Xk − 1, the degree of
intermediate polynomials (which determines the number of terms) never exceed k—presumably k is
much smaller than n .

– Instead of checking just one coprime value, check for a range of coprime values c, for 0 < c ≤ `, up
to some maximum limit `—presumably ` is related to k , and small compared to n .

Of course, the big question is whether after such modifications there is still a primality test. The AKS
team answered this in the affirmative—there exist parameters k and `, bounded by some polynomial
function of the size of input number n , i.e., log n , giving a polynomial-time deterministic primality test.

2.2 Introspective Relation

Recall from Section 1.1 that AKS computations are done in (mod n, Xk − 1). This double modulo
notation is clumsy. Let us work in a generic ring R, later to be identified with instances such as Zn . The
first (mod n) equivalence becomes equality in the ring R (i.e., x ≡ y (mod n) means x = y in
Zn ); leaving the symbol (≡) to indicate the polynomial modulo equivalence inR[X].

In this context, of a general ringR, the polynomial identity checks in Theorem 1 take the form:

(X + c)n ≡ Xn + c (mod Xk − 1)

They look like Freshman-Fermat identities of Theorem 2, only now under modulo by a polynomial.
Rewriting with a polynomial substitution, the left and right sides are strikingly similar:

(X + c)nJXK ≡ (X + c)JXnK (mod Xk − 1)

The rewrites are trivial, since for any polynomial p, we have pJXK = p and (X + c)JpK = p + c.
Superficially, the left-hand side is transformed into the right-hand side simply by shifting of the exponent
n. Following the terminology of AKS team, we say n is introspective to polynomial p, denoted by n on p,
when:

` n on p ⇐⇒ poly p ∧ 0 < k ∧ pn ≡ pJXnK (mod Xk − 1)

Note that the symbol for introspective relation (on) hides the polynomial modulus Xk − 1, and the
underlying ringR. We shall include a subscript when the underlying ring is of significance, e.g., onZn

.
Therefore, the AKS algorithm verifies, for the input number n, the identities n on X + c in Zn for

0 < c ≤ ` up to some maximum `. Moreover, Freshman-Fermat (Theorem 2) can be restated as:

Theorem 4. For a ring with prime characteristic, its characteristic is introspective to any monomial.

` Ring R ∧ 1 6= 0 ∧ prime χ ⇒ ∀ k. 0 < k ⇒ ∀ c. χ on X + c

Proof. By introspective definition, this is to show: (X + c)χ ≡ (X + c)JXχK (mod Xk − 1).
Transforming the right side by substitution, (X + c)JXχK = Xχ + c. Then both sides are equal by
Freshman-Fermat (Theorem 2), hence they are equivalent under modulo by Xk − 1. ut

The fundamental properties of introspective relation are:

Theorem 5. Introspective relation is multiplicative for exponents.

` Ring R ∧ 1 6= 0 ⇒ ∀ k p n m. n on p ∧ m on p ⇒ n m on p



Proof. Working in (mod Xk − 1), we have pn ≡ pJXnK by n on p, and pm ≡ pJXmK by m on p.
The latter means pJXKm − pJXmK is divisible by Xk − 1. Substitute every X of the previous statement
by Xn , and noting Xk − 1 | (Xn)k − 1 by divisibility of unity polynomials, pJXnKm ≡ pJ(Xn)mK.
Therefore, pn m = (pn)m ≡ pJXnKm ≡ pJ(Xn)mK = pJXn mK, or n m on p. ut

Theorem 6. Introspective relation is multiplicative for polynomials.

` Ring R ∧ 1 6= 0 ⇒ ∀ k p q n. n on p ∧ n on q ⇒ n on p ∗q

Proof. Working in (mod Xk − 1), we have pn ≡ pJXnK by n on p, and qn ≡ qJXnK by n on q.
Therefore, (p ∗q)n = pn ∗qn ≡ pJXnK ∗qJXnK = (p ∗q)JXnK, or n on p ∗q. ut

3 Main Theorem

We can now restate the AKS Main Theorem (Theorem 1) in terms of the introspective relation.

Theorem 7. A number is prime iff it satisfies all the AKS checks.

` prime n ⇐⇒
1 < n ∧ power_free n ∧
∃ k.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧
(∀ j. 0 < j ∧ j ≤ k ∧ j < n ⇒ gcd(n, j ) = 1) ∧
(k < n ⇒
∀ c. 0 < c ∧ c ≤ 2

√
k (log n + 1) ⇒ n onZn

X + c)

Note how the symbol onZn
encapsulates the introspective relation (i.e., mod Xk − 1) within Zn (i.e.,

mod n), the double modulo in the AKS computations. We prove this logical equivalence in two parts.

3.1 Easy Part (⇒)

Theorem 8. The if-part of AKS Main Theorem (Theorem 7).

` prime n ⇒
1 < n ∧ power_free n ∧
∃ k.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧
(∀ j. 0 < j ∧ j ≤ k ∧ j < n ⇒ gcd(n, j ) = 1) ∧
(k < n ⇒ ∀ c. 0 < c ∧ c ≤ 2

√
k (log n + 1) ⇒ n onZn

X + c)

Proof. The first two goals, 1 < n and power_free n , are trivial for a prime n . For the third goal, let
m = (2(log n + 1))2, then parameter k exists by Theorem 25 in Section 4.6:

` 1 < n ∧ 0 < m ⇒ ∃ k. prime k ∧ gcd(k ,n) = 1 ∧ m ≤ orderk (n)

If k ≥ n , the coprime checks are subsumed by ∀ j. 0 < j ∧ j < n ⇒ gcd(n, j ) = 1. Otherwise
k < n , and the coprime checks are subsumed by ∀ j. 0 < j ∧ j ≤ k ⇒ gcd(n, j ) = 1. Either
way this is true since a prime n is coprime with all values less than itself. When k < n , the last check is
established by Theorem 4, since a prime n gives a field Zn , with χ(Zn) = n . ut

A close equivalent of this Theorem 8 was mechanised by de Moura and Tadeu [9] in Coq, and by Campos
et al [5] in ACL2.



3.2 Hard Part (⇐)

Theorem 9. The only-if part of AKS Main Theorem (Theorem 7).

` 1 < n ∧ power_free n ∧
(∃ k.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧
(∀ j. 0 < j ∧ j ≤ k ∧ j < n ⇒ gcd(n, j ) = 1) ∧
(k < n ⇒ ∀ c. 0 < c ∧ c ≤ 2

√
k (log n + 1) ⇒ n onZn X + c)) ⇒

prime n

Proof. Based on the given parameter k , let ` = 2
√
k (log n + 1). If k ≥ n the coprime checks will

verify ∀ j. 0 < j ∧ j < n ⇒ gcd(n, j ) = 1, thus n will be prime since it has no proper factor.
Otherwise k < n , the coprime checks are ∀ j. 0 < j ∧ j ≤ k ⇒ gcd(n, j ) = 1. In Section 3.3
we shall establish:

Theorem 10. The AKS Main Theorem in Zn .

` 1 < n ⇒
∀ k `.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧ ` = 2
√
k (log n + 1) ∧

(∀ j. 0 < j ∧ j ≤ k ⇒ gcd(n, j ) = 1) ∧
(∀ c. 0 < c ∧ c ≤ ` ⇒ n onZn X + c) ⇒
∃ p. prime p ∧ perfect_power n p

Applying this theorem, n = pe for some prime p and exponent e by definition of a perfect power. But
n is assumed power-free, so e = 1 and n = p, making n a prime. ut

3.3 Shifting Playgrounds

The AKS verifications take polynomials with coefficients from Zn , a ring for general n. Polynomials
with coefficients from a ring can have more roots than their degree, due to the possible existence of zero
divisors in a ring.2 A field has no zero divisors, and polynomials with coefficients from a field have this
nice property:

` Field F ⇒ ∀p. poly p ∧ p 6= 0 ⇒ |roots p| ≤ deg p

As we shall see (Sections 4.3 and 4.4), there will be two important injective maps involved in the
AKS proof. To establish the injective property, this restriction on the number of polynomial roots by its
degree is of utmost importance.

But where to find a field F to work with, given that we start in the ring Zn?
When the number n is not 1, it must have a prime factor p. This leads to the field Zp . If relationships

between monomials X + c are carried over unaffected from Zn [X] to Zp [X], we are in a better place to
investigate the nature of n . This shifting of playgrounds is essential in the proof of Theorem 10:

Proof (of Theorem 10).
If n is prime, take p = n . Otherwise, n has a proper prime factor p such that p < n and p | n .
Introduce two rings, Zn and Zp . The latter ring Zp is also a field, in fact a finite field. This is because all
nonzero elements are coprime to the prime modulus p, hence they have inverses.

There is a homomorphism between these two rings due to that fact that p divides n:

2 For example, in Z6, 2 × 3 = 0, hence (X − 2)(X − 3) = X2 − 5X = X(X − 5), which shows a polynomial
of degree 2 can have more than 2 roots.



` 0 < n ∧ 0 < p ∧ p | n ⇒ (λ x . x mod p) : Zn 7→r Zp

This ring homomorphism will preserve monomials X + c if a condition on limit ` is met:

` 0 < n ∧ 1 < p ∧ ` < p ⇒
∀ c. 0 < c ∧ c ≤ ` ⇒ ∀ f . f : Zn 7→r Zp ⇒ f (X + c) = X + c

Here f (p) denotes applying the ring homomorphism f to each coefficient of a polynomial p. We shall
show in Section 4.6 that ` ≤ k (Theorem 27). To meet the condition ` < p, we need only to show
k < p. Note that the given coprime checks on k are (from the statement of Theorem 10):

∀ j. 0 < j ∧ j ≤ k ⇒ gcd(n, j ) = 1

Taking j = k , we conclude gcd(n, k) = 1. This will be useful later. Apply the following theorems:

` 1 < n ∧ prime p ∧ p | n ⇒ ∀ j. gcd(n, j ) = 1 ⇒ gcd(p, j ) = 1
` 1 < p ⇒ ∀ k. (∀ j. 0 < j ∧ j ≤ k ⇒ gcd(p, j ) = 1) ⇒ k < p

Tracing the transformation of gcd’s gives k < p, hence ` < p.
Therefore the monomials are preserved by homomorphism, together with the introspective relation:

` 0 < n ∧ 1 < p ∧ p | n ∧ 0 < k ∧ ` < p ⇒
∀m c. 0 < c ∧ c ≤ ` ∧ m onZn

X + c ⇒ m onZp
X + c

Thus the AKS checks in Zn are equivalent to checks in Zp , a finite field, where p is a prime factor of n.
Generalising to arbitrary finite fields, in Section 4.5 we will prove:

Theorem 11. AKS Main Theorem in finite fields.

` FiniteField F ∧ prime k ∧ k < χ ⇒
∀n.

1 < n ∧ χ | n ∧ gcd(n, k) = 1 ∧ (2(log n + 1))2 ≤ orderk (n) ∧
` = 2

√
k (log n + 1) ∧ (∀ c. 0 < c ∧ c ≤ ` ⇒ n on X + c) ⇒

perfect_power n χ

We then identify F with Zp , noting χ(Zp) = p, with k < p. Knowing gcd(n, k) = 1 from the gcd
checks above, we conclude that n must be a perfect power of its prime factor p, as required. ut

4 Introspective Game

There are two useful facts when working in the context of a finite field F , where χ is necessarily prime:

– We get, for free in F [X], the result: χ on X + c, by Theorem 4, since a field is a non-trivial ring.
– The modulus polynomial Xk − 1, now in F [X], will have a monic irreducible factor h 6= X − 1.

Both will play significant roles in the proof of Theorem 11. Here are the highlights:

– The finite field F will enrich the introspective relation, through the interplay between prime χ and n.
– This will give rise to some interesting sets, among them are two finite sets N̂ andM (Section 4.2).
– The conditions on parameters k and ` will establish an injective map from N̂ toM.
– If n were not a perfect power of χ, then we would have |N̂ | > |M|, contradicting the Pigeonhole

Principle.



Summary of the AKS proof (Theorem 11)

Our strategy for the AKS proof can be described as a game between two players (see Figure 1). The
introspective relations of n and p, a prime factor of n , give rise to two sets N and P (Section 4.1). Taking
modulo by k (an AKS parameter) and by h (an irreducible factor of Xk − 1), the sets N and P map
(straight arrows), respectively, to two finite setsM and Qh (Section 4.2). Two finite subsets of N and P,
shown as N̂ and P̂, can be crafted in such a way that injective maps (curve arrows) between the finite sets
can be constructed, if k and ` (another AKS parameter) are suitably chosen to satisfy the “if” conditions
(Section 4.3 and Section 4.4). The construction of injective maps involves interactions (dashed arrows)
between the two players, based on properties of the introspective relation and polynomials in Fh[X]. Once
these are all in place, if n were not a perfect power of p, the grey set N̂ will have more than |M| elements,
whereM is the target of the left injective map. This contradicts the Pigeonhole Principle (Section 4.5).
Hence n must be a perfect power of its prime factor p.

Introspective:
number on polynomial

(X + c)n ≡ Xn + c (mod Xk − 1)

n on (X + c)
p on (X + c)
0 < c ≤ `

N : Numbers P : Polynomials

M : N (mod k) Qh : P (mod h)

mod k mod h

N̂ : nipj ; i, j ≤
√
|M| P̂: deg poly < |M|

injective mapinjective map

If orderh(X) = kIf |Qh | > n2
√

|M|

Fig. 1. The AKS proof as a game between numbers and polynomials via introspective relation. Refer to summary
above for an explanation.

4.1 Introspective Sets

As noted above, after shifting to a finite field F where p = χ is prime, for the constants 0 < c ≤ `,
besides the given n on X + c, we also have p on X + c by Theorem 4.

In view of this, we define the following two sets:

` N = {m | gcd(m, k) = 1 ∧ ∀ c. 0 < c ∧ c ≤ ` ⇒ m on X + c}
` P = {p | poly p ∧ ∀m. m ∈ N ⇒ m on p}

The set N captures the introspective exponents. Observe that n ∈ N , p ∈ N , and trivially, 1 ∈ N .
They are all coprime to k , since the coprime checks in Section 3.3 give gcd(n, k) = 1 and k < p. For
a prime p, k < p gives gcd(p, k) = 1.



The set P captures the introspective polynomials, those with introspective exponents in N . Certainly
∀ c. 0 < c ∧ c ≤ ` ⇒ X + c ∈ P, and trivially, 1 ∈ P.

Recall the fundamental properties of introspective relation: there will be multiplicative exponents for
N (Theorem 5) and multiplicative polynomials for P (Theorem 6). Together they imply that the sets N
and P will be infinitely large. Our contradiction from the Pigeonhole Principle comes when we have
derived some related, and finite sets.

4.2 Modulo Sets

One way to get a finite counterpart from an infinite set is by looking at remainders after division, or image
of the set under some modulus. For the exponents set N , the parameter k provides a modulus:

` M = (λm. m mod k)LN M

It is easy to estimate the cardinality ofM:

Theorem 12. The cardinality of setM is bounded by k and orderk (n).

` Ring R ∧ 1 6= 0 ∧ 1 < k ⇒ ∀n. n ∈ N ⇒ orderk (n) ≤ |M| ∧ |M| < k

Proof. Since there are k remainders under modulo k , |M| ≤ k . But multiples of k (those n with
n mod k = 0) are not in N , as all elements of N are coprime to k and k 6= 1. Therefore 0 /∈ M,
making |M| < k . Given n ∈ N , so are all its powers: ∀ j. nj ∈ N by Theorem 5. Hence all the
remainders nj mod k are in M. Since orderk (n) is the minimal exponent j before such remainders
wrap around to 1, there are at least orderk (n) distinct remainders. Thus orderk (n) ≤ |M|. ut

For the polynomials set P, the irreducible factor h of Xk − 1 provides a modulus:

` Qh = (λ p. p mod h)LPM

For the cardinality of Qh , estimation requires more work, due to the change of modulus to h. Let
z = Xk − 1, then monic z and deg z = k . Note that z ≡ 0 (mod h), since h divides z by being a
factor. These facts ensure that polynomial equivalences in (mod z) are preserved to (mod h):

Theorem 13. Polynomial modulo equivalence holds for modulus factor.

` Ring R ∧ monic z ∧ 0 < deg z ∧ monic h ∧ 0 < deg h ∧ z ≡ 0 (mod h) ⇒
∀p q. poly p ∧ poly q ∧ p ≡ q (mod z) ⇒ p ≡ q (mod h)

Proof. When (p − q) is divisible by z (due to p ≡ q (mod z)), and z is divisible by h (due to
z ≡ 0 (mod h)), the difference (p − q) is also divisible by h due to transitivity of division. ut

An irreducible polynomial h gives a polynomial modulo field Fh[X], and nonzero elements of a field
form a multiplicative group. Since X 6= 0, it has a nonzero orderh(X), with the following feature.

Theorem 14. When X is a root of unity, order of X equals degree of unity when the degree is prime.

` FiniteField F ∧ monic h ∧ ipoly h ∧ h 6= X − 1 ⇒
∀ k. prime k ∧ Xk ≡ 1 (mod h) ⇒ orderh(X) = k

Proof. Let t = orderh(X). By definition of order, Xt ≡ 1 (mod h), and given Xk ≡ 1 (mod h).
Since t is the minimal exponent for powers of X to wrap back to 1, t divides k. Note that degree of unity
Xk − 1 is k. Given prime k, t = 1 or t = k. Only 1 has order 1, but X 6≡ 1 (mod h) by assumption.
Therefore orderh(X) = t = k . ut



Theorem 15. In the polynomial field Fh[X], powers of X are distinct for exponents less than orderh(X).

` FiniteField F ∧ monic h ∧ ipoly h ∧ h 6= X ⇒
∀m n. m < orderh(X) ∧ n < orderh(X) ⇒ (Xm ≡ Xn (mod h) ⇐⇒ m = n)

Proof. Since Fh[X] is a finite field, its multiplicative group is a finite group. By the given assumption,
X 6≡ 0 (mod h), thus X is an element in this group. Its order is the minimal exponent for the powers
of X to wrap around to 1. Given the exponents are less than its order, such powers of X are distinct. ut

We shall see how the distinct powers of X lead to a lower bound for Qh. This simple result is helpful:

Theorem 16. Powers of X are equivalent in Xk − 1 if exponents are equivalent in Zk .

` Ring R ∧ 1 6= 0 ⇒ ∀ k. 0 < k ⇒ ∀m. Xm ≡ Xm mod k (mod Xk − 1)

Proof. Since m = (m div k)k +m mod k and Xk ≡ 1 (mod Xk − 1), the result follows. ut

4.3 Reduced Polynomials

Referring to Figure 1, we shall see eventually that the right injective map is essential to give a lower bound
for Qh , and this lower bound is essential to provide the left injective map. These two injective maps are
critical in the AKS proof.

To obtain a lower bound for Qh , we need another way to get something finite from the infinite set P,
by taking a reduced subset of P:

` P̂ = {p | p ∈ P ∧ deg p < |M| }

This is a finite subset of P due to the polynomial degree cut-off. We shall prove that there is an injective
map from P̂ to Qh, hence a lower bound on |P̂| will also be a lower bound for |Qh|.

First, note an interesting interaction fromM to P, which is relevant to P̂ since P̂ ⊆ P. We know that
P has a lot of elements (Section 4.1), but Qh is finite, so there are two polynomials p ∈ P and q ∈ P
that map together in Qh . It turns out that introspective relation helps to identify some interesting roots of
their difference (p − q), from the elements ofM.

Theorem 17. Each element in M gives a root for a difference polynomial in Fh[X] composed of two
polynomials from P with the same image in Qh .

` Field F ∧ monic h ∧ 0 < deg h ∧ Xk − 1 ≡ 0 (mod h) ⇒
∀p q.

p ∈ P ∧ q ∈ P ∧ p ≡ q (mod h) ⇒
∀n. n ∈ M ⇒ (p − q)JXnK ≡ 0 (mod h)

Proof. Given n ∈ M, there is m ∈ N such that n = m mod k . Therefore m on p and m on q by
definition of P. Let z = Xk − 1. Note that z ≡ 0 (mod h) by assumption. We can proceed:

pm ≡ pJXmK (mod z) by m on p
and pJXmK ≡ pJXnK (mod z) by Theorem 16
so pm ≡ pJXnK (mod z) by transitivity
or for p , by z ≡ 0 (mod h) pm ≡ pJXnK (mod h) by Theorem 13—[1]
Repeat the same steps for q qm ≡ qJXnK (mod h) by m on q etc.—[2]
Since pm ≡ qm (mod h) by p ≡ q (mod h) given
so pJXnK ≡ qJXnK (mod h) by [1] and [2] above
or (p − q)JXnK ≡ 0 (mod h) as claimed.

ut



Due to this, an injective map between the two finite sets derived from P is possible:

Theorem 18. There is an injective map from reduced set of P to modulo set of P.

` FiniteField F ∧ 0 < k ∧ monic h ∧ ipoly h ∧ Xk − 1 ≡ 0 (mod h) ∧
k = orderh(X) ⇒

(λ p. p mod h) : P̂ ↪→ Qh

Proof. Let p, q ∈ P̂, with p ≡ q (mod h) in Qh. For our map to be injective, we need to show
p = q. Since P̂ ⊆ P, p, q ∈ P. Theorem 17 applies: each n ∈ M gives a root Xn for (p − q).
Now h 6= X because, by assumption, h | Xk − 1, but X 6 | Xk − 1, and n < k since n ∈ M
means n is a remainder in (mod k). By assumption, k = orderh(X), hence these roots are distinct by
Theorem 15. Thus there are at least |M| distinct roots for (p − q).

But deg p < |M| and deg q < |M| since p, q ∈ P̂, hence deg (p − q) < |M|. There are
more roots than its degree for the difference (p − q) with coefficients from a finite field F . This is
possible only when the difference is 0, i.e., p = q. ut

This injective map leads to a lower bound for the cardinality of Qh.

Theorem 19. The modulo set of P has a nice lower bound.

` FiniteField F ∧ 1 < k ∧ k = orderh(X) ∧ ` < χ ∧ monic h ∧ ipoly h ∧
Xk − 1 ≡ 0 (mod h) ⇒

2min(`,|M|) ≤ |Qh|

Proof. Applying Theorem 18, there is an injective map from P̂ toQh. As both sets are finite, |P̂| ≤ |Qh |.
We shall estimate |P̂|, by counting how many polynomials p ∈ P have deg p < |M|.

Note that 1 < |M|, since orderk (n) ≤ |M| by Theorem 12, and 1 < orderk (n) since n 6= 1. A
simple estimate for |P̂| proceeds as follows:

– For 0 < c ≤ `, X + c ∈ P̂, since each monomial is in P, and each has a degree equal to 1.
– Given ` < χ, these monomials are distinct, as χ is the least additive wrap-around of 1 in field F .3

– By Theorem 6, any product of these monomials will be in P̂, if the product has a degree less than |M|.
– If ` < |M|, there are less than |M| such monomials. Therefore any product drawn from a subset of
{X + c | 0 < c ≤ `} will have a degree less than |M|. There are 2` such products.

– If |M| ≤ `, reduce the constants range to 0 < c ≤ |M|. Any product drawn from a subset of
{X + c | 0 < c ≤ |M|}will have a degree less than |M|, almost—the product of all such monomials
must be excluded. However, 1 ∈ P̂, but 1 is not a monomial product. There are still 2|M| products.

Considering both cases, we conclude that 2min(`,|M|) ≤ |Qh |. ut

4.4 Reduced Exponents

It turns out that an injective map toM is possible based on the following set of reduced exponents:

` N̂ p n m = {pi nj | i ≤ m ∧ j ≤ m }

This is generated by the two known elements n, p ∈ N (Section 4.1), with cut-off m in their exponents. By
multiplicative closure of introspective exponents (Theorem 5), N̂ ⊆ N . Observe the following property:

Theorem 20. Upper bound of an element in N̂ p n m .

` 1 < p ∧ p ≤ n ⇒ ∀ e m. e ∈ N̂ p n m ⇒ e ≤ n2m

3 The characteristic χ of a ringR is defined as the order of 1 in the additive group ofR, i.e., χ1 = 0.



Proof. Each e ∈ N̂ p n m has the form pi nj , where i, j ≤ m. Given p ≤ n, we can deduce
e = pi nj ≤ ni nj ≤ nm nm = n2m . ut

Note another interesting interaction from Qh to N , which is relevant to N̂ since N̂ n p m ⊆ N .
Pick two exponents n ∈ N and m ∈ N that map together inM. Consider the difference polynomial
Xn − Xm . It turns out that the introspective relation helps to identify some interesting roots of this
difference polynomial, from the elements of Qh.

Theorem 21. Each element inQh gives a root for a difference polynomial in Fh[X] constructed with two
exponents from N with same image inM.

` Field F ∧ monic h ∧ ipoly h ∧ Xk − 1 ≡ 0 (mod h) ⇒
∀n m.

n ∈ N ∧ m ∈ N ∧ n ≡ m (mod k) ⇒
∀p. p ∈ Qh ⇒ (Xn − Xm)JpK ≡ 0 (mod h)

Proof. Given p ∈ Qh, there is q ∈ P such that p = q mod h. Therefore n on q and m on q by
definition of P. Let z = Xk − 1. Note that z ≡ 0 (mod h) by given. We can proceed:

qn ≡ qJXnK (mod z) by n on q — [1]
qm ≡ qJXmK (mod z) by m on q — [2]

and qJXmK ≡ qJXnK (mod z) by Theorem 16
so qn ≡ qm (mod z) by [1], [2], transitivity
Therefore qn − qm ≡ 0 (mod z) by subtraction
by z ≡ 0 (mod h) qn − qm ≡ 0 (mod h) by Theorem 13—[3]
Since (Xn − Xm)JpK ≡ (Xn − Xm)JqK (mod h) by p = q mod h —[4]
and the right-side (Xn − Xm)JqK = qn − qm by substitution of q —[5]
Combine [4],[5],[3] (Xn − Xm)JpK ≡ 0 (mod h) as claimed.

ut

Due to this, an injective map between the two finite sets derived from N is possible:

Theorem 22. There is an injective map from reduced set of N to modulo set of N .

` FiniteField F ∧ monic h ∧ ipoly h ∧ Xk − 1 ≡ 0 (mod h) ⇒
∀n p.

1 < p ∧ p < n ∧ n ∈ N ∧ p ∈ N ∧ n2
√
|M| < |Qh| ⇒

(λm. m mod k) : N̂ p n
√
|M| ↪→ M

Proof. Let i, j ∈ N̂ n p
√
|M|, with i ≡ j (mod k) inM. If the map is to be injective, we need

i = j . Since N̂ n p
√
|M| ⊆ N , both i, j ∈ N . Theorem 21 applies: every p ∈ Qh is a root of

Xi − Xj . Hence there are at least |Qh | roots.
By Theorem 20, both i, j are bounded by n2

√
|M|, hence deg (Xi − Xj) ≤ n2

√
|M|. Given

n2 |M| < |Qh|, there are more roots than its degree for the polynomial (Xi − Xj ) with coefficients
from a finite field F . This is not possible, unless it is 0, which means i = j . ut

4.5 Punch Line

Given a prime p that divides n , if nx = py for some exponents x , y with x > 0, what can we conclude?

Theorem 23. A condition that implies a number is a perfect power of prime.



` 0 < n ∧ prime p ∧ p | n ∧ (∃ x y. 0 < x ∧ px = ny) ⇒ perfect_power n p

Proof. Since p | n , divide n by p as many times as possible, and express n = pmq where m is the
maximum possible, and p 6 | q . The equation px = ny becomes px = (pmq)y = pmyqy . By unique
factorisation, with prime p and p 6 | q and x 6= 0, it must be that y 6= 0, and qy = 1, i.e., q = 1. ut

When its generators have a special property, the cardinality of N̂ p n m is simple to express:

Theorem 24. Cardinality of N̂ when generators n and prime divisor p are not related by perfect power.

` Ring R ∧ 1 6= 0 ∧ 1 < k ⇒
∀n p m.

n ∈ N ∧ p ∈ N ∧ prime p ∧ p | n ∧ ¬perfect_power n p ⇒
|N̂ p n m| = (m + 1)2

Proof. Let f = (λ(i ,j). pi nj), t = { j | j ≤ m }. From its definition, it is simple to verify that
N̂ p n m = {pi nj | i ≤ m ∧ j ≤ m } = f Lt × tM. More interesting is that the conditions
will imply f : t × t ↪→ N̂ p q n . Once this is proved, being the image of an injective map gives
|N̂ p q n| = |t × t | = |t |2 = (m + 1)2.

To show that the map is injective, assume pi nj = pu nv for some i, j and u, v. We need to show
i = u and j = v . This comes down to analysis by cases.

If i < u , only the case j > v is interesting, with nj−v = pu−i . As j − v 6= 0, Theorem 23
applies, giving perfect_power n p, which contradicts the assumption. By the symmetric roles of i, j and
u, v, the case i > u leads to the same contradiction. The only possible case is i = u , giving j = v . ut

This property is crucial in order to complete the proof of AKS Main Theorem (Theorem 11).

Proof (of Theorem 11). AKS Main Theorem in finite fields

` FiniteField F ∧ prime k ∧ k < χ ⇒
∀n.

1 < n ∧ χ | n ∧ gcd(n, k) = 1 ∧ (2(log n + 1))2 ≤ orderk (n) ∧
` = 2

√
k (log n + 1) ∧ (∀ c. 0 < c ∧ c ≤ ` ⇒ n on X + c) ⇒

perfect_power n χ

Let p = χ. By assumption, p | n , so p ≤ n . The case p = n is trivial, so we shall assume p < n .
The finite field F gives prime p, so p on X + c (Theorem 4). We have k < p, so gcd(p, k) = 1.

Assuming gcd(n, k) = 1 and n on X + c, we have the ingredients for the introspective sets N and
P (Section 4.1). Their finite counterparts, the modulo setsM and Qh (Section 4.2), and reduced sets N̂
and P̂ (Section 4.3 and Section 4.4) can be set up accordingly.

Recall that the introspective relation is based on modulus Xk − 1. By the second useful fact in Sec-
tion 4, in a finite field F it has a monic irreducible factor h 6= X − 1, i.e., Xk − 1 ≡ 0 (mod h).
With prime k , we have orderh(X) = k (Theorem 14), giving the injective map from P̂ to Qh (Theo-
rem 18), which is essential for the lower bound estimate of Qh .

In Section 4.6, we shall investigate the parameters k and `. We shall show that ` < k (Theorem 27).
By assumption, k < p, so ` < p. Therefore 2min(`,|M|) ≤ |Qh | (Theorem 19, which invokes Theo-
rem 18). We shall also show that n2

√
|M| < 2min(`,|M|) (Theorem 26). Hence n2

√
|M| < |Qh |. With

p < n , these inequalities establish the injective map from N̂ n p
√
|M| to N̂ (Theorem 22).

Now, given prime p and p | n , if n were not a perfect power of p, Theorem 24 applies, so that:

|N̂ p n
√
|M|| = (

√
|M| + 1)2 = |M| + (2

√
|M|) + 1 > |M|

This means the injective map from N̂ p n
√
|M| toM, both finite sets, would violate the Pigeonhole

Principle. Therefore, n must be a perfect power of p = χ. ut



4.6 Parameters

The AKS Main Theorem contains a parameter k with the property: orderk (n) ≥ (2(log n + 1))2,
from which a related parameter ` = 2

√
k (log n + 1) is computed.

In the original AKS paper [2], parameter k is a prime (for a different set of conditions) while in the
revised version [3] this prime requirement on k is dropped. Only the bound on k affects the conclusion
“PRIMES is in P”, a general k needs more advanced theory to establish. Our mechanisation effort is based
on a prime k , following Dietzfelbinger [10]. We use a prime k to show k = orderh(X) in Theorem 14.

The existence of such a prime k can be established by generalizing the problem: given a number n ,
and a maximum m , find a prime modulus k such that orderk (n) ≥ m . This is applied in Theorem 8:

Theorem 25. There is always a modulus k giving big enough order for n in Zk .

` 1 < n ∧ 0 < m ⇒ ∃ k. prime k ∧ gcd(k ,n) = 1 ∧ m ≤ orderk (n)

Proof. First, we define a set of candidates:

` candidates n m = {k | prime k ∧ k 6 | n ∧ ∀ j. 0 < j ∧ j < m ⇒ k 6 | nj − 1}
Pick a large prime z > nm , then z cannot divide n or any of the factors nj − 1 for 0 < j < m, hence
z ∈ candidates n m .

Thus candidates n m 6= ∅, and we can pick a candidate k , say the least value, from the set. Being
an element, prime k ∧ k 6 | n . Since a prime is coprime to its non-multiples, gcd(k ,n) = 1. Thus n
has nonzero order in Zk . Let j = orderk (n), then 0 < j with nj ≡ 1 (mod k), or k | nj − 1.
If j < m , by the candidates definition k 6 | nj − 1, a contradiction. Hence orderk (n) = j ≥ m . ut
The parameters k and ` provide a crucial inequality involving |M|, used in Theorem 11:

Theorem 26. The AKS parameters meet the inequality condition.

` FiniteField F ∧ 1 < k ∧ 1 < n ∧ n ∈ N ∧ (2(log n + 1))2 ≤ orderk (n) ∧
` = 2

√
k (log n + 1) ⇒

n2
√
|M| < 2min(`,|M|)

Proof. Let j = orderk (n), and m = log n + 1, then 2m > n for integer logarithm. By Theorem 12,
j ≤ |M| and |M| < k . By the given assumption, (2m)2 ≤ j . Taking integer square roots, we have√
|M| ≥

√
j ,
√
k ≥

√
|M| and

√
j ≥ 2m . Note also |M| ≥

√
|M|

√
|M| by integer square root.

Therefore:

– ` = 2
√
k m ≥ m (2

√
|M|)

– |M| ≥
√
j
√
|M| ≥ m (2

√
|M|)

Thus min(`, |M|) ≥ m (2
√
|M|), and

2min(`,|M|) ≥ 2m (2
√
|M|) = 2m2

√
|M| > n2

√
|M|.

ut
Incidentally, the choice of k and ` ensures that ` ≤ k , used in Theorem 10 and Theorem 11:

Theorem 27. The AKS computed parameter does not exceed the modulus parameter.

` 1 < n ∧ 1 < k ∧ gcd(k ,n) = 1 ∧ (2(log n + 1))2 ≤ orderk (n) ⇒
2
√
k (log n + 1) ≤ k

Proof. Since orderk (n) | ϕ(k), and ϕ(k) < k when k > 1, we have orderk (n) < k . Taking integer
square-roots, with the given orderk (n), deduce

k ≥
√
k
√
k ≥

√
k
√

orderk (n) ≥ 2
√
k (log n + 1).

ut



5 Mechanisation and Its Traps

The updated AKS proof [3] is contained within four pages. Mechanisation of such a proof is the process
of unwinding the dense mathematics within those pages. It took us about a year to build up the basic
libraries, another year to forge the advanced libraries, then about six months to adapt the libraries for
the proof of AKS Main Theorem, during which time the missing pieces in the developed libraries were
steadily being filled in.

There are always pitfalls during the mechanisation process. One example is the symbol X in various
expositions of the AKS proof, e.g., [10, 7, 8, 4]. Usually X starts as an indeterminate or a degree one
zero constant monomial, then switches to a root of unity, even to a primitive root of unity. While this is
common practice, such changes mean that we needed to prove the switchings are valid.

The substitution by X is fundamental in the introspective relation (Section 2.2). These subtle changes
in the role of X presented some difficulties in our initial effort to formalize the AKS proof. Indeed,
we first used an inappropriate definition and got carried along until we found that shifting playgrounds
(Section 3.3) is impossible with that definition.

Shifting of playgrounds in the AKS proof is pivotal. Most expositions just point this out without
further elaboration.4 After this shifting, where the playground is now Zp , the introspective relation is
defined in Zp [X], side-stepping the issue. It was in the process of mechanisation that we realized a proper
formulation should start by defining the introspective relation in a ring R (Section 2.2), and then prove
that shifting is valid through ring homomorphisms from Zn to Zp (Section 3.3).

Lessons Learnt Rather than attempting a direct transcription of the AKS proof, we came to understand
the proof in the context of finite fields, identifying the key concepts involved in the proof, even comparing
various expositions. By reformulations of polynomial theorems in number theory into their counterparts
in rings and fields, a clear picture of the proof’s logic emerged, resulting in this succinct presentation.

HOL4 and Abstract Algebra This work demonstrates that HOL4’s simple type theory, together with its
proof machinery, are sufficient to allow the statement and proof of moderately complicated theorems
in abstract algebra. Without dependent types (as in Coq) or locales (as in Isabelle), theorems are slightly
more awkward to state, but our experience is that ad hoc overloading gets one a long way. Over-annotation
of terms so that the parser chooses the “right” meaning of a symbol like + is only necessary occasionally.
Exploiting overloading in this way requires a careful understanding of just what the parser is and is not
capable of, and one is often on exactly that boundary. Nonetheless, the result gives terms that are not far
removed from those that have been pretty-printed in this paper. (Pretty-printing to LATEX adds niceties
such as superscripts and juxtaposition for multiplication; these could not be handled by the parser.)

Nor should we forget that Campos et al [5] proved half of the Main Theorem in ACL2, where the
underlying logic is even simpler, and provides no static type-checking.

6 Related Work

Other Pen-and-Paper Proofs The revised proof (2004) of the AKS team [3] takes this approach: use the
injective map on Qh to establish a lower bound for |Qh |; assuming that n is not a power of p, use the
Pigeonhole Principle to show that a special nonzero polynomial has at least |Qh | roots, thus giving an
upper bound for |Qh |; manipulate inequalities to show that the chosen parameters will lead to the lower
bound exceeding the upper bound, hence a contradiction.

Other expositions of the AKS Main Theorem [1, 12, 11, 13] take similar approaches, working mainly
in Zp [X]. Our method is equivalent, but is clean in that we: (i) emphasize the important role of shifting

4 For example, [3] first stated the computational identity in Zn , then “this implies” the corresponding identity in Zp .
Only [10] proved the shifting from Zn to Zp as a lemma.



from Zn to Zp (Section 3.3); (ii) reformulate the AKS Main Theorem in the context of finite fields
(Theorem 11); (iii) clarify that the choice of parameters gives injective maps between reduced sets and
modulo sets (Theorem 18 and Theorem 22); (iv) bring in the assumption that n is not a power of prime
p as late as possible; and (v) use the Pigeonhole Principle as a punch line to force n to be a power of
prime p (Section 4.5).

Other Mechanisations We believe that we are the first to mechanise both directions of the central theorem
of AKS algorithm. As noted earlier, two other teams (Campos et al [5] in ACL2, and de Moura and
Tadeu [9] in Coq) have mechanised the fact that if the number being tested is prime, then the AKS
algorithm will indeed report “yes”.

We are also aware of preliminary work started by John Harrison, and carried out in HOL Light.5

7 Conclusion

It is well-known that the cardinality of a finite field must be a prime power, and it is elementary to check
whether a number is power-free. In essence, the AKS team showed that primality testing can be reduced
to finite field cardinality testing, and demonstrated that the latter can be done in polynomial time.

Through our mechanisation effort, especially in presenting the AKS proof as an introspective game
(Section 4), we hope that this elementary proof of the AKS Main Theorem provides further appreciation
of the AKS team’s brilliant ideas.

Future Work While the existence of parameter k in the AKS Main Theorem is assured, to show that it is
bounded by a polynomial function of log n is harder. In future work, we intend to perform the necessary
complexity analysis of the AKS algorithm to complete the mechanised proof that PRIMES is indeed in P.
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