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Fermat’s Letter (1640)

Pierre de Fermat (1601–1665)

I Letter to Frénicle de Bessy dated October 18, 1640:
p divides ap−1 − 1 whenever p is prime and a is coprime to p.
[. . . ] the proof of which I would send to you, if I were not afraid to
be too long.

I Modern notation:
ap−1 ≡ 1 mod p for prime p and a coprime to p, or
ap ≡ a mod p for prime p and any a.

I Examples:
1823 = 74347713614021927913318776832 ≡ 18 mod 23
1923 = 257829627945307727248226067259 ≡ 19 mod 23
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Euler’s Proof (1758)

I The remainders of division by p = 7:
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, · · · } mod 7

= {0, 1, 2, 3, 4, 5, 6} mod 7

I Multiply each remainder by a = 3:
{3× 0, 3× 1, 3× 2, 3× 3, 3× 4, 3× 5, 3× 6} mod 7

= {0, 3, 6, 9, 12, 15, 18} mod 7
= {0, 3, 6, 2, 5, 1, 4} mod 7 (a permutation of above)

I Multiply all nonzero numbers in each set:
(3× 1)(3× 2)(3× 3)(3× 4)(3× 5)(3× 6) mod 7

= (3)(6)(2)(5)(1)(4) mod 7

I Collect common factors on the left, rearrange the right:
36 × (1)(2)(3)(4)(5)(6) mod 7 = (1)(2)(3)(4)(5)(6) mod 7

I Cancel to give: 36 ≡ 1 mod 7, or 37 ≡ 3 mod 7.
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Euler’s Proof (1758)

I In general, {a× x mod p} is a permutation of {x mod p}
when p is prime. In product form, excluding x = 0,∏

(a× x) ≡
∏

(x) mod p for prime p.

I Collect common factors a on the left:

ap−1
∏

(x) ≡
∏

(x) mod p for prime p.

I Cancel non-zero
∏

(x) mod p on both sides gives:
ap−1 ≡ 1 mod p for prime p.

I Multiply by a gives the equivalent form:
ap ≡ a mod p for prime p.
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Mechanisation of Fermat’s Little Theorem

I Most theorem-proving systems (e.g. Coq, ACL2, etc.)
mechanise this theorem based on Euler’s proof.

I Some prove Fermat’s Little Theorem directly.
I Others prove Euler’s generalization first, then derive

Fermat’s Little Theorem as a special case.

I Why is this number-theoretic approach so popular?
I Proof is simple to do, found in standard textbooks.
I Systems have good built-in theories for natural numbers.

I A proof distributed in recent HOL4 is based on induction
via binomial expansion.

I This induction method was used in the first published proof
of Fermat’s Little Theorem by Euler in 1736.

I Same method was used by Leibniz (1646–1716) in an
unpublished and undated manuscript, discovered in 1894.
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Petersen’s Proof (1872)

Julius Petersen (1839–1910), famous for his Petersen Graph.

Take p elements from q with repetitions in all ways, that
is, in qp ways. The q sets with elements all alike are
not changed by a cyclic permutation of the elements,
while the remaining qp − q sets are permuted in sets
of p [when p is prime]. Hence p divides qp − q.

I Petersen uses p’s and q’s, Fermat uses p’s and a’s.
I ap ≡ a mod p is equivalent to: p divides ap − a.
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Petersen’s Proof – Necklace Form
Take p elements from q with repetitions in all ways, i.e. qp ways.

The q sets with elements all alike are not changed by a cyclic
permutation of the elements, while the remaining qp − q sets
are permuted in sets of p when p is prime. Hence p divides
qp − q [, which is Fermat’s Little Theorem].

Take p beads from a colours with repetitions, i.e. ap necklaces.

Those with beads all alike cycle to themselves, 1 for each
colour, so there are a of them. The other ap − a necklaces cycle
to one another in sets of size p for prime p. Equal size partition
is visual divisibility, so p divides ap − a.

Example: 3-bead necklaces with 2 colours, 23 = 8.

23 − 2 = 6.
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Necklace Proof
5-bead necklaces with 2 colours, 25=32; “good” cycle partitions.
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Necklace Proof
4-bead necklaces with 2 colours, 24 = 16; “bad” cycle partitions.
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Necklace Theorem

Theorem
For prime p, the p-bead necklaces have “good” cycle partitions:

Of the necklaces with prime p beads made out of a colours:
I the a monocoloured necklaces cycle in singletons.
I the ap − a multicoloured necklaces cycle in sets of equal

size p.

Julius Petersen claims:
I Necklace Theorem is straight-forward, easy to see.
I Fermat’s Little Theorem follows as a simple corollary.

However, theorem-provers cannot “see”!
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Mechanisation of Necklace Proof – Part 1
I Represent necklaces with n beads by a list of length n.

Represent a colours by numbers in {0, 1, 2, . . . , (a − 1)}.↗
cut
−→

[0;0;1;2;1;2]

I Cycle of necklace = append list DROP with list TAKE.
TAKE 1 [0;0;1;2;1;2] = [0]
DROP 1 [0;0;1;2;1;2] = [0;1;2;1;2]

cycle
by 1 bead
−→

↘ ↗

[0;1;2;1;2] ++ [0] = [0;1;2;1;2;0]
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Mechanisation of Necklace Proof – Part 1
I Represent necklaces with n beads by a list of length n.

Represent a colours by numbers in {0, 1, 2, . . . , (a − 1)}.↗
cut
−→

[0;0;1;2;1;2]

I Cycle of necklace = append list DROP with list TAKE.
TAKE 1 [0;0;1;2;1;2] = [0]
DROP 1 [0;0;1;2;1;2] = [0;1;2;1;2]

cycle
by 1 bead
−→

↘ ↗

[0;1;2;1;2] ++ [0] = [0;1;2;1;2;0]

Necklace Theorem Necklace Proof in HOL4 11/38



Mechanisation of Necklace Proof – Part 2

I Define monocoloured and multicoloured necklaces.

` monocoloured n a =
{` |
` ∈ necklace n a ∧

(` 6= [] ⇒ SING (set `)) }

` multicoloured n a =
necklace n a \ monocoloured n a

I Count the monocoloured and multicoloured necklaces.

` 0 < n ⇒ |monocoloured n a| = a

` 0 < n ⇒ |multicoloured n a| = an−a

Necklace Theorem Necklace Proof in HOL4 12/38



Mechanisation of Necklace Proof – Part 3

I Two necklaces are similar if they can cycle to one another.
` `1 == `2 ⇐⇒ ∃ n. `2 = cycle n `1

I Being similar is an equivalence relation for necklaces.
` ` == `

` `1 == `2 ⇒ `2 == `1

` `1 == `2 ∧ `2 == `3 ⇒ `1 == `3

I For prime p, equivalence classes of similar (associates)
are of equal size: 1 for monocoloured, p for multicoloured.
` ` 6= [] ∧ prime |`| ⇒

|associates `| = 1 ∨ |associates `| = |`|

I From this, Necklace Theorem can be proved (see paper),
and Fermat’s Little Theorem follows.
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Group and Group Action

I A Group −→ acts on −→ A Set of Objects.
I Each group element −→ acts on −→ an object in the Set.
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⊕
Odd
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0
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1

Even

0

Odd

1

Even

0

Odd

1

Even

0

Parity Group

Z+
2 = {0, 1}

acts on
2-bead necklaces:

cycle by 0 bead

cycle by 1 bead

0

1

0

1
0

1

0

1
0

1

I Group Z+
n acts on the set of n-bead necklaces, for any n

(prime or not prime).
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Group Action on Necklaces
I Cycle: action of Z+

6 = {0, 1, 2, 3, 4, 5} on 6-bead necklaces.

1

2

3

4

5

0

I Similar necklaces of cycle = Orbit.
I Group elements that give loop action = Stabilizer.
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Orbit and Stabilizer – Part 1
I Action of Z+

6 = {0, 1, 2, 3, 4, 5} on one 6-bead necklace.

1

2
3

4

5

0

0

1

2

3

4

5

I Orbit = similar necklaces of cycle.

Size of orbit = 6.

I Stabilizer = elements that give loop.

Size of stabilizer = 1.
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Orbit and Stabilizer – Part 2
I Action of Z+

6 = {0, 1, 2, 3, 4, 5} on another 6-bead necklace.
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I Orbit = similar necklaces of cycle.

Size of orbit = 3.

I Stabilizer = elements that give loop.

Size of stabilizer = 2.
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Orbit and Stabilizer – Part 3
I Action of Z+

6 = {0, 1, 2, 3, 4, 5} on another 6-bead necklace.
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I Orbit = similar necklaces of cycle.

Size of orbit = 2.

I Stabilizer = elements that give loop.

Size of stabilizer = 3.
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Orbit and Stabilizer – Part 4
I Action of Z+

6 = {0, 1, 2, 3, 4, 5} on another 6-bead necklace.

0

1

2

3

4

5

0, 1, 2, 3, 4, 5

I Orbit = similar necklaces of cycle.

Size of orbit = 1.

I Stabilizer = elements that give loop.

Size of stabilizer = 6.
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Orbit and Stabilizer – Part 4
I Action of Z+

6 = {0, 1, 2, 3, 4, 5} on another 6-bead necklace.

0

1
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5

0, 1, 2, 3, 4, 5

I Orbit = similar necklaces of cycle. Size of orbit = 1.
I Stabilizer = elements that give loop. Size of stabilizer = 6.
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Orbit-Stabilizer Theorem

An action from Group G to Set X gives Orbits and Stabilizers.
For x ∈ X, its Orbit and Stabilizer have sizes related by:

Theorem
|Orbit of x|× |Stabilizer of x| = |action Group G|

Apply to Necklaces
I X = set of n-bead necklaces, action group has |Z+

n | = n.
I For a monocoloured necklace, orbit size = 1.
I For a multicoloured necklace, orbit size 6= 1.
I What is the orbit size for a multicoloured necklaces with

prime number of beads?
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Mulitcoloured Necklace with Prime Number of Beads
I For necklaces with prime p beads, size of action group

|Z+
p | = p, with trivial factorisation p = 1× p = p× 1.

I Only monocoloured necklaces have orbits of size 1; so in
this case multicoloured necklaces have orbits of size p.
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34

5

6

0

0

1

2

34

5

6

Z+
7 = {0, 1, 2, 3, 4, 5, 6}

number of beads = 7

orbit size = 7

Orbit is isomorphic to necklace
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Necklace Theorem by Orbit-Stabilizer in HOL4

I Prove the Orbit-Stabilizer theorem.

` FiniteGroup g ∧ action (◦) g X ∧ x ∈ X ∧

FINITE X ⇒ |G| = |orbit x|× |stabilizer x|

I Prove that cycle is an action from Z+
n to necklaces.

` 0 < n ∧ 0 < a ⇒
action cycle Z+

n (necklace n a)

I For multicoloured necklaces of length p, a prime,
the orbit size of each necklace equals p.

` prime p ∧ 0 < a ∧ ` ∈ multicoloured p a ⇒
|orbit cycle Z+

p (multicoloured p a) `| = p
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Group insight for Necklace Theorem

I Necklace Theorem says:
I When n is prime, cycle partitions of necklaces are “good”.
I When n is not prime, cycle partitions of necklaces are “bad”.
I But why good for primes, and how bad for non-primes?

I Group action reveals:
I Cycle partitions are orbits of Z+

n to n-bead necklaces.
I For any n, |orbit of n-bead monocoloured necklace| = 1.
I For any n, |orbit of n-bead multicoloured necklace| 6= 1.

I Orbit-Stabilizer Theorem gives:
I For multicoloured necklaces with n beads:

|orbit of necklace|× |stabilizer of necklace| = |Z+
n | = n

I Therefore, for multicoloured necklaces with prime n beads,
orbit size must be n.

I Also, for multicoloured necklaces with non-prime n beads,
orbit size is either n or a proper factor of n.
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The Missing Piece

I Proofs of Fermat’s Little Theorem, so far.

Euler Petersen

Z+
nZ∗

n

I Euler’s proof using permutation of modulo multiplication.
I Petersen’s proof using necklaces and cycles.
I Group action on necklaces by Z+

n .
I Finite Group elementary property, apply to Z∗

n.
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Property of Finite Group

I Group G is a set with a binary operation ∗ satisfying four
properties: Closure, Associativity, Identity and Inverse.

I Closure: for x ∈ G and y ∈ G, the result x ∗ y ∈ G always.
I Identity: there is e ∈ G such that, for any a ∈ G, e ∗ a = a.

I Take an element a ∈ G, write
a1 = a, a2 = a ∗ a, a3 = a ∗ a ∗ a, etc.

I Consider the sequence a1, a2, a3, . . .
I These are all ∈ G, by Closure property.
I For a finite group G, they cannot be all distinct.

This fact leads to:

Theorem
For a finite group G and any a ∈ G, a|G| = e, the identity.

I This is the Finite Group version of Fermat’s Little Theorem.
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Groups of Modulo Multiplication – Part 1

I Besides Z+
n , there is also Z∗

n, first investigated by Euler.
I For n = 7, a prime, all nonzero remainders {1, 2, 3, 4, 5, 6}

are well-behaved,

and all are coprime to the prime 7.
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1
1
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2
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3
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1
1
6
1
6
6
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1
2
4
4
2
1

a5

1
4
5
2
3
6

a6

1
1
1
1
1
1

I Number of coprimes to 7 = ϕ(7) = 6, and for these a6 = 1.
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Groups of Modulo Multiplication – Part 2

I For n = 6, not all nonzero remainders {1, 2, 3, 4, 5} are
well-behaved (e.g. some nonzero can multiply to zero),

but those coprime to 6 are.
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I Let Z∗
6 = {1, 5}, those coprime to 6.

I Then |Z∗
6 | = ϕ(6) = 2, and for these a2 = 1.
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Groups of Modulo Multiplication – Part 3

I For n = 8, not all nonzero remainders {1, 2, 3, 4, 5, 6, 7} are
well-behaved (e.g. some nonzero can multiply to zero),

but those coprime to 8 are.
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I Let Z∗
8 = {1, 3, 5, 7}, those coprime to 8.

I Then |Z∗
8 | = ϕ(8) = 4, and for these a4 = 1.
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Generalization of Fermat’s Little Theorem

I Z∗
n = nonzero remainders of mod n that are coprime to n,

|Z∗
n | = ϕ(n).

I For prime p, all nonzero remainders are coprime to p,
|Z∗

p | = ϕ(p) = (p − 1).

I Z∗
n always form a multiplicative group (see paper), with

multiplicative identity e = 1.
I From property of Finite Group:

Theorem
For a finite group G and any a ∈ G, a|G| = e, the identity.

I Given a prime p, a(p−1) ≡ 1 mod p for all a coprime to p.
– Fermat’s statement of his “Little Theorem” in 1640.

I Given any number n, aϕ(n) ≡ 1 mod n for all a coprime to n.
– Euler’s generalisation of Fermat’s result in 1760.
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HOL4 Proof Scripts
for Fermat’s Little Theorem

Type of Proof Approach Total

Combinatorial Direct via cycles 824

Group via action 1387

Number-theoretic Direct via modulo arithmetic 473

Group via generated subgroups 839

Euler via generated subgroups 871

Table : Line counts for theories developing each approach.

I Number-theoretic approach is best in terms of lines-of-code.
I Group and group action can be packaged into useful libraries.
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A String of Pearls
Proofs of Fermats Little Theorem

Necklaces Groups Arithmetic

Cycles,
Similarity

Group
Actions

Cosets,
Subgroups

Primes,
Modulo

Arithmetic

Orbits,
Stabilizers

a|G| = e Multiplicative
Groups on N

Necklace Action Euler Group Number

ap ≡ a ap ≡ a aϕ(n) ≡ 1 a(p−1) ≡ 1 a(p−1) ≡ 1
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String of Pearls – Plant
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A String of Pearls – Song
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String of Pearls – Nature

The “String of Pearls”, a glowing gas ring encircling the
remnant of Supernova 1987A. (credit: NASA)
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String of Pearls – Google

Very easy to look up our paper with essential keywords.
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Summary

I Two styles to mechanise Fermat’s Little Theorem:
I Number-theoretic
I Combinatoric

I Each style can be enhanced by a Group approach:
I Underlying Euler’s proof based on permutations is

a finite group property of Z∗
n .

I Underlying the Necklace proof based on cycles is
group action on necklaces by Z+

n .

I Which proof style is “better”?
I Number-theoretic proofs are short,

as Fermat’s Little Theorem is about numbers.
I Combinatoric proofs are elegant,

as Necklace Theorem is about set partitions.
I Group theory provides invaluable insight.
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Necklace Proof
3-bead necklaces with 3 colours, 33=27; “good” cycle partitions.
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Orbit-Stabilizer Theorem
An action from Group G to Set X gives Orbits and Stabilizers.
For x ∈ X, its Orbit and Stabilizer have sizes related by:

Theorem
|Orbit of x|× |Stabilizer of x| = |action Group G|
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1, 42, 5
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