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Fermat’s Letter (1640)

Pierre de Fermat (1601-1665)
» Letter to Frénicle de Bessy dated October 18, 1640:

p divides a’~' — 1 whenever p is prime and a is coprime to p.
[. .. ] the proof of which | would send to you, if | were not afraid to
be too long.
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Fermat’s Letter (1640)
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Pierre de Fermat (1601-1665)
» Letter to Frénicle de Bessy dated October 18, 1640:

p divides a’~' — 1 whenever p is prime and a is coprime to p.
[. .. ] the proof of which | would send to you, if | were not afraid to
be too long.

» Modern notation:
@' =1 mod p for prime p and a coprime to p, or
@’ =a mod p for prime p and any a.
» Examples:
1823 = 74347713614021927913318776832 = 18 mod 23
197 = 257829627945307727248226067259 = 19 mod 23
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Euler’s Proof (1758)

» The remainders of division by p = 7:
{0,1,2,3,4,5,6,7,8,9,10,---} mod 7
={0,1,2,3,4,5,6} mod 7
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Euler's Proof (1758)

» The remainders of division by p = 7:
{0,1,2,3,4,5,6,7,8,9,10,---} mod 7
={0,1,2,3,4,5,6} mod 7

» Multiply each remainder by a = 3:
{3x0,3x1,3x2,3%x3,3x4,3x%x5,3x6} mod?7
=1{0,3,6,9,12,15,18} mod 7
={0,3,6,2, 5, 1, 4} mod 7 (a permutation of above)
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={0,1,2,3,4,5,6} mod 7

» Multiply each remainder by a = 3:
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={0,3,6,2, 5, 1, 4} mod 7 (a permutation of above)

» Multiply all nonzero numbers in each set:
(3x1)(3x2)(3x3)(3x4)(3x5)(3x6) mod?7
= (3)(6)(2)(5)(1)(4) mod 7
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» The remainders of division by p = 7:
{0,1,2,3,4,5,6,7,8,9,10,---} mod 7
={0,1,2,3,4,5,6} mod 7

» Multiply each remainder by a = 3:
{3x0,3x1,3x2,3%x3,3x4,3x%x5,3x6} mod?7
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» Multiply all nonzero numbers in each set:
(3x1)(3x2)(3x3)(3x4)(3x5)(3x6) mod?7
= (3)(6)(2)(5)(1)(4) mod 7

» Collect common factors on the left, rearrange the right:
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» The remainders of division by p = 7:
{0,1,2,3,4,5,6,7,8,9,10,---} mod 7
={0,1,2,3,4,5,6} mod 7

» Multiply each remainder by a = 3:
{3x0,3x1,3x2,3%x3,3x4,3x%x5,3x6} mod?7
=1{0,3,6,9,12,15,18} mod 7
={0,3,6,2, 5, 1, 4} mod 7 (a permutation of above)

» Multiply all nonzero numbers in each set:
(3x1)(3x2)(3x3)(3x4)(3x5)(3x6) mod?7
= (3)(6)(2)(5)(1)(4) mod 7

» Collect common factors on the left, rearrange the right:
39 % (1)(2)(3)(4)(5)(6) mod 7 = (1)(2)(3)(4)(5)(6) mod 7

» Cancel to give: 3° =1 mod 7,0r 3’ =3 mod 7.
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Euler's Proof (1758)

» In general, {a x x mod p}is a permutation of {x mod p}
when p is prime. In product form, excluding x = 0,

H (axx)= H (x) mod p for prime p.

» Collect common factors a on the left:

a’~! H (x) = H (x) mod p for prime p.

» Cancel non-zero [ (x) mod p on both sides gives:
@' =1 mod p for prime p.

» Multiply by a gives the equivalent form:
a’ =a mod p for prime p.

Fermat's Little Theorem Number-Theoretic Proof 4/38



Mechanisation of Fermat’s Little Theorem

» Most theorem-proving systems (e.g. Coq, ACL2, etc.)
mechanise this theorem based on Euler’s proof.
» Some prove Fermat’s Little Theorem directly.
» Others prove Euler’s generalization first, then derive
Fermat’s Little Theorem as a special case.

» Why is this number-theoretic approach so popular?

» Proof is simple to do, found in standard textbooks.
» Systems have good built-in theories for natural numbers.

» A proof distributed in recent HOL4 is based on induction
via binomial expansion.
» This induction method was used in the first published proof
of Fermat’s Little Theorem by Euler in 1736.
» Same method was used by Leibniz (1646—1716) in an
unpublished and undated manuscript, discovered in 1894.

Fermat's Little Theorem Euler’s Proof in HOL4

5/38



Petersen’s Proof (1872)

Julius Petersen (1839-1910), famous for his Petersen Graph.

Take p elements from q with repetitions in all ways, that
is, in g¢” ways. The q sets with elements all alike are
not changed by a cyclic permutation of the elements,
while the remaining ¢" — q sets are permuted in sets

of p [when p is prime]. Hence p divides ¢" — q.

Necklace Theorem Combinatorial Proof 6/38



Petersen’s Proof (1872)

S,

Julius Petersen (1839-1910), famous for his Petersen Graph.

Take p elements from q with repetitions in all ways, that
is, in g¢” ways. The q sets with elements all alike are
not changed by a cyclic permutation of the elements,
while the remaining ¢" — q sets are permuted in sets

of p [when p is prime]. Hence p divides ¢ — q.

» Petersen uses p’s and ¢’s, Fermat uses p’s and a’s.
» @’ =a mod p is equivalent to: p divides ¢’ — a.
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Petersen’s Proof — Necklace Form
Take p elements from q with repetitions in all ways, i.e. g° ways.

Take p beads from a colours with repetitions, i.e. a° necklaces.
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Petersen’s Proof — Necklace Form
Take p elements from q with repetitions in all ways, i.e. g° ways.

Take p beads from a colours with repetitions, i.e. a° necklaces.
Example: 3-bead necklaces with 2 colours, 2° = 8.
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Petersen’s Proof — Necklace Form
Take p elements from q with repetitions in all ways, i.e. ¢" ways.
The q sets with elements all alike are not changed by a cyclic
permutation of the elements,

Take p beads from a colours with repetitions, i.e. a° necklaces.
Those with beads all alike cycle to themselves, 1 for each
colour, so there are a of them.

Example: 3-bead necklaces with 2 colours, 2° = 8.
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Petersen’s Proof — Necklace Form
Take p elements from q with repetitions in all ways, i.e. g’ ways.
The q sets with elements all alike are not changed by a cyclic
permutation of the elements, while the remaining ¢” — q sets
are permuted in sets of p when p is prime.

Take p beads from a colours with repetitions, i.e. a° necklaces.
Those with beads all alike cycle to themselves, 1 for each
colour, so there are a of them. The other a? — a necklaces cycle
fo one another in sets of size p for prime p.
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Petersen’s Proof — Necklace Form
Take p elements from q with repetitions in all ways, i.e. g’ ways.
The q sets with elements all alike are not changed by a cyclic
permutation of the elements, while the remaining ¢” — q sets
are permuted in sets of p when p is prime. Hence p divides
¢° — q [, which is Fermat's Little Theorem)].

Take p beads from a colours with repetitions, i.e. a° necklaces.
Those with beads all alike cycle to themselves, 1 for each
colour, so there are a of them. The other a’? — a necklaces cycle
to one another in sets of size p for prime p. Equal size partition
is visual divisibility, so p divides a” — a.

Example: 3-bead necklaces with 2 colours, 2° = 8.
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Petersen’s Proof — Necklace Form
Take p elements from q with repetitions in all ways, i.e. ¢’ ways.
The q sets with elements all alike are not changed by a cyclic
permutation of the elements, while the remaining ¢ — g sets
are permuted in sets of p when p is prime. Hence p divides
q" — q [, which is Fermat’s Little Theorem)].

Take p beads from a colours with repetitions, i.e. a° necklaces.
Those with beads all alike cycle to themselves, 1 for each
colour, so there are a of them. The other a’? — a necklaces cycle
to one another in sets of size p for prime p. Equal size partition
is visual divisibility, so p divides a” — a.

Example: 3-bead necklaces with 2 colours, 2° =8. 2 2 — ¢,

82 83 8% 8 &3 &
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Necklace Proof
5-bead necklaces with 2 colours, 2°=32; “good” cycle partitions.
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Necklace Proof
4-bead necklaces with 2 colours, 2* = 16; “bad” cycle partitions.
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Necklace Theorem

Theorem
For prime p, the p-bead necklaces have “‘good” cycle partitions:

Of the necklaces with prime p beads made out of a colours:
» the a monocoloured necklaces cycle in singletons.

» the o’ — a multicoloured necklaces cycle in sets of equal
size p.

Necklace Theorem Combinatorial Proof 10/38
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» the a monocoloured necklaces cycle in singletons.

» the o’ — a multicoloured necklaces cycle in sets of equal
size p.

Julius Petersen claims:
» Necklace Theorem is straight-forward, easy to see.
» Fermat’s Little Theorem follows as a simple corollary.
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Necklace Theorem

Theorem
For prime p, the p-bead necklaces have “‘good” cycle partitions:

Of the necklaces with prime p beads made out of a colours:
» the a monocoloured necklaces cycle in singletons.

» the o’ — a multicoloured necklaces cycle in sets of equal
size p.

Julius Petersen claims:
» Necklace Theorem is straight-forward, easy to see.
» Fermat’s Little Theorem follows as a simple corollary.

However, theorem-provers cannot “see”!
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Mechanisation of Necklace Proof — Part 1

» Represent necklaces with n beads by a list of length n.
Represent a colours by numbers in {0, 1,2,...,(a— 1)}

ct QOO
—

[0;0;1;2;1;2]
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Mechanisation of Necklace Proof — Part 1

» Represent necklaces with n beads by a list of length n.
Represent a colours by numbers in {0, 1,2,...,(a— 1)}

ct QOO
—

[0;0;1;2;1;2]

» Cycle of necklace = append list DROP with list TAKE.

TAKE 1 [0;0;1;2;1;2] = [0]
DROP 1 [0;0;1;2;1;2] = [0;1;2;1;2]

ggg o c:;
09090909

[0;1;2;1;2] ++ [0] = [0;1;2;1;2;0]

Necklace Theorem Necklace Proof in HOL4
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Mechanisation of Necklace Proof — Part 2

» Define monocoloured and multicoloured necklaces.

F monocoloured n a =

e
{ € necklace n a N
(0 £ [] = SING (set {))}

F multicoloured n a =
necklace n a \ monocoloured n a

» Count the monocoloured and multicoloured necklaces.

F 0 < n = |monocoloured n a| = a

F 0 < n = jmulticoloured n a| = d"—a

Necklace Theorem Necklace Proof in HOL4
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Mechanisation of Necklace Proof — Part 3

» Two necklaces are similar if they can cycle to one another.
F Al == <= dn. { = cycle n {

» Being similar is an equivalence relation for necklaces.
- ==
Fl == = b ==
FE Uy == N ==1; = {; == {3

» For prime p, equivalence classes of similar (associates)
are of equal size: 1 for monocoloured, p for multicoloured.

e # [1 /N prime |{| =

lassociates (| = 1 V |associates {| = [{]

» From this, Necklace Theorem can be proved (see paper),
and Fermat’s Little Theorem follows.

Necklace Theorem Necklace Proof in HOL4 13/38



Group and Group Action

» A Group — acts on — A Set of Objects.
» Each group element — acts on — an object in the Set.

Groups Group Actions 14/38
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Group and Group Action

» A Group — acts on — A Set of Objects.
» Each group element — acts on — an object in the Set.
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Group and Group Action

» A Group — acts on — A Set of Objects.
» Each group element — acts on — an object in the Set.

+ Odd Even

Parity Group
acts on 9

Even) Odd Bl 2-bead necklaces:

Odd Even Odd

0 cycle by 0 bead

® 1 cycle by 1 bead
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Group and Group Action

» A Group — acts on — A Set of Objects.
» Each group element — acts on — an object in the Set.

+ Odd Even

Parity Group
Odd Even Odd

acts on
Bl Odd Bl 2-bead necklaces:

0 cycle by 0 bead

® 1 cycle by 1 bead
1
0

—_— O =
S = O
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Group and Group Action

» A Group — acts on — A Set of Objects.
» Each group element — acts on — an object in the Set.

+ 0Odd Even 0

Parity Group (@)
Odd Even Odd
acts on 9
Even Odd Even 2-bead necklaces:
0 cycle by 0 bead
o yele by QTP |1 @0
1 cycle by 1 bead
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Group and Group Action

» A Group — acts on — A Set of Objects.
» Each group element — acts on — an object in the Set.

+ Odd Even

Parity Group
acts on 9

Odd Even Odd

Even) Odd Bl 2-bead necklaces: 1
@
0 cycle by 0 bead
yee sy Fe" e )

B 1 0

1 cycle by 1 bead 0y
1 0 1
0 110 " @)
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Group and Group Action

» A Group — acts on — A Set of Objects.
» Each group element — acts on — an object in the Set.

| Parity Group
Odd Even Odd
acts on .S )
Bl Odd Bl 2-bead necklaces:
0 cycle by 0 bead
1 cycle by 1 bead
10 1
0 100 " @)

Zy ={0,1}
» Group Z, acts on the set of n-bead necklaces, for any n
(prime or not prime).
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Group Action on Necklaces
» Cycle: action of Z; ={0, 1,2, 3,4,5} on 6-bead necklaces.

$3
IR
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Group Action on Necklaces
» Cycle: action of Z; ={0, 1,2, 3,4,5} on 6-bead necklaces.
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Group Action on Necklaces
» Cycle: action of Z; ={0, 1,2, 3,4,5} on 6-bead necklaces.

s oo o

()

» Similar necklaces of cycle = Orbit.
» Group elements that give loop action = Stabilizer.




Orbit and Stabilizer — Part 1

» Action of Zg ={0,1,2,3,4,5} on one 6-bead necklace.

Sisgjgﬂi%

Nz
823\333/108

5

J

» Orbit = similar necklaces of cycle.
» Stabilizer = elements that give loop.

Groups Orbit and Stabilizer
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Orbit and Stabilizer — Part 1

» Action of Zg ={0,1,2,3,4,5} on one 6-bead necklace.

Q)

» Orbit = similar necklaces of cycle.
» Stabilizer = elements that give loop.
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Orbit and Stabilizer — Part 1

» Action of Zg ={0,1,2,3,4,5} on one 6-bead necklace.

Q)

» Orbit = similar necklaces of cycle.
» Stabilizer = elements that give loop.

33
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Orbit and Stabilizer — Part 2

» Action of Z; = {0, 1,2, 3,4, 5} on another 6-bead necklace.

&
1%
2

» Orbit = similar necklaces of cycle.
» Stabilizer = elements that give loop.
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Orbit and Stabilizer — Part 2

» Action of Z; = {0, 1,2, 3,4, 5} on another 6-bead necklace.

» Orbit = similar necklaces of cycle. 3
» Stabilizer = elements that give loop. 2
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Orbit and Stabilizer — Part 2

» Action of Z; = {0, 1,2, 3,4, 5} on another 6-bead necklace.
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» Stabilizer = elements that give loop. 2
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Orbit and Stabilizer — Part 3

» Action of Z; ={0,1,2,3,4,5} on another 6-bead necklace.

33

5 | 1
3
0
2
4
» Orbit = similar necklaces of cycle.
» Stabilizer = elements that give loop.
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» Action of Z; ={0,1,2,3,4,5} on another 6-bead necklace.
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Orbit and Stabilizer — Part 3

» Action of Z; ={0,1,2,3,4,5} on another 6-bead necklace.

33

5 | 1
3
-+ JE
2
4
» Orbit = similar necklaces of cycle. 2
» Stabilizer = elements that give loop. 3
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Orbit and Stabilizer — Part 4

» Action of Z; = {0, 1,2,3,4,5} on another 6-bead necklace.

» Orbit = similar necklaces of cycle.
» Stabilizer = elements that give loop.
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Orbit and Stabilizer — Part 4

» Action of Z; = {0, 1,2,3,4,5} on another 6-bead necklace.

A

» Orbit = similar necklaces of cycle. 1
» Stabilizer = elements that give loop. 6
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Orbit-Stabilizer Theorem

An action from Group G to Set X gives Orbits and Stabilizers.
For x € X, its Orbit and Stabilizer have sizes related by:

Theorem
|Orbit of x| x |Stabilizer of x| = |action Group G|
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Orbit-Stabilizer Theorem

An action from Group G to Set X gives Orbits and Stabilizers.
For x € X, its Orbit and Stabilizer have sizes related by:

Theorem
|Orbit of x| x |Stabilizer of x| = |action Group G|

Apply to Necklaces
» X = set of n-bead necklaces, action group has |Z, | = n.
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Orbit-Stabilizer Theorem

An action from Group G to Set X gives Orbits and Stabilizers.
For x € X, its Orbit and Stabilizer have sizes related by:

Theorem
|Orbit of x| x |Stabilizer of x| = |action Group G|

Apply to Necklaces
» X = set of n-bead necklaces, action group has |Z, | = n.
» For a monocoloured necklace, orbit size = 1.
» For a multicoloured necklace, orbit size # 1.
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Orbit-Stabilizer Theorem

An action from Group G to Set X gives Orbits and Stabilizers.
For x € X, its Orbit and Stabilizer have sizes related by:

Theorem
|Orbit of x| x |Stabilizer of x| = |action Group G|

Apply to Necklaces
» X = set of n-bead necklaces, action group has |Z, | = n.
» For a monocoloured necklace, orbit size = 1.
» For a multicoloured necklace, orbit size # 1.

» What is the orbit size for a multicoloured necklaces with
prime number of beads?

Groups  Orbit and Stabilizer 20/38



Mulitcoloured Necklace with Prime Number of Beads
» For necklaces with prime p beads, size of action group
Z,,| = p, with trivial factorisation p = 1 x p = p x 1.
» Only monocoloured necklaces have orbits of size 1; so in
this case multicoloured necklaces have orbits of size p.

Groups Orbit and Stabilizer 21/38



Mulitcoloured Necklace with Prime Number of Beads

» For necklaces with prime p beads, size of action group
Z,,| = p, with trivial factorisation p = 1 x p = p x 1.

» Only monocoloured necklaces have orbits of size 1; so in
this case multicoloured necklaces have orbits of size p.

@ a Z7+ :{0»1)2)3>475)6}
number of beads = 7
o JANVAE o
1

~ -
6

()
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Mulitcoloured Necklace with Prime Number of Beads

» For necklaces with prime p beads, size of action group
Z,,| = p, with trivial factorisation p = 1 x p = p x 1.

» Only monocoloured necklaces have orbits of size 1; so in
this case multicoloured necklaces have orbits of size p.

@/@A%}\@ Zi =1{0,1,2,3,4,5,6)

number of beads = 7

orbit size =7
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Mulitcoloured Necklace with Prime Number of Beads

» For necklaces with prime p beads, size of action group
Z,,| = p, with trivial factorisation p = 1 x p = p x 1.

» Only monocoloured necklaces have orbits of size 1; so in
this case multicoloured necklaces have orbits of size p.

/@A%}\ Zi =1{0,1,2,3,4,5,6)
number of beads = 7
@ @ orbit size =7

@ @ Orbit is isomorphic to necklace
g3
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Necklace Theorem by Orbit-Stabilizer in HOL4

» Prove the Orbit-Stabilizer theorem.

F FiniteGroup g /\ action (o) g X AN x € X A
FINITE X = |G| = |orbit x| X |stabilizer x|

» Prove that cycle is an action from Z, to necklaces.

FoOo<nANO0O<oa-=
action cycle ZI (necklace n a)

» For multicoloured necklaces of length p, a prime,
the orbit size of each necklace equals p.

F prime p A 0 < a A { € multicoloured p a =
lorbit cycle Z; (multicoloured p a) { = p

Groups  Orbit-Stabilizer Proof in HOL4 22/38



Group insight for Necklace Theorem

» Necklace Theorem says:

» When n is prime, cycle partitions of necklaces are “good”.
» When n is not prime, cycle partitions of necklaces are “bad”.
» But why good for primes, and how bad for non-primes?
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Group insight for Necklace Theorem

» Necklace Theorem says:
» When n is prime, cycle partitions of necklaces are “good”.

» When n is not prime, cycle partitions of necklaces are “bad”.

» But why good for primes, and how bad for non-primes?

» Group action reveals:
» Cycle partitions are orbits of Z," to n-bead necklaces.
» For any n, |orbit of n-bead monocoloured necklace| = 1.
» For any n, |orbit of n-bead multicoloured necklace| # 1.

» Orbit-Stabilizer Theorem gives:
» For multicoloured necklaces with n beads:
lorbit of necklace| x |stabilizer of necklace| = |Z;}| = n
» Therefore, for multicoloured necklaces with prime n beads,
orbit size must be n.
» Also, for multicoloured necklaces with non-prime n beads,
orbit size is either n or a proper factor of n.

Groups Orbit-Stabilizer Proof in HOL4
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The Missing Piece

» Proofs of Fermat’s Little Theorem, so far.
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The Missing Piece

» Proofs of Fermat’s Little Theorem, so far.
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» Euler’s proof using permutation of modulo multiplication.
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The Missing Piece

» Proofs of Fermat’s Little Theorem, so far.

» Euler’s proof using permutation of modulo multiplication.
» Petersen’s proof using necklaces and cycles.
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The Missing Piece

» Proofs of Fermat’s Little Theorem, so far.

Eul @
&

» Euler’s proof using permutation of modulo multiplication.

» Petersen’s proof using necklaces and cycles.
» Group action on necklaces by 7.

Groups Orbit-Stabilizer Proof in HOL4
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The Missing Piece

» Proofs of Fermat’s Little Theorem, so far.

v

Euler’s proof using permutation of modulo multiplication.
Petersen’s proof using necklaces and cycles.

Group action on necklaces by Z, .

Finite Group elementary property, apply to Z;.

v

v

v
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Property of Finite Group

» Group G is a set with a binary operation x* satisfying four
properties: Closure, Associativity, Identity and Inverse.

» Closure: forx € Gand y € G, the result x x y € G always.
» Identity: there is e € G such that, forany a € G, e xa = a.

Euler's Generalization Finite Group
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Property of Finite Group

» Group G is a set with a binary operation x* satisfying four
properties: Closure, Associativity, Identity and Inverse.
» Closure: forx € Gand y € G, the result x x y € G always.
» Identity: there is e € G such that, forany a € G, e xa = a.
» Take an element a € G, write
a' =a,a> =axa,a® =axa=xa, etc.

» Consider the sequence a', 4, a°, . ..

» These are all € G, by Closure property.
» For a finite group G, they cannot be all distinct.
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Property of Finite Group

» Group G is a set with a binary operation x* satisfying four
properties: Closure, Associativity, Identity and Inverse.

» Closure: forx € Gand y € G, the result x x y € G always.

» Identity: there is e € G such that, forany a € G, e xa = a.

» Take an element a € G, write

a' =a,a> =axa,a® =axa=xa, etc.

» Consider the sequence a', 4, a°, . ..
» These are all € G, by Closure property.
» For a finite group G, they cannot be all distinct.

This fact leads to:

Theorem
For a finite group G and any a € G, a°' = ¢, the identity.
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Property of Finite Group

» Group G is a set with a binary operation x* satisfying four
properties: Closure, Associativity, Identity and Inverse.

» Closure: forx € Gand y € G, the result x x y € G always.

» Identity: there is e € G such that, forany a € G, e xa = a.

» Take an element a € G, write

a' =a,a> =axa,a® =axa=xa, etc.

» Consider the sequence a', 4, a°, . ..

» These are all € G, by Closure property.
» For a finite group G, they cannot be all distinct.

This fact leads to:

Theorem
For a finite group G and any a € G, a°' = ¢, the identity.

» This is the Finite Group version of Fermat’s Little Theorem.

Euler's Generalization Finite Group 25/38



Groups of Modulo Multiplication — Part 1

» Besides Z

curLw~®

Euler's Generalization
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Modulo Multiplication

there is also Z;, first investigated by Euler.

» For n =7, a prime, all nonzero remainders {1,2,3,4,5,6}
are well-behaved,
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Groups of Modulo Multiplication — Part 1

» Besides Z,, there is also Z?, first investigated by Euler.

» For n =7, a prime, all nonzero remainders {1,2,3,4,5,6}
are well-behaved, and all are coprime to the prime 7.

XR123456 a g adatad ab
1123456 DO0OOE
2246135 2 412 44
3362514 326451
4 415263 421 4 24
55316 42 546231
6 6 54321 61 61 61

» Number of coprimes to 7 = ¢(7) = 6, and for these a® = 1.
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Groups of Modulo Multiplication — Part 2

» For n = 6, not all nonzero remainders {1,2,3,4,5} are
well-behaved (e.g. some nonzero can multiply to )s

®1 23475
1123 45
22402 4
330303
4 420 4 2
554321
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Groups of Modulo Multiplication — Part 2

» For n = 6, not all nonzero remainders {1,2,3,4,5} are
well-behaved (e.g. some nonzero can multiply to )s
but those coprime to 6 are.

® 1 5 a g?
11 5 11
55 1 51

» Let Z; ={1,5}, those coprime to 6.
» Then |Z;| = ¢(6) = 2, and for these a° = 1.
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Groups of Modulo Multiplication — Part 3

» For n = 8, not all nonzero remainders {1,2,3,4,5,6,7} are
well-behaved (e.g. some nonzero can multiply to )s

®1 234506717
171234567
224602406
33614725
4 40 4© 4© 4
552747163
6 6 4206 4 2
77 65 43 2101
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Groups of Modulo Multiplication — Part 3

» For n = 8, not all nonzero remainders {1,2,3,4,5,6,7} are
well-behaved (e.g. some nonzero can multiply to )s
but those coprime to 8 are.

X1 3 5 7 a q* @® g
1

11 3 5 7 111
33 1 7 5 31 311
55 7 1 3 S 51
7 7 5 3 1 71 71

» Let Z3 ={1,3,5,7}, those coprime to 8.
» Then |Z;| = ¢(8) = 4, and for these a* = 1.
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Generalization of Fermat’s Little Theorem

» 7 = nonzero remainders of mod n that are coprime to n,

Zy| = @(n).
» For prime p, all nonzero remainders are coprime to p,
Zyl = @(p) = (p—1).

Euler’s Generalization = Modulo Multiplication
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Generalization of Fermat’s Little Theorem
» 7 = nonzero remainders of mod n that are coprime to n,
Zy| = o(n).
» For prime p, all nonzero remainders are coprime to p,
Zyl = @(p) = (p—1).
» 7 always form a multiplicative group (see paper), with
multiplicative identity ¢ = 1.
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Zy| = @(n).

» For prime p, all nonzero remainders are coprime to p,
Zyl = @(p) = (p—1).
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multiplicative identity e = 1.

» From property of Finite Group:

Theorem
For a finite group G and any a € G, a°' = ¢, the identity.
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Generalization of Fermat’s Little Theorem

» 7 = nonzero remainders of mod n that are coprime to n,
Zy] = @(n).

» For prime p, all nonzero remainders are coprime to p,
Zyl = @(p) = (p—1).

» 7 always form a multiplicative group (see paper), with
multiplicative identity ¢ = 1.

» From property of Finite Group:

Theorem
For a finite group G and any a € G, a°' = ¢, the identity.

» Given a prime p, a”"") =1 mod p for all a coprime to p.
— Fermat’s statement of his “Little Theorem” in 1640.
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Generalization of Fermat’s Little Theorem

» 7 = nonzero remainders of mod » that are coprime to n,
Zy] = @(n).

» For prime p, all nonzero remainders are coprime to p,
Zyl = @(p) = (p—1).

» 7 always form a multiplicative group (see paper), with
multiplicative identity ¢ = 1.

» From property of Finite Group:

Theorem
For a finite group G and any a € G, a°' = ¢, the identity.

» Given a prime p, a”") = 1 mod p for all a coprime to p.
— Fermat’s statement of his “Little Theorem” in 1640.

» Given any number 7, a®") = 1 mod n for all a coprime to n.
— Euler’s generalisation of Fermat’s result in 1760.

Euler's Generalization Modulo Multiplication 29/38



HOL4 Proof Scripts

for Fermat’s Little Theorem

Type of Proof Approach | Total
Combinatorial Direct via cycles 824

Group via action 1387
Number-theoretic Direct via modulo arithmetic 473

Group via generated subgroups 839

Euler via generated subgroups 871

Table : Line counts for theories developing each approach.
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HOL4 Proof Scripts

for Fermat’s Little Theorem

Type of Proof Approach | Total
Combinatorial Direct via cycles 824

Group via action 1387
Number-theoretic Direct via modulo arithmetic 473

Group via generated subgroups 839

Euler via generated subgroups 871

Table : Line counts for theories developing each approach.

» Number-theoretic approach is best in terms of lines-of-code.
» Group and group action can be packaged into useful libraries.
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A String of Pearls

Proofs of Fermats Little Theorem

Necklaces / Groups Arithmetic
Cycles, Group Cosets, II:/IrcIESISc;
Similarity Actions Subgroups / Arithmetic

. |
Orbits, 49— o Multiplicative
Stabilizers J Groups on N
Necklace Action Euler Group Number
a’ =a a’ =a a®™ =1 a? =1 a? V=1
Conclusion String of Pearls
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String of Pearls — Plant
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A String of Pearls — Song

A STRING OF PEARLS
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String of Pearls — Nature

The “String of Pearls”, a glowing gas ring encircling the
remnant of Supernova 1987A. (credit: NASA)
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String of Pearls — Google

string of pearls Fermat - Goo:

€& & C [ www.googk.com.aui#hl=ersclient=psy-abRq=String+of+ Pearks+ Fermatioq=Sting+of + Pearls + Fermatt 5g | &

i Search

GO ;,)SIL’ String of Pearls Fermat “

Search About B36,000 results (0.38 seconds)
II Web or A String of Pearls: Proofs of Fermat's Little Theorem - Micta
v, nicta. com. au/pub?doc=6061
Imagas File Format: PDF/Adobe Acrobat - Quick “iew
A String of Pearls: Proofs of Fermat's Little Theorem. Hing-Lun Chan1 and Michael
Waps Momish2. 1 joseph.chan@anu edu.au. Australian National University ...
YWideos . )
A String of Pearls - ANU - Australian MNational University
Mews cs.anu.edu.au > Seminars
23 Oct 2012 - A String of Pearls: Proofs of Fermat's Little Thearem. Hing Lun Chan
Shopping (ANL, LOGIC AND COMPUTATION SEMINAR DATE: 2012-10-30 ... &
< | >

Very easy to look up our paper with essential keywords.
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Summary

» Two styles to mechanise Fermat’s Little Theorem:

» Number-theoretic
» Combinatoric

» Each style can be enhanced by a Group approach:
» Underlying Euler’s proof based on permutations is
a finite group property of Z;.
» Underlying the Necklace proof based on cycles is
group action on necklaces by Z;'.

» Which proof style is “better”?
» Number-theoretic proofs are short,
as Fermat’s Little Theorem is about humbers.
» Combinatoric proofs are elegant,
as Necklace Theorem is about set partitions.
» Group theory provides invaluable insight.
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Necklace Proof
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Orbit-Stabilizer Theorem
An action from Group G to Set X gives Orbits and Stabilizers.
For x € X, its Orbit and Stabilizer have sizes related by:

Theorem
|Orbit of x| x |Stabilizer of x| = |action Group G|
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