Conversion Style manual

The mkgmap team

Conversion Style manual
The mkgmap team

Publication date 28 January 2014

Table of Contents

IR g 1 [F o o o RSP USRPRSR 1
A D L= T o oo T gL 0= o USRI 2
P2 T I o Tl €= 1 g T = TSRS 2
P20 I I (=0 11 (o o USRI 2
N I < PSRRI 2
2.0.3. OVEIVIEBW LEVEL ...ttt sttt b e s nae s reenseenean 3

3. The SITUCIUIE Of @ SEYIE ...ttt et e s ae et e e e sneenee s 4
00 I 1 1 RSP 4
.11, TOP [EVEL FOIARN ...t 4

G N 4TSI V7 £ Lo o T 1 SRS 4
GG T I o T oo I = TSR 4
G N I g Tl 0 o 0] S 11 SR 5
3.4.1. Non command 11N OPLIONScceiuiiiriieieeieeteee et sre e e b e e sreesseeneens 5

T I TN oo 1K=] = SR 5
3.6, TNE HINES TIl@ ettt st e e e ae e be et e sneenaeenneas 6
G A I g T oo Yo o] 3N 11 RSP SRR 6
GRS T I Tl = K= Ko Lo = S 6
A, SEYIE TUIES ..ttt sttt e st e s bt et e e st e sae et e e aeeebeenbeemeesaeeneeeneesaeenteeneesseeneens 7
7 I g 0o [F o 1 o o U 7
4.1.1. Tag AN TEXE VEIUESoeeeeeee ettt sttt et st e e e ne e 8

R I R (= £ TP PP TSP 8
4.2.1. AIOWED OPEIELIONSeoveeieeiiieieeee st ie et e e et este e e seeteeseesaeentesneesseeseeneesseenseeneenns 8
4.2.2. COMDINING tAJ TESESeeeeeiiiriieie ettt et s sae e s e be et e sseense et e sneeneas 9
4.2.3. Comparing the values Of tWO tagSccooeriiieeereseee e 10
N o1 o S 10

VG T o o T o] oo -GS 11
G T3 "o (o R 11

R I SRR 12
TG TR o (= [(=PRSS 12
A.3.4. dElEEAITAGS ...oeeeeeeeeeee e et nae e e e 12
G TS T="0 (0| = o= PR 12
Z.3.6. NMAIMIE ...ttt ettt et e ettt et e e she e e bt e eae e e e e e eae e e Re e eRe e e Ee e eRe e e ReeeReeeE e e eReeebeeaneeeneenaeeenes 12
G T =0 [0 = o o=\ SRR 12
R T < 200 == TR OR PR 13
G T T oo PRSPPI 13
G T L =0 oV o] SRR 14

7 T T <o oo PR PSTR 14

G T <o 0o =6 1SRRI 14

Y o] SRR 14
V= o] L= 11 0 £ 14
S V0 1 0o oo o =SOSR 17

4.5, MKGMEP INTEINAl TAGS ..vveieeeiieeieeie ettt b et st esreestesreesseeaesneesreenseeneen 17
4.5.1. Tags evaluated DY MKOMEDooeiiiieieeieeeree et 17
4.5.2. Tags added Dy mKGMEPoc.ooiiie e 20

4.6. Element type defiNItIONooeoiiiiiiieie ettt sreeeesneen 23
I O =Y. TR 23
I (= o 11 o o SRR 23

Conversion Style manual

TG Mo L= = 1 = S 24

I o= [o = S 24

GRS T (070 L 0= <o OSSR 24

4.6.6. CONLINUEvovetiitieiieie e te sttt sttt et st b e b st et et et et e sbe s be s beebe e st e ne et e besbesbenbenrennes 25

4.6.7. CONtINUE WIth _@CLIONSocueiieicie ettt e e e e nre s 25

A 1 o W o [o T = 25

4.8, FINAIZE SECHION ...cueiuiiiiite sttt sttt bbbt st e et e b e nbesbesbenreeneeneeneas 26

e T W (010 o] == 7o 11 oo OSSO 27
4.10. SOME EXAMPIESeeeeeie ettt e ettt e e e te st e s ae e beeseesse e seeneesneeseeneesreenreenee e 27
4.10.1. SIMPIE EXAMPIES ...ttt e e r e e e eneenn 27

4.10.2. More involved EXaAMPIEScccceiieieieeceese e ae e e sne e 27

O = 1 o = TR 1 = 29
oI T IS o = TR = S 29
5.1.1. Tests performed by Check-Styl€Scveire i 29

5.2. MaKing @ StYI€ PACKAOEeeveieeeiecie ettt st et esne e reennesneene s 29
5.2.1. ZIP @CHIVE ...ttt reereenaenneene s 29

5.2.2. SIMPIE fIl@ @CHIVE ...t 30

LT N o011 | SRR URPRRORN 31
L0 I I o= oo OSSP 31

6.2. Authors and ackNOWIEAGMENESccueiieiiceceec et re e e 31

List of Tables

v I ¥ | I T o) T o1 = (] 0] TR 8
S VL= U g ox o SR 10
4.3. List Of @l SUDSHTULION FHITENSeiieieiece e e ae s 15
4.4, Highway SYMDOI COUESoiiiiieieiie sttt ettt et e b et e e reesre et e eneesseenseeneenns 17
4.5, Tags fOr rOUtADIE MBScoiiiieieiee ettt s e s te et e sne e se et e eneesreenes 17
4.6. Tags that control the treatment Of FOAASooieiiiieee e e e 19
R e O "0 (0 (=SS = o RS 20
4.8. Tags added DY MKGMED ..o ettt 21
4.9, OtNEN INTEIMEI TAYSeeiveeiieiestieie et e e ee et e st e be e eesseesseesesae e aeeneesaeesseenseeneanaeenteeneesen 22
O (O 0= o [0 = == SR 24
I 0 7= o S 0= 0 SR 25

List of Examples

3.1, AN eXaMPLE INFO TIIE ettt a et et esreenne e 5
3.2. AN eXampPle OPLIONS FIlE ...ttt st b et enbe et e nnee e 5
4.1. Finalize section in the lines file with access handlingccocoovveiieeiine e 26
T g 10 1 0= = ST 27
TG T 10 ' [= o LS =SSR 28
O O == =S 00 1 SRS PR 28
4.5. Opening hours iN POSICOOE FIBIAooouiiiiieeeee et 28
5.1. Style PaCKage [GYOULociiiiiieeee ettt sttt s re et et esae e beeneeereenseenee e 30

Vi

Chapter 1. Introduction

This manual explains how to write a mkgmap style to convert between OSM tags and features on a
Garmin GPS device.

A styleis used to choose which OSM map features appear in the Garmin map and which Garmin
symbols are used.

There are afew styles built into mkgmap, but as there are many different purposes a map may be used
for, the default stylesin mkgmap will not be ideal for everyone, so you can create and use styles external
to mkgmap.

The term style could mean the actual way that the features appear on a GPS device, the colour, thickness
of the line and so on. This manual does not cover such issues, and if that is what you are looking for,
then you need the documentation for TYP files.

Few people will want to write their own style from scratch, most people will use the built in conversion
style, or at most make afew changes to the default style to add or remove a small number of features.
For general information about running and using mkgmap see the Tutorial document.

To be clear thisis only needed for converting OSM tags, if you are starting with a Polish format file,
there is no style involved as the garmin types are already fully specified in theinput file.

For general information about the OpenStreetMap project see the OpenStreetMap wiki [http://
wiki.openstreetmap.org].

http://wiki.openstreetmap.org
http://wiki.openstreetmap.org
http://wiki.openstreetmap.org

Chapter 2. Designing the map
Y ou can completely change which features are displayed and at what zoom levels.

First you need to understand a little about the way that the zoom works in Garmin maps. There are two
concepts resolution and level.

2.1. The Garmin Map

Each Garmin map may contain several separate maps which are prepared at different levels of detail, the
most appropriate of these is displayed depending on the zoom selected by the user.

When creating the map, the map maker will choose which of these level mapsis displayed according to
the resolution (or zoom) selected. For example, a map might contain three levels (0, 1 & 2); On the level
2 map (showing the largest area) a town might just be represented by a named dot; as the user zoomsin,
the display might switch to the level 1 map showing an outline of the town. Zooming in further might
switch to the level 0 map, with the individual streets of the town shown.

In addition the GPS itself might decide when to show or hide individual featuresin each of the level
maps, especialy with POIs. Thisis also affected by the detail setting in the map config menu.

2.1.1. Resolution

Thefirst isresolution thisis a number between 1 and 24 with 24 being the most detailed resolution and
each number lessis half as detailed. So for exampleif aroad was 12 unitslong at resolution 24 it would
be only 6 at resolution 23 and just 3 at resolution 22.

On a Legend Cx the resolution corresponds the these scales on the device:

Resolution Scale on device

16 30km-12km
18 8km-3km
20 2km-800m
22 500m-200m
23 300m-80m
24 120m-50m

It may be dlightly different on different devices. There is an option to increase or decrease the detail and
if you change that from Normal then it will change the values above too.

2.1.2. Level

The next islevel. Thisisanumber between 0 and 16 (although perhaps numbers above 10 are not
usable), with 0 corresponding to the most detailed view. The map consists of a number of levels starting
(usually) with 0. For example 0, 1, 2, 3 and a different amount of detail is added at each level.

The map also contains atable to link the level to the resolution. So you can say that level 0 corresponds
to resolution 24.

This mapping is specified in the file options within the style directory in use. Y ou can aso specify it on
the command line, for example:

--l evel s=0: 24, 1: 22, 2: 20

Designing the map

This means that the map will have three levels. Level 0 in the map will correspond to resolution 24 (the
most detailed), level 1 will show at resolution 22 (between scales of 500m and 200m) and so on. The
lowest level needs to include at least an object, therefore the default lowest level of 16 will create a
broken map, if your osm input file has no information at zoom level 16 or lower included. Up to 8 levels
are alowed.

2.1.3. Overview Level

The next is overview-level. The meaning isthe same asin level, but it is used for the creation of the
overview map. The overview map is used in PC programs like Basecamp or Mapsource, it improves the
drawing speed when looking at the whole map.

The GARMIN map contains only one overview map, so it should not contain too many details, else it
will reach size limits.

This mapping is specified in the file options within the style directory in use. Y ou can aso specify it on
the command line, for example:

--overvi ew | evel s=3: 18, 4: 16, 5: 12

It is recommended to continue the numbers of the levels. Again, up to 8 levels are allowed.

Chapter 3. The structure of a style

A style consists of anumber of filesin asingle directory. The best way isto start out with an existing
style that is close to what you want and then work from there.

A style can be packed into asingle file using the standard zip utilities that are available on every
operating system, or it can be written as one large text file using the single file style format. These
aternatives are explained in making a style package.

3.1. Files

These files areread in the order that they are listed here. In general, files that are read first take priority
over filesread later. The only one of these filesthat is actually required isthe ver si on file, asthat is
used to recognise the style. At least one of the poi nt s, | i nes or pol ygons filesmust be present or else
the resulting maps will be empty.

3.1.1. Top level folder

Choose a short name for your style, it should be one word or a couple of words joined by an underscore
or hyphen. Thisis how people will refer to the style when it is finished. Create a directory or folder with
that name. Then you must create one or more files in this directory as detailed below. Only thever si on
fileisrequired.

3.2. The version file

Thisfile must exist asit is used to recognise avalid style. It contains the version number of the style
language itself, (not the version number of your style, which you can specify inthei nf o fileif you so
wish). The current version number of the style languageis 1. Make sure that thereis anew line after the
number, place an empty line afterwards to be sure.

3.3. The info file

Thisfile contains information about your style. It isall optional information, and there is only really any
point adding this information if you are going to distribute your style, or you have more than one style
that you maintain.

The file consists of key=value pairsin the same syntax as the command line option file. To summarise
you can use either an equal sign = or acolon : to separate the key from the value. Y ou can also surround
the value with curly braces{ } and this allows you to write the value over several lines.

version The version number of your style.
summary A short description of your stylein oneline.
description A longer description of your style.

base-style Do not use anymore. This was used to base a style on another one. However, it is
bug prone and behavesin away that is not intuitive without a good understanding of
how things work. The preferred way to do thisisto use the include mechanism. This
command will be removed altogether at some point in the future.

The structure of astyle

Example 3.1. An exampleinfofile

Hereis an example based on thei nf o file from the default style. Y ou can see it uses both equal and
colon as separators, normally you would just pick one and use it consistently, but it doesn’t make any
difference which one you use. The description is written over severa lines surrounded in curly brackets.
Lines beginning with a hash symbol # are comments and are ignored.

#
This file contains information about the style.
#

sunmary: The default style
version=1.0

description {

The default style. This is a heavyweight style that is

desi gned for use when napping and especially in lightly covered
ar eas.

}
3.4. The options file

Thisfile contains a number of options that should be set for this style asif they were set on the command
line. Only command line options that affect the style will have any effect. The current listis| evel s,
overvi ew | evel s, and ext r a- used-t ags.

It is advisable to set up the levels that you want, as the default is not suitable for all kinds of maps and
may change in the future. Ideally, you should set the same levels as are used in your style files. For
example, if your style files use levels 12,16,20,22,23,24 then it's a good idea to make sure your options
style file declares these levels explicitly.

Example 3.2. An example optionsfile

levels = 0:24, 1:22, 2:20, 3:18
overviewlevels = 4:17, 5:16, 6:15, 7:14, 8:12
extra-used-tags=

3.4.1. Non command line options

Most of the options are the same as the command line option of the same name and so you should see its
description in the option help. There are however some options that can only be set in thisfile (just the
currently).

extra-used-tags
A list of tags used by the style. Y ou do not normally need to set this, as mkgmap can work out which
tags are used by a style automatically in most cases. It exists only to work around cases where this
doesn’t work properly.

3.5. The points file

Thisfiles contains a set of rules for converting OSM nodes to Garmin POIs (restaurants, bars, ATMs
etc). It can also contain rules for some kind of OSM nodes that may affect routing behavior, for example
barriers, traffic_calming, traffic_signals, etc.

If thisfileis not present or empty then there will be no POI’sin the final map.

The structure of astyle

The syntax of the file is described in the style rules section. Like all other files, a hash symbol #
introduces a comment.

3.6. The lines file

Thisfile contains a set of rules for converting OSM ways to Garmin lines (roads, rivers, barriers, etc).
The syntax of the file is described in the style rules section.

3.7. The polygons file

Thisfile contains a set of rules for converting polygons to Garmin areas (fields, buildings, residential
areas, etc). The syntax of thefileis described in the style rules section.

3.8. The relations file

Thisfile contains a set of rulesto convert OSM relations. Unlike the poi nt s, | i nes and pol ygons files
this file does not lead directly to a Garmin object. Instead it is used to modify the ways or nodes that are
contained in the relation.

So for example, if the relation represents a route, then you might add one or more tagsto all the ways
that make up the route so that they can be processed inthel i nes file specialy.

The syntax of the file is also described in the style rules section, but the rules can only have an action
part, they must not have a type description part.

Chapter 4. Style rules

Rules allow you to take a map feature in the OSM format, which uses a set of tags to describe the feature
into the format required by Garmin maps, where features are identified by a number.

The rules for converting points, lines and polygons are held in correspondingly named files, as described
in the structure of astyle.

Each file contains a number of rules. Rules test the values of the tags of an OSM node, way or relation.
They also select a specific Garmin type based on the result of those tests and set mkgmap internal tags
(mkgmap: *) to assign specific attributes to a map element.

4.1. Introduction

Each rule starts off with an expression to test the value of one or more tags.

A ruleis made up of two or three parts. The three possible parts are:

» Thefirst part isrequired: thisisaset of tests that are performed on the tags of the item to be
converted.

» The second part is the action block that can be used to do things with the tags of objects that match the
tests and is contained in curly brackets{...}.

» Thethird part is the element type definition and sets the Garmin type and sometimes other parameters
that will be used if the tests match. This part is contained in square brackets| . ..].

Hereis an example of arule containing all three sections:

natural =cliff { name '${nane} cliff' | 'cliff' } [0x10501 resol uti on 22]
* Thetestssectionisnatural =cl i ff

 Theactionblockis{ name ' ${nane} cliff' | 'cliff' }

» The element type definition iS[0x10501 resol uti on 22]

Asageneral point, space and newlines don’t matter. There is no need to have rules all on the same line,
and you can spread them out over several lines and add extra spaces wherever you likeif it helpsto
make them easier to read.

Example with lots of extra space and newlines.

natural =cliff

{
nanme ' ${nanme} cliff'
| ‘cliff’
}

[
0x10501

resol uti on 22

]

Examplewith all unneeded spaces removed.

Stylerules

natural =cl i ff{nane' ${nane} cliff'|"cliff"}[0x10501 resol ution 22]

4.1.1. Tag and text values

Tag names and vales are often single words consisting of letters and perhaps digits. If however avalue
(or tag, although that isless common) contains a space or punctuation character then the whole value
must be enclosed in quotation marks. Y ou can use either single quotes (') or double quotes ().

If your text contains a quote then you must use the other kind of quote around the value.
hi ghway=pri mary
"hi ghway" ="pri mary" # quotes not needed, but do no harm

nane=' Main Street' # quotes needed to keep 'Main Street' as one thing
nanme="Ten O C ock Tavern" # Doubl e quotes used because text contains single quotes

4.2. Tag tests

The most common test is that a particular OSM tag has a given value. So for exampleif we have
hi ghway=not or way

This means that we look up the highway tag in the OSM input file and if it exists and has the value
motorway then this test has matched.

Y ou can a'so compare numeric quantities:
popul ati on > 10000

| anes >= 2

popul ati on < 10000000

Respectively, these mean: a population greater than ten thousand, aroad with at least two lanes and a
population less than one million.

Y ou may also use regular expressions:
ele ~ '\ d*00'

This checks whether ele is a multiple of 100.

4.2.1. Allowed operations
The following table describes the operations that may be used.

Table4.1. Full list of operations

Operation description and examples

tag=value This matches when atag has the given value.

tag!'=value Thisistrue when the tag does not have the given value, or the tag
isnot present at al.

tag=* Matches when the tag exists, regardless of its value.

tag!=* Matches when the tag does not exist.

tag < value Matches when the tag when converted as a number is less than

the given value. If the value is not numeric then thisis always
false. Thisisalso the caseif value contains a unit. Conversion

Stylerules

Operation description and examples

for the maxspeed tag can be done with the maxspeedkmh() and
maxspeedmph() function (see Functions).

tag<=value, Asabove, for lessthan or equal, greater than and greater than or
tag > value, tag equal.
>=value

tag ~REGEX Thisistrue when the value of the tag matches the given regular
expression. The Javaregular expression [:http://docs.oracle.com/
javase/1.4.2/docs/api/javalutil/regex/Pattern.html] syntax is
recognised. For examplename ~ ' . *[LI]ane' would match
every name that ended in Lane or lane.

I' (expr) The not operator (!) reverses the truth of the expression following.
That expression must be in brackets.

4.2.2. Combining tag tests

Although it is possible to convert many OSM nodes and ways just using onetag, it is also often
necessary to use more than one.

For example, say you want to take roads that are tagged both as hi ghway=uncl assi fi ed and | anes>2
differently to roads that are just hi ghway=uncl assi fi ed. In thistype of case, you might create two
separate rules as follows:

hi ghway=uncl assi fied & | anes>2 [0x06]
hi ghway=uncl assi fi ed [0x05]

This means that roads that are unclassified and have more than two lanes would use Garmin element
type 0x06, whereas unclassified roads without alanestag, or whereit isless or equal than 2 would use
type Ox05.

It isimportant to note that the order of the rulesisimportant here. The rules are matched in the order that
they occur in the style file and mkgmap stops trying to apply them after the first one that matches. If you
had the rules above in the reverse order, then the hi ghway=uncl assi f i ed rule would match first to any
OSM way with that tag/key pair, and the second rule would never get applied. Therefore, in general you
want the most specific rulesfirst and simpler, more general rules later on to catch the cases that are not
caught by the more complex rules.

Y ou can also combine alternatives into the one rule using alogical or, represented with a pipe () symbol.
For example

hi ghway=f oot way | hi ghway=path [0x07]

This meansif the road has either the highway=footway tag or the highway=path tags (or both), then
the condition matches and mkgmap would use type 0x07 for the map. This works exactly the same as if
you had written two separate rules - one for footway and one for path - and indeed is converted to two
separate rules internally when mkgmap runs.

You are not limited to two tests for agiven rule... you can combine and group tests in almost whatever
way you like. So for adlightly forced example the following would be possible:

pl ace=t own & (popul ati on > 1000000 | capital =true) | place=city

Thiswould match if there was apl ace tag which had the value t own and either the population was over
amillion or it was tagged a capital, or there was apl ace tag with thevaluecity.

:http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html
:http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html
:http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html

Stylerules

There used to be some restrictions on the kind of expression you could use. Now the only
restriction is you must have at least one test that depends on atag existing. So you cannot
match on everything, regardless of tags, or test for an object that does not have atag.

4.2.3. Comparing the values of two tags

Sometimes you may want to compare the values of two tags, rather than the value of one tag with afixed
value. Use adollar sign to indicate that you want the tag value.

|f you had the foll ow ng tags:
nane=Ff or d- y- Mor

name: en=Terrace Road

nane: cy=Ff ord- y- Mor

nanme
nanme

$nane:cy {...} # this would match
$nane:en {...} # and this would not

Thistestsif the value of the nare tag is the same as the welsh name tag (nane: cy)

It isworth noting that the normal case
hi ghway=pri mary

is exactly the same as

$hi ghway=pri mary

4.2.4. Functions

Functions calcul ate a specific property of an OSM element.

Table 4.2. Style functions

Function Node Way Relation Description

length() X X Calculates the length in m. For relations its the sum
of al member length (including sub relations).

area size() X Calculates areasize in (garmin units)®. A non
closed way has an area_size() of 0. In casea
polygon is an outer part of a multipolygon the
whole area size of all outer multipolygon partsis
returned.

The size of one (garmin unit)? in m? varies
depending on the latitude. Sample values:

5.71 m? at latitude 0°
4.03m? at (+-)45°
2.85m? at (+-)60°
0.5 m? at (+-)85°

Is_complete() X true if al nodes of away are contained in thetile.
f al se if some nodes of the way are missing in the
tile.

10

Stylerules

Function Node Way Relation Description

Is_closed() X t rue the way is closed (start and end point are the
same). f al se the way is not closed and cannot be
processed as polygon.

maxspeedkmh() X Retrieves the value of the maxspeed tag converted
to km/h.

maxspeedmph() X Retrieves the value of the maxspeed tag converted
to mph.

type() X X X Retrieves the type of the OSM element: node, way,
relation.

osmid() X X X Retrievesthe id of the OSM element. This can be

useful for style debugging purposes. Note that due
to internal changes like merging, cutting etc. some
element ids are changed and some have afaked id
> 4611686018427387904.

The following rule matches for al service wayslonger than 50m.

hi ghway=servi ce & | ength()>50

4.3. Action block

An action block isenclosed in braces{ ...} and contains one or more statements that can alter the
element being displayed; multiple statements are separated by *;" symbol. When there is an action block,
the element type definition is optional, but if used it must come after the action block.

A list of all the command that can be used in the action block follows. In the examples you will see
notation of the form ${ name}, thisis how tag values can be substituted into strings, in asimilar way to
many computer languages. For full details see the section on variable substitution.

4.3.1. add

The add command adds atag if it does not already exist. Thisis often used if you want to set the value of
atag as adefault but do not want to overwrite any existing tag.

For example, motorways are one way by default so we need to add the oneway=yes tag in the style so
that is treated as one way by the device. But there are some stretches of motorway that are one-way and
these will be tagged as oneway=no. If we used set then that tagging would be lost, so we use add.

hi ghway=not orway { add oneway=yes }
The other useisinin relations with the apply command.

All the same you can set any tag you want, it might be useful so you can match on it elsewhere in the
rules.

Y ou can also use substitutions.
{add nane='${ele}'; add name='${ref}';}

These two commands would set the name tag to the value of the ele tag if it exists, or to the value of the
ref tag if that exists.

You can aso give alist of alternative expressions separated with a vertical bar in the same way as on the
name command. The first one that is fully defined will be used.

11

Stylerules

{add key123 = '${nane:en}' | '${name}'; }

If key123 isnot set it will set key123 to the value of the name:en tag if it exists and to the name tag if
not.

4.3.2. set

The set command isjust like the add command, except that it sets the tag, replacing any existing value it
had.

4.3.3. delete

The delete command deletes a tag.

{ delete keyl123 }

4.3.4. deletealltags
The deletealltags command deletes all tags. Usually this stops all further processing of the element.

{ deletealltags }

4.3.5. addlabel

Each item in the Garmin map can have up to four labels. Usualy only the first label is displayed. On
some Garmin units the second label is used for routing instructions. The third and fourth label are known
to be used for address search only. The four labels can be assigned by setting the tags nkgnap: | abel : n
where n is anumber between 1 and 4.

The addlabel command assigns the first empty nmkgmap: | abel : n tag with the given value.
{addl abel ' ${name} (${ref})' | "${ref}' | '${nanme}'}

If both the name and r ef tags are are set, then the first alternative would be completed and the resulting
label might be Main & (Al). If just name was set, then the first two alternatives can not be fully and so
the final l1abel might in that case be Main S.

Highway shields can be used in the first label only. Y ou can use the notation ${ t agnane| hi ghway-
synbol : box}. Valid symbolsarei nt er st at e, shi el d, r ound, hbox, box and oval . The appropriate
kind of highway shield will be added to the value of t agnane. The exact result of the way it looksis
dependent on where you view the map.

4.3.6. name

This setsthefirst label of the element but only if it isnot already set. Thisis a helper action. The same
effect can be produced with different notations as it is shown in the following example where al three
lines have the same effect.

{nane ' ${nane} (${ref})' | '${ref}' | '${nane}'}
{add nkgmap: | abel : 1=" ${nanme} (${ref})’' | '${ref}' | '${nane}'}
nkgmap: | abel : 1! =* {set nkgmap: | abel : 1=" ${name} (${ref})' | "${ref}' | '${nane}'}

4.3.7. addaccess

The "addaccess' action sets all unset mkgmap access restriction tags to the given value. Thisis a helper
action to avoid long action blocks.

{ addaccess 'no' }

isthe same as

12

Stylerules

add nkgmap: f oot =no;

add nkgmap: bi cycl e=no;

add nkgmap: car =no

add nkgnmap: t axi =no;

add nkgmap: truck=no;

add nkgnmap: bus=no;

add nkgnmap: ener gency=no;

add nkgmap: del i ver y=no
}

4.3.8. setaccess

The "setaccess' action sets all mkgmap access restriction tags to the given value no matter if they
already have avalue or not. Thisis ahelper action to avoid long action blocks.

{ setaccess 'no' }

isthe same as

{
set nkgmap: f oot =no;
set nkgmap: bi cycl e=no;
set nkgmap: car =no;
set nkgmap: t axi =no;
set nkgmap: truck=no;
set nkgmap: bus=no;
set nkgmap: ener gency=no;
set nkgmap: del i very=no

}

4.3.9. apply

The "apply" action only makes sense in relations. Say you have arelation marking a bus route, but none
of the ways that are in the relation have any special tags to indicate that they form part of that bus route,
and you want to be able to tell from looking at the map which buses go where. Y ou can writearulein
therelationsfile such as:

type=route & route=bus {

apply {
set route=bus;
set route_ref="${route_ref}";

}

Then in the lines file you will need to write arule to match route=bus. All the relation rules are run
before any others so that this works.

The substitution ${r out e_r ef } takesthe value of the tag on the relation and appliesit to each of the
waysin therelation.

The substitution $(rout e_r ef) (with parenthesis, rather than curly brackets) can be used for accessing
the value of the tag on the actually processed member of therelation, e.g.

type=route & route=bus {
apply {
set route=bus;
set nane=' $(nane) ${route ref}"';

13

Stylerules

The "apply" action can be limited to members with a special role by adding role=rolevalue after the
apply keyword.

type=route & route=bus {
apply rol e=forward {
set route=bus;
set nanme=' $(nane) ${route ref}';

}
4.3.10. apply_once

The apply_once action islike appl y, but it will apply the action once per relation member. A round-trip
route relation may include the same ways multiple times, unless all member ways have been defined as
parallel one way streets.

4.3.11. echo

The echo action prints the element id plus atext to standard error. This can be used for quality checks
and debugging purposes.

hi ghway=not orway_| i nk & oneway!=* { echo "nmotorway_I|ink w t hout oneway tag" }

4.3.12. echotags

The echotags action prints the element id, all tags and values plus a text to standard error. This can be
used for style debugging purposes.

hi ghway=Il i ving_street { echotags "This is a living_street" }

4.4. Variables

Y ou can substitute the value of tags within strings in an action. A dollar sign ($) introduces the
substitution followed by the tag name surrounded by curly braces like so ${ nane} .

The most obvious use for variablesisin setting the name of the element. Y ou are able to use any
combination of tags to make the name from. Here we name afuel station by its brand and the namein
brackets following.

ameni ty=fuel { nanme '${brand} (${operator})' } [O0x2f01]

If the operator tag was not set, then the name would not be set because all substitutionsin a string must
exist for the result to be valid. Thisiswhy the "name" command takes alist of possibilities, if operator
was simply replaced with a blank, then you would have an empty pair of brackets. So you would fix the
previous rule by adding another name option.

aneni t y=f uel
{ nanme '${brand} (${operator})' | 'S${brand}' }
[0x2f01]

If only the brand tag exists, then the first option will be skipped and the second will be used.
4.4.1. Variable filters

The value of avariable can be modified by filters. The value of the tag can be transformed in various
ways before being substituted.

A filter is added by adding a vertical bar symbol "|" after the tag name, followed by the filter name, then
acolon":" and an argument. If there is more than one argument required then they are usually separated
by colonstoo, but that isnot arule.

14

Stylerules

${tagname|filter:argl: arg2}

Y ou can apply as many filter expressions to a substitution as you like.

${tagname|filterl:arg|filter2:arg}

Table4.3. List of all substitution filters

Name Arguments

Description

def def aul t

If the variable is not set, then use the argument as a default
value. This means that the variable will never be ‘unset’ in
places where that matters.

${ oneway| def : no}

conv fact or

Use for conversions between units. The only supported
version is from metersto feet number. It is multiplied by the
argument.

${ hei ght | conv: m=>ft}

subst frome>t o
from>to

Substitutes al occurrences of the string f r omwith the string
t o in the tag value. The => operator can be used for an exact
matches while ~> accepts regular expressionsin thefrom
attribute.

t o can be empty to remove the f r omstring altogether.
Example, if name ="Queen Street"

${ name| subst : Queen=>} returns" Street"

${ name| subst : Queen=>Ki ng} returns "King Street"

${ name| subst : . *\ s~>} returns"Street"

part separ at or
oper at or
part nunber

Split avalue in parts and returns one or more part(s) of it. If
par t nunber isnegative, the part returned is counted from the
end of the split

If not specified, the default separator is; and the first part is
returned (i.e. ${ nane| part:}=${nane| part:;:1}).

If the operator is: the part specified by par t nurmber is
returned.

If the operator is < or > the correspondent number of parts
before or after the par t nunber are returned

Example: if the value is "Aa#Bb#Cc#Dd#EE"
${ nane| part:#: 1} returnsAa

${ nane| part:#: -1} returns Ee

${ nane| part: #: 2} returns Bb

${ nane| part: #: - 2} returns Dd

${ nane| part: #>1} returns Bb#Cc#Dd#Eet#
${ nane| part: #<5} returns Aa#tBb#Cc#Dd#

15

Stylerules

Name Arguments Description

${ nane| part : #<- 1} returns Aa#Bb#Cc#Dd#

This can be especially useful for tags like ref, exit_to and
destination or to switch words, exampleif value is "wordl
word?2 ... wordN-1 wordN"

${name| part: :-1}, ${nane|part: <-1} returns"wordN,
wordl word2 ... wordN-1"

highway-symbol ~ synbol : max- Prepares the value as a highway reference such as"A21"
num nmax- al pha "[-80" and so on. A code is added to the front of the string so
that a highway shield is displayed, spaces are removed and
the text is truncated so as not to overflow the symbol.

${ref| hi ghway- synbol : box: 4: 8}
See below for alist of the hi ghway- symbol values.

The first number is the maximum number of charactersto
alow for references that contain numbers and letters. The
second is the maximum length of references that do not
contain numbers. If there isjust the one number then it is
used in both cases.

height me>f t Thisisthe same asthe conv filter, except that it prepends
a special separation character before the value which is
intended for elevations. Aswith conv the only supported
conversion currently is from meters to feet.

${ el e| hei ght: m=>ft}

not-equal t ag Used to check for duplicate tags. If the value of thistag is
equal to the value of the tag named as the argument to not -
equal , then value of thistag is set to undefined.

pl ace=* {
nanme ' ${nanme} (${int_nane| not - equal : nane})"'
| ' ${nanme}’
}

In that example, if the international nameis different to the
name then it will be placed in parenthesis after the name.
Otherwise there will just be the name as given in the "name"

tag.

substring start:end Extract part of the string. The start and end positions are
counted starting from zero and the end position is not
included.

${ name| substri ng: 2: 5} If the "name" was "Dorset Lane",
then theresult is"rse". If there isjust the one number, then
the substring starts from that character until the end of the
string.

16

Stylerules

4.4.2. Symbol codes

Hereisalist of all the symbolsthat can be created with images to give an idea of where they should be
used. The actual symbol will depend on the device that it is displayed on.

Table 4.4. Highway symbol codes

Shield name Symbol

Description

interstate @ US Interstate, digits only

shield US Highway shield, digits
orly ghway g

round US Highway round, digits
orly gnway g

hbox Box for major roads

box m Box for medium roads

oval Box for smaller roads

4.5. mkgmap internal tags

There are lots of tags prefixed with nkgmap: . Some of them need to be set in the style file to set specific
attributes of the Garmin map elements, e.g. access restrictions, labels, attributes required for address
search etc. Others are added to the OSM elements by mkgmap so that they can be evaluted in the style
files to change the processing.

4.5.1. Tags evaluated by mkgmap
These tags need to be set within the style file to set specific attributes of the Garmin map elements.

hi ghway=* & (bi cycl e=no |

bi cycl e=private) { set nkgmap: bi cycl e=' no' }

This rule defines that the road cannot be used by bicycles.

Table 4.5. Tagsfor routableroads

Attribute mkgmap tag Example Notes
Labels mkgmap: | abel : 1 Eastern Avenue Usualy only the first
mkgmap: | abel : 2 Al12 label is displayed.
nmkgmap: | abel : 3 On some units the
nmkgmap: | abel : 4 second label of roads
is displayed as routing
instruction. All labels are
used for address search.
Country mkgmap: count ry GBR Three letter SO code,
e.g. for GBR United
Kingdom
Region mkgmap: r egi on L ondon Borough of The regions name.

Waltham Forest

Useful if there are

17

Stylerules

Attribute

mkgmap tag

Example

Notes

multiple cities with the
same name.

City

nmkgmap: city

London

Street

nmkgmap: street

High Road Leyton

Thisvalueis used by
house number search to
match the addr : str eet
tag of an OSM element
with house number to
the corresponding road.
It must be set so that
house number search is
working.

Zipcode

nmkgmap: post al _code

E10 SNA

Access restrictions

nmkgmap: f oot
nmkgmap: bi cycl e
nmkgmap: car
nmkgmap: t axi
nmkgmap: t r uck
nmkgmap: bus
nmkgmap: emer gency
nmkgmap: del i very

no

These tags are evaluated
for routable lines (roads)
only. By default access
for a specific vehicle
typeisalowed. Only in
case the value of the tag
isno accessis blocked
for the given type.

Throughroute

nmkgmap: t hr oughr out e

no

If thistag is set to no
routing is allowed on
thisroad only if the start
or end point lies on the
road.

Carpool lane

nkgmap: car pool

YESs

If thistag is set to yes the
road is marked to have a
carpool lane. This does
not seem to work on all
units.

Toll road

nkgmap: t ol

YESs

If thistag is set to yes the
road can be used only
when paying a specific
toll.

Unpaved

nmkgmap: unpaved

yes

If thistag is set to yes
theroad is marked to be
unpaved. Some units can
avoid unpaved roads.

Ferry

nkgmap: ferry

yes

If thistag is set to yes
the line is marked to be
aferry line. Some units
can avoid ferry lines.

18

Stylerules

Attribute

mkgmap tag

Example

Notes

Road speed

nmkgmap: r oad- speed-
cl ass

2

A value between 0
and 7. Overridesthe
road_speed definition
in the element type
definition if thistagis
Set.

Road speed modifier

nmkgmap: r oad- speed

+1

Modifies the road speed
class by the given value.
In casethevalueis
prefixed with + or -

the road speed classis
modified. In case the
value does not start
with + or - the road
speed class value of the
element type definition
isoverriden.

Road speed limiters

nkgnmap: r oad- speed-
m n
nkgnmap: r oad- speed-
nax

Defines the minimum/
maximum road speed
class. Thiscan be used
to limit the modification
of the road speed class
(mkgmap: r oad- speed).

Road class

nkgmap: r oad- cl ass

Modifies the road class
defined in the element
type definition. In case
the valueis prefixed with
+ or - theroad classis
modified. In case the
value does not start with
+ or - theroad class
value of the element type
definition is overriden.

Road class limiters

nmkgmap: r oad- cl ass-
mn
nmkgmap: r oad- cl ass-
max

2

Defines the minimum/
maximum road class.
This can be used to
limit the modification
of the road class
(mkgmap: r oad- cl ass).

Table4.6. Tagsthat control thetreatment of roads

Tag

Description

Required mkgmap option

nkgmap: way- has- poi s

t rue for ways that have at least
one point with atag access=*,
barrier=*, Or hi ghway=*

link-pois-to-ways

19

Stylerules

Tag

Description

Required mkgmap option

nmkgmap: dead- end- check

Set tof al se to disable the dead
end check for a specific way

report-dead-ends

nmkgmap: f | ar e- check

Settotrue toforcetheflare
check for a specific way, set to
fal se todisableit

check-roundabout-flares

nkgmap: di r - check

Settof al se to tell mkgmap to
ignore the way when checking
roundabouts for clockwise
direction

check-roundabouts

nkgmap: no- di r - check

Settot r ue to tell mkgmap to
ignore the way when checking
roundabouts for clockwise
direction

check-roundabouts

Table4.7. POl addresstags

Attribute mkgmap tag Example Notes
Name mkgmap: | abel : 1 Pizza Express Names of the POI
nmkgmap: | abel : 2
nkgmap: | abel : 3
nmkgmap: | abel : 4
Country mkgmap: count ry GBR Three letter SO code,
e.g. for GBR United
Kingdom
Region mkgmap: r egi on Nottinghamshire The regions name.
Useful if there are
multiple cities with the
same hame.
City mkgmap: ci ty Nottingham
Street mkgmap: st r eet King Street
Housenumber mkgmap: housenunber 20
Zipcode mkgmap: postal _code NGI12AS
Phone mkgnap: phone +44 115 999999 Phone number in any

format

alpha 3 codes

4.5.2. Tags added by mkgmap

Wikipedia [http://en.wikipedia.org/wiki/ISO_3166-1 alpha-3] hasalist of all 1SO 3166-1

Some tags are added by mkgmap to indicate some property calculated by mkgmap.

nmkgmap: admi n_| evel 2=* { add nkgmap: count ry=" ${ nkgnap: admi n_I| evel 2}' }

20

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3

Stylerules

Thetag mkgmap: adni n_| evel 2 isadded to each OSM element if the bounds option is set. Intherule
above it is used to assign the country location.

Table 4.8. Tags added by mkgmap

Tag Description Required mkgmap option

mkgmap: admi n_| evel 2 Name of the bounds
boundar y=admni ni strative
relation/polygon with
adnm n_| evel =2 theelement is
located in

mkgmap: admi n_| evel 3 Name of the bounds
boundary=admi ni strati ve
relation/polygon with
adnmi n_| evel =3 theelement is
located in

mkgmap: admi n_| evel 4 Name of the bounds
boundar y=admi ni strative
relation/polygon with
adm n_| evel =4 theelement is
located in

mkgmap: admi n_| evel 5 Name of the bounds
boundar y=adni ni strative
relation/polygon with
adni n_| evel =5 the element is
located in

mkgmap: admi n_| evel 6 Name of the bounds
boundary=admi ni strati ve
relation/polygon with
adnmi n_| evel =6 the element is
located in

mkgmap: admi n_| evel 7 Name of the bounds
boundar y=admni ni strati ve
relation/polygon with
adnm n_| evel =7 theelement is
located in

mkgmap: admi n_| evel 8 Name of the bounds
boundar y=admni ni strati ve
relation/polygon with
adnm n_| evel =8 theelement is
located in

mkgmap: admi n_| evel 9 Name of the bounds
boundar y=admni ni strative
relation/polygon with
adnmi n_| evel =9 theelement is
located in

21

Stylerules

Tag Description Required mkgmap option

mkgmap: admi n_| evel 10 Name of the bounds
boundar y=admi ni strative
relation/polygon with
adnmi n_| evel =10 theelement is
located in

mkgmap: admi n_| evel 11 Name of the bounds
boundar y=admi ni strative
relation/polygon with
adm n_| evel =11 the element is
located in

mkgmap: post code Name of the postal code relation/ bounds
polygon the element is located in

mkgmap: ar ea2poi Thevalueistrue if thePOl is add-poi-to-areas
derived from a polygon

mkgmap: | i ne2poi Thevalueistrue if thePOl is add-poi-to-lines
derived from aline

mkgmap: | i ne2poi t ype Thetag is set for each POI add-poi-to-lines
generated from aline. Possible
valuesare: start, end, m d,

i nner.

mkgmap: exi t _hi nt t r ue for the part on link roads process-exits
that should contain information
about the exit

mkgnap: exi t _hi nt _nane The nane tag value of thelinks process-exits
exit node

mkgmap: exi t _hint_ref Theref tag value of the links exit process-exits
node

mkgmap: exit_hint_exit_to Theexi t _t o tag value of the process-exits
links exit node

mkgmap: dest _hi nt t rue for the part on link roads process-destination

that should contain destination
information about the link

mkgmap: synt hesi sed Thevalueisyes if theway was make-cycleways or make-
added by the make-cycleways opposite-cycleways
option

mkgmap: np_cr eat ed Thevalueistrue if theway was none

created by the internal multi-
polygon-relation handling

Table 4.9. Other internal tags

Tag Description

mkgmap: ski pSi zeFi | ter If settotrue theline or polygon will passthe size
filter, no matter what size it has

22

Stylerules

4.6. Element type definition
As noted above thisis contained in square brackets and if used must be the last part of therule.

The first and only mandatory part of this section is the Garmin type code which must always be written
in hexadecimal. Following this the element type definition rule can contain a number of optional
keywords and values.

4.6.1. level

Thisisthe highest zoom level that this element should appear at (like EndLevel in the mp format). The
lower the level the detailed the view. The most detailed, most zoomed in, level islevel 0. A map will
usually have between three and five levels. If the level for an object is not given then it defaults to O and
so the specified feature will only appear at the most detailed level.

In the following example, we set highways to appear from zoom level 4 down to zoom level O:

hi ghway=not or way [0x01 | evel 4]

You can usel evel to place elementsinto the layers of the map that you want but you can’t
force the device to actually display them.
Some pieces of software (such as QLandkarteGT, | believe) will honour your selections,

but actual GPS devices have their own ideas about which POI’ s can be shown at which
resol utions.

Level ranges. You can also give arange (e.g. 1-3) and the map will then contain the object only
between the specified levels.

hi ghway=not or way [0x01 | evel 3-5]

In this example, motorways will appear at zoom level 5, which is most zoomed out, and continue to be
visible until zoom level 3, which is moderately zoomed in, and then will not be shown in zoom levels 2,
1 and O (most zoomed-in).

Of course you are unlikely to want a feature to disappear as you zoom in, but this can be used

o for interesting effects where a different representation takes over at the lower zoom levels.
For example a building may be a point at high levels and then become a polygon at lower
levels.

4.6.2. resolution

Thisis an alternative way of specifying the zoom level at which an object appears. It is specified as a
number from 1-24, which corresponds to one of the zoom levels that Garmin hardware recognises. Y ou
should not use resolution if you have used level as they achieve the same outcome.

In either case, the mapping between level and resolution is given in the options style file, where you will
see something like this:

The | evels specification for this style
#
l evel s = 0:24, 1:23, 2:22, 3:20, 4:18, 5:16

This setslevel zero equal to resolution 24, level 1 to resolution 23 and so on.

Although the default style usesr esol ut i on rather than | evel it ison the whole much easier to use
| evel asitisimmediately clear where the element will end up. If you usear esol uti on thatis
‘between’ two levels for example it will only show up in the lower one.

23

Stylerules

Resolution ranges. Just aswith levels, you can specify arange of resolutions at which an object
should appear. Here is an example.

hi ghway=r esi denti al [0x06 resol ution 16-22 conti nue]
hi ghway=r esi denti al [0x07 resol uti on 23-24]

This example creates roads of type 0x06 between resolutions 16 and 22, then roads of type 0x07 between
resolutions 23 and 24. This example makes use of the continue statement, which is discussed in more
detail below.

Since 24 is the default upper bound for arange, that second range could just have been
o written as the single number ‘23'.

4.6.3. default_name

If the element has not already had a name defined elsewhere in the rule, it will be given the name
specified by def aul t _name. This might be useful for things that usually don’t have names and don’t
have a recognisable separate Garmin symbol. Y ou could give a default name of ‘bus stop’ for example
and all bus stops that didn’t have their own name would now be labelled as such.

o Be careful to use this sparingly and not overwhelm the map or the search.

4.6.4. road_class

Setting this makes the line a"road" and it will be routable and can be part of an address search. It gives
the class of the road where class 4 is used for major roads that connect different parts of the country,
class 3 is used for roads that connect different regions, down to class O which is used for residential
streets and other roads that you would only use for local travel.

It isimportant for routing to work well that most roads are class 0 and there are fewer and fewer roadsin
each of the higher classes.

Table4.10. Road classes

Class Used as

4 Major HW/Ramp

3 Principa HW

2 Arterial St/ Other HW

1 Roundabout / Collector

0 Residential Street / Unpaved

road / Trail

4.6.5. road_speed

This keyword is used along with r oad_cl ass to indicate that the lineisa"road" that can be used for
routing and for address searches. It is an indication of how fast traffic on theroad is. O is the slowest and
7 the fastest. Thisis not a speed limit and does not activate the maximum speed symbol on the newer
Garmin car navigation systems. The speed limits that Garmin knows are shown in the following table:

24

Stylerules

Table4.11. Road Speeds

road_speed highest speed

No speed limit

70 mph / 110 kmh
60 mph / 90 kmh
50 mph / 80 kmh
35 mph / 60 kmh
25 mph / 40 kmh
15 mph/ 20 kmh
3 mph/5kmh

OR[N W o O

4.6.6. continue

As discussed above, style rules are matched in the order that they occur in the style file. By default, for
any given OSM object mkgmap will try each rule in turn until one rule wth a element type definition
matches; it will then stop trying to match further rules against the current OSM object. If the rule only
has an action block mkgmap will continue to find other matches.

However, if you add a continue statement to the definition block of a rule, mkgmap will not stop
processing the object but will instead carry on trying to match subsequent rules until it either runs out of
rules or finds a matching rule that does not include a continue statement.

Thisfeature is used when you want more than one symbol to result from asingle OSM element. This
could be for clever effects created by stacking two lines on top of each other. For example if you want to
mark a bridge in adistinctive way you could match on br i dge=yes, you would then amost always use
cont i nue SO that the hi ghway tag could be matched later. If you failed to do this then there might be a
break in the road for routing purposes.

Note that by default when using the continue statement the action block of the rule (if there is one)
will only be applied within this rule and not during any following rule matches. Use the continue
with_actions statement if you want to change this behaviour (see next section).

4.6.7. continue with_actions

The with_actions statement modifies the continue behaviour in such away, that the action block of this
ruleis also applied, when this element is checked for additional conversions.

Example of a full element type definition.

[0x2 road_cl ass=3 road_speed=5 | evel 2
default _nanme 'exanple street' continue with_actions]

4.7. Including files

Its often convenient to split afile into smaller parts or to use the same rules in two different files. In
these cases you can include one rule file within another.

i ncl ude "inc/conmmon";

Here some common rules have been included in arulefile from adirectory called "inc" within the style.
Note that the line ends in a semi-colon which is easy to forget.

25

Stylerules

Theincluded files don’'t have to be located within the style and can be anywhere el se.

When you include afile, the effect is exactly asif you had replaced the include line with the contents
of thefile. Ani ncl ude directive can occur anywhere that arule could start, and it is possible to include
another file from with in the file that is included.

Including from another style. Itisaso possible to include afile from another style. To do thisyou
simply add f r om st yl enane to the end of the include statement.

i ncl ude "points" fromdefault;

That will include the poi nt s file from the default style. This might be useful if you want to only change
afew things about the default style.
4.8. Finalize section

The points, lines and polygons style files can have afinalize section at the end of the stylefile. It starts
withtheline<final i ze>

The finalize section contains actions only and must not have an element type definition. Itsrules are
executed each time an element type definition in the style file matches. The finalize section is often
useful to set the mkgmap internal tags.

Example 4.1. Finalize section in the linesfile with access handling
Two elements tagged with

Way 1: hi ghway=not orway, ref=Al
Way 2: hi ghway=servi ce, nane=Mai n Road, access=no, foot=yes, bicycle=yes

using the linesfile

hi ghway=not or way [0x01 road_cl ass=4 road_speed=7 resolution 15]
hi ghway=servi ce [0x07 road_cl ass=0 road_speed=1 resol ution 24]

<finalize>

hi ghway=* { name '${nanme} (${ref})' | '${name}' | "'${ref}' }
hi ghway=not orway { add bi cycl e=no; add foot=no }

bi cycl e=* { add nkgmap: bi cycl e=' ${bi cycle}' }

f oot =* { add nkgmap: foot="${foot}"' }

access=* { addaccess ' ${access}' }

will result in

Way 1: hi ghway=not orway, ref=Al, nkgnap:|abel:1=Al, nkgmap: f oot =no,
nkgmap: bi cycl e=no

Road 1 in Garmin map: Type 0x01, Nane 'Al', no access for bicycle and foot

Way 2: hi ghway=servi ce, name=Main Road, access=no, foot=yes, bicycle=yes,
nkgmap: | abel : 1=Mai n Road, nkgmap: f oot =yes, nkgmap: bi cycl e=yes,
nkgmap: car=no, nkgnap:truck=no, nkgmap: bus=no,

Road 2 in Garnin map: Type 0x07, Nanme 'Main Road', no access for all vehicle

types except bicycle and foot

Actionsin the finalize section are not persistent in terms of the cont i nue or cont i nue
wi t h_acti ons statement

26

Stylerules

4.9. Troubleshooting

For each node/way/relation, mkgmap goes through the tags exactly once in order from the top of thefile
downward. For each rule that matches, any action block will be run. As soon as arule that ends with a
type definition is found then processing stops and that is the Garmin symbol that is produced.

The only exception isif the Type Definition contains the cont i nue statement. In that case mkgmap will
continue looking for further matches.

» Where possible always have the same tag on the left. Thiswill make things more predictable.

» Always set made-up tag names if you want to also match on them later, rather than setting tags that
might be used already.

» Usetheecho and echot ags actions to understand what’ s going on during style processing.

4.10. Some examples

The following are some examples of style rules, with explanations of what they do.

4.10.1. Simple examples

In the majority of cases everything isvery simple. Say you want roads that are tagged as
highway=motorway to have the Garmin type 0x01 ("motorway") and for it to appear up until the zoom
level 3.

Then you would write the following rule.

hi ghway=not or way [0x01 | evel 3]

Nodes that have an id and a subid are referenced by concatenating both ids.
aneni ty=bank [O0x2f06 |evel 3]

Thiswill be explained in more detail in the following sections along with how to use more than one tag
to make the choice.

4.10.2. More involved examples

A few tips and tricks showing how the rules can be used to create aimost any effect.

Example 4.2. Internet cafes
aneni ty=cafe & internet_access=w an {nane '${nanme} (wifi)'} [O0x2al4d resol ution 23]
Checksto seeif an OSM object has both the amenity=cafe and internet_access=wlan key/tag pairs. If

name=Joe s Coffee Shop, then the Garmin object will be named Joe' s Coffee Shop (wifi). The Garmin
object used will be Ox2al4 and the object will only appear at resolutions 23 and 24

27

Stylerules

Example 4.3. Guideposts

i nf or mat i on=gui depost
{ nane '${nane} - ${operator} - ${description} '
| *${nanme} - ${description}
"${ nane}'
"${description}’
"${operator}’

|
|
|
| "${ref}’

}

[0x4c02 resol ution 23 default _name 'Infopost']

Checksto seeif an OSM object has the information=guidepost key/tag pair. If so then the name will be
set depending on the available nane, oper at or and descri pti on tags asfollows.

1. If for example we have the tagsname="Rout e 7", oper at or =" Ki zonmba Nati onal Parks" and
description="Trail signpost",thenthe Garmin object will be named Route 7 - Kizomba
National Parks - Trail signpost.

2. If the OSM aobject just has the name and descri pt i on tags set, the Garmin object will be named
Route 7 - Trail signpost

3. If just the nane tag is available, the Garmin object will be named Route 7
4. If just thedescri pti on tag isavailable, the Garmin object will be named Trail signpost;
5. and if just the oper at or tagisavailable, the Garmin object will be named Kizomba National Parks.

The Garmin object used will be 0x4c02 and will only appear at resolutions 23 and 24

Example 4.4. Car salesrooms
shop=car {nanme '${nanme} (${operator})' | '${name}' |' ${operator}'} [O0x2f07 resolution 23]

If name="Alice' s Car Salesroom" and operator=Nissan, the Garmin object will be named Alice's Car
Salesroom (Nissan)

Example 4.5. Opening hoursin postcode field

Thisisatrick to get opening hoursto show up in the postcode field of aPOI. Trickslike this can
enhance the map for certain uses, but of course may prevent the proper use of the postcode field.

openi ng_hours=* {set addr:postcode = '${addr: postcode} open ${openi ng_hours}'
| ' open ${opening_hours}'}

For any OSM object which has the opening_hours key set to a value, this sets the postcode to include
the opening hours. For example, if addr:postcode=90210, addr:street=Alya Street, addr:city=L agos and
addr:housenumber=7 and opening_hours=09.00-17.00, the address field of the Garmin POI will be 7,
Alya Street, Lagos, 90210 open 09.00-17.00.

28

Chapter 5. Creating a style

5.1. Testing a style

Y ou can test your style by calling mkgmap with the - - st yl e- fi | e=path-to-styleand the- -1 i st -

styl es option. If you see your style listed, then your style is recognized by mkgmap. Additional tests
are performed if you use the - - check- st yl es option. The type values are verified to make sure that they
are valid. Further checkstry to find rules which assign aroutable type to a line without making it aroad
by assigning road_class or road_speed. Thisis known to cause problems with routing in routable maps.
Then you can test if your styleisvalid by using it when creating a map. A style can be used just asit was
created, but if you want to make it available to othersit will be easier if you make a zip file out of it and
then you just have the one file to distribute. You just can zip al files of the style. Several different styles
can be placed into the same zip archivefile.

To use azipped style, you can use - - st yl e-fi | e=stylename. zi p. If there is more than one stylein the
zipfile, thenyou can use- - styl e-fi |l e=zZipname. zi p - - st yl e=Stylename.

5.1.1. Tests performed by check-styles

The - - check- st yl es option verfies that your style uses type values which can processed by mkgmap.
The following rules are verified:

1. If atypeis s 0x0100 (means it has more than one byte), the rightmost byte must be between 0x00 and
Ox1f, so e.g. Ox011f is ok, 0x0120 is not.

2. If atypeis s 0x010000, it is an extended type, which can be used for points, lines, and polygons.

3. If thetypeis not extended, it must be 5, 0x0100 for a point, < Ox3f for aline, and < Ox7f for a
polygon.

4. The polygon type Ox4a.is reserved for the overview map.

5. Itisknown that the usage of routable types for non-routable linesin resolution 24 can cause routing
problems (e.g. address search doesn’t work). The check will flag rules that assign a routable type for
alinein resolution 24 without giving road class or road speed. A routable typeis between 0x01 and
0x13 or one of: Ox1a, Ox1b, Ox16.

5.2. Making a style package

A style can be used just as it was created, but if you want to make it available to othersit will be easier if
you combine all theindividual filesinto asingle archivefile.

5.2.1. Zip archive

The first way of doing thisisto combine the filesinto a zip file and then you just have the onefile to
distribute.

To use azipped style, you can use --style-file=stylename.zip

It does not matter if you include the directory holding the files or not in the archive. The style is found
by searching for thever si on file.

Y ou can have more than one style in the zip file, each in their own directory. In this case you must
include the top level directories of the style (and you can include other parent directories as well if you

29

Creating astyle

like). If there is more than one style in the zip file, then you can use the - - st yl e option alongside the - -
styl e-fil e option. --style-file=zipname.zip --style=stylename.

Example5.1. Style package layout

- nystyles
| -- cycle

| |-- lines
| | -- points
| | -- pol ygons
| T-- version
“-- hiking

|-- lines

| -- points

| -- pol ygons
T-- version

Here there are two styles named cycle and hiking. You can select the *hiking’ style with the options --
style-file=mystyles.zip --style=hiking
5.2.2. Simple file archive

Thisisformed by appending all of the files of astyle into asingle file separated by lines that contain the
file namein triple angled brackets.

Singlefile archive.

<<ver si on>>>
0

<<<poi nt s>>>
aneni t y=doct or [0x2a2a | evel O]
More point definitions here...

<<<| | nes>>>
All the line definitions here..

The file must have aname ending in . st yl e to be recognised.

Thisfile can be easily created in its entirity in atext editor, but you can also convert between the files-in-
a-directory format and the single-file format using the following command:

(to be typed all on one line)
java -cp nkgmap.jar uk.ne. parabol a. ntkgmap. osnstyl e. Styl el np
nmystyle > nystyle.style

To convert back then supply the file as the argument, rather than the directory.

30

Chapter 6. About

6.1. Licence

This manual is released under the Creative Commons Attribution-ShareAlike 2.0 license [http://
creativecommons.org/licenses/by-sa/2.0/]. It makes use of some material that was added to the OSM
Wiki which is release under the same licence.

6.2. Authors and acknowledgments

This manual is created from material that originated from the mkgmap doc files and added to OSM wiki.
While on the OSM wiki modifications were made by many people.

People who have contributed suggestions and corrections to this document are: Carlos Davila, Geoff
Sherlock

Thelist of nicknames of everyone that had modified the wiki pages at the time that this manual was
created is as follows. Brogo, Christian Gawron, Csdf, De muur, Derstefan, DirkS, Extremecarver,
Gernat, !i!, Jinx1971, Katpatuka, MarkS, Master, Mezzanine, Nakor, Nop, Richard, Skela,
SomeoneElse, Tommybgoode, Ulfl, Walterschloegl, WanMil, Willem1, Y ggdrasil

31

http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/

	Conversion Style manual
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Designing the map
	2.1. The Garmin Map
	2.1.1. Resolution
	2.1.2. Level
	2.1.3. Overview Level

	Chapter 3. The structure of a style
	3.1. Files
	3.1.1. Top level folder

	3.2. The version file
	3.3. The info file
	3.4. The options file
	3.4.1. Non command line options

	3.5. The points file
	3.6. The lines file
	3.7. The polygons file
	3.8. The relations file

	Chapter 4. Style rules
	4.1. Introduction
	4.1.1. Tag and text values

	4.2. Tag tests
	4.2.1. Allowed operations
	4.2.2. Combining tag tests
	4.2.3. Comparing the values of two tags
	4.2.4. Functions

	4.3. Action block
	4.3.1. add
	4.3.2. set
	4.3.3. delete
	4.3.4. deletealltags
	4.3.5. addlabel
	4.3.6. name
	4.3.7. addaccess
	4.3.8. setaccess
	4.3.9. apply
	4.3.10. apply_once
	4.3.11. echo
	4.3.12. echotags

	4.4. Variables
	4.4.1. Variable filters
	4.4.2. Symbol codes

	4.5. mkgmap internal tags
	4.5.1. Tags evaluated by mkgmap
	4.5.2. Tags added by mkgmap

	4.6. Element type definition
	4.6.1. level
	4.6.2. resolution
	4.6.3. default_name
	4.6.4. road_class
	4.6.5. road_speed
	4.6.6. continue
	4.6.7. continue with_actions

	4.7. Including files
	4.8. Finalize section
	4.9. Troubleshooting
	4.10. Some examples
	4.10.1. Simple examples
	4.10.2. More involved examples

	Chapter 5. Creating a style
	5.1. Testing a style
	5.1.1. Tests performed by check-styles

	5.2. Making a style package
	5.2.1. Zip archive
	5.2.2. Simple file archive

	Chapter 6. About
	6.1. Licence
	6.2. Authors and acknowledgments

