fx Documentation
Release 0.1

Philip Xu

September 24, 2012

1 fx-an approach to coding higher-order functions
1.1 Introduction
1.2 Requirements
1.3 Installation
1.4 License i it
15 Links o

2 Tutorial
2.1 Function Creation
2.2 Function Invocation
2.3 Function Application
2.4 Function Composition
2.5 FunctionPipeline.
2.6 Reversed Function Application
2.7 Implicit Function Invocation
2.8 Overloaded Operators
29 Utility Functions

3 API Reference
3.1 Function Wrapper
3.2 Utility Functions
33 Alias

4 Changelog

5 Indices and tables

Python Module Index

Index

CONTENTS

13

....................... 13
....................... 18
....................... 18

19

21

23

25

fx Documentation, Release 0.1

Contents:

CONTENTS 1

fx Documentation, Release 0.1

2 CONTENTS

CHAPTER
ONE

FX - AN APPROACH TO CODING
HIGHER-ORDER FUNCTIONS

’

|_I |_,_ligher-order function coding.

1.1 Introduction

TL;DR - YAGNL

Inspired by Haskell‘s rich set of operators, this is an approach to coding higher-order functions with operators in
Python.

“It’s fun... It’s insane... It’s insanely fun.”
—1John Doe

1.1.1 Features

* Currying functions with <<, &

* Piping output of functions with |

¢ Composing functions with * %

* Flipping order of arguments of function with ~

¢ and more

1.1.2 Examples

>>> from fx import f

>>> double_all = f(map) << 2 ._mul__ | list
>>> double_all([1, 2, 31])

(2, 4, 6]

>>> double_all |= f(map) << str | ’ ’.join

>>> double_all([1, 2, 31])

12 4 6

>>> sum_upto = 1 .__add__ | f(range) << 1 | sum

http://www.haskell.org/
http://www.python.org/

fx Documentation, Release 0.1

>>> sum_upto (100)

5050

>>> parse_hex_str = ~f(int) << 16

>>> parse_hex_str (' ff’)

255

>>> parse_hex_str (' cO0ffee’)

12648430

>>> # project euler problem 1

>>> euler_pl = f(range) << 1 | f(filter) << (lambda n: n % 3 == 0 or n % 5 == 0) | sum
>>> euler_pl (10)

23

>>> euler_pl (1000)

233168

>>> # project euler problem 20

>>> fact = f(lambda n: 1 if n == 1 else n * fact(n - 1))
>>> euler_p20 = str x* fact sum xx f(map) << int

>>> euler_p20(10)

27

>>> euler_p20(100)

648

1.2 Requirements

¢ CPython >=2.6

1.3 Installation

Install from PyPI:

pip install fx

Install from source, download source package, decompress, then cd into source directory, run:

make install

1.4 License

BSD New, see LICENSE for details.

1.5 Links

Documentation: http://fx.readthedocs.org/

Issue Tracker: https://bitbucket.org/pyx/fx/issues/

Source Package @ PyPI: http://pypi.python.org/pypi/fx/
Mercurial Repoistory @ bitbucket: https://bitbucket.org/pyx/fx/
Git Repoistory @ Github: https://github.com/pyx/fx/

4 Chapter 1. fx - an approach to coding higher-order functions

http://fx.readthedocs.org/
https://bitbucket.org/pyx/fx/issues/
http://pypi.python.org/pypi/fx/
https://bitbucket.org/pyx/fx/
https://github.com/pyx/fx/

CHAPTER
TWO

TUTORIAL

“Divide et impera.”

2.1 Function Creation

Function is a function/callable wrapper.

>>> from f£x import Function

>>> length = Function(len)
>>> length([1, 2, 3])
3

Alias f can be used instead, for convenience and succinctness.

>>> from fx import f
>>> length = f (len)
>>> length (range (5))
5

When used on a non-callable object, the newly created Function instance will return the same object when called
as a function.

>>> the_answer = f (42)
>>> the_answer ()
42

2.2 Function Invocation

Calling method invoke () ona Function instance will invoke the wrapped function with supplied arguments.

>>> minus = f(lambda a, b: a - b)
>>> minus.invoke (5, 2)
3

call () isan alias to invoke ().

>>> minus.call (5, 2)
3

Function overloads _ call (), which means, instance of Funct ion can be invoked like a normal function.

fx Documentation, Release 0.1

>>> minus (3, 2)
1

Keyword arguments are supported as well.

>>> minus.invoke (b=2, a=3)
1

>>> minus.call (b=2, a=3)

1

>>> minus (b=2, a=3)

1

Function overloads __ pos__ (), which implements unary operator +, when used, calls invoke () with no argu-
ments.

>>> 1st = f(list)
>>> 1st ()

>>> +1st

>>> 1st () == +1st
True

value is a read-only property, when accessed, calls invoke () with no arguments.

>>> 1lst (range (3))
[0, 1, 2]
>>> lst.value

L]

2.3 Function Application

Partial function application can be done with method apply ().

>>> five_minus = minus.apply (5)

>>> five_minus (2)

3

>>> five_minus_four five_minus.apply (4)
>>> five_minus_four.value

1

apply () accepts arbitrary arguments that wrapped function accepts.

>>> five_minus_four = minus.apply (5, 4)
>>> five_minus_four.value
1

>>> five_minus_four

minus.apply (b=4, a=5)
>>> five_minus_four.value

Operator << is overloaded as function application operator, so the above code can be rewritten with << like this.

>>> five_minus = minus << 5

>>> five_minus (2)

3

>>> five_minus_four five_minus << 4
>>> five_minus_four.value

6 Chapter 2. Tutorial

fx Documentation, Release 0.1

>>> five_minus_four = minus << 5 << 4
>>> five_minus_four.value
1

<<= works as well.

>>> m = minus
>>> m <<= 5
>>> m <<= 4
>>> m()

1

>>> m.value

1

Operator & is overloaded as function application operator, too.

>>> five_minus = minus & 5

>>> five_minus (2)

3

>>> five_minus_four = five_minus & 4
>>> five_minus_four.value

1

>>> five_minus_four = minus & 5 & 4
>>> five_minus_four.value

1

>>> m = minus

>>> m &= 5

>>> m &= 4

>>> m()

1

>>> m.value

1

Why do we need two different operators doing seemingly the same thing? It is because they have different precedence,
and that helps.

Consider this scenario, we want to do something to each element in a sequence, one way to do it is using map maps a
function over this sequence.

>>> seq = [1, 3, 5, 7, 9]
>>> list (map(str, seq))
[Ill, I3I, I5I, I7I, I9I]

With partial function application, even functions require more than one arguments can be used to map over a single
sequence, for example, we can double every element in this way.

>>> mul = f(lambda a, b: a * Db)
>>> double = mul << 2

>>> list (map (double, seq))

[2, 6, 10, 14, 18]

Instead of hard-coding seq here, we can use partial function application technique again, creating a function that can
be re-used over and over again.

>>> double_all = f (map) << double
>>> list (double_all (seq))

[2, 6, 10, 14, 18]

>>> list (double_all (range(5)))

[o, 2, 4, 6, 8]

2.3. Function Application 7

fx Documentation, Release 0.1

>>> list (double_all(’Hello’))
[IHH!, leeI’ ’ll’, llll, ’OO’]

If we don’t need all these intermediate functions, double_all can be coded in one line.

>>> double_all = f(map) << (f(lambda a, b: a * b) << 2)
>>> list (double_all (seq))
[2, 6, 10, 14, 18]

This is where operator & comes in handy, by using both function application operators, we can eliminate some paren-
theses.

>>> double_all = f(map) & f(lambda a, b: a * b) << 2
>>> list (double_all (seq))
[2, 6, 10, 14, 18]

2.4 Function Composition

In the above example, we have to wrap the result of map with a list constructor 1ist just to make sure the result will
be the same in Python 2.x and Python 3.x, because this is one place where Python 2.x and Python 3.x differ.

>>> double_all = f(map) & f(lambda a, b: a * b) << 2
>>> list (double_all (seq))
[2, 6, 10, 14, 18]

But typing all these 1ist (and) is no fun, there is a way to avoid this, we can compose double_all with 1ist.

>>> new_double_all = f(list) .compose (double_all)
>>> new_double_all (seq)
[2, 6, 10, 14, 18]

=+ is the function composition operator, keep in mind that this operator is right-associative, just like the function
composition operator (.) in Haskell.

>>> new_double_all = f(list) =+ double_all
>>> new_double_all (seq)
[2, 6, 10, 14, 18]

Because both __pow__ () and __rpow__ () are implemented, of the two operants of operator * «, one instance of
Function will suffice to make it work.
Since double_all is already an instance of Funct ion, there is no need to wrap 1ist in a Function.

>>> new_double_all = list %+ double_all
>>> new_double_all (seq)
[2, 6, 10, 14, 18]

With function composition operator * «, it is possible to refine double_all into a one-liner.

>>> double_all = list %+ f(map) & f(lambda a, b: a » b) << 2
>>> double_all (seq)
[2, 6, 10, 14, 18]

Here is a more complicated example.

>>> from itertools import count, takewhile as tw
>>> takewhile = £ (tw)
>>> select = f(filter)

8 Chapter 2. Tutorial

fx Documentation, Release 0.1

>>> odd = lambda n: n % 2
>>> 1t_20 = lambda n: n < 20
>>> reverse = lambda s: s[::-1]

>>> + reverse x* list % (select << odd) =+ (takewhile << 1t_20) =** count
{9, 17, 15, 13, 11, 9, 7, 5, 3, 1]

It’s easier to read function composition expressions from right to left:

From all whole numbers (count), we keep taking numbers as long as it is less than 20 (takewhile
<< 1t_20), pick all odd numbers from the resulting sequence (select << odd), make it into a list
(1ist), reverse it (reverse), and get the result (+).

Warning: Coding in this style is fun, but tend to get hairy soon. Don’t Try This at Home.

2.5 Function Pipeline

When called with a callable, method pipe () will return an instance of Funct ion, which when invoked, will pipe
the output of current function into that callable. It works very similarly to pipelines in Unix-like systems, thus the
name.

To put it simply, piping the output of functions does the same thing as function composition, just in reversed direction,
that is, it is evaluated from left to right.

Remember the examples from last section?

>>> double_all = f(map) & f(lambda a, b: a * b) << 2
>>> list (double_all (seq))

[2, 6, 10, 14, 18]

>>> new_double_all = f(list) .compose (double_all)

>>> new_double_all (seq)

[2, 6, 10, 14, 18]

Rewriting new_double_all with pipe ().

>>> new_double_all = double_all.pipe(list)
>>> new_double_all (seq)
[2, 6, 10, 14, 18]

Like in a Unix shell, we can use | as pipe operator.

>>> new_double_all = double_all | list
>>> new_double_all (seq)
[2, 6, 10, 14, 18]

Both _ _or__ () and __ror__ () are implemented, so only one of the two operants needs to be an instance of
Function to make it work.

Let’s take a look at the last example of last section, again.

>>> from itertools import count, takewhile as tw
>>> takewhile = f (tw)

>>> gselect = f(filter)

>>> odd = lambda n: n % 2
>>> 1t_20 = lambda n: n < 20
>>> reverse = lambda s: s[::-1]

>>> + reverse x* list % (select << odd) *+* (takewhile << 1t_20) =% count
rie, 17, 15, 13, 11, 9, 7, 5, 3, 1]

2.5. Function Pipeline 9

https://en.wikipedia.org/wiki/Pipeline_%28Unix%29

fx Documentation, Release 0.1

The following proves that function pipeline is equivalent to function composition in reversed direction.

>>> s = count | (takewhile << 1t_20) | (select << odd) | list | reverse
>>> +s

(19, 17, 15, 13, 11, 9, 7, 5, 3, 11

Since operator << has higher precedence than |, parentheses can often be omitted.

>>> s = count | takewhile << 1t_20 | select << odd | list | reverse
>>> +g
{9, 17, 15, 13, 11, 9, 7, 5, 3, 1]

2.6 Reversed Function Application

It is sometimes convenient to reverse the expected order of arguments, method reverse_apply () helps in this
situation.

It returns an instance of Funct ion, which takes arguments like the original one, but in reversed order.

>>> minus = f(lambda a, b: a - b)
>>> minus (2, 1)

1

>>> subtract = minus.reverse_apply ()
>>> gubtract (2, 1)

-1

You can get the ‘flipped’ function via read-only property £ 11ip, too. It’s named after Haskell’s £11p function.

>>> subtract = minus.flip
>>> subtract (2, 1)

-1

>>> minus.flip (2, 1)

-1

Flipping a ‘flipped’ function again will cancel each other out.

>>> minus (2, 1)

1

>>> minus.flip (2, 1)

-1

>>> minus.flip.flip(2, 1)

>>> minus.flip.flip.flip(2, 1)

-1

>>> minus.flip.flip.flip.flip(2, 1)
1

The flip operator ~ does the same thing.

>>> minus (2, 1)

1

>>> (~minus) (2, 1)

-1

>>> (~~minus) (2, 1)

1

>>> (~~~minus) (2, 1)
-1

>>> (~~~~minus) (2, 1)
1

10 Chapter 2. Tutorial

fx Documentation, Release 0.1

2.7 Implicit Function Invocation

Operators ! = and == are overloaded, so that when using these two operators to compare anything to an instance of
Function, it is equivalent to compare against that instance’s value.

For example:

>>> s = f(range) | list

>>> (s << 3).value

[0, 1, 2]

>>> g << 3 == [0, 1, 2]

True

>>> 5 << 3 != [0, 1, 2]

False

>>> f(range) << 3 | list == [0, 1, 2]
True

>>> [0, 1, 2] != f(range) << 3 | list
False

>>> f (range) << 3 | list == (range) << 3 | list
True

>>> f(range) << 3 | list != s << 3
False

We can test if a value is in a Function‘s output, in the form of value in function.

For Function that its value supports membership test operator in, (either by supporting the iterator protocol or
implementing it’s __contains___ method), membership testing will be delegated to its value.

>>> one_to_ten = list xx f(range) << 1 << 11
>>> 1 in one_to_ten

True

>>> 10 in one_to_ten

True

>>> 11 in one_to_ten

False

>>> one_to_ten.value
[lf 2/ 3/ 47 57 6/ 7/ 87 97 lo}

For Function thatits value does not support membership test operator in, equality is checked instead.

>>> the_answer = len »x f(range) << 42
>>> 42 in the_answer

True

>>> 41 in the_answer

False

>>> the_answer ()

42

Instances of Funct ion support iterator protocol.

For Function which its value is an iterable object, iteration is delegated to that object.

>>> one_to_three = f(range) << 1 << 4
>>> for i in one_to_three:

.. print (i)

1

2

3

>>> [1 « 2 for 1 in one_to_three]

[2, 4, 6]

2.7. Implicit Function Invocation 11

fx Documentation, Release 0.1

For Function which its value is not an iterable, a 1-tuple with value as the only element will be used to iterated
over.

>>> the_answer = f (42)

>>> the_answer ()

42

>>> [1 for i in the_answer]
[42]

Warning: If you don’t know how these features work, as described in this section, they might lead to surprising
results and possibly cause more problems than they solve. You’ve been warned.

2.8 Overloaded Operators

In summary, Funct ion overloads the following operators.

Operator Description

value in £ Check if value in f’s output
l=, == Evaluates then compare

| Pipe operator

& Low cohesive application operator
<< High cohesive application operator
+f Low cohesive invoke operator

~X Flip operator

* % Function composition operator

f (arguments...) | High cohesive invoke operator

2.9 Utility Functions

Package fx also provides a couple utility functions, compose () and f1ip ().

They work like Function‘s methods with the same name, except that two functions instead of one are required
because there is no self.

>>> from fx import compose

>>> g = compose (lambda n: -n, abs)
>>> g(-1)

-1

>>> from fx import flip
>>> greater_then = lambda a, b: a > b
>>> greater_then (1, 2)

False

>>> less_then = flip(greater_then)
>>> less_then(l, 2)

True

12 Chapter 2. Tutorial

CHAPTER
THREE

APl REFERENCE

3.1 Function Wrapper

class fx .Function (function)
A function wrapper class.

Implements operators for function composition, arguments flipping, partial application, and more.

>>> fmap = Function (map)

>>> double_all = fmap << 2 .__mul__ | list

>>> double_all([1, 2, 31)

[2, 4, 6]

>>> mul = Function(lambda a, b: a * Db)

>>> double_all_str = fmap << str *% (mul << 2) | ' ' .join
>>> double_all_str([1, 2, 3])

"2 4 6

classmethod clone (function)
Creates a Function object of the same type as c1ls.

Note: All methods and operators that return an instance of Funct ion, return a copy created by clone ().
That is, Funct ion object will not be changed in place by it’s methods and operators.

__init__ (function)
Creates a function wrapper object.

>>> f = Function (42)

>>> f () == 42

True

>>> f.value == 42

True

>>> f == 42

True

>>> g = Function(lambda a: a + 1)
>>> g (1)

2

>>> g(f())

43

>>> succ = Function (g)

>>> succ(0), succ(l), succ(2)

(1, 2, 3)

>>> times_2 = Function(2 ._ mul_)

13

fx Documentation, Release 0.1

>>> [times_2 (n) for n in range (10)]
(o, 2, 4, o, 8, 10, 12, 14, 16, 18]

invoke (*args, **kwargs)
Invokes the wrapped function with args and kwargs.

Function invocation:

>>> f = Function (int)
>>> f.invoke ('2")
2

call is an alias:

>>> f.call('2")
2

value is a read-only property, when accessed, calls invoke:

>>> f.value

0

>>> two = f.apply(’'2")
>>> two.value

2

High cohesive invoke operator () (a.k.a call operator):

>>> f = Function (int)
>>> f£('27)

2

>>> f = Function (max)
>>> f£(1, 1, 2, 3, 5, 8)
8

Low cohesive invoke operator + (positive, unary plus):

>>> f = Function (int)
>>> two = f.apply('2")
>>> +two

2

>>> +f.apply('27)

2

call (*args, **kwargs)
an alias to invoke ().

value
read-only property, with invoke () as getter.

__call__ (*args, **kwargs)
an alias to invoke (), implements high cohesive invoke operator ().

__pos__ ()
an alias to invoke (), implements low cohesive invoke operator (unary) +.

compose (function)
Creates a Function as composition of function with self.

Function composition:

14 Chapter 3. API Reference

fx Documentation, Release 0.1

>>> f = Function(lambda a: -a).compose (abs)
>>> f(-1)
-1

Function composition operator * *:

>>> f = Function(lambda a: —-a) ** abs
>>> f(-1)
-1

* works on either side, no need to wrap both sides:

>>> f = Function(list) % map << 1 .__add___
>>> f (range (10))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> f = list %% Function(map) << 1 .__add__
>>> f (range (10))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

pow___(function)
an alias to compose (), implements function composition operator = *.

ror___ (function)
an alias to compose (), implements pipe operator | (reflected operands version).

pipe (function)
Creates a Function that pipes output into function if invoked.

Piping output:

>>> f = Function(range) .pipe (sum) .pipe(int.__neg__)
>>> f£(1, 101)
-5050

Pipe operator |:

>>> f = Function(range) | sum | int.__neg___
>>> f£(1, 101)

-5050

>>> f = Function(map) << 1 .__add__ | list

>>> f (range (10))
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> sum_upto = 1 .__add__ | Function(range) << 1 | sum
>>> sum_upto (100)
5050

or___ (function)
an alias to pipe (), implements pipe operator | .

__rpow___(function)
an alias to pipe (), implements function composition operator » (reflected operands version).

apply (*args, **kwargs)
Creates a Function with partial function application.

Currying:

>>> add = Function(lambda a, b: a + b)
>>> succ = add.apply (1)

3.1. Function Wrapper 15

fx Documentation, Release 0.1

>>> succ (0)
1

High cohesive application operator <<:

>>> add_1 = add << 1
>>> add_1(2)
3

Low cohesive application operator &:

>>> times = Function(lambda a, b: a * b)

>>> f = Function(map) & times << 2 & range(8) |
>>> f.value

[0, 2, 4, 6, 8, 10, 12, 14]

Partial application:

>>> f = Function(max) << 1 << 3 << 5 << 7 << 9 << 2 << 4 << 6 << 8

>>> f.value

9

>>> £ (20)
20

>>> £ (-1)
9

Partial application with keyword argument:

>>> int_from_hex = Function(int) .apply (base=16)
>>> int_from_hex (' 0xff’)
255

__1shift__ (argument)

an alias to apply (), implements high cohesive application operator <<.

__and__ (argument)

an alias to apply (), implements low cohesive application operator &.

reverse_apply ()
Creates a Function that reversely apply positional arguments.

Reversed positional arguments application:

>>> minus = Function(lambda a, b: a - b)
>>> minus (8, 5)

3

>>> subtract = minus.reverse_apply ()

>>> subtract (8, 5)

-3

flip is aread-only property for easier referencing:

>>> minus.flip (8, 5)

-3

>>> minus.flip.flip (8, 5)
3

Flip operator ~

>>> (~minus) (8, 5)
-3
>>> subtract = ~minus

16

Chapter 3. API Reference

fx Documentation, Release 0.1

>>> subtract (8, 5)
-3

flip
read-only property, evaluates to the ‘flipped’ version of current function.

__invert_ ()
an alias to reverse_apply (), implements flip operator ~.

__eq__ (other)
self == other

Compares self.value with other for equality.

>>> f = Function (sum) << [5, 4, 3, 2]
>>> £ == 14
True

implements operator ==, which means evaluate then check for equality.

_ _ne__ (other)
self != other

Compares self.value with other for inequality.

>>> f = Function(sum) << [5, 4, 3, 2]

>>> £ I= 14

False

implements operator ! =, which means evaluate then check for inequality.

__contains__ (value)
value in self

Returns True if value isin self.value. If self.value is not iterable, equality is checked instead.

>>> f = Function (range) << 100
>>> 1 in f
True
>>> -1 in f
False
>>> f = Function (42)
>>> 42 in f
True
>>> 43 in f
False
__iter_ ()

Returns an iterator object.

If self.value is iterable, returns iter (self.value), otherwise a 1-tuple with function’s output
will be created, and iterator of this tuple will be returned, so that calling iter () on a Function object will

not fail.

>>> f = Function(range) << 10
>>> [n for n in f]

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> f = Function (42)

>>> [n for n in f]

[42]

3.1. Function Wrapper 17

fx Documentation, Release 0.1

3.2 Utility Functions

fx.compose (f, g)
Function composition.

compose(f, g) -> £ . g

>>> add_2 = lambda a: a + 2

>>> mul_5 = lambda a: a * 5

>>> mul_5_add_2 = compose(add_2, mul_5)
>>> mul_5_add_2 (1)

5

>>> add_2_mul_5 = compose (mul_5, add_2)
>>> add_2_mul_5(1)

15

fx.£1lip (f)
Creates a function that takes arguments in reverse order.

flip(f) -> g

>>> minus = lambda a, b: a - b
>>> minus (5, 3)

2

>>> subtract = flip (minus)

>>> subtract (5, 3)

-2

>>> list (zip(range(5), range(5, 10), range (10, 15)))

[¢o, 5, 10y, (1, 6, 11y, (2, 7, 12), (3, 8, 13), (4, 9, 14)]
>>> fzip = flip(zip)

>>> list (fzip(range(5), range(5, 10), range (10, 15)))

[(10, 5, 0), (11, 6, 1), (12, 7, 2), (13, 8, 3), (14, 9, 4)]

3.3 Alias

class fx. £
an alias to Funct ion for less typing.

Instead of using Function () every time, you can:

>>> from fx import £

>>> all_odd = all %% f(map) << (lambda n: n
>>> all_odd([2, 3, 41)

False

>>> all_odd([7, 5, 91)

True

oe

2)

18 Chapter 3. API Reference

CHAPTER
FOUR

CHANGELOG

* 0.1

Initial release.

19

fx Documentation, Release 0.1

20 Chapter 4. Changelog

CHAPTER
FIVE

* genindex
* modindex

INDICES AND TABLES

21

fx Documentation, Release 0.1

22 Chapter 5. Indices and tables

x, 13

PYTHON MODULE INDEX

23

fx Documentation, Release 0.1

24 Python Module Index

Symbols

__and__ () (fx.Function method), 16
__call__() (fx.Function method), 14
__contains__ () (fx.Function method), 17
__eq__() (fx.Function method), 17
__init__() (fx.Function method), 13
__invert__() (fx.Function method), 17
__iter__() (fx.Function method), 17
__Ishift_ () (fx.Function method), 16
_ ne__ () (fx.Function method), 17
__or__() (fx.Function method), 15
__pos__() (fx.Function method), 14
__pow__() (fx.Function method), 15
__ror__() (fx.Function method), 15
__rpow__() (fx.Function method), 15

A

apply() (fx.Function method), 15

C

call() (fx.Function method), 14
clone() (fx.Function class method), 13
compose() (fx.Function method), 14
compose() (in module fx), 18

F

f (class in fx), 18

flip (fx.Function attribute), 17
flip() (in module fx), 18
Function (class in fx), 13

fx (module), 13

invoke() (fx.Function method), 14

P

pipe() (fx.Function method), 15

R

reverse_apply() (fx.Function method), 16

Vv

value (fx.Function attribute), 14

INDEX

25

	fx - an approach to coding higher-order functions
	Introduction
	Requirements
	Installation
	License
	Links

	Tutorial
	Function Creation
	Function Invocation
	Function Application
	Function Composition
	Function Pipeline
	Reversed Function Application
	Implicit Function Invocation
	Overloaded Operators
	Utility Functions

	API Reference
	Function Wrapper
	Utility Functions
	Alias

	Changelog
	Indices and tables
	Python Module Index
	Index

