
Technical Notes on

Error Logging Modules & Handlers (ELMAH)

Revision 236

Written by Atif Aziz

Principal Consultant, Skybow AG

Applies to Microsoft ASP.NET 1.1 and ELMAH v1.0 (Build 5527)

See also: GotDotNet Workspace for ELMAH

mailto:atif.aziz@skybow.com
http://www.skybow.com/
http://www.asp.net/
http://workspaces.gotdotnet.com/elmah
http://workspaces.gotdotnet.com/elmah

Table of Contents

Purpose of This Document ...3

Overview ..3

Quick Start ...7

A Note on the Implementation .. 19

Architectural Overview .. 19

Error: The Phantom Exception ... 20

ErrorLog and ErrorLogEntry .. 24

SqlErrorLog ... 25

MemoryErrorLog ... 27

Binding to the Log Implementation .. 28

The Handlers to the ErrorLog ... 30

ErrorMailModule ... 32

Purpose of This Document

ELMAH was originally introduced with the MSDN article “Using HTTP Modules and Handlers

to Create Pluggable ASP.NET Components.” The goal of the article was to demonstrate how

HTTP modules and handlers can be used in ASP.NET to provide a high degree of

componentization that goes just beyond the classical reuse through controls. It was not the goal

of the article to discuss the implementation details of ELMAH or the background to some of its

design. That is the purpose of this document in the form of technical notes and using a casual

voice.

Please bear in mind that this is a “living” document that will be expanded as needed.

Overview

ELMAH provides two HTTP modules and a set of HTTP handlers that can be used as a

foundation for a complete error logging, notification and display solution for web applications.

You can enable ELMAH for one or more web applications or for all web applications running

on a machine. All you have to do is deploy a single assembly and make changes to the

configuration file. There is no need to recompile or re-deploy an application.

The primary goal of ELMAH 1.0 is to demonstrate, by way of example, how HTTP handlers

and modules can be used as a very high-level form of componentization, enabling entire sets of

functionalities to be developed, packaged and deployed as a single unit and independent of web

applications.

Here‟s how it works. There are two independent modules, called ErrorLogModule and

ErrorMailModule. Both of these subscribe to the Error event of HttpApplication in order to

listen for unhandled exceptions that bubble out of the main web application code. Exceptions

that are handled and swallowed by anyone along the stack are never seen by these modules,

including those cleared using the ClearError method on an HttpContext instance.

The ErrorMailModule is the simpler of the two, so let‟s talk about that one first. When it

receives the Error event, it creates an e-mail message, writes out the error details in the body

http://msdn.microsoft.com/
http://msdn.microsoft.com/library/en-us/dnaspp/html/elmah.asp
http://msdn.microsoft.com/library/en-us/dnaspp/html/elmah.asp
http://msdn.microsoft.com/library/en-us/dnaspp/html/elmah.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemWebHttpApplicationClassErrorTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemwebhttpapplicationclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpContextClassClearErrorTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemwebhttpcontextclasstopic.asp

and sends it off to a designated address. The solution comes with a standard implementation that

formats the error as an HTML document, as shown in Figure 1. You can also provide your own

implementation in case you don‟t like the default formatting.

Figure 1

This basically takes care of the notification of errors that occur in a web application. There‟s a

second form of notification, but I‟ll talk about that a little later.

When the ErrorLogModule receives the Error event, it goes ahead and logs it to a store. The

store is defined by an implementation of the abstract ErrorLog class. The solution comes with a

concrete implementation for Microsoft SQL Server 2000
1
 that resides in the SqlErrorLog class

and an in-memory implementation that resides in the MemoryErrorLog class. The majority of

the remaining types in the solution are a set of handlers that provide the user interface for

1 The reason for requiring Microsoft SQL Server 2000 is because I rely on some of the XML features as a shortcut,

but nothing stops from back-porting the implementation to work with Microsoft SQL Server version 7.0. You may

also be able to use MSDE 2000, but the solution hasn‟t been tested against it.

viewing the log. Like the module, the handlers also work off an ErrorLog implementation so if

you go ahead roll your own implementations over, say the file system, Microsoft Access or an

Oracle database, then the handlers will work against them too. Figure 2 shows the results from

one of the handlers that displays a summary of the latest errors recorded for an application.

Figure 2

When one of the [Detail] links is clicked, another handler is invoked that renders the details of

the selected error on a separate page. Figure 3 shows one such page in action.

Figure 3

These days, you can‟t write a web-based solution that‟s considered fashionable without

involving RSS in one way or another. So to be totally en vogue, one of the handlers that I‟ve

provided renders the last 15 errors recorded in the error log as a RSS feed. This is the second

form of notification that I mentioned earlier. A sample output of the RSS feed can be seen in

Figure 4.

http://blogs.law.harvard.edu/tech/rss

Figure 4

It‟s not as detailed as the mail-based counterpart, of course, but it nevertheless allows

developers, administrators and operators alike to use their favorite RSS aggregator to receive

most recently logged errors as news items. If your RSS aggregator also pops a toaster sort of

window à la instant messengers like MSN Messenger, then the errors will really get your

attention. Sometimes, e-mails can take time to make their way to your inbox as they are push

through the various systems. With an RSS news aggregator, however, you are in pull mode and

consequently more in control of how often a feed is polled. Either way, you‟ll get a notification

through a pull or push method.

Quick Start

So with all these modules and handlers in hand, the next question is how to use and enable them

in a web application. Let‟s start with a tour for enabling logging for a single application. Open

the web.config for any desired web application and add the following line to the

<httpHandlers> section:

<add verb="POST,GET,HEAD" path="elmah/default.aspx"

type="GotDotNet.Elmah.ErrorLogPageFactory, GotDotNet.Elmah,

Version=1.0.5527.0, Culture=neutral, PublicKeyToken=978d5e1bd64b33e5" />

Copy the GotDotNet.Elmah.dll assembly to the bin folder and that‟s it. At this point, you can

navigate to the specified path
2
 and see a page similar to Figure 5:

Figure 5

Since there are no errors yet, the page is pretty much empty. If you generate an exception in your

application, you still won‟t see any errors here. This is because we haven‟t added the logging

module, so let‟s do that now. Go to the <httpModules> section and add the following line:

<add name="ErrorLog" type="GotDotNet.Elmah.ErrorLogModule, GotDotNet.Elmah,

Version=1.0.5527.0, Culture=neutral, PublicKeyToken=978d5e1bd64b33e5" />

2 Of course, you can configure any path you like and it will serve as the root of all handlers in the solution.

If you generate an error now then the error log will display it. If you can‟t think of a way to

generate an exception and test the functionality then don‟t worry. The solution comes with a

TestException that can be generated at any time by appending /test to the path for the handlers.

So in the address bar of the browser, type:

http://www.example.com/myapp/elmah/default.aspx/test

If custom errors are disabled then you should see the standard ASP.NET error page that looks

like this (assuming that custom errors are off):

Figure 6

The difference this time is that the log also contains a record of this error so let‟s check that out.

Go back to error log root page
3
 and this time you should see an entry in there:

3 The error log root page is considered the path configured in the entry added to <httpHandlers>.

http://msdn.microsoft.com/library/en-us/cpgenref/html/gngrfcustomerrorssection.asp

Figure 7

Now click on the link next to the error message to see the details of the error entry. The next

page should look similar to this:

Figure 8

Note that in addition to the basic error information, web collections such as the server variables

are also captured and displayed. Now let‟s generate another exception. In this case, we‟re going

to make a fault in the error page handler itself. In the query string, you should see a parameter

named “id” whose value is a GUID. Change it so that it no longer is a valid GUID. For example,

replace the last character with an „x‟. Not surprisingly, you should now see a FormatException:

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemformatexceptionclasstopic.asp

Figure 9

Now let‟s go back and see what‟s in the log
4
. You should see two entries:

4 If you‟ve been following the tutorial strictly then you can just press the Back button twice in the browser. You

may also have to click Refresh button to get the latest updates.

Figure 10

If you dig into the details of this new entry, you should notice something different this time:

Figure 11

There‟s an extra link that says, “See ASP.NET error message in full view.” When you click this,

you‟ll see a full blown HTML page that is the exact message that ASP.NET generated at the

time of the exception!
5
 This means that even if you enable custom errors in you web application

(typical of when you go to production, for example), the log can capture the original message

that we‟ve all come to love and rely upon. Haven‟t we all been there? You write a web

application, deploy it to production and then you get this dreadful page:

5 This can be a little deceiving sometimes. You might think that clicking the link has generated an exception in the

application, but that‟s not the case here. It‟s really the entire HTML document that was generated by ASP.NET for

the exception. It may have been better to use frames to put a small reminder at the top, but the idea was dropped to

keep the code size down for the article.

Figure 12

This is the point where you wish you could see what‟s going on behind. So what‟s your first

instinct? Go back turn off custom errors completely so you can view the message while hoping

that no customer hits the web site in the same time frame in which you are troubleshooting. Now

with the error log, you don‟t have to worry about that anymore. If you see this page, go to the

error log and get the full-blown page
6
.

So far, all the logging has been taking place in an in-memory log
7
 that does not survive

application restarts or failures. In fact, if you just touch your web.config by saving it then the

application will restart and you‟ll notice that the log is empty again. Let‟s try something more

6 This is implemented using a hidden gem in the .NET Framework. See the GetHtmlMessage method of the

HttpException class. So why did this link not show up the first time? Unfortunately, ASP.NET does not always

provide the contents of the error message HTML. It depends on when the exception occurs in the execution of the

HTTP pipeline.

7 This is the default when no log is configured. The current log implementation in effect is displayed in the footer of

the error log pages.

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemwebhttpexceptionclassgethtmlerrormessagetopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemwebhttpexceptionmemberstopic.asp

robust and reliable like using SQL Server as the store for the log. Create a new database called

ELMAH and run the supplied SQL script
8
 to create the required table and related stored

procedures.

At this point we have to add a new section to the configuration file, right at the top:

<configSections>
 <sectionGroup name="gotdotnet.elmah">
 <section name="errorLog"
type="System.Configuration.SingleTagSectionHandler, System,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
/>
 </sectionGroup>
</configSections>

These entries basically introduce new configuration elements to the runtime‟s configuration

system, telling it that if it sees a certain element in the configuration file, then it should use a

certain IConfigurationSectionHandler implementation to process its contents. Here, <section>

is adding a new section called errorLog, whose handler is in fact a factory-supplied section

handler from the BCL (Base Class Library). The <sectionGroup> does exactly what its name

suggests. It just introduces a grouping element. There is no handler class associated with it. If

you‟ve got several related sections then it‟s usually a good idea to group them together. We‟ll be

introducing yet another section later on so that‟s why the group is being defined at this time. It

often helps to think of a section group as a namespace.

Now we can go ahead and configure the error log as follows:

<gotdotnet.elmah>
 <errorLog type="GotDotNet.Elmah.SqlErrorLog, GotDotNet.Elmah,
Version=1.0.5527.0, Culture=neutral, PublicKeyToken=978d5e1bd64b33e5"
connectionString="Server=.;Database=ELMAH;Trusted_Connection=True" />
</gotdotnet.elmah>

The type attribute on errorLog specifies the class that now serves as the error log

implementation (SqlErrorLog). Change the connectionString attribute as needed. With this in

place, you can try to generate once more some exceptions (like the test one earlier) and see that

errors are indeed logged into the database and survive the application‟s lifetime.

8 Assuming that you chose that proposed installation location during the setup of ELMAH, the script can be found

using the path \Program Files\GotDotNet\ELMAH\1.0\src\Database.sql on the selected drive. The SQL script

does not create the database in case you want to integrate it into an existing database.

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemConfigurationIConfigurationSectionHandlerClassTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemConfigurationSingleTagSectionHandlerClassTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemConfigurationSingleTagSectionHandlerClassTopic.asp
http://msdn.microsoft.com/netframework/programming/bcl/

You can also get to the RSS feed by simply appending /rss to the root of the error log‟s path. Go

ahead and try it against you favorite RSS news aggregator application.

Now let‟s add the final piece, which is getting an e-mail upon an exception. For this, add the

following module to the configuration file:

<add name="ErrorMail" type="GotDotNet.Elmah.ErrorMailModule,

GotDotNet.Elmah, Version=1.0.5527.0, Culture=neutral,

PublicKeyToken=978d5e1bd64b33e5" />

And the following section handler under the gotdotnet.elmah section group registered earlier:

<configSections>
 <sectionGroup name="gotdotnet.elmah">
 <section name="errorLog"
type="System.Configuration.SingleTagSectionHandler, System,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
/>
 <section name="errorMail"
type="System.Configuration.SingleTagSectionHandler, System,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
/>
 </sectionGroup>
</configSections>

The new section can now be configured as shown error:

<gotdotnet.elmah>
 <errorLog type="GotDotNet.Elmah.SqlErrorLog, GotDotNet.Elmah,
Version=1.0.5527.0, Culture=neutral, PublicKeyToken=978d5e1bd64b33e5"
connectionString="Server=.;Database=ELMAH;Trusted_Connection=True" />
 <errorMail to="john.doe@example.com" />
</gotdotnet.elmah>

The minimal setting required by the error mailing module is the recipient‟s e-mail address,

which is specified here using the to attribute
9
. Now if the application generates any exceptions

then you should receive an e-mail in addition to it being logged in the database.

Note that all of the modules and handlers function fairly independent of each other so you can

enable and disable them individually. For example, if you remove entry that registers the HTTP

9 You can specify more than one recipient by delimiting addresses with semi-colon (;).

handler with ASP.NET then you will not be able to view the error log although logging will

continue working. If you remove the entry for the logging module instead, then the log can still

be viewed via the handlers but no new errors will be logged. The same is applicable for the

mailing module.

Note also the error log handlers can be secured using the normal role-based security of

ASP.NET. You‟ll need to just use the location element on the configured path.

Up to this point, we‟ve only considered a single web application. However, if you just take all

the settings and drop them into the machine.config then the same facility becomes available

machine-wide and to all web applications. You don‟t even have to copy the assembly to the bin

directory of each application since it will go in the GAC
10

. You can append elmah/default.aspx

to the virtual root of any application and get its private error log
11

. The error mail facility will

also be automatically available to all applications. Of course, each individual application is free

to remove entries from the sections related to handlers and modules and disable the feature. In

fact, a single application can even choose its own error log store by changing the connection

string in its local web.config. All other settings will be just inherited from the machine

configuration file. This really illustrates the awesome power of componentizing web application

aspects this way and is the heart of the approach demonstrated by ELMAH. Even an Application

Server Provider (ASP) could offer error logging, viewing and mailing to all hosted applications

as a built-in facility without requiring any change in the hosted application code.

So start thinking about how you can refactor some aspects of your web application into handlers

and modules. You should aim to reach a level of componentization that allows applications to

acquire some functionality by simply deploying the assembly and adding some configuration. In

the next part of the article

10 The solution assembly is strong-named so it can be added to the GAC.

11 ELMAH automatically isolates logs of each application. It is not possible for one application to view the log of

another.

http://support.microsoft.com/default.aspx?kbid=815174

A Note on the Implementation

At this stage we‟re ready to dig into the implementation details, but before doing that, I‟d like to

make a note about the design philosophy of ELMAH as sample solution. Bear in the mind that

the overall goal of ELMAH (as a sample accompanying the original article) was to demonstrate

an approach to componentizing an entire aspect of a web application. It is sample code after all

and such its purpose is not to provide a comprehensive solution in terms of customization. The

sample tries to do a few things and do them well, even though I‟ve gone to some lengths to

encapsulate implementation details and provide extensibility wherever possible
12

. The

accompanying code is a vastly reduced version of a full-blown solution that is being used in

production applications. When trimming down the code, I had to make a lot of hard decisions

about what to keep and what to cut out. In the end, the point was to provide a reference

implementation of the overall idea being illustrated by the article. One size barely fits all, so you

are more than welcome to take the sample as the foundation for your own version. One of the

major guiding factors was that I did not want the number of classes to sprawl out of control by

factoring out as many ideas into their leanest and meanest set of interfaces and protocols.

Architectural Overview

Figure 13 depicts an architectural overview of the main classes in the solution. The diagram is

not based on any particular modeling system or theory. It roughly shows how the classes relate

to each other and what they do using a simple, convenient and self-explanatory notation.

12 There are many places where changing the behavior of ELMAH does not require you to change the base source

code. A lot of the classes are designed for inheritance (see those that are unsealed and bear virtual members). So it‟s

better to inherit, override functionality and configure your class to run instead of changing the base source.

SqlErrorLog

ErrorLog

Error

ErrorLogEntry

ErrorXxxPageErrorRssHandler

ErrorLogHandlerFactory

ErrorLogModule

Exception

ManifestResourceHandler

ErrorMailModule

ErrorMailFormatter

ErrorMailHtmlFormatter

SQL Server

2000

<XML>

Read/WriteXml

Implements for

SQL Server 2000

SqlClient

Abstract Store

Data store API

Returns on reads

Binds to

log entry

Holds and abstractly

represents

Dispenses

Dispenses

Dispenses

ASP.NET

Error event

Error event
GetHandler

Creates and sends

Uses to format the

e-mail body

Implements for

HTML formatting

formats

Formats as HTML

Log

Returns on reads

Reads

Reads

<HTML>

Produces

<RSS>
Produces

Reads to output

Assembly

resource

Class

Abstract

Module/Handler

Legend

MemoryErrorLog RAM

Implements for

in-memory

Figure 13

Error: The Phantom Exception

The Error class is a central piece of the entire error logging and mailing solution, so it‟s

important to understand it first. One of the problems with exceptions is that they‟re good for

communicating errors along the code stack and especially while the code is running, but they

don‟t make great candidates for logging or long-term storage purposes. Sure, they support

serialization and you could just blast an exception to some storage as a binary blob, but de-

serialization adds a whole number complications if you don‟t have the right assemblies and

types available. This makes them less portable with the containing storage. Moreover, during

development, types come and go and details change, but you want the logging architecture to be

rather stable and independent. You also want to be able to ship the log to another machine and

view it from there. Actually, as far as the log is concerned, it should be an “informational” trace

of the errors that occurred rather than trying to maintain 100% fidelity to the entire state of the

exceptions.

This is where the Error class comes in. It‟s a loose and abstract digest of an exception for

informational purposes. Put another way, it‟s the lingering “ghost” or remains of a once living

and kicking exception. The Error is just a holder of properties
13

 deemed fundamental along

with some state that may eventually help in diagnosing the error. An example of the latter is web

collections like ServerVariables, QueryString, Form and Cookie. Some of the properties of

the Error object like Source and Message correspond directly to those of an Exception.

However, almost all properties are “loosely” defined (see following table). That is, the Error

object does not mandate, for example, that the Type strictly reflect the type name of the

Exception class (although that‟s what‟s done in the code). It‟s really just a string that is meant to

be representative of the type of error that occurred. If you want to just put the word “Script” to

describe the type of the error then that‟s fine. All that said, the Error object has constructors that

allow you to convert an Exception into an Error. It will use the properties of the exception to

most reasonably fill up the properties of the Error object. If you also provide an HttpContext

instance, then it will make a copy of the web collections associated with the request for

diagnostic purposes
14

.

Property Description

Exception The Exception instance represented by this error. This is a run-time

property only that is not persisted during XML serialization.

ApplicationName The name of application in which this error occurred.

HostName The name of host machine where this error occurred. A good default

is Environment.MachineName.

Type The type, class or category of the error. Usually this would be the full

type name (sans the assembly qualification) of the exception.

13 Informally and often known as a data-centric class.

14 Originally, I had the idea of distinguishing basic errors from web-based errors. For example, the web collections

would go into a separate class called WebError that had Error as its base class. However, I rolled this into one

class for the sake of simplicity and to reduce the number of classes in the sample. Again, ELMAH is not an

academic exercise into abstracting the notion of errors.

Property Description

Source The source of the error, usually the same as the Message property of

an Exception object.

Message A brief text describing the error, usually the same as the Message

property of an Exception object.

Detail Detailed text of the error, such as the complete stack trace.

User The User logged into the application at the time of the error, such as

that returned by Thread.CurrentPrincipal.Identity.Name.

Time The date and time at which the error occurred. This is always in local

time.

StatusCode The status code being returned in the response header as a result of

the error
15

. For example, this is 404 for a FileNotFoundException.

WebHostHtmlMessage The default HTML message that the web host (ASP.NET) would

have generated in absence of custom error pages.

ServerVariables A NameValueCollection of web server variables, such as those

contained in HttpRequest.ServerVariables.

QueryString A NameValueCollection of HTTP query string variables, such as

those contained in HttpRequest.QueryString.

Form A NameValueCollection of form variables, such as those contained

in HttpRequest.Form.

Cookies A NameValueCollection of cookies sent by the client, such as those

contained in HttpRequest.Cookies.

The Error class also sports XML serialization via its ToXml and FromXml methods. Here‟s an

example of how it looks like
16

:

<error
 application="/LM/W3SVC/1/Root/ElmahDemo"
 host="ATIFA01"
 type="System.IndexOutOfRangeException"
 message="Index was outside the bounds of the array."
 detail="..."
 user="skybow\atifa"
 time="2004-06-11T16:25:07.7570000+02:00"

15 The StatusCode property on the Response object is unreliable and unfortunately the exact status code that is

returned to the client can never be fully determined.

16 Values that were simply too long to display have been replace with ellipsis.

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemWebHttpResponseClassStatusCodeTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemWebUIPageClassResponseTopic.asp

 statusCode="500"
 webHostHtmlMessage="...">
 <serverVariables>
 <item name="ALL_HTTP">
 <value string="..." />
 </item>
 <item name="ALL_RAW">
 <value string="..." />
 </item>
 <item name="APPL_MD_PATH">
 <value string="/LM/W3SVC/1/Root/ElmahDemo" />
 </item>
 <item name="APPL_PHYSICAL_PATH">
 <value string="C:\Demo" />
 </item>
 <item name="AUTH_TYPE">
 <value string="Negotiate" />
 </item>
 <item name="AUTH_USER">
 <value string="skybow\atifa" />
 </item>
 <item name="AUTH_PASSWORD">
 <value string="" />
 </item>
 <item name="LOGON_USER">
 <value string="SKYBOW\atifa" />
 </item>
 <item name="REMOTE_USER">
 <value string="skybow\atifa" />
 </item>
 <item name="CONTENT_LENGTH">
 <value string="0" />
 </item>
 <item name="CONTENT_TYPE">
 <value string="" />
 </item>
 <!-- rest removed for beverity -->
 </serverVariables>
</error>

Note that the ToXml and FromXml methods come from my own interface, namely

IXmlExportable. The reason for doing this is threefold. First, IXmlSerializable is officially un-

documented in .NET Framework 1.x. It becomes documented with Whidbey so this argument

does not hold so strong. Second, I didn‟t want to implement GetSchema. Third, I read and write

the XML slightly differently. While IXmlSerializable places an extra container element around

the object‟s XML, I didn‟t want it because it felt unnecessary. In any case, IXmlSerializable

can always be implemented later in terms of IXmlExportable so this is not a big deal.

Note that when an Error object is constructed from an Exception instance, it also maintains a

reference to it. This is done only for providing some fidelity at runtime. It has no consequence

on logging or the XML serialization. Right now, the sample does not do any filtering based on

exception types. However, if you ever wanted to add such a facility, then that‟s where the

Exception property would come in handy. For example, given an Error object, you could find

out if it is of the class ArgumentException or not by inspecting its Exception property. You‟ll

notice that when the Error object is re-created from the log for displaying purposes, the

Exception property is always null.

ErrorLog and ErrorLogEntry

The ErrorLog class is the abstract contract for a logging store. The log is responsible for

recording instances of Error and allowing them to be read back. To create a concrete

implementation, one has to provide only 3 methods: Log, GetErrors and GetError. The Log

method takes an Error object and is supposed to serialize it, however it whishes, to its backing

store. The GetErrors method retrieves logged errors in paged result-sets. That is, you specify

the page index and the count of the errors to retrieve with each call. It is supposed to read the log

and return errors in their most natural order, which is defined to be from latest to earliest. Put

another way, sorted on time in descending order. GetErrors is only required to retrieve a digest

version of the full error that is well-suited for quick on-screen and summary listing as shown in

Figure 2. The digest (light-weight) properties are defined as ApplicationName, HostName,

Type, Source, Message, User, StatusCode and Time. However, a caller should be prepared to

handle empty values for these properties. Finally, the GetError method retrieves an error in its

entirety given its ID.

Both “get” methods actually return ErrorLogEntry instances rather than the Error object

directly. The purpose of the ErrorLogEntry is to bind together the log-supplied data such as the

ID with the actual Error object. Note that the Id property is typed as a string but the log can

internally use an integer, GUID or what have you. The only requirement is that an ErrorLog

implementation can round-trip its ID through a string.

An ErrorLog implementation is expected to store and retrieve errors bound to an application

name
17

 and accounts for the ApplicationName property on Error. The reasons for this will

become clearer as we move along.

17 Note that there is no method for retrieving the application names registered in a log. This is somewhat intentional

for basic security reasons. Imagine a hosting provider who offers the error log facility to all the web applications. If

there were a method like GetApplications on ErrorLog, then anyone could call

SqlErrorLog

SqlErrorLog is an implementation of LogError for Microsoft SQL Server 2000. The

implementation is fairly straight forward since most of the code has to do with calling the stored

procedures in the database. No direct table access is ever done.

The database has a single table called Error:

Column Type Purpose

ErrorId UNIQUEIDENTIFIER The unique ID of the logged error

Application NVARCHAR(60) Stores the ApplicationName property of the Error

object.

Host NVARCHAR(50) Stores the HostName property of the Error object.

Type NVARCHAR(100) Stores the Type property of the Error object.

Source NVARCHAR(60) Stores the Source property of the Error object.

Message NVARCHAR(500) Stores the Message property of the Error object.

User NVARCHAR(50) Stores the User property of the Error object.

StatusCode INT Stores the StatusCode property of the Error object.

TimeUtc DATETIME Stores the Time property of the Error object in UTC.

Sequence INT This is an identity column that is solely used for the

purpose of recording the sequence in which the errors

were inserted into the log. This helps for sorting.

AllXml NTEXT The entire serialized XML of the Error object,

acquired by calling the WriteXml method.

ErrorLog.Default.GetApplications and discover information private to others. This does not only apply to a

hosting provider scenario. You can extend the same issue to an enterprise operations environment where web

servers host more than one departmental business application. I imagine that this sort of issue can be solved with

Code Access Security, but again, that‟s been omitted for sake brevity and keeping the solution focused.

Apart from ErrorId and Sequence, an Error object is split and stored in AllXml and the

remaining columns. The AlllXml column contains the full XML of Error object as it is

serialized by its ToXml method. Because the Error object contains complex and hierarchical

state like collections of named values, it seemed simplest to just store it as one blob item of type

NTEXT. But why have the other columns? Well, remember that the Log needs to return a digest

version of the error when the GetErrors method is called. It would be too expensive to de-

serialize the entire object from XML only to return a piece of it. Consequently, the lightweight

properties are cached away in separate columns for quicker retrieval. What‟s more, having

properties like Type and User readily available allows you to quickly run statistics on the table.

This is not done in the solution, but you could imagine where this would be useful in a reporting

extension.

The downside of this approach, of course, is that if you update values in the cached columns,

then they‟ll be out of sync with the corresponding values stored in the AllXml column (and vice

versa). The differences will show up in the Error objects returned by the GetErrors and

GetError method. Again, you are more than welcome to change the implementation details of

SqlErrorLog to your liking. The rest of the solution will not be affected.

There‟s actually a much more subtle reason for having this kind of approach. Notice that the

Error object is not sealed. Theoretically this means that it is extensible and you can go ahead

and add your own properties to be stored in the log. However, for the log implementation to be

oblivious to the final type it stores and serves, it simply records the XML of the object. The

FromXml and ToXml methods on the Error class are extensible for precisely this reason. My

implementation of SqlErrorLog, however, does not store the type of the Error object

anywhere, so if you create your own MyError class, it does not know about it. It will be able to

log it with all the state, but upon retrieval, you will always get back Error instances. One of my

design goals was to keep type identity information out of the logs by as much as possible.

Therefore SqlErrorLog offers a protected member called NewError that serves as an

overridable factory. If you subclass Error, then you also have to provide a subclass for

SqlErrorLog that can serve instances of your class.

The LogError method of SqlErrorLog is the one that splits up the Error object‟s properties

into the cached set and the all encompassing XML column. The values are then passed as

parameters to the ELMAH_LogError stored procedure that does the actual INSERT. There‟s

nothing else that is specially going on over here. It is worth noting that errors are never deleted

in the default implementation. The exact policy of when and how to delete the errors can be

enforced in the ELMAH_LogError stored procedure and right after the INSERT statement.

The GetError method of SqlErrorLog calls the related ELMAH_GetErrorXml stored

procedure to get a single error identified by a GUID
18

. The stored procedure does nothing more

than return the value of AllXml column from the corresponding row. On the way back,

GetError simply re-creates an Error object by sending the XML to its FromXml method.

The GetError method of SqlErrorLog calls the related ELMAH_GetErrorsXml stored

procedure, which returns a page of errors as XML. However, this time the XML only contains

the digest properties mentioned earlier. ExecuteXmlReader is used to dig through the data and

again ReadXml is used to populate Error objects that are eventually returned in a list. The use

of XML in this case is just to have a lazy implementation that leverages the de-serialization

infrastructure already present in the Error class. One could have easily used a data reader to

read the data in a standard fashion and manually populate Error instances. Use of

ExecuteXmlReader and the FOR AUTO XML in the stored procedure is really the reason for

requiring SQL Server 2000, but this can be changed easily.

MemoryErrorLog

MemoryErrorLog is an implementation of ErrorLog that purely uses memory as its backing

store. Needless to say, this log does not survive application restarts or failures, but it provides a

very simple implementation that can come in handy in some hard cases where even

SqlErrorLog would fail. For example, SqlErrorLog requires a complex store like a database

and this assumes that an entire chain of infrastructure (network, server, database, etc.) will be

fully operation in order to log exceptions in the first place. But say that even your error logging

database becomes unavailable in the face of some catastrophic failure. This is where you could

change your configuration file and temporarily switch to the MemoryErrorLog implementation

to be able to diagnose problems albeit a volatile backing store.

18 The reason for choosing a GUID is rather important. If you want to ship error logs from several machines to a

single server then using a GUID as the primary key and identification of an error provides the most conflict-free

solution. Also, each error gets its own unique ID “forever.”

The implementation of the MemoryErrorLog is fairly straightforward. It uses a static instance

of a nested collection implementation to store the error entries. The static instance is, of course,

bound to the application domain so it will only store and serve errors private to the application.

You can initialize the log with a size parameter that specifies the maximum number of entries it

will log in its store. Once the log is filled up, the older entry is dropped to make place for a new

one. The default size of the log is 15, with a maximum of 500. The default should be fine for

most cases, but don‟t make it too big since errors will accumulate and consume memory

unnecessarily. Remember, the point of this log implementation is for troubleshooting or even

otherwise testing purposes.

There are only two items to mention with this implementation. First, it uses a

ReaderWriterLock instance to synchronize access to the log. A writer-lock is acquired during

the Log method and reader-lock during the GetError and GetErrors methods. The lock itself is

a static member of the MemoryErrorLog and is initialized together with the type. The entries

collection is itself initialized when the first error is logged. Until then, it has minimum footprint.

The second item to note is that the MemoryErrorLog makes defensive copies of the Error

objects on the way in and out of its store (the internal collection). Since Error objects are

mutable, the log clones an Error object in the Log method to maintain its own private copy and

then returns yet another clone in GetError and GetErrors for the private use of the caller. I

could have avoided all this extra copying by making the Error object immutable in the first

place, but I decide to keep things short and simple for the article. From a more commercial-

grade solution, it would be very favorable to support immutability on Error and its collections

especially because it‟s really not all that hard to do.

Binding to the Log Implementation

So how does the ErrorLogModule, or anyone for that matter, know which concrete

implementation of the log to use? The ErrorLog class has a Default property that provides,

well, the default error log implementation configured for the application. The implementation of

the Default property internally calls the CreateFromConfigSection method of the

SimpleServiceProviderFactory to obtain the ErrorLog instance. The job of

SimpleServiceProviderFactory is to create and configure a type from the configuration at a

specified configuration section. SimpleServiceProviderFactory makes three basic assumptions

to succeed
19

:

 The configuration returned by ConfigurationSettings.GetConfig will be a dictionary,

allowing you to use a number of the configuration section handlers supplied with the

base class library.

 The dictionary must have a “type” entry whose value supplies the standard type-

specification of the object to instantiate.

 The type has a constructor that takes an IDictionary as the parameter.

The type is created using Activator.CreateInstance and via a constructor that is expected to

take a single parameter typed as IDictionary. The dictionary can then be used by the type of

initialize itself. For example, SqlErrorLog expects to find its connection string in there whereas

the MemoryErrorLog looks for a “size” override.

Note that SimpleServiceProviderFactory removes the “type” key from the dictionary before

passing it on to the type its constructing. However, it cannot do this simply on the dictionary

returned by GetConfig because this is cached away by the framework and we don‟t want to be

modifying that version
20

. So, instead, the dictionary is cloned and then the “type” key is

removed. This defensive copy turns out to be good idea anyhow because the

SimpleServiceProviderFactory cannot assume what the type is going to do with it anyhow.

So getting back to where it all started, the Default property on ErrorLog grabs the

implementation from the configuration and hangs on to it in a static member. This means that

subsequent calls to return the default instance will be instantaneous. On item of interest to note

here is the static member is bound to the thread and not the application domain. In other words,

an independent error log instance is maintained per thread. This yields two major benefits

without writing any code and yet at the expense of very little memory overhead. We don‟t need

to synchronize access to the static field and, even more importantly, the downstream error log

19 These assumptions were one of those design decisions that were made to reduce the number of classes and

abstractions needed in the solution. Some people may not agree with them, but they amply serve the purpose for the

sample.

20 Ideally, the objects returned from GetConfig would be read-only. Alas, this is not the case with the dictionaries

returned by factory implementations such as SingleTagSectionHandler.

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemConfigurationConfigurationSettingsClassGetConfigTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemConfigurationIConfigurationSectionHandlerClassTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemConfigurationIConfigurationSectionHandlerClassTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemConfigurationIConfigurationSectionHandlerClassTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtypeclassassemblyqualifiednametopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtypeclassassemblyqualifiednametopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemCollectionsIDictionaryClassTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemactivatorclasscreateinstancetopic1.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemconfigurationsingletagsectionhandlerclasstopic.asp

implementation can be free of multi-threaded details. This is a lot like how ASP.NET also

makes life easy for implementers of modules.

The Handlers to the ErrorLog

There‟s really nothing special going on in the handlers. Most of the code is basic practice for

writing handlers and it‟s just rendering à la HtmlTextWriter. The only interesting point to

mention is that, except for the RSS handler, all handlers are in fact “pages.” That is, they

eventually inherit from the same Page class (via the ErrorPageBase) that you‟re used to. This

provides all the benefits of a regular Web Form (ASPX page) like view state, validators and web

controls so you don‟t necessarily have to resort to the HtmlTextWrite-style of rendering. The

only thing you won‟t get is the dynamic compilation and the convenience of an HTML designer.

I haven‟t employed any web controls in the solution because I didn‟t need anything as rich as the

DataGrid or Calendar. However, inheriting from Page still makes some things just more

accessible as you don‟t have to pass around the HttpContext object supplied to

ProcessRequest.

The ErrorPageBase class serves as the base class for all the HTML content handlers. It

basically provides some base convenience properties and a frame for the page layout as

illustrated in Figure 14:

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemWebUIHtmlTextWriterClassTopic.asp?frame=true

Render

RenderContents

RenderDocumentStart

<html>

 <head>

 </head>

 <body>

RenderHead

 <title> Title </title>

 <stylesheet> BasePageName/stylesheet </stylesheet>

RenderDocumentEnd

 <p> ...footer… </p>

 </body>

</html>

Figure 14

Note that style sheet for all pages comes from a CSS file that is as a resource in the assembly

manifest.

The ErrorLogPageFactory is just a plain “switch” factory that is responsible for cracking the

URL and returning the corresponding handler class. The factory uses the PathInfo21 property of

HttpRequest to determine which resource is being requested.

Note how the style sheet for all pages is embedded as a resource and served using the

MainfestResourceHandler class.

A lot of handlers provide no form of customization. So what do you do if you don‟t like how the

pages are laid out? Perhaps you want to put in there some extra detail or make them more

compatible for some browser. Write your own handler to view the ErrorLog. It‟s so easy that

creating fully extensible and configurable handlers, plus the design decisions that entail them, is

simply not worth the effort.

21 I used the PathInfo because it really keeps it leave query string clean for use by the downstream handler.

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemwebhttprequestclasspathinfotopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemwebhttprequestclasstopic.asp

ErrorMailModule

The ErrorMailModule has a very simple implementation. During the Init method, it reads the

configuration section to get some basic settings like the sender address, the recipient(s)
 22

, the

subject line and whether to send the mail synchronously or asynchronously. Like

ErrorLogModule, it subscribes to the Error event of the application.

When an unhandled error propagates to the top, the OnError handler of the module gets called

by ASP.NET. There an Error object is constructed from the Exception and then either

ReportErrorAsync or ReportError is called depending on the async setting from the

configuration. The idea of reporting the error asynchronously is simply to prevent an operational

issue from delaying the response to the user unnecessarily
23

. Asynchronous reporting is achieved

by posting a worker item to the thread pool. It may have been better not to borrow a thread from

the same pool used by ASP.NET to server requests but this detail can be changed by a subclass

easily
24

. For the article, it illustrates the point adequately.

The workhorse of the implementation is in the ReportError method. This is where basically an

e-mail is created, formatted and dispatched. A MailMessage object is created to specify the

sender, recipients, format and body of the e-mail. The module is designed to focus on its job of

preparing and sending a message, but the details how the body of the message is formatted with

details from the Error object are isolated into a separate type, the ErrorTextFormatter.

The ErrorTextFormatter is actually an abstract base class that defines the contract that the

error formatters must implement. It has a single property and method, namely MimeType and

Format. The MimeType property of a mail formatter is used to set the MailFormat property of

the MailMessage. ErrorMailModule only understands “text/plain” and “text/html”, both of

which directly translate to MailFormat.Text and MailFormat.Html. The Format method is

where the actual writing of the mail body takes place. It receives a TextWriter and an Error

object as parameters. How the formatter then writes out the body is completely oblivious to the

22 This can be a semicolon-delimited list of e-mail addresses to reach several recipients.

23 The same idea could have been used for the logging subsystem but I decided to demonstrate the idea in this

module instead since it is less overloaded with implementation details.

24 It‟s actually more important to check whether asynchronous reporting in the case of mailing buys you a lot before

committing to a complicated implementation.

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemthreadingthreadpoolclassqueueuserworkitemtopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemiotextwriterclasstopic.asp

ErrorMailModule. To obtain the concrete error formatter implementation, the

ErrorMailModule calls a protected virtual method named CreateErrorFormatter. In the

supplied solution, there‟s only the ErrorMailHtmlFormatter implementation provided and

which is returned from this method. It is the one responsible for the formatting the HTML mail

as shown in Figure 1.

Just before sending out the mail, the ErrorMailModule calls PreSendMail to give subclasses a

last crack at the mail to be sent and the error object
25

. The default implementation checks if the

Error object‟s WebHostHtmlMessage has a value or not. If it does, it creates an attachment

and blasts the HTML contents into it. Finally, the SendMail method gets called and whose

implementation forwards the call to SmtpMail.Send from the base class library.

The main thing to note about the implementation of the ErrorMailModule class is that it uses

approach of the Template Method design pattern. Rather than adding lots of configuration

options, I‟ve provided the workhorse of the implementation. For all customization, you can

override various protected virtual members to change things that you don‟t like. Here‟s a

summary:

Method Why Override?

Init Override this method to principally change how the class is

initialized.

MailSender If you override the Init method completely
26

 then this property still

allows the remaining of the class to get access to the sender address.

MailRecipient If you override the Init method completely then this property still

allows the remaining of the class to get access to the recipient

address(es).

25 This is a little bit like how PreRender event is raised before the rendering phase begins for ASP.NET controls

and pages.

26 That is, without calling the base class implementation. The ErrorMailModule itself never relies on its private

fields, but rather uses protected virtual properties that can be overridden. The only exception is the

_reportAsynchronously field. This one has no corresponding property because that behavior can be overridden via

OnError or ReportErrorAsync. For example, if you want to completely disable the feature, then just override

ReportErrorAsyc to call ReportError.

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemwebmailsmtpmailclasssendtopic.asp
http://www.dofactory.com/Patterns/PatternTemplate.aspx
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemwebuicontrolclassprerendertopic.asp

MailSubjectFormat If you override the Init method completely then this property still

allows the remaining of the class to get access to the subject format.

OnError Override this method to principally change how the Error object is

obtained or how ReportError is invoked. This could also be a good

place to add filtering based on the type of exception, like don‟t report

HttpCompileException type of exceptions.

ReportErrorAsync Override this method to principally change how ReportError is

called asynchronously. Default implementation uses a worker from

the system-supplied thread pool.

ReportError Override this method to principally change the implementation of

how an error is reported.

PreSendMail Override this method if all you want to do is get a last crack at the

mail message and error object before the e-mail is dispatched.

DisposeMail Override this method to do any clean-up associated with the mail.

The default implementation deletes attached files, assuming that they

were created only for the temporary purpose of sending the mail.

CreateErrorFormatter Override this method to principally return your own implementation

of the ErrorTextFormatter.

SendMail Override this method to principally change how the mail is really

sent. If you want to use your own SMTP mailing library, for example,

then this would be the right point to do the conversion.

GetConfig Override this method to principally change how the configuration is

obtained. For example, you could change the name of the

configuration section used over here.

GetLastError Override this method to principally change how the Exception is

obtained and converted to an Error object.

