
Two Edge Coloring Algorithms Using a Simple
Matching Discovery Automata

J. Paul Daigle and Sushil K. Prasad
Department of Computer Science

Georgia State University
Atlanta, Georgia 30303, USA

Abstract—We here present two probabilistic edge coloring
algorithms for a message passing model of distributed computing.
The algorithms use a simple automata for finding a matching on
a graph to produce the colorings. Our first algorithm for edge
coloring finds an edge coloring of a graph which is guaranteed
to use no more than 2∆ − 1 colors and completes in O(∆)
communication rounds using only one hop information, where
∆ is the greatest degree of the graph. Our second algorithm
finds a strong edge coloring of a symmetric digraph in O(∆)
communication rounds, using only one hop information.

I. INTRODUCTION

In this paper, we use the matching based automata used
in [3] and shown in Figure 1 as the basis for two different
edge-coloring algorithms, edge coloring of an undirected graph
and strong edge coloring of a directed graph. A practical
distributed algorithm for the last problem is of some interest
in networking, as it can be used as a model for channel or
time-slot assignment in an adhoc network [2], [4].

Our algorithms are probabilistic and compete well with
other probabilistic algorithms. For the edge coloring problem,
our algorithm produces a coloring which is no greater than
2∆ − 1 in O(∆) rounds in the typical case, where ∆ is
the maximum degree of the graph. Our algorithm for strong
directed coloring produces a correct coloring in O(∆) rounds.

Our algorithms assume a message based model of comput-
ing, so we can assume that compute nodes are synchronized
and that each node can communicate with each of its neighbors
in each round [8]. Each node is therefore assumed to move
synchronously through each stage of the algorithm.

Our main contribution is extending the framework devel-
oped in [3] to a new set of problems. The algorithms based on
the framework are competitive with know algorithms in time
complexity and provide high quality solutions. We believe that
this basic approach can be modified and extended to solve a
variety of problems, providing a simple starting point for the
development of new distributed, probabilistic algorithms that
provide constant approximations for NP complete problems.

A. Problem Definitions

Definition 1 (Edge Coloring). An edge coloring of a graph is
an assignment of colors to the edges of a graph in such a way
that no two adjacent edges are assigned the same color.

Formally, given a graph, G(V,E), and set of colors C,
an edge coloring of G is a mapping f(e) = E 7→
C | ∀ e(u, v), e′(v, w) ∈ E, c ∈ C, f(e) = c =⇒ f(e′) 6= c.

C: Choose
role by coin
toss

start

I: Invite a
neighbor

L: Listen
for local
invites

W:
Wait for
response

R: Respond
to 1 invite

U : Update
subproblem
solutions

D: Done

heads

tails

finished all
subproblems

unresolved
subproblems

Fig. 1: Distributed Matching and Computation Automata

Definition 2 (Strong Directed Edge Coloring). A strong edge
coloring is an assignment of colors to the edges of the graph
such that no two edges that can be connected by a common
edge are assigned the same color.

In the directed case, a strong edge coloring is a mapping
f(e) = C 7→ E | ∀ e(u, v), e′(v, u), e′′(w, v), e′′′(w, x) ∈
E, c ∈ C, f(e) = c =⇒ f(e′) 6= c, f(e′′) 6= c, f(e′′′) 6= c.

Figure 2 shows the influence of a color assignment to an
edge of a graph on the possible color assignments to the rest
of the graph–none of the dashed edges can be colored with
the same color as the solid edge, but at least one of the dotted
edges could be colored with the same color as the solid edge.

B. Prior Work

Distributed edge coloring is a well studied problem. Pan-
conesi and collaborators have produced a number of papers ty-
ing edge coloring to channel assignment and presenting novel
edge coloring algorithms with communication complexity of
as low as O(loglogn) [5],[11],[10],[9].

0
1

2

3

4

5

6

7

8

(a) Edge Coloring: Influence of (0,2)

0

1

2

3

4

5

6
7

8

(b) Strong Directed Edge Coloring: Influence of (4,7)

Fig. 2: Edge Colorings: assigning a color to the solid edge makes that color unavailable to the dashed edges, but not to the
dotted edges

Gandham et al. present an deterministic algorithm which
colors a graph using ∆ + 1 colors with a time complexity
of 2∆ + 1 for acyclic graphs [4]. Barenboim et al. present
a deterministic algorithm which extends beyond trees and
provides an O(∆) coloring in O(∆1+ε) time for an arbitrarily
small constant ε ≤ 1 [1]. A limitation of this algorithm is that
the constant factor for quality increases as ε decreases.

In strong edge coloring, Barret et al. present algorithms with
running times dependent on the size of the graph n [2]. Kanj
et al. show tight bounds for the quality and locality, but not
the time bounds, of their algorithms [7].

C. The Message Passing Model

Our algorithms assume a message passing model of
distributed computing. Therefore, we make the following
two assumptions. First, communication rounds proceed syn-
chronously. Second, each node can communicate with each of
its neighbors once during any communication round. Struc-
turally, our algorithms map each vertex of the graph to a
compute node of the distributed computer.

We also use the term ’round’ in two different senses. A
computation round in our algorithm is composed of several
communication rounds. Referring to the automata in Figure 1,
the automata defines the possible states of a node during a
single computation round. During that computation round,
there are two distinct communication rounds where nodes
in the I state send invitations, while nodes which are (syn-
chronously) in the L state listen for invitations, and a second
communication round in which nodes in the R state respond
to any invitations which they have received while nodes in the
W state wait to receive responses.

A key point is that nodes are assumed to move syn-
chronously through the stages of the automata regardless of
whether they receive invitations or responses, although they
can only perform computations based on the messages which
they receive.

The purpose of the our framework is to generate a matching1

on the graph in each computation round. For a number of
graph problems, including edge coloring and vertex cover,
finding such a matching allows for local computations to be
made simultaneously by the nodes in the matching without the
possibility of conflict.

II. EDGE COLOR ALGORITHM

A. Algorithm

In Figure 1, the states of the vertexes are labeled C, I, L,
W , R, U , and D. In our adaptation of the automata, shown in
Algorithm 1, an additional state, E , is used for the purposes
of exchanging information at the end of each round.

Each node maintains a list of colors that each of its
neighbors has used. This is updated at the end of each round.

All transitions are made synchronously, that is, we assume
that if any node in the network is in a given state, all nodes
in the network are either in that state or in a corresponding
state. States that correspond are C, D, I, L, R, W .

1) C (Choose) state: Each vertex chooses with equal prob-
ability to transition to the I state or the L state.

2) I (Invite) State: Each node in the I state chooses
an available edge and available color. The edge is chosen
randomly from among the nodes uncolored edges, and the
color is the lowest indexed color available to color that edge
(Algorithm 1, lines 1.11,1.36). The node then sends a message
containing its own id, the id of the intended receiver, and the
proposed color.

3) L (Listen) State: Each Node in the L state listens for
invitations from its neighbors. From among the invitations
received, the node will keep invitations containing its own
id and transition to the R state.

1A matching for a graph G(V,E) is a subset E′ ⊂
E | ∀ e(u, v), e′(u,w), e′′(v, x) ∈ E, e ∈ E′ =⇒ e′ /∈ E′, e′′ /∈ E′.
Less formally, no two contiguous edges are in the matching.

4) R (Respond) State: Each node in the R state chooses
a random invitation from the invitations recieved and kept in
the L state. The node sends a reply message containing its
own id, the id of the original sender, and the proposed color
from the invitation. This response message is a duplicate of
the invitation message with the ids reversed. The node then
transitions to the U state. Nodes that recieved no invitations
simply transition to the U state.

5) W (Wait) State: Nodes in the W state collect all replies
in their neighborhood and transition to the U state.

6) U (Update) State: Nodes in the U state update their
own edges if they have received a response to an invitation or
responded to an invitation. All nodes next transition to the E
state.

7) E (Exchange) State: In this state, nodes that have used
new colors broadcast those colors to their neighbors. All
nodes use this information to update the colors that they have
available to exchange with their neighbors. Nodes which have
colored all of their edges transfer to the D (Done) State, and
all other nodes transition back to C.

B. Algorithm Analysis

We here address the termination, correctness, and solution
quality of Algorithm 1. We will first show that Algorithm 1 is
likely to terminate in O(∆) rounds, then that it will produce
a correct coloring if it does terminate, and finally that the
coloring produced will use no more than 2∆− 1 colors.

Proposition 1. Algorithm 1 is likely to terminate in O(∆)
rounds.

Discussion of Proposition 1:
Algorithm 1 terminates when all of the nodes have colored

all of their edges. In order to color an edge, a node must form
a pair in an a given round with each of its neighbors. The
number of neighbors of each node is δ ≤ ∆.

We note that there is no limit on the number of nodes that
can participate in any given round. If a particular graph has a
complete matching, than every compute node may participate
in a round. Further, the fact that a node is participating
guarantees that at least one of its neighbors is participating, but
does not prevent any of its other neighbors from participating
as well.

Therefore, if the probability that a given node w will
participate in the computation for a given round can be shown
to be constant, than the number of compute rounds is bounded
by that constant times ∆.

We therefore will procede to find the probability that a
random node w will color one of its edges in some round
r.

In any given round w may choose to be an invitor or an
invitee with equal probability. The probability that w will be
an invitee in r is 1/2.

Each neighbor of w will choose to be an invitor or an invitee
with equal probability as well. In the average round, if the
number of uncolored edges of w is δ, than the number of
invitors incident to w will be δ/2.

Algorithm 1 Distributed Matching Based Edge-Coloring Al-
gorithm

1: for all vu ∈ V in parrallel do
2: liveu ← C . All colors are available
3: deadu ← {} . No colors are used
4: usedu ← [] . No colors are assigned
5: state ← C
6: repeat
7: if state = C then
8: State ← (I ∨ L) . Coin toss selects state
9: else if state = I then

10: Randomly select an uncolored edge, eu,v
11: c← (liveu r usedv[1] . assign first available

color to c
12: Broadcast Ivu, c . u Invites v to color

eu,v with c
13: state ← W
14: else if state = L then
15: Recieve Iyx , c . all local invites
16: if y = u then . invite is targeted to vu
17: store Iyx , c
18: end if
19: State ← R
20: else if state = R then
21: Randomly Select Iuv , c . from stored invites
22: Broadcast Rvu, c . u accepts v′s invitation
23: Assign c 7→ eu,v
24: usedu ←↩ c . Append c to assigned colors
25: state ← U
26: else if state = W then
27: Recieve Ryx, c . all local responses
28: if y = u then . response is to vu
29: Assign c 7→ eu,v
30: used←↩ c
31: end if
32: state ← U
33: else if state = U then
34: Broadcast usedu . Broadcast all assigned

edge colors
35: Recieve usedv . Receive neighbors assigned

colors
36: deadu ←↩ usedv . the ”dead” set

contains the used colors from each neighbor, and is used
when choosing colors in the invitation step

37: state ← E
38: else if State = E then
39: Subtract usedu from liveu . update usable

colors
40: state ← C
41: end if
42: until All edges are assigned a color
43: end for

Each neighbor of w also has δ ≤ ∆ uncolored edges.
Every inviting neighbor v of w will choose an uncolored
edge, independently and at random, to send an invitation to.
Therefore, there is a 1/δ chance that v will send an invitation
to w.

Therefore, we can calculate the odds that w will be an
invitee which recieves an invitation by multiplying the odds
that w is an invitee with the number of neighbors of w that
are invitors by the odds that a given neighbor will send an
invitation to w.

1

2
× δ

2
× 1

δ
=

1

4
(1)

If w receives an invitation from v, it will respond to that
invitation and color the edge e(v, w). Therefore, for any given
node in the network, the odds that it will color a single edge
in a given round are bounded by a constant, and therefore the
algorithm is likely to terminate in O(∆) rounds.

Proposition 2. Algorithm 1 produces a correct coloring.

Discussion of Proposition 2:
Assume that Algorithm 1 does not produce a correct color-

ing, There are two cases where this could occur: either there
exists a node v that uses some color twice, or there exist nodes
v, w that color the edge (v, w) with different colors.

A vertex colors an edge after negotiation with some neigh-
bor. In order for an edge to be colored, a vertex v must
send an invitation to some neighbor w to color (v, w) with a
specific color. Because we assume a message passing model,
we assume that w recieves this invitation. If w responds to the
invitation, v assigns the color and w assigns the color. In the
message passing model, it is safe to assume that v recieves
the response from w. In order for v to choose a different
color than w for (v, w), v would have to either color the edge
without a response, which is contrary to the behavior of the
vertex (line 1.26), or v must not receive the message, which
is contrary to our model.

In the second case, a vertex could use the same color twice
if it either issued or responded to an invitation to use a color
twice. We know, however, that whenever an algorithm uses
a color, that color is assigned to a list (lines 1.24, 1.36).
These colors are further removed from the list in each round
(line 1.39).

If a vertex responded to or issued more than one invitation in
a single round, it is possible that this conflict could occur, but
this also contradicts the behavior of the algorithm of building
a message containing a single id in either case.

Algorithm 1 therefore produces a correct coloring.

Proposition 3. Algorithm 1 will use 2∆−1 colors in the worst
case.

Discussion of Proposition 3:
We begin by showing the worst case performance of Algo-

rithm 1.
In each round that a node joins a pair, both nodes use the

lowest common indexed color to color the edge between them.

So in the first round, color 1 will be used for every edge in
the matching, in the second round, color 1 or color 2, in the
third 1,2, or 3, and so forth.

So to model our worst possible case, we propose a node w
with the following characteristics. First, node w has a degree
of ∆ and all of the neighbors of w have a degree of ∆. Second,
w does not participate in the matching in the first ∆−1 rounds,
but every neighbor of w does. In this way we insure that w
cannot form an edge with any neighbor with an index of less
than ∆− 1.

In this case, w will be forced to use an additional ∆ colors
to connect to each neighbor, and the total number of colors
used will be 2∆− 1.

Propositions 2, 2, and 3 imply the following conjecture.

Conjecture 1. Algorithm 1 will produce a 2-approximate
coloring in O(∆) rounds in the typical case.

Conjecture 2. Algorithm 1 uses C ≤ ∆ + 1 colors in the
typical run.

Discussion of Conjecture 2:
A graph can certainly be colored with either ∆ or ∆ + 1

colors. If a node v were to be forced to use ∆ + 2 colors to
color a graph, that would mean that there are two colors of
index ≤ ∆ which are being used by each neighbor of v but
not by v itself.

In order for this to happen, there would need to be some
round, or sequentially set of rounds, in which all of v’s
neighbors formed a matching, and v did not. We know from
Proposition 1 that the odds of a node forming a match in a
given round are greater than 1/4, because the odds of a node
being an invitor and recieving an invitation are approximately
1/4. We can also easily calculate that the odds of a node being
an invitor and sending a successful invitation are no greater
than 1/4, since there is a 1/2 chance that a node w will choose
to send invitations and a 1/2 chance that the neighbor w sends
an invitation to is an invitee.

So the odds of a node forming a pair at all in a given round
are 1/x, 4 ≥ x ≥ 2.

For a given node to not form a pair while all of its neighbors
do form pairs is therefore akin to the odds that in a fair
coin toss, we first flip heads and then flip tails some arbitrary
number of times in a row, or that in a simultaneous coin toss
of some number of coins, one is heads while the rest are tails.

We therefore expect our algorithm to behave well in the
following sense: we should get conistent results with similar
graphs, the algorithm should color with ∆ or ∆ + 1 colors
most of the time, and in no experimental case should we ever
see the maximum 2∆− 1 colors used.

III. DIMA2ED ALGORITHM

A. Algorithm

Algorithm 2 (DiMa2Ed) proceeds in a manner similar to
Algorithm 1, adding the additional E step to Fig 1 and adding
subroutines at different steps. All compute nodes proceed

Algorithm 2 Distributed Matching Based Distance 2 Edge
Coloring for Directed Graphs (DiMa2ED)

1: for all vu ∈ V in parrallel do
2: repeat
3: state ← nextstate
4: case var state
5: when true C
6: reset variables
7: nextstate← {L ∨ I}
8: when true I
9: CHOOSEROUNDPARTNER

10: nextstate←W
11: when true L
12: Recieve and store messages
13: nextstate← R
14: when true R
15: EVALUATEINVITES
16: nextstate← Ui
17: when true W
18: Recieve and store messages
19: nextstate← Uo
20: when true Ui,Uo
21: UPDATEEDGES
22: nextstate← E
23: when true E
24: UPDATECOLORS
25: nextstate← C
26: end case
27: SEND nextmessage
28: until ∀v incident to u, e(u, v) is colored
29: end for

Procedure 2-a ChooseRoundPartner
1: choose a random uncolored edge e(u, v)
2: roundpartner ← v
3: Choose an open channel φ for v
4: nextmessage← φ, v, u

Procedure 2-b EvaluateInvites
1: for m in messages collected do
2: if m includes u then
3: mine[]← message . Create an array of

messages sent to u
4: else
5: other[]← message . Create an array of

messages not sent to u
6: end if
7: end for
8: mine[]← mine[] | φ /∈ other . Look for color collisions

between mine and other
9: Select a message m from mine

10: nextmessage← φ, u, v |m contains φ, v, u . reply to
the chosen message

Procedure 2-c UpdateEdges

1: select a message m |m contains roundparter . find the
reply–if any–to the last invite sent

2: if m then
3: case var state
4: when true Ui
5: color edge e(roundpartner, u) with φ from m .

color the incoming edge from the round partner
6: when true Uo
7: color edge e(u, roundpartner) with φ from m .

color the outgoing edge to the round partner
8: end case
9: end if

10: nextmessage← edges, u

synchronously. We describe the behavior of each node in each
state.

1) C (Choose State): Each active node (nodes that have not
yet assigned colors to each edge) begin each round in the C
state. In this state, the nodes choose, with equal probability,
to transition to the I or L states for the next communication
step.

2) I (Invitor) State: If node v is in the I state it executes
Procedure 2-a, choosing a potential round partner. Round
partners are chosen at random from among the uncolored
edges v, u of v, v chooses a random u and broadcasts u a
message containing the id of v, the id of u, and a proposed
color. v then transitions to the W state.

3) L (Listen) State: If a node v is in the L state it collects
all messages from its neighbors and transitions to the R state.

4) R (Respond) State: A node v in the R State must
evaluate all of its invites to look for one that it can respond to.
First, invites can be divided into two categories, those which
contain the id of v and those which do not. Call the former
group group a and the latter group group b. v searches group
a for a message which proposes a useable color that is not in
any proposal from group b. v chooses a single message that
meets that qualification and rebroadcasts it. v deletes all other
messages from memory and transitions to U .

5) W (Wait) State: In the W state, a node checks all
messages from its neighbors looking for the message that it
sent in the I state. If it finds such a message, it keeps it,
otherwise, it deletes all messages from memory, and transitions
to the U state.

6) U (Update) State: Nodes in the update state either retain
1 or 0 messages in memory. If they contain a message in
memory, they color the edge described in the message with
the color contained in the message, then eliminate that color
from their list of usable colors. Nodes then transition to the E
state.

7) E (Exchange) State: Every node exchanges the changes
to their color lists with their neighbors and updates their own
color lists based on what their neighbors have communicated.
Nodes which have uncolored edges now transition back to the
Cstate.

B. Algorithm Analysis

We here address the termination and correctness of Algo-
rithm 2.

Proposition 4. Algorithm 2 will terminate in O(∆) rounds in
the typical case.

The discussion of Proposition 1 applies to Proposition 4 as
well.

Proposition 5. Algorithm 2 produces a correct coloring.

Discussion of Proposition 5: We proceed by direct
contradiction. Suppose that Algorithm 2 terminates, but the
coloring is not correct. There are two cases where this can
happen.

a) Case 1: A node uses the same color twice.
Recall that each node colors exactly one outgoing or in-

coming edge at a time. In order for a single node to use one
color for two edges, that node would have to either issue or
accept an invite to use a color that it is already using. Since
each node checks its legal color list before it issues or accepts
an invite, this could only happen if some node used a color
but did not update its color list. This contradicts the steps of
the algorithm, in particular line 2.24.

b) Case 2: ∃ u, v, w, x ∈ V, (u, v), (v, w), (w, x) ∈
E | (u, v) is using color φ and (w, x) is using color φ.

For (uv) and (wx) to be colored simultaneously, node v
would have to accept the invitation from node u. However,
our graph is bidirectional, the existence of (vw) implies the
existence of (wv). Therefore, in the round that v accepts the
invitation from u, it would also collect the invitation from w to
x. Since v will not accept an invitation if it detects a conflict,
v will not accept the invitation from u and the edges cannot
be colored simultaneously.

For (uv) and (wx) to be colored in two different rounds,
either v must accept the invitation from u after (wx) is colored
or w must send an invitation to x after (uv) has been colored.
Either case assumes that v or w did not update their legal color
lists at the end of some previous round. This contradicts the
steps of the algorithm. If this is true, Proposition 5 is correct.

If Proposition 4 is correct and Proposition 5 is correct,
Conjecture 3 is true.

Conjecture 3. Algorithm 2 will produce a correct, distance-2
directed coloring in O(∆) rounds where ∆ is the maximum
degree of the graph.

IV. EXPERIMENTS AND RESULTS

A. Algorithm 1 on Erdos-Renyi Graphs

Erdos-Renyi graphs were generated using the iGraph ruby
bindings [6]. Graphs were generated with 200 or 400 nodes,
and an average degree of either 4, 8, or 16. 50 graphs were
generated for each size.

Consistent with Conjecture 2, ∆ + 2 colors were used in
only 2 of the 300 runs, and in no run was the number of colors

in excess of ∆ + 2. In the typical run, our algorithm found a
coloring with either ∆ or ∆ + 1 colors.

In keeping with our hypothesis, the number of rounds
required to terminate the algorithm increased linearly with ∆,
and was not affected by the number of nodes in the network.
Figure 3 shows this relationship.

20 30 40 50

40

60

80

100

120

Average ∆
R

ou
nd

s

200 Nodes
400 Nodes

Fig. 3: Edge Coloring of Erdos-Renyi Graph

B. Algorithm 1 on Scale-Free Graphs

300 scale-free graphs were generated with either 100 or
400 nodes, with alterations in weighting to create increasingly
disparate graphs. Algorithm 1 was used to generate an edge
coloring for each graph.

As expected, rounds increased with Delta at what appears
to be a constant rate. Interestingly, in contrast to our results
on random graphs, on scale-free graphs we did not use more
than ∆ colors to color any of the generated graphs.

Figure 4 shows our results for Experiment IV-B.

C. Algorith 1 on Small World Graphs

300 small world graphs were generated, 100 each with 16,
64, and 256 nodes, 50 sparse and 50 dense graphs per set.
Algorithm 1 was used to generate an edge coloring for each
graph.

Consistent with Conjecture 1, the number of rounds required
to find a coloring increased linearly with ∆ and was not
affected by the number of nodes in the graph. Further, the
number of colors required to color the graph was less than
2∆− 1 in all cases. Figure 5 shows the relationship between
∆, the number of rounds, and the number of nodes.

Conjecture 2 was not supported for this set of graphs. In
particular, dense graphs with more nodes tended to use more
than ∆ + 1 colors in most runs. The most colors used in any
run was ∆+5 for a dense graph with 256 nodes. The average
∆ for this group was 44.4. Further analysis of these results is
required.

50 100 150 200 250

100

200

300

400

500

Average ∆

R
ou

nd
s

100 Nodes
400 Nodes

Fig. 4: Edge Coloring of Scale-Free Graphs

10 20 30 40

50

100

150

Average ∆

R
ou

nd
s

16 Nodes
64 Nodes

256 Nodes

Fig. 5: Edge Coloring of Small World Graphs

D. Algorithm 2 on Erdos-Renyi Graphs

50 Erdos-Renyi graphs of 200 and 400 nodes were con-
structed with an average degree of 4 and 8. The averaged
results showed that the graphs with 400 nodes were solved
in almost identical time, with any variance easily attributable
to a slightly higher average ∆. The degree of increase in the
number of rounds required to create a correct distance two
coloring was also consistent with the increase in ∆.

Figure 6 shows the results of experiment IV-D.

V. CONCLUSION

We presented distributed algorithms for two different graph
problems. Based on our prior work on vertex cover and
the current work on directed edge coloring, we believe that
our basic approach of a matching based automata may be
applicable to a variety of graph algorithms with good results.

16 18 20 22 24 26 28 30

80

100

120

140

Average ∆

R
ou

nd
s

200 Nodes
400 Nodes

Fig. 6: Strong Edge Coloring of Directed Erdos-Renyi Graph

Our experiments supported our conjecture that we would
get good results from these algorithms on a variety of graph
structures. In particular, we were able to color scale free graphs
with the minimum number of possible colors in every case.

Our experiments also supported our conjecture that the
number of computation rounds required to solve the edge
coloring problem would scale with ∆ rather than with n,
tending to be around 2∆ for edge coloring and 4∆ for strong
directed edge coloring.

In future work we intend to improve on the experimental
and theoretical results presented here and define the properties
of problems that can be solved using our state machine.

REFERENCES

[1] L. Barenboim and M. Elkin, “Distributed deterministic edge coloring
using bounded neighborhood independence,” in Proceedings of the 30th
annual ACM SIGACT-SIGOPS symposium on Principles of distributed
computing, ser. PODC ’11. New York, NY, USA: ACM, 2011, pp. 129–
138. [Online]. Available: http://doi.acm.org/10.1145/1993806.1993825

[2] C. Barrett, G. Istrate, V. Kumar, M. Marathe, S. Thite, and S. Thulasi-
dasan, “Strong edge coloring for channel assignment in wireless radio
networks,” in Pervasive Computing and Communications Workshops,
2006. PerCom Workshops 2006. Fourth Annual IEEE International
Conference on, 2006, pp. 5 pp. –110.

[3] J. P. Daigle and S. K. Prasad, “A matching based automata for distributed
graph algorithms,” in Proceedings of the 25th IEEE International Par-
allel & Distributed Processing Symposium, Workshops and Phd Forum.
IEEE Computer Society, May 2011.

[4] S. Gandham, M. Dawande, and R. Prakash, “Link scheduling in sensor
networks: distributed edge coloring revisited,” in INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, vol. 4, March 2005, pp. 2492 – 2501 vol.
4.

[5] D. A. Grable and A. Panconesi, “Nearly optimal distributed
edge colouring in o(log log n) rounds,” in Proceedings of the
eighth annual ACM-SIAM symposium on Discrete algorithms, ser.
SODA ’97. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 1997, pp. 278–285. [Online]. Available:
http://dl.acm.org/citation.cfm?id=314161.314266

[6] A. Gutteridge, “igraph’s igraph-0.3.3 documentation,” November 2007.
[Online]. Available: http://igraph.rubyforge.org/igraph/

[7] I. A. Kanj, A. Wiese, and F. Zhang, Local Algorithms for Edge
Colorings in UDGs, ser. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer-Verlag, 2010, vol. 5911, ch. Local Algorithms for
Edge Colorings in UDGs, pp. 202–213.

[8] F. Kuhn and R. Wattenhofer, “On the complexity of distributed graph
coloring,” in PODC ’06: Proceedings of the twenty-fifth annual ACM
symposium on Principles of distributed computing. New York, NY,
USA: ACM, 2006, pp. 7–15.

[9] V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan,
“End-to-end packet-scheduling in wireless ad-hoc networks,” in SODA
’04: Proceedings of the fifteenth annual ACM-SIAM symposium on
Discrete algorithms. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2004, pp. 1021–1030.

[10] M. V. Marathe, A. Panconesi, and j. Larry D. Risinger, “An experi-
mental study of a simple, distributed edge-coloring algorithm,” J. Exp.
Algorithmics, vol. 9, p. 1.3, 2004.

[11] A. Panconesi and A. Srinivasan, “Randomized distributed edge
coloring via an extension of the chernoff–hoeffding bounds,” SIAM
J. Comput., vol. 26, pp. 350–368, April 1997. [Online]. Available:
http://dl.acm.org/citation.cfm?id=249364.249368

