
Global Transactions in the Cloud with Persistent
Data Structures

Anton Tayanovskyy and Adam Granicz
{anton.tayanovskyy,adam.granicz}@intellifactory.com

IntelliFactory

Abstract. One of the challenges of cloud programming is achieving
the right balance between performance and consistency in a distributed
database. In this paper we present a technique to obtain global transac-
tional updates while distributing the bulk of the data in the cloud. The
approach is inspired by functional programming: processes use shared
memory to allocate immutable data and communicate through a single
mutable cell with optimistic concurrency control. The technique is sim-
ple to implement on top of existing cloud database systems, offers good
performance potential for read-intensive loads, and can partially resolve
edit conflicts. In addition, it makes it easy to reason about distributed
data and allows to reuse persistent data structure designs. The paper de-
scribes the technique and compares it to established approaches such as
two-phase commit and eventually consistent databases. It also presents
a prototype OCaml client combined with a server running on the Google
App Engine1.

Introduction

One of the challenges of cloud programming is achieving the right balance be-
tween performance and consistency in a distributed database. The CAP the-
orem[1, 2] shows consistency, availability and partition tolerance to be incom-
patible. A popular compromise is to sacrifice consistency in favor of eventual
consistency. Often this is acceptable, and eventually consistent distributed key-
value stores such as Amazon’s Dynamo[3] are a perfect fit for such applications.

When stronger consistency is required, some form of coordination such as dis-
tributed transactions, two-phase commit or locking are called for[4]. Sub-optimal
performance of these mechanisms has led major cloud computing providers to ex-
clude global distributed transactions from their offerings. Instead, cloud database
systems such as Windows Azure2 Table Service, Google App Engine data store
backed by Bigtable[5] and Amazon SimpleDB3 provide a weaker form of local
transactions, locking, or conditional updates.

The paper presents a technique that builds global transactions on top of
such localized concurrency control mechanisms. Our technique is inspired by an

1 http://www.google.com/enterprise/cloud/appengine/
2 http://www.microsoft.com/windowsazure/
3 http://aws.amazon.com/simpledb/



II

analogy with functional programming: updates always allocate a new copy of
a data structure on shared memory, and mutation is restricted to modifying a
single shared reference cell. We handle cell edit conflicts by an optimistic conflict
resolution strategy. In terms of the CAP theorem, we sacrifice availability for
consistency. In particular, in case of node or network failure our system may
refuse to service update transactions while maintaining read availability.

The advantage of our technique is that it is simple to implement on top of
existing cloud database systems and offers both strong consistency and good
performance potential for read-intensive loads. It is especially suited to working
with large infrequently updated structures, such as search indexes. The technique
also makes the distributed data system easy to reason about, and lets functional
programmers reuse familiar persistent data structure designs.

One of the weaknesses is the limited write throughput of the system. Due to
optimistic concurrency control, all but one contending update transactions fail
and are restarted. We discuss caching access to the shared memory as a simple
means to improve write throughput by reducing the amount of work done by
failed and restarted transactions, in effect offering partial conflict resolution.

To demonstrate the viability of implementing our design and reusing existing
cloud infrastructure, the paper presents a prototype OCaml client combined with
a server running on the Google App Engine4.

Distributed Persistent Data Structures

In this section we present our distributed database design and compare it with
the approaches common in the industry, including local non-distributed databases,
database clusters with two-phase commit, and eventually consistent data stores.

Database Design

Our computational model involves several processes executing in parallel. The
processes may be distributed and have distinct address spaces. Every process
has access to unlimited distributed write-once shared memory, enabling it to
read and allocate persistent data structures. Communication happens via cells,
a distributed equivalent of shared mutable references. In the simplest case there
is only one cell. Processes use the cells to share references to the data structures
allocated on the distributed shared memory.

The key operation of interest is updating the cell. In general, it involves
taking the initial value of the cell, performing lookups from the shared memory,
allocating new nodes on the shared memory, and computing the final value of
the cell. The goal of our design is to make the updates transactional, giving the
system all four ACID properties: atomicity, consistency, isolation, durability.

We use optimistic concurrency control to provide transactional updates. Ev-
ery cell has a version field and every successful update increments it. An update

4 http://www.google.com/enterprise/cloud/appengine/



III

starts by checking out the current value and version of the cell. A commit suc-
ceeds if and only if the current version at commit time is the same as it was at
the beginning of the update. The design ensures the ACID properties:

– Atomicity: Given an atomic update operation on the cells, every transaction
either succeeds atomically or fails and is restarted. Failed transactions may
allocate nodes on the shared memory but these nodes are not reachable by
other processes and can eventually be deleted by the garbage collector.

– Consistency: Every time a cell is mutated, its value is set to a pointer repre-
senting a consistent data structure. Immutability plays a key role here: once
allocated, the data is never mutated, preserving the consistency property.
Every transaction thus has a consistent view of the data.

– Isolation: Since processes communicate via cells only, before a transaction
commits all intermediate nodes are visible only to the process that has allo-
cated them. It should be possible to further isolate them at the transaction
level, for example by requiring that a process may execute only one trans-
action at a time.

– Durability: Our design assumes the cells and shared memory implementa-
tions to provide durability, thus making sure that a committed transaction
is never undone.

Strengths

Our design aims to be simple to understand and easy to implement. It allows to
reuse persistent data structures familiar to functional programmers and makes it
straightforward to reason about their properties. On the implementation side, the
two components the design builds upon, distributed shared write-only memory
and reference cells with optimistic concurrency control, are well understood and
have many implementations to choose from. Below we assume that a distributed
eventually consistent key-value store is utilized as an implementation of shared
memory. We also assume a suitable implementation of cells offering consistency
and conditional update support.

The strengths of the design include the consistency guarantee and the ab-
sence of locking. It has good potential for scaling reads, and makes certain write
performance optimizations possible. We discuss these in turn.

Read Performance There are two kinds of reads: reading the cells and reading
the shared memory. Given large enough data structures, shared memory reads
will dominate. The design has good performance potential here because it does
not restrict sharding and replication, making it easy to add more machines to
load-balance the shared memory accesses. Reusing a general-purpose distributed
key-value store is one easy way to make shared memory reads scalable. A generic
distributed key-value store may also be improved on by taking advantage of the
data immutability property.



IV

Write Performance While write performance also benefits from the shared
memory design, it is severely limited by optimistic concurrency control. Two
simultaneous transactions will force one to fail and restart execution.

One mitigating factor is the ability to cache all accesses to the shared memory
on the client, which is made legal by the persistent nature of the shared memory.
Caching can apply to both lookups and allocations. A restarted transaction can
hit the cache and avoid redoing some of the work. This is especially useful for
transactions that have a degree of independence. For an example, consider two
transactions each of which is adding an entry to a map implemented as a red-
black tree. The transactions execute in parallel, then one of them fails and is
restarted. With caching the second run will only do a fraction of the work if
it encounters shared map nodes. It should be possible to construct an example
where this system would outperform the sequential execution of the transactions
due to extra parallelism.

Another possible direction for improving write performance is identifying in-
dependent updates and interleaving them automatically. The theoretical frame-
work for this is provided by the linearizability concept proposed by Herlihy and
Wing [6]. A set of concurrent updates is linearizable if it is provably equiva-
lent to a sequential update series, where the equivalence notion makes use of
the semantics of the data structure being updated. As identifying such updates
uses more information than caching, it has a greater potential to improve per-
formance. We have not yet attempted to exploit linearizability in our prototype
implementation, leaving it for future work.

Weaknesses

The primary weakness of the proposed design is the extra theoretical complexity
imposed by the immutable data structures, typically requiring O(log N) oper-
ations in place of O(1) operations. Weaknesses also include issues with system
availability, lack of transaction support across cells, absence of nested transac-
tions, the need to reclaim space with garbage collection, and lack of fairness
guarantees in case of contending updates.

According to the CAP theorem, a distributed database system can only
achieve two of the three properties: consistency, availability, and partition toler-
ance. Our design is no exception: it preserves consistency and partition tolerance
at the cost of availability.

In particular, network failures will cause update transactions to explicitly fail
at the initiating client. For example, the server responsible for maintaining the
shared cell might go down, causing both reads and writes to become unavailable.
If a cluster of servers is used for this purpose, network failures can still prevent
them from communicating, making writes unavailable. In this situation a typical
cloud computing system will attempt to recover the failed nodes and connectivity
automatically. Upon success, there will be no data or consistency loss. Higher
availability can be achieved by extra redundancy in the cells and key-value store
components.



V

More problems stem from optimistic concurrency in the handling of con-
tending updates. Nested transactions are not supported as they would cause
an infinite cascade of restarts. There are also no fairness guarantees: if update
transactions are continuously started faster than they are being committed, a
process can perpetually fail to commit.

Another weakness is the necessity of garbage collection to reclaim space oc-
cupied by unreachable nodes. A mark-and-sweep strategy is possible and can be
done periodically in the background, impeding writes but not affecting read per-
formance. An alternative with more predictable performance is reference count-
ing, perhaps combined with prohibiting loops in the allocated data structures.

Alternatives

We now compare our design to some popular alternatives used by the industry
to handle data in a cloud computing environment.

Local Databases A simple, conventional solution is to run a single local
database without replication. With a single database, there is no need to worry
about partitioning and distributed transaction support. The solution works well
until the system hits availability constrains imposed either machine failure or its
throughput capacity.

Master-Slave Replication Another approach is setting up a cluster where
one machine acts as an authoritative master and handles all writes, and one or
more machines act as slaves that help handle read traffic. This design improves
upon the read availability and throughput of a local database, but has a single
point of failure and a single bottleneck for write traffic. Our design has similar
characteristics. However, the immutability constraint makes coordinating shared
memory much easier than coordinating relational database replicas. In addition,
our consistency guarantees are stronger: reading a read replica may produce
incorrect out-of-date results in case of network failure, which is not possible
with write-once shared memory.

Two-Phase Commit Database clusters with true distributed transactions
often use two-phase commit protocol. The advantage is providing a familiar
database interface while obtaining read and write availability in presence of node
failures. The main disadvantage is complexity. In case of strong strict two-phase
locking, the system can cause deadlocks, and requires a special transaction man-
ager role. Commitment ordering relaxes the locking requirement but arguably
retains the complexity of the design. The complexity inherent in coordinating
distributed transactions with two-phase commit also limits their performance.

Eventually Consistent Data Stores Another alternative to the CAP dilemma
is to drop consistency in favor of eventual consistency, obtaining better perfor-
mance, availability and partition tolerance. Eventually consistent data stores



VI

are well understood and have many implementations to chose from. Despite the
benefits, they are not appropriate for applications that require stronger consis-
tency. Eventual consistency may also make application correctness more difficult
to reason about. Our design aims to reclaim some of the performance benefits
of these data stores while offering stronger consistency guarantees.

Implementation

We have created a prototype implementation5 of our distributed database de-
sign in OCaml. The implementation includes a small Python service providing
the shared memory and cell services on top of Google Application Engine. The
implementation addresses the essentials, including concurrency control and high
availability replication, but does not provide garbage collection.

Shared Memory Service

Shared memory is modeled by the following OCaml signature:

module type MEMORY =

sig

type key

val find : key -> string

val insert : string -> key

end

We assume that stored data nodes can be serialized to the string type.
Another requirement is the capability to generate new unique keys, which closely
resembles the need to allocate memory in a functional language runtime.

Immutability greatly simplifies reasoning about the shared memory. The only
implementation caveat involves an eventually consistent back-end: it may be
required to retry failed find operations. This may be necessary when we manage
to obtain a valid key before it propagates to all machines participating in the
cloud.

Cells Service

The shared mutable cell interface takes the following form:

module type CELL =

sig

val read : unit -> string

val update : (string -> string) -> unit

end

5 The code can be found at http://bitbucket.org/IntelliFactory/ifl-2011



VII

The read operation returns the current state of the cell. The update f op-
eration tries to replaces a state t with f t. If mismatched versions indicate that
the update was preempted by another transactions, it is restarted. Both oper-
ations may fail indicating exceptional situations such as communication failure
or too many update attempts.

Implementing CELL requires concurrency control: we need a distributed lock
service, single-row transactions, or a way to perform atomic updates conditional
on the value of the version field. Fortunately, these building blocks are present in
several major cloud offerings, including Google App Engine, Amazon SimpleDB,
and Windows Azure. They are also available from most relational database sys-
tems.

Sharded Data Structures

The obvious way to store a data structure is to serialize it and store it in a single
string, but this approach restricts member lookup to be linear in the structure
size. It is asymptotically more efficient to combine serialization with sharding.

For an example of a sharded data structure, consider the familiar purely
functional lists. The list is either an empty list, or a cons-cell with a value
and a pointer to the next list. We can construct a database list analogously,
representing pointers as database keys, and packaging it with database access
utilities in the following signature:

module type LIST =

sig

type elem

type list

type node = Nil | Cons of elem * list

val find : list -> node

val insert : node -> list

end

We include this signature together with a functorized implementation requir-
ing a MEMORY structure to model allocations on distributed memory.

These simple modifications apply to many purely functional data structures
and algorithms. For another example consider maps. The following OCaml sig-
nature describes the interface:

module type MAP =

sig

type key

type value

type map

val empty : unit -> map

val add : key -> value -> map -> map

val find : key -> map -> value option



VIII

val remove : key -> map -> map

end

Efficient implementations include red-black and AVL tree-based maps[7], but
for demonstration purposes a simple list-based implementation will do. To derive
a database implementation, let us start with normal in-memory code. Here is
how the remove function might look like:

module ListMap (...) : MAP =

struct

type map = (key * value) list

let rec remove k m =

match m with

| [] -> []

| (k’, v) :: rest ->

if k = k’ then remove k rest

else (k, v) :: remove k rest

...

end

The database version of the remove function is obtained from the in-memory
version by substituting ordinary lists with database lists, and adding database
lookup (assuming an L : LIST):

let rec remove k m =

match L.find m with

| L.Nil -> m

| L.Cons ((k’, v), rest) ->

if k = k’

then remove k rest

else L.insert (L.Cons ((k, v), remove k rest))

Other functions are obtained analogously.

Typed Database Client

The typed database client is an OCaml functor parameterized by MEMORY, CELL
and necessary serialization services, constructing a module satisfying the DB sig-
nature:

module type DB =

sig

type t

val read : unit -> t

val update : (t -> t) -> unit

end



IX

App Engine Backend

As a proof of concept, we have implemented CELLS and MEMORY as web services
running on the Google App Engine (GAE). MEMORY is straightforward as the
data store available to GAE applications easily subsumes the key-value store
functionality. CELLS is slightly more involved as it requires optimistic concur-
rency control. Fortunately, GAE offers a transaction interface that allows to
express the versioning logic. The relevant Python code is:

def update(entityId, version, value):

def transact(entityId, version, value):

entity = get(entityId)

if entity.version == version:

entity.value = value

entity.version = version + 1

entity.put()

else:

raise ConcurrentUpdateError()

return db.run_in_transaction(transact, entityId, version, value)

It must be noted that GAE transactions are limited in scope. In particular,
they cannot affect arbitrary entities, but can only edit entities within a single
entity group. Entity groups behave like horizontal database table partitions, and
they can be nested but not otherwise overlapping. Entity group membership is
decided at entity creation time. In our CELLS implementation the transaction
spans a single entity only, which is a trivial case of an entity; the code is therefore
correct.

Other systems such as Amazon SimpleDB do not provide transactions but
have a mechanism for conditional updates. Such updates atomically fail if an
entity field has an unexpected value during the update. A CELLS service can be
implemented as a conditional update by using a check on the version field.

Related Work

Distributed transactions have been a topic of active research since at least the
1970s [4]. Bernstein et al [8] give an good overview of the theory and issues
involved in distributed databases, covering serializability, two-phase commit,
atomic commitment and discussing replication. A more recent textbook treat-
ment can be found in [9]. The idea of restricting mutation in the data store has
also been attempted early, for example in the Jasmine/JStore system [10].

More recently, a number of eventually consistent systems have been proposed
and implemented [11, 3, 5] in an attempt to provide higher availability and per-
formance.

Our contribution lies in proposing an easy to implement hybrid system that
combines the consistency of classical database transactions with the scalability
of eventually consistent data stores.



X

Conclusions

We have presented a design for a distributed database with transactional updates
and good read performance potential. The database can be implemented on top
of standard solutions available from the major cloud computing providers, such
as the eventually consistent distributed key-value stores and local transactions.
The approach utilizes data structures familiar from purely functional program-
ming by reinterpreting them as recipes for efficient distributed database parti-
tioning. Because of the overhead of optimistic concurrency control, our approach
is especially well suited to infrequently updated structures, although caching can
be used to improve the write throughput of the system. Our prototype imple-
mentation shows the approach to be applicable to existing cloud technology, in
particular the Google App Engine.

We conclude that restricting mutation greatly simplifies providing global
transaction support in distributed databases.

As future work, we plan to extend our implementation to support multi-
ple cloud storage providers while maintaining a uniform programming interface.
Other directions include exploring undo capabilities by retaining keys of all past
versions of the stored objects, exploiting linearizability of concurrent updates,
investigating garbage collection algorithms for reclaiming space occupied by un-
reachable nodes, and benchmarking performance on problems of practical inter-
est.

References

1. Brewer, E.A.: Towards robust distributed systems. In: Proceedings of the 19th
Annual ACM Symposium on Principles of Distributed Computing. PODC ’00, New
York, NY, USA, ACM (2000) 7

2. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. ACM SIGACT News 33 (2002) 51–59

3. DeCandia, G. and Hastorun, D. and Jampani, M. and Kakulapati, G. and Lak-
shman, A. and Pilchin, A. and Sivasubramanian, S. and Vosshall, P. and Vogels,
W.: Dynamo: Amazon’s highly available key-value store. ACM SIGOPS Operating
Systems Review 41 (2007) 205–220

4. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21 (1978) 558–565

5. Chang, F. and Dean, J. and Ghemawat, S. and Hsieh, W.C. and Wallach, D.A.
and Burrows, M. and Chandra, T. and Fikes, A. and Gruber, R.E.: Bigtable: A
distributed storage system for structured data. ACM Transactions on Computer
Systems (TOCS) 26 (2008) 1–26

6. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent ob-
jects. ACM Transactions on Programming Languages and Systems (TOPLAS) 12
(1990) 463–492

7. Okasaki, C.: Purely functional data structures. Cambridge University Press, New
York, NY, USA (1998)

8. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley (1987)



XI

9. Weikum, G., Vossen, G.: Transactional Information Systems - Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. Morgan Kaufmann Pub-
lishers (2002)

10. Wiebe, D.: A distributed repository for immutable persistent objects. SIGPLAN
Not. 21 (1986) 453–465

11. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.H.: Managing update conflicts in bayou, a weakly connected replicated stor-
age system. In: Proceedings of the 15th ACM Symposium on Operating Systems
Principles. SOSP ’95, New York, NY, USA, ACM (1995) 172–182


