
Gaston

A ploing utility for Julia

v. 0.5.5

M. Bazdresch

March 5, 2013

Please note: Gaston is currently under heavy development, and all functions and defi-
nitions are subject to change from one version to the next, as we figure out the best way to
organize the code. Gaston has been tested on Linux, with gnuplot 4.6, and Julia v0.1.

Contents

1 Introduction 2

2 Installation 2

3 Definitions 3

4 Plotting 3
4.1 Figures 3
4.2 Terminals 3
4.3 2-D ploing 4

4.3.1 plot() 4
4.3.2 histogram() 5

4.4 3-D ploing 7
4.5 Ploing images 8

5 Plotting with mid-level functions 9
5.1 2-D ploing 10

5.1.1 2-D ploing styles . . 11
5.2 3-D ploing 11

5.3 Image ploing 12

6 Printing to a file 12
6.1 Printing a single figure 12
6.2 Always print to files 13

7 Reference 13
7.1 Curve configuration 13
7.2 Axes configuration 15
7.3 Changing default configuration 15
7.4 Plot types 16
7.5 Types 16

8 Notes to the user 17
8.1 Scripting 17

9 Testing 17
9.1 Adding tests 18

1

1 Introduction

Gaston provides a way to plot scientific and numeric data using the Julia programming
language. It accomplishes this by harnessing gnuplot, a versatile and time-tested ploing
utility. Gaston also relies on gnuplot for interacting with plots (zooming and rotating a plot
with the mouse, for instance).

e primary purpose of Gaston is to provide easy-to-use functions to quickly and conve-
niently plot the most common kinds of scientific and numeric data. It is concerned mainly
with screen output, although it also supports exporting figures to SVG, PDF, PNG and GIF
files (see section 6 for more on printing).

Gaston offers two sets of ploing functions. e first, called ”high-level”, is similar to
some of the functions offered by programs such as Octave. ese functions may be used to
create 2-D plots (including histograms), 3-D surfaces, and for ploing images. See section 4
for more information on these functions.

e second set, called ”mid-level”, offers more flexibility at the cost of being a bit more
cumbersome. With these functions, figures are built step by step by adding sets of coordi-
nates with associated properties. ese functions allow creation of some kinds of plots not
supported by the high-level interface. For example, ploing a histogram and a curve on the
same plot is only possible with mid-level functions. See section 5 for more information.

At the lowest level, Gaston provides a function called gnuplot_send(). It takes a string
argument, which is sent to a gnuplot process through a pipe. While certainly not user-
friendly, this function may be used to ultimately access any gnuplot feature from Julia, even
if not supported by Gaston.

Gaston has a layered design: high-level plot functions use the mid-level functions to
build and specify plots, which are translated to gnuplot commands and sent to gnuplot using
gnuplot_send().

2 Installation

To use Gaston, install the package from Julia’s command prompt:

Pkg.add("Gaston")

en, load the package with

using Gaston

To run a demo, do

gaston_demo()

2

is will create a series of figures that illustrate the current capabilities of the program.
e same file may also serve as a guide on how to create different types of plots.

To run the tests (see section 9), do

gaston_tests()

All tests should pass.

3 Definitions

A figure is an independent window, which contains a set of axes, on which one or more
curves are ploed. A figure may contain labels (for instance, on each coordinate axis), a
title, and a legend box which identifies each curve. Gaston supports having any number of
figures open at the same time; however, gnuplot requires that only one figure is able to offer
mouse interactivity at a given time. Each figure is identified by a unique handle. Handles
are natural numbers.

A curve is defined by a set of coordinates. Two-dimensional curves have x and y coor-
dinates; in three dimensions, an additional z coordinate must be specified. A curve also has
several properties that specify a ploing configuration (for instance, it may have a plotstyle,
a linewidth, a linecolor, etc), which define how the curve is to be ploed.

4 Plotting

4.1 Figures

A figure may be created by the function figure(). Many ploing functions create or reuse
an existing figure, as needed (see each function’s documentation). Called with no arguments,
figure() creates a new figure with the smallest available handle. Called with an argument
(which must be a natural number), it will create a figure with that handle if no such figure
exists, or will select it (make it current) if it exists.

Selecting an existing figure may be useful, for instance, to interact with it using mouse
and keyboard, or to overwrite it with the next ploing command.

Handles may be created in any numerical order.
is function always returns the handle of the current figure.

4.2 Terminals

Gaston supports ploing to the screen as well as printing the plots to files. ree screen
terminals are supported: wxt, x11 and aqua1. e x11 terminal is faster than wxt, but it

1Gnuplot provides the aqua terminal on Mac OS X systems only. It is included in Gaston for convenience of
users of that system. However, the author does not have access to any Mac computers and, in consequence, this
terminal should be considered as unsupported. Bug reports, patches and comments are welcome, as always.

3

offers lower plot quality; it is provided for use in systems with lower performance or that
don’t support WxWindows.

For printing to files, terminals svg, pdf, png, eps and gif are supported. For more details
on printing, see section 6 below.

To set the terminal type, use the command

set_terminal(term)

where term is a string.

4.3 2-D plotting

ere are two commands for two-dimensional ploing: plot() and histogram().

4.3.1 plot()

e plot() function takes at least one argument, with the following format:
plot({h,} {x,} y {, property, value...} {...})

• If the optional argument h is provided, it is assumed to be the figure handle in which
to plot.

– If the handle doesn’t exist, a new figure is created.
– If it exists, the figure will be overwrien.
– If it is 0, then a new figure to plot in will be created, using the next handle

available.

If it is not provided, then the current figure will be used and overwrien.

• e x and y arguments specify coordinates (they must be ranges, vectors, or two-
dimensional arrays with a singleton dimension). If only y is provided, it is assumed
to be the ordinate. If x and y are provided, they are assumed to be the abscissa and the
ordinate, in that order.

• e coordinates may be followed by any number of property, value pairs. ese are
used to set the value of any of the curve’s or the axes’ properties (see section Reference,
below). propertys are always strings. e values must be of the appropriate type.

• e paern {x,} y {, property, value...}may be repeated any number of times.

– Curve seings are always set for the immediately preceding curve.
– Axes seings may be specified at any time, and in the case of repeated properties,

the last one set is the one that is used.

4

• Propertiesmay take the following values: plotstyle, legend, color, marker, linewidth,
pointsize, title, xlabel, ylabel, box, axis.

• Supported plotstyles are lines, linespoints, points, impulses, dots and boxes.

• plot() returns the handle of the figure that was ploed.

As an example, to plot an amplitude modulated signal and its envelope, we may run the
following code:

t = 0:0.0001:.15
carrier = cos(2pi*t*200)
modulator = 0.7+0.5*cos(2pi*t*15)
am = carrier.*modulator
plot(t,am,"color","blue","legend","AM DSB-SC","linewidth",1.5,

t,modulator,"color","black","legend","Envelope",
t,-modulator,"color","black","title","AM DSB-SC example",
"xlabel","Time (s)","ylabel","Amplitude",
"box","horizontal top left")

which produces this plot:

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
m

p
lit

u
d

e

Time (s)

AM DSB-SC example

AM DSB-SC Envelope

4.3.2 histogram()

e histogram() function plots a single histogram in a figure. It has the following format:
histogram({h,} y {, "bins", bins} {, "norm", norm} {, property, value...})

5

• e optional argument h has the same meaning as in plot().

• e histogram consists of boxes, where the height of each box is given by the number
of elements of y that fall in a given range.

• bins specify the number of bins (boxes) that will be ploed (bins must be an integer
larger than zero).

• If norm is specified, the histogram will be normalized, so that the area under the his-
togram is equal to norm (norm must be a real number larger than zero).

• e pairs {, property, value...} have the same meaning as in plot().

• Properties may take the following values: legend, color, linewidth, title, xlabel,
ylabel, box.

• histogram() returns the handle of the figure that was ploed.

As an example, to plot an approximation of a Rayleigh density, we may run the following
code:

y = sqrt(randn(1000).^2 + randn(1000).^2)
histogram(y,"bins",25,"norm",1,"color","blue","title","Rayleigh density (25 bins)")

which produces this plot:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

y

x

Rayleigh density (25 bins)

6

4.4 3-D plotting

ere is one 3-D ploing command, surf(). is command is intended for ploing surfaces.
Its format is as follows:

surf({h,} {y, {x,}} {f|Z} {, property, value...} {...})

• e optional argument h has the same meaning as in plot().

• e x and y arguments have the same meaning as in plot().

• e argument f|Zmay be either a 2-Dmatrix Z or a function of (x,y). If Z is provided,
then its element i,j is assumed to be the z-coordinate associated with (x[i],y[j]).
If f is provided, then x and y must be provided too, and the function meshgrid() will
be used to calculate matrix Z.

• e pairs {, property, value...} have the same meaning as in plot().

• Propertiesmay take the following values: plotstyle, legend, color, marker, linewidth,
pointsize, title, xlabel, ylabel, zlabel, box.

• Supported plotstyles are lines, linespoints, points, impulses, dots and pm3d.

As an example, to plot f(x,y)=cos(x)*sin(y) using points, one may use the following
code:

gnuplot_send("set view 67,25")
surf(-3:.1:3,-3:0.1:3,(x,y)->cos(x)*sin(y),"plotstyle","points",
"xlabel","coord 1","ylabel","coord 2","zlabel","coord 3",
"title","surf demo","color","blue")

which produces this plot:

7

-3
-2

-1
 0

 1
 2

 3 -3
-2

-1
 0

 1
 2

 3

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

coord 3

surf demo

coord 1

coord 2

coord 3

Note the use of gnuplot_send() to set the view, which is something Gaston doesn’t
support natively yet.

4.5 Plotting images

e command to plot images is imagesc(). is command plots a matrix as an image. e
format of the arguments is the following:

imagesc({h,} {y, {x,}} Z {, "clim", clim} {, property, value...})

• e optional argument h has the same meaning as in plot().

• e x and y arguments have the same meaning as in plot().

• Z is a matrix. If it is two-dimensional, then gnuplot’s image plot style is used. In
this case, gnuplot automatically adjusts the values in Z to fit the current palee. If
it is three-dimensional, then the plotstyle rgbimage is used; in this case, all matrix
elements are assumed to be between 0 and 255. Z[:,:,1] is assumed to be the image’s
red component, Z[:,:,2] the blue, and Z[:,:,3] the green.

• If the optional clim property is specified, then it must be followed by a two-element
array clim=[cmin cmax]. e values of Z are scaled to the range 0:255 using the
following logic:

Z -= cmin
Z[Z<0] = 0
Z *= 255/(cmax-cmin)
Z[Z>255] = 255

8

• e pairs {, property, value...} have the same meaning as in plot().

• Properties may take the following values: title, xlabel, ylabel.

• imagesc() returns the handle of the figure that was ploed.

It is important to understand how imagesc() interprets matrix Z. e matrix is ploed
such that the resulting image resembles the matrix as it would normally be printed on screen.
at is, element Z[1,1] (or Z[1,1,:] for an RGB image) is ploed on the upper le-hand
corner, and matrix columns are ploed as image columns.

As an example, the following code:

z = zeros(10,10,3)
z[:,:,1] = 255*rand(10,10)
z[:,:,2] = 128*rand(10,10)+40
z[:,:,3] = 64*rand(10,10)+190
imagesc(z,"title","imagesc demo")

produces a plot similar to this:

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

y

x

imagesc demo

5 Plotting with mid-level functions

In addition to the ploing functions described in the section above, Gaston offers a “mid-
level” set of functions that allow plots to be created step-by-step.

Having this mid-level layer has two benefits. One is that this layer is more flexible and
allows direct control over all aspects of the plot. For instance, using high-level functions it

9

is not currently possible to plot more than one histogram, or a histogram and another curve,
on the same figure. e mid-level layer allows such combinations. Another example is an
algorithm that builds figures step-by-step as data becomes available, instead of waiting until
all the data needed has been produced.

A second benefit is that this layer abstracts Gaston’s internal graphics representation
from the high-level layer. ismeans Gaston’s whole back-endmay changewithout affecting
the high-level functions; only the mid-level layer would have to be adapted.

Also, much of Gaston’s error checking and argument validation is performed in this layer.
Please note that there is a single mid-level plot command, which is llplot(). According

to the type of coordinates and plotstyle, it will figure out how to plot a figure.

5.1 2-D plotting

Ploing proceeds in steps:

1. Create or select a figure with figure() or figure(i), where i is a positive integer.

2. Add a curve (a set of coordinates plus a plot configuration), with addcoords(x,y,conf).
Here, x and y are vectors, and conf configures the plot and line styles, markers, legend,
color, etc. Repeat this step for each curve you wish to include in the figure.

3. Add a configuration for the entire figure (axis), with addconf(conf), where conf
contains the figure configuration.

4. Issue the llplot() command.

A curve configuration is created as follows:

1. Create a default configuration with c = CurveConf().

2. c is a structure, each of whose fields controls one aspect of the curve’s configuration.
ese fields may be set individually. Available fields are: legend, plotstyle, color,
marker, linewidth, and pointsize. For instance, to change a curve’s color, do2

c.color = "blue"

See gnuplot’s documentation and this manual’s section 7 to see the range of valid
options.

A figure (axis) configuration is created as follows:

1. Create a default configuration with a = AxesConf()

2Directly changing a structure’s fields, instead of using seer functions, may be seen as non-idiomatic or
inelegant. In this case we have decided to do the simplest thing that might possibly work.

10

2. Just as in the case of a curve configuration, a is a structure whose fields may be modi-
fied. Available fields are: title, xlabel, ylabel, zlabel, box, axis.

Several rules apply:

• You can create as many figures, each with as many curves, as desired.

• Whenever possible, missing coordinate data will be inferred. For example, calling
addcoords() with a single vector y will assume the x coordinate is 1:length(y) and
set up the default plot configuration.

• If you call addcoords() with matrix arguments, each column will be interpreted as a
different plot.

• Calling addcoords() will create a new figure if none have been created yet.

• Calling llplot() without an axis configuration will just use one by default.

• Gnuplot only provides mouse interaction support for the current figure. To use the
mouse in a previously created figure i, just issue command figure(i). is will also
bring the figure to the front.

5.1.1 2-D plotting styles

Besides simply ploing a set of x and y coordinates, Gaston supports other kinds of plots.
Error bars and lines. Gaston supports gnuplot’s errorbars and errorlines plot styles.

To add error bars or lines, follow addcoords() with a call to adderror() with one or two
extra coordinates. If two coordinates are provided, they are interpreted as ylow and yhigh
(following gnuplot’s terminology). If only one is provided, it is interpreted as ydelta. Re-
member to configure the plotstyle accordingly.

Histograms. To plot the histogram of a data vector datawith b bins, first use the auxiliary
function (x,y) = histdata(data,b) to create x and y coordinates that may be ploed with
the boxes plotstyle.

5.2 3-D plotting

e same rules apply, except that addcoords() should be called as addcoords(x,y,Z),
where Z is a matrix whose element j,k corresponds to some function of x[j],y[k].

For convenience, a function Z = meshgrid(x,y,f) is provided. Called with x, y coordi-
nates and a function f, it will return a matrix that may be used to plot f.

11

5.3 Image plotting

Two image plotstyles are supported: image and rbgimage. Ploing images is very similar
to 3-D ploing, the only differences being the plotstyle and the way the coordinate data is
interpreted.

Scalar image. To plot a 2-D matrix Z as an image, set the plotstyle to image. e color of
each image element is given by the matrix values and the current colormap.

RGB image. To plot an RGB image, the matrix Z must be three dimensional, and the
plotstyle must be set to rgbimage. Z[:,:,1] is assumed to be the image’s red component,
Z[:,:,2] the blue, and Z[:,:,3] the green.

6 Printing to a file

Gaston supports ploing a figure to a file instead of the screen (printing a figure). Currently
supported are PDF, PNG, SVG and GIF files. ere are two ways to print figures.

6.1 Printing a single figure

If you have a figure on screen that you want to print, you may use the printfigure()
command. e following example shows hows to print a figure to a PNG file:

plot(sin(-pi:0.01:pi))
set_filename("test.png")
printfigure("png")

If the filename is not set, output will be sent to the screen.
Some properties of the printed figures can be controlled using the following functions:
set_print_color(): Use "mono" for printing monochromatic figures, and "color" for

color figures.
set_print_fontface(): Name of font to use for all text in the figure. Use fc-list to

find fonts installed on your system.
set_print_fontsize(): Font size.
set_print_fontscale(): Gnuplot scales the fonts by this factor (even if the font size

has been specified).
set_print_linewidth(): Controls the plot’s linewidth. is is useful because in most

cases, gnuplot’s default linewidth is too thin.
set_print_size(): Sets the plot size. e size is specified differently for various termi-

nals, see table below.
e following table provides more details on each function.

12

Command Values Default File types

set_print_color() "mono", "color" "color" PDF, PNG
set_print_fontface() Font name (a string); font

must be present in the
system

Sans All

set_print_fontsize Positive number 12 All
set_print_fontscale Positive number 0.5 PDF, PNG, GIF
set_print_linewidth Positive number 1 All
set_print_size() For GIF, SVG, PNG, EPS

and PDF: "X,Y" specifies
a plot of X times Y pixels.
In addition, for PNG, EPS
and PDF, dimensionsmay
be specified as "Xin,Yin"
or "Xcm,Ycm"

"5in,3in" All

6.2 Always print to files

If you want regular plot commands to print to files instead of showing the plots on the screen,
just set the terminal type and filename at the start of your session. For example, Gaston may
be used in a webserver that reads SVG plots from a pipe; this may be set up as follows:

set_terminal("svg")
set_filename("|serverpipe")
plot(sin(-3:0.01:3),"title","SVG test")

e plot command in the last line will cause the SVG data representing the figure to be sent
to the pipe serverpipe.

7 Reference

Note: In this section, at least superficial knowledge of Julia and gnuplot is assumed. Please
refer to the respective documentation for more details.

7.1 Curve configuration

A given curve’s configuration is stored in a structure of type CurveConf. is structure has
the following fields:

13

Field Notes Meaning in gnuplot

legend e text that appears in the legend box. Argument of title.
plotstyle How the curve will be ploed. Argument of with.
color e curve color. Argument of linecolor rgb.
marker e marker name. Argument of pointtype.
linewidth e curve line width; must be a positive number. Argument of linewidth.
pointsize e marker size; must be a positive number. Argument of pointsize.

e types, default and valid values for each field are given in the following table.

Field Type Default value Valid values

legend String "" Any string.
plotstyle String lines lines, linespoints, points, impulses, errorbars,

errorlines, pm3d, boxes, image, rgbimage.
color String "" "", any gnuplot color name, or a color specified in a

string in the format "#RRGGBB".
marker String "" "", +, x, *, esquare, fsquare, ecircle, fcircle,

etrianup, ftrianup, etriandn, ftriandn, edmd,
fdmd (run test in gnuplot terminal).

linewidth Real 1 Any real number
pointsize Real 0.5 Any real number

Notes: When color or marker are set to the empty string, gnuplot will use its own default
values. Gaston does not verify that the color name provided is valid. You can see a list of
valid color names running show colornames in a gnuplot terminal.

e following table lists the marker names and corresponding symbols.

Marker name Symbol

+ +
x ×
* ∗
esquare □
fsquare ■
ecircle ◦
fcircle ●
etrianup △
ftrianup ▲
etriandn ▽
ftriandn ▼
edmd ◇
fdmd ◆

14

7.2 Axes configuration

ere may be only one configuration per figure. is configuration is stored in a structure
of type AxesConf, which has the following fields:

Field Notes Meaning in gnuplot

title e figure’s title title-spec
xlabel Abscissa’s label Argument to set xlabel
ylabel Ordinate’s label Argument to set ylabel
zlabel Z-axis label Argument to set zlabel
box Legend box configuration Argument to set key
axis Axis scale Argument to set logscale

e types, default and valid values for each field are given in the following table.

Field Type Default value Valid values

title String "Untitled" Any string
xlabel String "x" Any string
ylabel String "y" Any string
zlabel String "z" Any string
box String "inside

vertical
right top"

Any valid string

axis String "" "", normal, semilogx, semilogy, loglog

Notes: Gaston does not verify that box contains a valid set key argument. e axis
values follow Matlab’s conventions for logscale axes; Gaston translates them to gnuplot’s
equivalents.

7.3 Changing default configuration

Gaston provides functions to change the default values listed above. ere is one function
per each property, both for curves and for axes. For example, a Spanish speaker may wish
to change the default value for figure titles from “Untitled” to “Sin título”. is is achieved
by

set_default_title("Sin título")

and, from that point on, any figure with an unspecified title will be titled thus.
Functions to change the defaults have the form set_default_*(arg), where * is the

property name and arg is the new default value (must be of the appropriate type).

15

7.4 Plot types

In this section, we describe how Gaston decides which kind of plot to produce (2-d, 3-d, or
image), based on the available coordinates and specified plot style.

In the following table, a check mark (✓) means that the coordinate has been specified
by the user in either a mid-level or high-level command (x coordinates, if not specified, are
calculated by Gaston, and are not included in the following table. e same applies to yhigh).

plotstyle y Z ylow Gnuplot command

lines
✓ plot with lines
✓ ✓ splot with lines

linespoints
✓ plot with linespoints
✓ ✓ splot with linespoints

points
✓ plot with points
✓ ✓ splot with points

impulses
✓ plot with impulses
✓ ✓ splot with impulses

dots
✓ plot with dots
✓ ✓ splot with dots

boxes ✓ plot with boxes
errorbars ✓ ✓ plot with errorbars
errorlines ✓ ✓ plot with errorlines

pm3d
✓ splot with pm3d

✓ ✓ splot with pm3d

image
✓ plot with image

✓ ✓ plot with image

rgbimage
✓ plot with rgbimage

✓ ✓ plot with rgbimage

Any other combination of coordinates and plotstyle produces undefined behavior – we
try to identify invalid combinations and produce an error, but this is not guaranteed. Please
note that mixing 2-d and 3-d plots on the same figure also produces undefined behavior.

7.5 Types

Gaston defines several new types. All types are defined in file gaston_types.jl.

16

Name Purpose

GnuplotState Structure that stores the state of gnuplot process.
GastonConfig Structure that stores Gaston’s configuration.
CurveConf Configuration of a single curve.
AxesConf Configuration of a figure.
CurveData A set of coordinates and its configuration.
Figure Structure that stores a set of curves, a configuration

and a handle.
Coord A variable of this type may be used as an abscissa

or ordinate.

8 Notes to the user

is section gathers some notes that may be useful to Gaston users and don’t fit anywhere
else on this document.

8.1 Scripting

When including Gaston ploing commands in a script, it is necessary to take steps to avoid
race conditions between Gaston and Gnuplot. ese race conditions arise for the following
reasons.

Gaston writes the data to be ploed to a file, and then issues plot commands that point
Gnuplot to the correct file. However, communication between Gaston and Gnuplot occurs
asynchronously. is means that, when Gaston communicates a command to Gnuplot, it
writes the command to a pipe and then continues with its normal execution. If two consec-
utive (or near) plot commands write plot data to the same file, it is possible that the file will
be overwrien while Gnuplot was still reading it.

When this happens, the plot command will apparently succeed, but no plot will be pro-
duced, and Gnuplot will issue error messages that appear on the screen. If this happens, it
may be necessary to insert sleep(x) commands between the ploing commands. Here, x is
the number of seconds to wait; this number will change depending on the particular system’s
speed. A value of 0.1 could be more than enough on modern machines.

A solution to this problem is under investigation.

9 Testing

Gaston includes a unit test framework that verifies the program’s functionality. To run all
tests, run:

gaston_tests()

17

is function will run all tests and print a summary to the screen.
ere is a peculiarity to the tests that must be taken into account. When ploing a figure,

Gaston will write the relevant data to a file and then issue commands to gnuplot through a
pipe. ese two actions are sequential but asynchronous. When ploing many figures in
quick succession, it may happen that a data file is updated before gnuplot has processed it.
In this case, the commands that gnuplot receives are no longer correlated with the data file,
and the commands may fail.

When running tests, this is exactly what may happen. is is prevented by inserting a
delay between tests, using a system call to sleep (see macros test_success and test_error
in file gaston_test.jl). e sleep amounts may have to be increased for more complex tests
or for slower computers. A more robust solution may be implemented in future versions of
Gaston.

9.1 Adding tests

New tests are easy to add. To test code that should complete successfully, use the macro
@test_success, as in this example:

@test_success plot(-3:3,"title","test")

is code should be added to function run_tests_success(). To test code that should
produce an error, use the macro @test_error inside function run_tests_error().

18

