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Abstract— The financial exertion and physical requirements
required to provide the current level of health care to the rapidly
growing elderly citizen population will create tremendous strain
on the current health care systems, thus various ideas have been
proposed to provide the appropriate level of care in a more
efficient manner by taking advantage of current technologies.
To facilitate the safety, security, and continual supervision of a
constant care environment while still allowing the user to retain
their ability to live at home, the ITALH, Information Technology
for Assisted Living at Home, project has been initiated. This
paper describes a fall-detection sensor that will be implemented
into a larger sensor network called SensorNet, which is being
developed to safely and accurately monitor the user while still
allowing complete privacy and security. Falling is one of the
most significant causes of injury for elderly citizens, and one of
the reasons why many otherwise healthy individuals are forced
to leave the comfort and privacy of their own home to live in
an assisted-care environment. By utilizing acceleration values
corresponding to the user’s body motion, much effort has been
put towards developing a robust algorithm to accurately detect
a fall by the user.

I. I NTRODUCTION

A. Motivation

There is an impending influx of elderly citizens due to the
maturation of the baby boomer generation. There will soon be
a much larger ratio of citizens over 65 to all citizens in North
America than ever before (see Fig. 1).

Fig. 1. Health, United States, 1999, U.S. Bureau of the Census plot
showing the projected increase of the percentage of elderly citizens in the
U.S. population

This creates a necessity to begin development of more effi-
cient and cost-effective methods of caring for them adequately.
The financial exertion and physical requirements required to
provide the current level of care to such a large population
are far too great to be feasible, thus various ideas have been
produced to provide the appropriate level of care in a more
efficient manner by taking advantage of current technologies.
To help facilitate the safety, security, and continual supervision
of a constant care environment while still allowing the user
to retain their ability to live at home, the ITALH project
has been initiated. The Information Technology for Assisted
Living at Home (ITALH) project is aimed at increasing quality
of life with a focus on the home through better support for
elderly citizens who want to stay in their own homes without
forgetting the support of emerging mobile lifestyle. This is
made possible by utilizing basic design for all concepts and
providing general solutions for the usability and applications
of new technology for home and health [2], [3]. This ITALH
initiative has been an umbrella project that includes the IVY
project which is concerned with looking at fall sensors and
SensorNet which is concerned with developing an integrated,
wireless sensor to accurately monitor the user while still
allowing complete privacy and security (see Fig. 2). The focus,
thus far, from the IVY and SensorNet projects have been
geared towards developing a fall-detection device [1].

Fig. 2. Physical representation of the SensorNet concept
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B. Why the fall sensor?

Falls are the leading cause of fatal and nonfatal injuries to
older people in the U.S. Each year, more than eleven million
people over sixty-five fall - one of every three senior citizens
[4]. Treatment of the injuries and complications associated
with these falls costs the U.S. over twenty billion annually [4].
Due to the fact that sixty percent of falls occur at home and the
danger and severity of falling and the possibilty of not having
any assistance in case of unconciousness or extreme injury are
primary reasons why many otherwise healthy individuals are
forced to leave the comfort and privacy of their own home to
live in an assisted-care environment (Forty percent of nursing
home admissions are due to falls [4]). Furthermore, a fall can
cause psychological damage even if the senior is not physically
injured. Fall researchers describe a fear of falling cycle in
which after a fall seniors become so afraid of falling again
they limit their activities. This in turn decreases their fitness,
mobility and balance and leads to decreased social interactions,
reduced satisfaction with life and increased depression. This
fear cycle then increases the risk of another fall [8]. A fall-
detection sensor device has been created and modified to now
reside on the user’s hip in the form of a waist belt. This device
provides continuous and instantaneous data corresponding
to the changes in a three-dimensional acceleration matrix
surrounding the user’s body. There has been much analysis
of the how to use the acceleration change values to develop a
robust algorithm to accurately and consistently detect falls by
the user. This paper describes some of the methods used and
the results achieved.

II. BACKGROUND

A. Cartesian Coordinates

Cartesian coordinates are rectilinear two-dimensional or
three-dimensional coordinates which are also called rectangu-
lar coordinates. The three axes of three-dimensional Cartesian
coordinates, conventionally denoted thex-, y-, andz-axes are
chosen to be linear and mutually perpendicular(see Fig. 3). In
three dimensions, the coordinatesx, y, andz may lie anywhere
in the interval (-∞, ∞) [5].

Fig. 3. Cartesian Coordinate Plane

B. Spherical Coordinates

Spherical coordinates are a system of coordinates that are
natural for describing positions on a sphere or spheroid (see
Fig. 4). Defineθ to be the horizontal angle in thexy-plane

from the x-axis with 0≤ θ ≤ 2π (denotedλ when referred
to as the longitude),φ to be the vertical angle from the z-axis
with 0 ≤ φ ≤ π , and r to be distance (radius) from a point
to the origin [6].

Fig. 4. Spherical Plane

r =
√

x2 + y2 + z2

θ = arctan(y/x)

φ = arcsin(
√

x2 + y2/r) = arccos(z/r)

In terms of Cartesian coordinates,

x = r cos(θ) sin(φ)

y = r sin(θ) sin(φ)

x = r cos(φ)

C. Dot product

The dot product can be defined for two vectorsX andY by

X · Y = |X||Y| cos(θ)

whereθ is the angle between the vectors and|x| is the norm.
It follows immediately thatX·Y = 0 if X is perpendicular toY.
The dot product therefore has the geometric interpretation as
the length of the projection ofX onto the unit vectorY when
the two vectors are placed so that their tails coincide [7].

III. EQUIPMENT

A. Sensor Board

1) Specifications:The idea for a device to register contin-
uous acceleration values originally started through an earlier
study in the form of a wrist device. Due to the continuous
movement of the arm and the unpredictability of a user’s motor
response in the case of a fall, however, it became readily
apparent that a wrist sensor would not be stable enough to
provide accurate fall detection capabilities. The next prototype
for the device then became a rectangular sensor board. After
some testing with various positions such as the chest, the neck,
and the waist, it was confirmed that the waist would be the
most stable position to monitor movement [9].
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The fall sensor devices are now in their second generation of
development. The first generation device was developed under
the IVY project and used MicaDot technology with wireless
communication. The second generation, the “GPSADXL” is
a microcontroller-based data logging system that integrates
two +/- 10g MEMS ADXL210 accelerometers with a compact
GPS module and four megabytes of static RAM. The device
is powered by three AAA 1.2 volt rechargable NiMH batteries
and measures 2.50” x 3.75” x 0.70” (see Fig. 5). The battery
life of the sensor board if it was set to continuously stream
data is around 10 hours with approximately 4 hours of data
recording/storage with a decrease in sensitivity to acceleration
of only about one-twentieth of the Gravity vector, or 1/20
G, during its battery life. The MEMS accelerometers are
arranged at a ninety degree angle to each other to allow the
measurement of acceleration in three dimensions and provide
acceleration data at a rate of 80 sample groups per second. The
GPS module supplies time of day and latitude and longitude
information, as well as ”lock” status and the number of
satelites in view. If the data to be transmitted is accelerometer
data then it is converted to ASCII hex form and is tranmitted
as serial RS-232 data to an external device. If the data is GPS
or a text message, then it is already in ASCII form and is
transmitted as is. The serial port settings are: 115,200 baud,
8 data bits, no parity, no flow control. The fall sensor device
is able to connect into the SensorNet web by using BlueGiga
Bluetooth RS-232 cable replacement devices to connect to a
control device such as a laptop or a mobile phone.

Fig. 5. Fall Sensor

2) Calibration: Before any data analysis for an algorithm
can be carried out, it is crucial that the data be meaningful
and correctly interpreted. In order to do this, it is necessary to
calibrate the device to specify what values are being worked
with. The algorithm for calibrating the board to get the initial
starting values proceeds as follows:

1) Hold the board in an upright position for five seconds(the
x andy values should be zero) (see Fig. 6)

2) Average thez acceleration data over this period to get
the uprightz values

3) Average thex and y acceleration data to get the initial
zerox andy values

4) Flip the board over completely into the inverted position
and hold for five seconds(thex andy values should again

be zero)
5) Average thez acceleration data over this period to get

the downward values
6) Take the difference between the upright and downward

z values and divide by two to get the 1G gravity vector
7) Take the average of the upright and downwardz values

to get the initial zeroz value

Fig. 6. The fall sensor board in an upright/inverted position

The procedure for doing this involves simply holding the
board in an upright and then inverted position for a short
amount of time as prompted by blinking lights on the board.
This allows the value of the 1G gravity vector to be deter-
mined and provides for the initial zero starting values for the
x, y, andz axes to be initialized.

3) GPS Capabilities:The sensorboard has a built in GPS
chip which can provide location data. The board originally
provided data only when it was in dump mode, meaning it
stored all it’s data into the SRAM chip on the board and was
only accessable after a memory dump. I was able to reprogram
the board’s functionality to produce GPS data in streaming
mode as well. This means that, in the case of a fall, the board
can emit a GPS tracking signal specifying the user’s location,
the time of day, and information regarding how accurate the
GPS location data is. Since the GPS capability only works
outside of the home due to the fact that it needs to be in view
of a satellite, this feature can be utilized when the user leaves
the house. Tracking inside the house may be done in the future
by utilizing Berkeley Mote technology [10] or cameras either
on the user’s mobile phone or positioned throughout the house.

4) Output Specification:When the complete sensor net-
work is in place, it will be crucial to have specifications for any
type of communication interaction between the devices and the
central processing device. Without this precise communication
protocol, critical information could potentially be misread
and/or misinterpreted which could have fatal results. The fall
sensor has various types of data it is capable of producing as of
now, therefore it is already necessary to take these actions. To
aid in this process, we have implemented a communication
protocol onto the fall sensor. Thus, when the fall sensor is
connected up to the monitoring parent device, the parent
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device can be designated to interact with the specified format
of the output from the fall sensor. This ensures that when the
fall sensor sends information out, the monitoring device will
know whether the information is valid or invalid, and in the
case of verified validity, will know what is being expressed
and then take the appropriate action.

5) Bluetooth Interaction:Thomas Hansen has created a
Bluetooth Server which searches for incoming signals from
any type of connection seeking sensor device. The fall sensor-
board has been programmed with the ASCII interface speci-
fications to initiate the bluetooth device into command mode
and from there to command the bluetooth device to send out
a seek signal to try and connect to a parent device. Therefore,
in the case of a fall, the fall sensor has the inherent capability
to seek out and initiate a connection. Once connected, the fall
sensor can provide any information required such as GPS data,
fall detection alert, or the commands to carry out an action
designated by the user.

IV. METHODOLOGY

A. Data Analysis

From the streaming data continually provided by the fall
sensor, the challenge was how to use it with the most effective-
ness. In a regular, standing position, the only value noticeable
is the effect of the gravity vectorG on thez-axis. In theory, if
the user is wearing the device correctly, thex-axis andy-axis
will be zero. Once this initial position has been provided by
the calibration procedure, it is then possible to use the dot
product of thez vector and theG vector to determine how the
user is oriented in comparison to the upright initial position.
Furthermore, it is also possible to convert the acceleration data
values into spherical coordinates and therefore have a general
picture of the user’s instantaneous orientation with respect to
the real world perspective.

Another topic of debate with respect to the data analysis
was that if it was better to look at each of thex, y, and z
axes separately when monitoring for a large acceleration or
to simply look at the magnitude vectorr =

√
x2 + y2 + z2

of all three axis together. There is a concern on whether
in some cases of unusual acceleration the magnitude vector
would be larger than it should be and thereby have adverse
effect on the magnitude detection algorithms. To analyze and
provide comparison of these two methods the Simple Magni-
tude algorithm used the individual axis monitoring approach
while the Advanced Magnitude algorithm used the magnitude
monitoring approach.

B. Algorithm Development

1) Challenges:When creating an algorithm to carry out
such a critical task as trying to detect falls, there are always
very important issues to keep in mind. The first major concern
was to avoid false positives. False positives exist when a
test reports, incorrectly, that it has found a signal where
none exists in reality. The effects that repeated false positives
may have are unnecessary notification of emergency personnel
causing embarrassment and frustration of the user. If the user
is annoyed to the point of not wanting to wear the fall sensor, it
will be useless in predicting falls. The second major concern
was trying to avoid false negatives. False negatives are the
direct opposite of false positives, meaning that they exist when
a test does not report that it has found a signal where one does
indeed. Obviously, a fall detection sensor that does not detect
falls is utterly useless. Other concerns with the algorithm are
that it must be robust, customizable for individual needs, and
highly accurate and reliable.

2) Conjoined Angle Change and Magnitude Detection:Our
first algorithm consisted of observing changes in angles in
conjunction with a crossing of a set acceleration threshold
within the same time interval. The angle change was the flag
which initiated the algorithm observation, and when conjoined
by a large acceleration within the same time frame was then
labeled as a fall. The reasoning behind this initial approach was
that in most fall scenarios the user would have some type of
angle change created by falling to be inlined with the ground
from an initial standing and sitting position. We also thought
this would be good since in the case of running, jumping,
stepping up on a stool, or other such actions, although there
would be a noticeable aceleration change, the hip positioning
angle would stay relatively uniform and thus not set of a fall
alarm (see Fig. 7) . The functionality behind this method was
to observe a significant change in the user’s orientation angles,
look for a large acceleration within the same time inteval, and
when both are present, classify as a fall. The basic algorithm
design for carrying this out proceeds as follows:

1) Look for aSignificant Angle Changewithin a designated
Time Interval Length

2) Once aSignificant Angle Changeis encountered, look
for a breech of aLarge Acceleration Thresholdwithin
the sameTime Interval Length

3) If both of these actions occur within thisTime Interval
Length, classify as a fall and take designated actions

The parameters to be tested in this algorithm wereSignif-
icant Angle Change, Time Interval Length, andLarge Accel-
eration Threshold.

Upon testing this algorithm with real life simulations, we
realized that we must take into account that changes in angles
and acceleration can be part of everyday activities such as
picking something up off the floor, stretching, or sitting down
and therefore must not be detected as a fall. Furthermore, the
act of getting up off the floor after a fall would also involve a
large angle change coupled with a large acceleration and thus
be considered as a fall, totally opposite of what we wanted.
Thus further algorithm refinement was necessary.
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Fig. 7. Conjoined Angle Change and Magnitude Algorithm

Although we felt that a fall-detection algorithm could be de-
veloped in a simpler fashion by starting with a large magnitude
of acceleration and then doing further orientation analysis, we
still felt the idea of angle changes would be very useful given
a meaningful initial calibration. Given a real world perspective
of the user, meaning providing transformations to ensure that
the user is always being considered with respect to an erect
straight-standing posture position, the accelration data in terms
of spherical coordinates could be very useful. For instance, the
angleΦ can determine just how far the user may be leaning
over and if the user is laying on the floor. If an accurate real
world model were presented at the beginning of the testing and
if the acceleration data provided were interpreted correctly in
terms of orientation changes with a real world perspective, it
would be possible to provide a continuous real world model
of the user which could accurately follow precise changes
in position. This capability would undoubtedly be useful in
trying to determine whether the user has sustained a fall or
is moving normally. The future of this ability extends also
beyond fall-detection and into a real world movement analysis
realm where in the future, real time analysis can provide
discreet information on wether the user is walking, running,
etc.

3) Simple Magnitude Detection:The first idea for a accel-
eration magnitude threshold fall-detection algorithm was to de-
tect a large change in acceleration from the starting orientation,
and then provide subsequent analysis on the user’s orientation
to confirm whether or not the change in acceleration had
indeed been a fall or may have been some other action. Since
almost all falls result in the user lying on the ground in some
way, it seemed that we could easily use this fact to catch these
falls (see Fig. 8). The functionality behind this method was to
observe a large change in the acceleration, wait until the large
acceleration ended, analyze orientation, and if the orientation
revealed the user to be horizontal with the ground, classify as a
fall. The basic algorithm design for carrying this out proceeds
as follows:

1) Look for a breech of aLarge Acceleration Threshold

2) Wait until the large acceleration dissipates and we get
relatively Normal Acceleration

3) Provide a short time interval(around 12 seconds)for
the user to get acclimated

4) Analyze the user’s orientation
5) If it is determined that the the user hasOrientation

Horizontal with the Ground, classify as a fall
The parameters to test in this case wereLarge Accleration

Threshold, Normal Acceleration, and Orientation Horizontal
with the Ground.

Fig. 8. Simple Magnitude Algorithm

Based on this method, almost all falls with a noticeable
change in user acceleration magnitude in which the user
ended up lying horizontal with the ground were correctly
predicted. The weaknesses discovered were that no fall would
be predicted if the user fell in such a way that he was not
parallel with the ground. This is very important as in various
cases during a fall, a user will try to grasp a wall, bed, or other
object and end up slumping next to the object rather than flat
on the floor. Therefore, it is crucial to have another analysis
of orientation to try and catch these cases as well.

4) Advanced Magnitude Detection:From the weaknesses
we discovered with the Simple Magnitude Detection algorithm
in detecting a fall in which the user did not end up horizontal
with the floor, we changed the algorithm to compensate for
this. The initial magnitude detection and position analysis was
the same, but we added an extra measure of position analysis
for the special cases. In any situation after a large magnitude
of acceleration in which the position analysis revealed the
user deviating from a completely upright position, we would
continue with further position analysis. If, in the case of
a deviation from uprightness, the user remained relatively
inactive for a short while, meaning no significant acceleration,
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then we would analyze the orientation again. If the orientation
still differed from uprightness then we asumed the user may
have slumped against a wall, fallen on a flight of stairs, or
fallen onto some type of object and therefore predicted this as
a fall (see Fig. 9). The functionality behind this method was to
observe a large change in the acceleration, wait until the large
acceleration ended, analyze orientation, and if the orientation
revealed the user to be horizontal with the ground or, in the
case of the user not being orientated upright, after a period of
relative inactivity the user’s orientation was still not upright,
classify as a fall. The basic algorithm design for carrying this
out proceeds as follows:

1) Look for a breech of aLarge Acceleration Threshold
2) Wait until the large acceleration dissipates and we get

relatively Normal Acceleration
3) Provide a short time interval(around 12 seconds)for

the user to get acclimated
4) Analyze the user’s orientation
5) If it is determined that the the user hasOrientation

Horizontal with the Ground, classify as a fall
6) If the user is not determined to haveOrientation Hori-

zontal with the Ground, but does haveOrientation Des-
ignated as Deviating from Uprightness, provide another
short time interval for the user to get acclimated

7) If, after aPeriod of Inactivity Length, the user still has
Orientation Designated as Deviating from Uprightness,
classify as a fall

The parameters to test in this case wereLarge Accleration
Threshold, Normal Acceleration, and Orientation Horizontal
with the Ground, Period of Inactivity Length, andOrientation
Designated as Deviating from Uprightness.

Fig. 9. Advanced Magnitude Algorithm

C. Testing

1) Testing Protocol:With the various changes in the al-
gorithm, we realize that it is crucial to conduct the same
type of testing in order to ensure that there is consistency

in the detection schemes and that we are not losing fall-
detection accuracy. By using common scenarios to test the
changes in the algorithm, we can determine whether or not our
changes actually improved or hurt our fall-detection success.
According to a study by SignalQuest on Falls in the Elderly,
9% of falls were preceded by a loss of consciousness; 39%
of the falls occurred while walking; 20% of the falls occurred
while ascending or descending stairs or curbs; 24% occurred
while transferring into or out of a bed or chair; 13% were
caused by turning or reaching; 12% occurred while engaging
in high risk behavior such as standing on a chair, running,
or climbing [11]. By taking these statistics into account and
by analyzing previous data and test results for similarities,
we have developed a comprehensive list of various falls and
nonfalls. Although there are many ways in which a user can
fall, most falls can be classified into general categories. Three
general categories devised are Simple Falls (falls in which
the acceleration behavior shows relatively clearly that a fall
has taken place and which the user ends up lying horizontal
to the ground); Complex Falls (falls in which the acceleration
behavior is somewhat complex and/or the user may end up in a
non-horizontal position with the floor), and Non-Falls (actions
in which the acceleration behavior is such that a false positive
may occur). By providing exhaustive cases from each category
to thoroughly test, we can then rest assured that most falls in
that category will result in a similar outcome. From this list of
falls, Garrett Brown and Rustom Dessai individually produced
a data set for each fall.

D. Real World Orientation Analysis

As another idea which goes slightly behind the simplicity
needed for a fall-detection scheme is a three-dimensional real
world orientation model of the user which would be continu-
ously updated in real time. By using spherical values computed
from the acceleration data, it is possible to observe changes in
the user’s orientation with respect to a real world perspective.
To correctly use the acceleration values to constantly transform
the position matrix, it was necessary to first eliminate noise
from the fall-sensor data. To do this we conducted various tests
to create a low-pass filter with the specifcations to reduce most
noise but still retain all the interesting acceleration properties.
Based on the loss of noise versus loss of data ration, we
decided on a second order lowpass digital Butterworth filter
with a cuttof frequency of 0.04 (see Fig. 10). From here we
have began an analysis of the methods of using the filtered
data in trying to correctly orient the real world position.

V. RESULTS

A. Algorithm Refinement

From our initial idea of observing changes in angles in
conjunction with a crossing of a set acceleration threshold
within the same time interval, we developed the Conjoined
Angle Change and Magnitude Detection Algorithm. Upon
testing this algorithm with various parameters, the results were
unsatisfactory (see Fig. 11). To avoid the many intricacies
involved with angle changes, we decided to attempt a simpler
idea with magnitude detection.
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Fig. 10. Effects of applying filter to the data (Note: although the noise and
sharp peaks are removed, the behaviour of acceleration data stays the same)

Fig. 11. Conjoined Angle Change and Magnitude Detection Algorithm
Statistics

1) Magnitude Detection:Although the simplicity of accel-
eration magnitude detection algorithms seems to undermine
its potential, through testing and alterations of parameters we
have found that the idea works suprisingly well. The Simple
Magnitude Detection idea was much more effective than the
Conjoined Angle Change and Magnitude Detection Algorithm
(see Fig. 12). By varying parameters we were consistently
detecting Simple Falls while avoiding False Positives. The
only weakness we found was in Complex Falls or falls in
which the user did not end up oriented horizontally with the
ground.

To account for these cases, we altered the Simple Fall
Detection idea. By utilizing more specific orientation analysis
coupled with a period of inactiviy, we were much more
effective at detecting Complex Falls while still avoiding most
False Positives (see Fig. 13).

Due to the fact that some falls and non-fall behaviour are
still too challenging to be handled correctly by this method,
however, more work may need to be done on a more advanced
fall-detection technique. For many cases, the magnitude detec-
tion algorithms will carry out very satisfactorily, but a more
enhanced catch-all algorithm may also be used in conjunction
in order to further increase the accuracy of fall-detection.

Fig. 12. Simple Magnitude Detection Algorithm Statistics

Fig. 13. Advanced Magnitude Detection Algorithm Statistics

B. Pattern Recognition

1) Fall Patterns: In many types of falls, the acceleration
seems to follow some type of pattern (see Fig. 14). This
pattern can be difficult to recognize, however, due to different
characteristics such as physical stature of the user, fall speed,
distance fallen, obstacles encountered during fall (see Fig. 15),
and ending orientation but there are still some accleration
schematics which may be consistent enough to establish a
satisfactory pattern.

2) Non-Fall Patterns: Beyond the realm of simply rec-
ognizing fall acceleration patterns, there also seems to be
potential for establishing patterns to recongize other common
activities such as walking (see Fig. 16 and 17), sitting,
climbing stairs, etc.
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Fig. 14. Garrett falling backwards

Fig. 15. Garrett falling rightwards after bouncing off a small object

Fig. 16. Garrett walking normally

Fig. 17. Garrett walking briskly

VI. CONCLUSION

The idea of producing a simple, robust algorithm for fall-
detection has produced very pleasing results. The algorithms
developed thus far throughout this testing and analysis process
are easily implementable onto the fall-sensor board. It is now
known that many falls can be distinguished from non-falls
by simply using acceleration magnitude and orientation anal-
ysis. Furthermore, there seems to be no noticeable accuracy
difference between setting an acceleration threshold for each
axis individually (as in the case for the Simple Magnitude
Detection Algorithm)versus setting one magnitude threshold
for the aceleration magnitude vector only(as in the case for
the Simple Magnitude Detection Algorithm). Functionality for
communication between the fall-sensor board and the larger
sensor network has also been developed satisfactorily. At the
current stage of this project, based on controlled testing, the
fall-sensor board can autonomously detect around 90% of all
falls with only a 5% False Positive rate and then independently
connect to a laptop or PC.

A. Future Ideas

1) Real World Perspective Analysis:Continuing with the
idea of Real World Orientation Analysis posed in the result
section, there is a lot of potential in terms of a model of

the user with a real world perspective. Going beyond just
simply knowing how the user is orientated in the real world is
the idea that possibly certain changes that occur in the real
world perspective can be determined to result from a fall.
With stringent transformation procedures and close analysis, it
is possible to eventually define transformation characteristics
specific enough to distinguish falls from nonfalls. This idea
could potentially lead to more defined observation and detec-
tion algorithms and hopefully more accuracy in terms of fall
detection.

2) Least Mean Squares Adaptive Learning Algorithm:
Going beyond the analysis of magnitude-detection algorithms
discussed in this paper, there is a promising idea of using
an adaptive learning algorithm to begin constructing a pattern
recognizing fall-detection algorithm. As mentioned in the
results section, there does appear to be a pattern in a majority
of fall types. By using a strong analytical method, such as
the least mean squares method, we can sort of train a filter
to produce a given output from a given input. If we have
an input signal and a known intended output, such as a fall-
detected signal, the algorithm uses a least-squares approach
to tune its own parameters such that it minimizes the error
between its processed output and the desired output. Across
several iterations, this should construct the filter such that it
will produce an intended output for any given input. In theory,
any type of fall then should have the basic pattern as our filter
was trained to recognize and should then produce a strong
correlation in pattern resemblence resuting in a fall-detection.

3) Acceleration Correlative Movement Library:Another
hopeful idea is that there will be enough room on the fall
sensor to begin a library of various actions. Eventually,
with enough analysis of various actions, the fall sensor may
eventually be able to go beyond simply detecting falls, but
also provide continuous monitoring on the user’s actions
and condition. A possibility for doing this takes the same
basic approach as the previous idea with the least means
squares adaptive algorithm. If enough data is processed into
separate initial filters, it may be possible to produce a filter
for recognizing not only a fall, but also other actions, such
as walking, running, sitting down, etc. Then, as data is read
in from a sensor on the user, it can be passed through all
the specific filters and its action then be designated by the
filter which provides the strongest pattern correlation, thereby
providing a means to monitor and predict a user’s actions with
a strong degree of certainty.

4) Extended Integrated Wireless Functionality:The next
generation of the fall-sensor board will undoubtedly have more
funcionality than the current board. There is the hope that in
the near future, a Bluetooth device will be able to fit directly
onto the board in order to provide the functionality necessary
to use a Bluetooth interface in a much more compact and
manageable form. The Bluetooth Server which now searches
for the connection seeking signal provided by the fall sensor
can be further developed to take user specified actions such
as turning on a streaming camera, reading in data from other
sensors, sending an e-mail or fax, or possibly even sounding
some type of alarm. The increasing popularity of integrated
wireless networks and functionality ensure that there will soon
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be much more potential with respect to the capabilities of the
sensors themselves and of the SensorNet network as a whole.
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