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Abstract—Falls are a major health risk that diminish
the quality of life among elderly people. With the elderly
population surging, especially with aging “baby boomers”,
fall detection becomes increasingly important. However, ex-
isting commercial products and academic solutions struggle
to achieve pervasive fall detection. In this paper, we propose
utilizing mobile phones as a platform for pervasive fall detection
system development. To our knowledge, we are the first to do
so. We design a detection algorithm based on mobile phone
platforms. We propose PerFallD, a pervasive fall detection sys-
tem implemented on mobile phones. We implement a prototype
system on the Android G1 phone and conduct experiments
to evaluate our system. In particular, we compare PerFallD’s
performance with that of existing work and a commercial
product. Experimental results show that PerFallD achieves
strong detection performance and power efficiency.
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I. INTRODUCTION

A. Motivation

Falls are a major health hazard for elderly people [1]

and also a major obstacle to their independent living [2].

The estimated fall incidence for both institutionalized and

independently living people over 75 is at least 30% every

year [3]. The frequency of falling is considerably higher

among more dependent elderly. Researchers estimate that up

to 50% of nursing home residents fall each year and more

than 40% of these might fall more than once [4]. Falls not

only cause physical injury such as many disabling fractures

[5]; they also have dramatic psychological consequences

that reduce elderly people’s independence [6]. This situation

deteriorates as the elderly population surges. According to a

report from the U.S. Census Bureau, there will be a 210%
increase of the population aged 65 and over within the next

50 years, in part due to aging “baby boomers” [7].

The considerable risks of falls and the substantial increase

of the elderly population motivate both the development of

commercial products and academic research on fall detec-

tion. A typical fall detection system has two major functional

components: the detection component and the communi-

cation component. As their names imply, the detection

component detects falls and the communication component

communicates with emergency contact after fall detection.

Brickhouse [8] provides a typical commercial fall detection

system. The system consists of a portable sensor and a tele-

assist base.

The major problem with existing commercial products and

academic research is that they have deficiencies that hinder

pervasive fall detection. Consider the aforementioned prod-

uct as an example. The base must be installed somewhere

indoors and the portable sensor must be attached to a belt at

the waist. Once the base receives the signal from the sensor

indicating a fall, it can automatically communicate with a

preset emergency contact using the fixed phone. However,

the maximum distance between the sensor and the base is

limited. Fall detection can only be conducted within a small

indoor environment and elderly people may easily forget to

bring the sensor with them, as it is an extra device that

they seldom use in daily life. Furthermore, these products

are expensive. The aforementioned system costs $199.95 for

the devices and $419.40 per year for monitoring service [8].

B. Our Contributions

In this paper, we propose utilizing mobile phones as the

platform for pervasive fall detection system development,

as they naturally combine the detection and communication

components. To the best of our knowledge, we are the first

to do so.

As self-contained devices, mobile phones present a ma-

ture hardware and software environment for pervasive fall

detection system development. Mobile phone-based fall de-

tection systems can function almost everywhere since mobile

phones are highly portable, all necessary components are

already integrated therein, and their communication services

have vast coverage. One might argue that elderly people may

not accept such mobile phones. However, we would like to

point out that elderly people may prefer to have a single

phone with self-contained fall detection functionality than

to carry a separate fall detection device on their bodies. In

addition, more recent data illustrate the increasing popularity

of these phones. The minimum requirements for such a

mobile phone platform are the presence of a simple sensor,

e.g., an accelerometer. Currently, many phones, especially

smartphones, contain multiple types of sensors, including ac-

celerometers. Such phones are very popular and thoroughly

accepted in society. Their popularity is likely to continuously

increase in the near future due to decreasing prices. Recently,



several leading telecommunication companies such as AT&T

have made available affordable smartphones [9] whose fea-

tures are similar to those of high-end models, in addition to

cheaper service plans [10].

We summarize the contributions of this paper as follows.

− We propose utilizing mobile phones as the platform

for pervasive fall detection system development. To our

knowledge, no existing commercial products and academic

work use mobile phones to integrate comprehensive fall

detection and emergency communication.

− We design an algorithm for fall detection systems

using mobile phones. It is an acceleration-based detection

approach whose only requirement is that a mobile phone

has an accelerometer.

− We design and implement a pervasive fall detection

system, PerFallD, on the mobile phone-based platform to

conduct fall detection. PerFallD has few false positives and

false negatives; it is available in both indoor and outdoor

environment; it is user-friendly, and it requires no extra

hardware and service cost. It is also lightweight and power-

efficient.

− We conduct experiments to evaluate detection accuracy.

The experimental results show that our detection system

achieves good performance in terms of low false negative

and low false positive in fall detections. For the purpose of

comparison, we implement algorithms provided in existing

work and also test a typical commercial fall detection prod-

uct. PerFallD outperforms existing algorithms, and achieves

better balance between false negative and false positive when

compared with the commercial product.

Paper Organization The rest of the paper is organized

as follows. Section II presents related work. We present the

system design in Section III and system implementation in

Section IV. In Section V, we evaluate our system. Section

VI concludes the paper.

II. RELATED WORK

There are very few fall detection commercial products.

Fall detector provided by Brickhouse [8] consists of a tele-

assist base and a portable sensor. The base device needs to be

installed indoor and the signal transmission distance between

the sensor and the base is limited. ITT EasyLifeS [11] is one

kind of cellphone that equipped with balance sensor. The

manufacture claims that the phone will automatic dial SOS

numbers if it is dropped. However, the device is too specific

and the triggering condition is too trivial to provide pervasive

and comprehensive fall detection. Betterbuys [12] provides

Economical Fall Alarm Monitor that requires sensors de-

ployed with chair pad, bed pad, floor mat, or chair seatbelt.

It has more limitations to achieve pervasive detection.

Significance of fall detection also attracts academic re-

search. Proposed fall detection techniques can be classified

into three categories: acceleration based detection, databases

Figure 1. Working procedure of the PerFallD system. Power efficiency
is explicitly considered in design of the modules illustrated within the
bigger dashed box. The modules within the smaller dashed box present
the algorithm design part.

based motion type classification, and image processing based

detection.

When acceleration is used, the most widely used meth-

ods are based on thresholds. In [13], Nyan et al. let an

accelerometer be settled into garment on the shoulder po-

sition. They use a threshold of absolute peak values of

acceleration to determine fall. Kangas et al. in [14] propose

four thresholds for total sum vector, dynamic sum vector,

difference between the maximum and minimum acceleration

values and vertical acceleration. Fall is considered detected

as long as one threshold is exceeded. The above work show

that the acceleration threshold-based detection works well

in practice. However, the detection devices used in them are

specified and not conveniently portable. The communication

component that is also critical in a fall detection system is

ignored in these work.

Ganti et al. in [15] and Karantonis et al. in [16] propose

storing sensed user behavior data into a database for vari-

ous activities, e.g., fall down, recognition thereafter. These

databases built with the sensed data are very useful. They

can be used to detect various normal or abnormal activities.

However, it is not a trivial task to collect enough data for

each individual to build up the database.

Fu et al. in [17], Sixsmith et al. in [18], Miaou et al. in

[19] and Jansen et al. in [20] propose capturing images of

people and then detect visual fall based on image processing

techniques. Such approaches have limitations on pervasive

detection, affordability and acceptability. The detection area

is limited within monitoring environment, which is costly to

build up. The people’s privacy is compromised.

We also notice there are work that propose an integrated

fall detection environment. In [21], a separated fall detector

is connected to a mobile phone, which is used to query

the user about his condition when the fall detector signals

it. Paper [22] proposes using a network of fixed motes to

provide location information of the victim after fall has



Figure 2. (a) Acceleration readings in directions of x-, y-
, and z-axis that are associated with and fixed regard to the
body of the mobile phone. (b) Mobile phone orientation can
be decided by yaw (θx), pitch (θy) and roll (θz).
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Figure 3. Examples of the amplitude of AT and Av that are calculated out from
the readings of the integrated accelerometer in a mobile phone during a fall. We
show the results when the phone is placed in different locations: in the pocket of
a shirt (chest), on the belt (waist), and in a pocket of the pants (thigh).

been detected. In these pioneering work, reliability and

availability of cooperation between different devices raise

concerns. The system cost is also high.

III. PERFALLD DESIGN

In this section, we present the PerFallD design. We first

present the system overview followed by the design of the

detection algorithm. Note that the design is general—it is not

constrained to a particular brand or type of mobile phone.

A. System Overview

PerFallD’s workflow is illustrated in Fig. 1. Right after

the program starts, a user profile will be loaded. A user

dependent profile contains basic fall detection configuration

such as the default sampling frequency, default detection

algorithm, emergency contact list, etc. In different scenarios,

users’ activity patterns have varying degrees of rapidity, and

it is more efficient to use different sampling frequencies

in different scenarios. After the user profile is loaded, we

provide users the chance to adjust the sampling frequency

when interfaces that invoke sensor functions at different

frequencies are provided. Then the main program, working

as a background daemon, launches. If information collected

in real time satisfies a certain preset condition, the pattern

matching process begins to determine if a fall occurs. If

no fall is detected, execution immediately returns to the

daemon. If a fall is detected, the daemon service transmits

a signal that triggers an alarm and starts a timer. If the

user does not manually turn off the alarm within a certain

time period, the system automatically calls contacts stored

in the emergency contact list according to their priorities.

The phone iteratively calls and texts up to five contacts.

As presented in Fig. 1, power efficiency is explicitly

considered in the design of the modules illustrated within

the larger dashed box. Four steps are taken to reduce

power consumption: (1) the monitoring daemon runs in the

background while other components of the program halt;

(2) the sampling frequency can be adjusted; (3) the pattern

matching process is launched only after daemon-collected

data exceeds the preset threshold; and (4) hardware such as

the screen is activated only when necessary.

The modules within the smaller dashed box present the

algorithm design part. We will introduce the detection algo-

rithm in the following section.

B. Algorithm Design

In this case, we present the detection algorithm designed

for the mobile phones equipped with accelerometer.

Accelerometers usually provide the acceleration readings

in directions of x-, y-, and z-axis. Accelerations in these

directions are represented by Ax, Ay and Az , respectively.

For generality, we assume the directions of x-, y-, and z-axis

decided by the posture of the phone. As illustrated in Fig. 2,

the x-axis has positive direction toward the right side of the

device, the y-axis has positive direction toward the top of the

device and the z-axis has positive direction toward the front

of the device. Vector AT represents the total acceleration of

the phone body. Its amplitude can be obtained by Eq. 1.

|AT | =
√
|Ax|2 + |Ay|2 + |Az|2. (1)

A mobile phone’s orientation can be determined by yaw,

pitch, roll values that are denoted as θx, θy and θz , re-

spectively. We can further obtain the amplitude of Av , the

acceleration at the absolute vertical direction, from Eq. 2.

|Av| = |Ax sin θz + Ay sin θy − Az cos θy cos θz|. (2)

The fall detection algorithm is based on the values of |AT |
and |Av|. If the difference of |AT | within a triggering time

window wintt exceeds triggering threshold Thtt, the pattern

recognition is triggered to check the difference between the

maximum value and the minimum value of |AT | within

a checking time window winct following wintt. If this

difference is less than another threshold Thct, a fall is

considered detected. A similar rule applies to |Av|, with

corresponding time windows wintv , wincv and thresholds



Thtv , Thcv . If both the detection conditions about |AT | and

|Av| are satisfied, a detection of fall is reported.

Fig. 3 presents the examples of |AT | and |Av| that

are obtained from the integrated accelerometer in a mobile

phone. We show the results when the phone is placed in

different locations: in a pocket of a shirt (chest), on the belt

(waist), and in a pocket of the pants (thigh). Thresholds

can be set according to the training data obtained from

extensive experiments. Based on a set of data, Fig. 4 shows

the relationship between false negative and false positive

for different values of Thtt (one threshold is represented

as one mark) when the Thct is fixed. We adjust thresholds

in order to reduce false negative while simultaneously keep

false positive in an acceptable range. More details will be

provided in Section V.

Figure 4. The relationship between false negative and false positive for
different threshold Thtt when the Thct is fixed to 80 (indicated as “range”
in the figure). Data are from lateral falls. The phone is placed at the position
of chest.

IV. IMPLEMENTATION

We develop the PerFallD prototype on Android G1 phone.

It features an ARM-based, dual-core CPU capable of up to 4

million triangles/sec, a 98MB RAM and a 70MB of internal

storage [23]. It uses a 1150mAh rechargeable lithium ion

battery. It also provides an embedded accelerometer. In the

following, we describe the implementation details of the

PerFallD prototype.

We implement the prototype in Java, with Eclipse and

Android 1.6 SDK. It consists of 7 class files, which includes

4 Activities, 1 View, 1 Service and 1 Resource. They can be

divided into five major components: user interface, monitor-

ing daemon, data processing, alert notification and system

configuration. After the user starts the system, the moni-

toring daemon keeps running in background as a Service

in Android, collecting and recording the readings of sensor.

These readings are processed based on power-aware strategy

and used to detect a fall. In data processing component,

for simplicity, all the time windows are set to 4 seconds.

When a fall is detected, the alert notification component

Figure 5. User interfaces in PerFallD: (a) bright, large virtual buttons
on operating screen, (b) clear alert window (c) simple, non-confusing
preference screen.

works to sound alarm to notify the attendant nearby and

call the emergency contacts. Also, the user can change the

configuration settings by invoking the preference screen.

We compile and build the system project, create and sign

the .apk file in debug mode, then install it onto G1 phone

by ADB tool. The size of the .apk application file is about

200KB. Ultimately, we may create the .apk file in release

mode, sign it with our release private key and publish it on

Android Market, making it available to users of Android-

powered mobile devices for download.

We implement the user interfaces of PerFallD towards

the elderly people, following the design ideas from Jitter-

bug1. The user interfaces of PerFallD have the following

features. Large, lit key buttons make usage easy. Bright

color screen displays everything with clarity. There is no

confusing menus, making accessing all options clearly. Fig.

5 illustrates the user interfaces of PerFallD. Guided by

friendly user interfaces, the operation of PerFallD is simple

and straightforward. In the operating screen, three buttons

are shown: Monitoring, Setting and Quit. The Monitoring
button leads to the daemon. An alert window will prompt

out once a fall is detected. The siren also sounds. The Setting
button leads to the preference screen of program.

V. EVALUATION

We evaluate the PerFallD prototype with experiments. In

this section, we first introduce how the data are collected.

Then we present PerFallD’s performance and compare it

with existing algorithms and a typical commercial product.

We also present PerFallD’s resource consumption.

A. Data Collection

We collect data of falls with different directions (forward,

lateral and backward), different speeds (fast and slow) and

in different environment (living room, bedroom, kitchen

and outdoor garden). We also collect data of activities of

daily living (ADL) including walking, jogging, standing and

sitting. We separate all these collected data into two sets, one

for training and the other for testing.

1Jitterbug [24] is a cell phone service provider that is known for providing
appealing cell phone and phone service to the elderly people.



Table I
PERFORMANCE COMPARISON OF DETECTION TEST.

FN(%) FP(%)

Forward
Falls

Lateral
Falls

Backward
Falls

Other
Activities

PerFallD
Chest 1.2 2.3 5.0 11.2
Waist 2.6 3.3 2.1 8.7
Thigh 1.0 10.0 2.2 11.0

Basic Algorithm 8.0 28.3 5.5 14.6
Fall Index 5.2 13.9 1.8 7.8
Commercial Product 0.8 1.2 29.9 21.9

* We call the ADL and movements of phone that may cause the false
positive other activities.

We conduct the experiments with a group of real persons.

Both falls and ADL are tested. Obviously, we cannot test

falls with real elderly people. We recruit 15 participants who

are graduate students from 20 to 30 years old, two of whom

are female. Three of them are 161–170 cm tall, seven are

171–180 cm tall, and five are 181–190 cm tall. One person

weighs less than 50 kg, two weigh 51–60 kg, five weigh

61–70 kg, and seven weigh 71–80 kg.

In test of fall detection, all the participants put the G1

phone in a shirt pocket, on the belt, or in one pants

pocket, respectively. In each case of phone attached position,

every participant falls 10 times in different directions and

environment. In total, we obtain data for 450 falls that cover

all falling directions and environment. We also collect ADL

data for 20 minutes from each person.

B. Detection Performance

We measure the detection performance in terms of false

negative (FN) and false positive (FP). False negative happens

when a fall occurs but the device misses it. False positive

happens when the device alarms a fall but it did not occur.

In general, the lower the both FN and FP are, the better the

performance is.

1) PerFallD Performance: We obtain the thresholds for

our detection algorithm from the ROC curves generated from

the training data. ROC curves show the tradeoff between

FN and FP (any increase in FN will be accompanied by

a decrease in FP). A typical ROC curve generated in our

testing is shown in Fig. 4. With different threshold values,

we can obtain different ROC curves. From each ROC curve,

we select the threshold setting that achieves low FN and

reasonable FP. Based on our training data, we set Thtt to

120, Thtv to 6, Thct to 50 and Thcv to 2. These threshold

settings achieve the best balance between FN and FP. Table

I shows the experimental results. We find that PerFallD has

different performances when the phone is placed at different

positions and the waist is the best position to attach the

phone, with the performance of average FN value being

2.67% and the FP value being 8.7%.
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Figure 6. Power consumption: first curve presents the battery levels when
the phone runs without PerFallD; the second one shows the battery levels
when the monitoring daemon and the pattern recognition in PerFallD run.

2) Performance Comparison: We compare the perfor-

mance of PerFallD with two other existing detection al-

gorithms and one commercial product. Table I shows the

comparison of experiment results.

The basic algorithm uses the simple acceleration threshold

to determine a fall. The threshold is only based on the

value of |AT |. The detection only focuses on one big

acceleration change (regarded as the impact of fall), ignoring

the following acceleration changes. So it will miss some

slow falls and alarm falsely in some ADL. Fall Index (FI)

is proposed by Yoshida et al. in [25]. For any time i, FI can

be calculated by Eq. 3.

FIi =

√√√√ ∑
k=x,y,z

i∑
i−19

(
(Ak)i − (Ak)i−1

)2
. (3)

Since FI requires high sampling frequency and fast accel-

eration changes, it will miss falls that happen slowly. Its

performance decreases in some specific situations.

The commercial product provided by Brickhouse [8]

consists of one base and a wearable fall detector. The base

needs to be connected with a phone line to communicate

with emergency center. So it has to be fixed somewhere

inside home. Due to the constraints of communicating range

between base and fall detector, the users must be indoor to

be under protection. The algorithm used in this commercial

product is unknown. Experiments show that this system has

high false negative (29.9%) in backward falls. Meanwhile,

the false positive is also quite high (21.9%).

The results show that PerFallD outperforms existing algo-

rithms, and achieves better balance between false negative

and false positive compared with the commercial product.

C. Resource Consumption Performance

To test power consumption, we fully charge the G1 phone

and then monitor the power states continuously for 6 hours in

different scenarios: 1) the G1 phone runs without PerFallD;

2) the monitoring daemon of PerFallD keeps running, sens-

ing and recording acceleration values, then calculates and

recognizes fall pattern on the demand of monitoring results.



Fig. 6 presents the two curves of battery level states versus

time during the time period of 6 hours. If PerFallD keeps

running normally until the battery power is exhausted, it will

last more than 33 hours.

Furthermore, we monitor the CPU and memory usage

of G1 phone during the running of PerFallD system. The

average CPU usage is 7.41%; the memory usage is about

600KB, 0.6% of total RAM capacity of G1 phone.

VI. CONCLUSION

In this paper, we propose utilizing mobile phones as a

platform for pervasive fall detection system development, for

the first time. We design the detection algorithm based on

mobile phone platforms. We implement a prototype system

named PerFallD on the Android G1 phone and conduct

experiments to evaluate our system. Experimental results

show that PerFallD achieves good detection performance and

power efficiency.

PerFallD can be enhanced by integration with some extra

protection devices, e.g., airbag based fall protector proposed

by Charpentier [26] , to reduce fall impacts and prevent fall

related injuries.
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