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Preface

When I was being interviewed at the handwriting recognition group of IBM T.J.

Watson Research Center in December of 1990, one of the interviewers asked me

why, being a mechanical engineer, I was applying for a position in that group. Well,

he was an electrical engineer and somehow was under the impression that hand-

writing recognition was an electrical engineering field! My response was that I had

done research on Kinematics, Dynamics, Control, Signal Processing, Optimization,

Neural Network Learning theory and lossless image compression during the past

7 years while I was in graduate school. I asked him what background he thought

would have been more relevant to do research in handwriting recognition.

Anyhow, I joined the on-line handwriting recognition group which worked side-

by-side with the speech recognition group. Later, I transferred to the speech recogni-

tion group and worked on speaker recognition. Aside from the immediate front-end

processing, on-line handwriting recognition, signature verification, speech recogni-

tion and speaker recognition have a lot in common. During the 10 years at IBM I

also worked on many complementary problems such as phonetics, statistical learn-

ing theory, language modeling, information theoretic research, etc. This continued

with further work on real-time large-scale optimization, interactive voice response

systems, standardization and more detailed speaker recognition research at Recog-

nition Technologies, Inc. to the present date, not to mention the many years of code

optimization, integer arithmetic, software architecture and alike within the past 25

years.

The reason for sharing this story with the reader is to point out the extreme multi-

disciplinary nature of the topic of speaker recognition. In fact, every one of the fields

which I mentioned above, was quite necessary for attaining a deep understanding of

the subject. This was the prime motivation which lead me to the writing of this book.

As far as I know, this is the first textbook (reference book) on the subject which tries

to deal with every aspect of the field, as much as possible. I have personally designed

and implemented (coded) two full-featured speaker recognition systems and in the

process have had to deal with many different aspects of the subject from theory to
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practice.

One problem with which many researchers are faced, when dealing with highly

multi-disciplinary subjects such as speaker recognition, is the scattered information

in all the relevant fields. Usually, most treatments of the subject try to use hand-

waving to get the reader through all the different aspects of the subject. In their

treatment, most survey papers, throw a plethora of references at the reader so that

he/she would follow up on each of the many leads – which is usually impractical.

This causes a half-baked understanding of the subject and its details which will be

carried over from master to apprentice, leaving the field crippled at times.

In the above description, while qualifying this book, I used the word textbook,

but I also parenthetically referred to it as a reference book. Well, originally when

I was asked to write it, we had a textbook approach in mind. However, as I delved

deeper into the attempt of presenting all the necessary material, based on the moti-

vation which was stated earlier, the coverage of the different subjects grew quickly

from an intended 300 page textbook to nearly 900 pages which probably qualifies

as a reference book. In fact, most of the book may be used as reference material for

many related subjects.

In my many years of teaching different courses at Columbia University, such as

Speech Recognition, Signal Recognition, and Digital Control, I have noticed the

following. Since today’s technologies are built layer-upon-layer on top of existing

basic technologies, the amount of underlying knowledge necessary for understand-

ing the topics at the tips of these theoretical hierarchies has grown exponentially.

This makes it quite hard for a researcher in a multi-disciplinary topic to grasp the

intricacies of the underlying theory. Often, to deal with the lack of time, necessary

for an in-depth understanding of the underlying theory, it is either skipped or left to

the pursuance of the students, of their own volition.

In this book, I have tried to cover as much detail as possible and to keep most of

the necessary information self-contained and rigorous. Although, you will see many

references presented at the end of each chapter and finally as a collection in a full

bibliography, the references are only meant for the avid reader to follow up into the

nitty-gritty details upon interest. Most of the high-level details are stated in the 26

chapters which make up this book.

To be able to present the details, and yet have a smooth narrative in the main

text, a large amount of the detailed material is included in the last 4 chapters of the

book, categorized as Background Material. These chapters start with the coverage

of some necessary linear algebra and related mathematical bases followed by a very

detailed chapter on integral transforms. Since integral transforms are central to the

signal processing end of the subject, and they heavily rely on an intimate knowledge

of complex variable theory, Chapter 24 tries to build that foundation for the reader.

Moreover, the essence of theoretical subjects such as neural networks and support
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vector machines is the field of numerical optimization which has been covered in

some detail in Chapter 25. The last chapter covers details on standards, related to

the speaker recognition field. This is a practical aspect which is usually left out in

most textbooks and, in my opinion, should be given much more attention.

The main narrative of the book has three major parts:

Part I covers the introductory and basic theory of the subject including anatomy,

signal representation, phonetics, signal processing and feature extraction, proba-

bility theory, information theory, metrics and distortion measures, Bastian learning

theory, parameter estimation and leaning, clustering, parameter transformation,

hidden Markov modeling, neural networks, and support vector machines.

The second part, advanced theory, covers subjects which deal more directly with

speaker recognition. These topics are speaker modeling, speaker recognition imple-

mentation, and signal enhancement and compensation.

Part III, practice, discusses topics specifically related to the implementation of

speaker recognition or related issues. These are representation of results, time-lapse

effects, adaptation techniques, and finally, overall design issues.

Every effort has been made to deliver the contents of the book in a hierarchi-

cal fashion. In other words, think of writing an efficient program in a class-based

programming language where the main program is simply a few lines. The main

program, in this, case would be the chapters in Part III (Practice). The classes that

are instantiated within the main program, mainly come from Part II (advanced the-

ory) and they in-turn include more specialized classes from Part I (basic theory).

Part II and Part I classes make calls to methods in Part IV (background material).

Yorktown Heights, New York, August 2011 Homayoon Beigi
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Nomenclature

In this book, lower-case bold letters are used to denote vectors and upper-case bold

letters are used for matrices. For set, measure, and probability theory, as much as

possible, special style guidelines have been used such that the letter X when written

as X signifies a set and when written as X is a class of (sub)sets. The following is

a list of symbols used in the text:

{∅} Empty Set

(α + iβ ) Complex Conjugate of (α + iβ ) equal to (α− iβ )
|.| Determinant of .
(a)[i] ith element of vector a.

(A)[i][ j] Element in row i and column j of matrix A.

(A)[i] Column i of matrix A.

∗ Convolution, e.g., g∗h.

◦ Correlation (Cross-Correlation), e.g., g◦h, g◦g.

·̃ Estimate of ·
∧ Logical And

∨ Logical Or

�→ Maps to, e.g. RN �→ RM

↔ Mutual Mapping (used for signal/transform pairs, e.g. h(t) ↔ H(s)).
∴ Therefore
R≡ Equivalent with respect to equivalence relation R.

∼ Distributed According to · · · (a Distribution).

� a � b is read, a precedes b – i.e. in an ordered set of vectors.

≺ a ≺ b is read, a strictly precedes b – i.e. in an ordered set of vectors.

 a  b is read, a succeeds b – i.e. in an ordered set of vectors.

� a � b is read, a strictly succeeds b – i.e. in an ordered set of vectors.

x Mean (Expected Value) of x

A A generic set.

A � Complement of set A .

A \B The difference between A and B.
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xxxii Nomenclature

A Jacobian matrix of optimization constraints with respect to x

B A generic set.

Bc Center Frequency of a Critical Band

Bw Bandwidth of a Critical Band

� Set of Complex Numbers

C Cost Function

C n n-dimensional Complex Space

D Dimension of the feature vector

Δ Step Change

D Domain of a Function

ϒA (x) Characteristic function of A ∈ X for random variable X

DF (. ↔ .) f -Divergence

DJ (. ↔ .) Jeffreys Divergence

DKL (. → .) Kullback-Leibler Divergence

dE (., .) Euclidean Distance

dWE (., .) Weighted Euclidean Distance

dH (., .) Hamming Distance

dHe (., .) Hellinger’s Distance

dM (., .) Mahalanobis Distance

∇xE Gradient of E with respect to x

E(.) Objective Function of Optimization

E {·} Expectation of ·
e Euler’s Constant (2.7182818284 . . .)
en Error vector

ēN N-dimensional vector of all ones, i.e. ē : R1 �→ RN such that,

(ēN)[n] = 1 f orall n = {1,2, · · · ,N}
êk Unit vector whose kth element is 1 and all other elements are 0

exp{·} Exponential function (e{·})

φ Sample Space of the Parameter Vector, ϕϕϕ
ϕϕϕγ Parameter Vector for the cluster γ
ΦΦΦ Matrix of parameter vectors

Fs Spectral Flatness

F{·} Fourier Transform of ·
F−1{·} Inverse Fourier Transform of ·
F A Field

III F(ϕϕϕ|x) Fisher Information matrix for parameter vector ϕϕϕ given x

f Frequency measured in Hertz ( cycles
s

)

fc Nyquist Critical Frequency measured in Hertz ( cycles
s

)

fs Sampling Frequency measured in Hertz ( cycles
s

)

Γ Number of clusters – mostly Gaussian clusters

γ Cluster index – mostly for Gaussian clusters

γγγnc Column nc of Jacobian matrix (J) of optimization constraints

G Hessian Matrix



Nomenclature xxxiii

g Gradient Vector

H (p) Entropy

H (p|q) Conditional Entropy

H (p,q) Joint Entropy

H (p → q) Cross Entropy
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H Hilbert Space
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H0 Null Hypothesis
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H( f ) Fourier Transform of the signal h(t)
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H(ω) Fourier Transform of the signal h(t) in Terms of

the Angular Frequency ω
Hkl Discrete Fourier Transform of the sampled signal hnl in frame l for
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H̆ml Mel-scale Discrete Fourier Transform of the sampled signal hnl in

frame l for the Mel frequency index m

h(t) A Continuous Function of Time or a Continuous Signal

h̄(p) Differential Entropy (Continuous Entropy)

h̄(p → q) Differential Cross Entropy (Continuous Cross Entropy)

I0 Standard Intensity Threshold for Hearing

I Intensity of Sound

Ir Relative Intensity of Sound

I Information

I (X ;Y ) Mutual Information between Random Variables X and Y

IJ (X ;Y ) Jeffrey’s Mutual Information between Random Variables X and Y

� Set of Imaginary Numbers

I Identity Matrix

I m The Imaginary part of variable {s : s ∈�}
IN N-dimensional Identity Matrix

i The Imaginary Number (
√−1)

iff If and Only If ( ⇐⇒ )

inf Infimum

K (t,s) Kernel Function of t and s used in Integral Transforms

ΛΛΛ Diagonal matrix of Eigenvalues

λ Lebesgue Measure

λ̃ Wavelength

λ̄ Forgetting Factor



xxxiv Nomenclature

λ◦ Eigenvalue

λ̄ Lagrange Multiplier

L Total number of frames

L (ϕϕϕ|x) Likelihood of ϕϕϕ given x

L {·} Laplace Transform of ·
L −1{·} Inverse Laplace Transform of ·
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l Frame Index

�(ϕϕϕ|x) Log-Likelihood of ϕϕϕ given x

ln(·) Napierian Logarithm, Natural Logarithm, or

Hyperbolic Logarithm (loge(·))
log(·) Common Logarithm (log10(·))
μμμ Mean Vector

μ̂μμ Sample mean vector, as a shortcut for X |N
μ̂μμγ Sample mean vector for cluster γ

M Number of Models, number of critical bands

M Number of samples in a partition of the Welch PSD computation

M Dimension of the parameter vector

M Matrix of the weights for mapping the linear frequency to the

Mel scale critical filter bank frequencies

N (μμμ,ΣΣΣ) Gaussian or Normal Distribution with mean μμμ and

Variance-Covariance ΣΣΣ
N Window size

N Number of samples

N Number of hypotheses

n Sample index which is not necessarily time aligned – see t for

time aligned sample index

Nγ Number of samples associated with cluster γ
Ns Number of samples associated with state s

� The set of Natural Numbers

O Observation random variable

O Observation sample space

O Bachmann-Landau asymptotic notation – Big-O notation

O Borel Fields of the Borel Sets of sample space O
o An observation sample

ϖ Pulsewidth of Pulse Amplitude Modulation Sampler

ϖ(o|s) Penalty (loss) associated with decision o conditioned on state s

ϖ(o|x) Conditional Risk in Bayesian Decision Theory

℘ Pitch

ΠΠΠ Penalty matrix in Bayesian Decision Theory.

P Probability

P Pressure Differential

P0 Pressure Threshold

P Total Power



Nomenclature xxxv

Pd Power Spectral Density

P◦
d Power Spectral Density in Angular Frequency

p Probability Distribution

p Training patten index for a Neural Network

q Probability Distribution

� Set of Real Numbers

R Redundancy

R(h) Range of Function h – Set of values which function h may take on

Re(s) The Real part of variable {s : s ∈�}
Rn n-dimensional Euclidean Space

ΣΣΣ Covariance (Variance-Covariance) Matrix

Σ̂ΣΣ Biased Sample Covariance (Variance-Covariance) Matrix

Σ̃ΣΣ Unbiased Sample Covariance (Variance-Covariance) Matrix

Σ̂ΣΣγ Biased Sample Covariance Matrix for cluster γ
� Number of States

S State Random variable

S State sample space

S State Borel Field of the Borel Sets of sample space S
S|N Second Order Sum (∑N

i=1 xixi
T )

s A sample of the state random variable

s|N First Order Sum (∑N
i=1 xi)

sup Supremum

ςςς(ϕϕϕ|x) Score Statistic (Fisher Score) for parameters vector ϕϕϕ given x

T Total Number of Samples, and sometimes the Sampling Period

t Sample index in time

Tc Nyquist Critical Sampling Period

Ts Sampling Period

û Unit Vector

ω Angular Frequency measured in rad.
s

ωc Nyquist Critical Angular Frequency measured in rad.
s

ωs Angular Sampling Frequency measured in rad.
s

WN The Twiddle Factor used for expressing DFT (ei 2π
N )

W kn
N W

(k×n)
N

Ξ Seconds of shift in feature computation

X Borel Field (the smallest σ -field) of the Borel Sets of

Sample Space, X
X Sample Space

x Feature Vector

Z {·} z Transform of ·
Z −1{·} Inverse z Transform of ·
� The Set of Integers

zk Direction of the Inverse Hessian Update in Optimization
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Chapter 1

Introduction

What I know is not what others knew; what they shall know is

not what I know! They wrote what they knew and I write what I

know; in hopes that they will write what they shall know!

Homayoon Beigi – July 31, 2009

1.1 Definition and History

Speaker recognition, sometimes referred to as speaker biometrics, includes identifi-

cation, verification (authentication), classification, and by extension, segmentation,

tracking and detection of speakers. It is a generic term used for any procedure which

involves knowledge of the identity of a person based on his/her voice.

In addressing the act of speaker recognition many different terms have been

coined, some of which have caused great confusion. Speech recognition research

has been around for a long time and, naturally, there is some confusion in the public

between speech and speaker recognition. One term that has added to this confusion

is voice recognition.

The term voice recognition has been used in some circles to double for speaker

recognition. Although it is conceptually a correct name for the subject, it is recom-

mended that we steer away from using this term. Voice recognition [37, 46, 48], in

the past, has been mistakenly applied to speech recognition and these terms have

become synonymous for a long time. In a speech recognition application, it is not

the voice of the individual which is being recognized, but the contents of his/her

speech. Alas, the term has been around and has had the wrong association for too

long.

Other than the aforementioned, there have been a myriad of different terminolo-

gies used to refer to this subject. These include, voice biometrics [74], speech bio-

metrics [8, 43], biometric speaker identification [16, 35], talker identification [1,

11], talker clustering [25], voice identification [70], voiceprint identification [36],

and so on. With the exception of the term speech biometrics which also introduces

the addition of a speech knowledge-base to speaker recognition task, the rest do not

present any additional information.

, H. Beigi Fundamentals of Speaker Recognition, 
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Part of the problem is that there has been no standard reference for the subject. In

fact, this is the first text book addressing automatic speaker recognition. Of course,

there have been other texts on the subject such as Nolan’s, The Phonetic bases of

Speaker Recognition [49] and Tosi’s, Voice Identification: Theory and Legal Appli-

cations [70]. These books are quite valuable, but have had a completely different

viewpoint. They have deeply delved into the phonetic and psychological aspects

of speaker recognition and have discussed it in its forensic and legal applications

in so far as human experts can tell speakers apart. Yet, no complete treatment of

the automatic speaker recognition class of problems has been produced in textbook

form until now. It should be mentioned that although there has been no textbook,

the author estimates that there are in excess of 3500 research papers, to date, on

the subject. The earliest known papers on speaker recognition were published in the

1950s. [54, 63] In the course of writing this book (about 3 years), more than 2400

publications were reviewed, some in more detail than others.

To avoid any further confusion, the author proposes standard usage of the most

popular and concise terms for the subject in addressing this discipline. These terms

are speaker recognition for the whole class of problems and speaker identification,

speaker verification, speaker classification, speaker segmentation, speaker tracking,

and speaker detection for the specific branches of the discipline. Of course there are

other combinations of speaker recognition ideas with other knowledge sources such

as speaker diarization and speech biometrics.

A speaker recognition system first tries to model the vocal tract characteristics

of a person. This may be a mathematical model of the physiological system pro-

ducing the human speech [45, 24] or simply a statistical model with similar output

characteristics as the human vocal tract. [8] Once a model is established and has

been associated with an individual, new instances of speech may be assessed to de-

termine the likelihood of them having been generated by the model of interest in

contrast with other observed models. This is the underlying methodology for all

speaker recognition applications.

In 2006, in the movie, Mission Impossible III, Tom Cruise claims the identity

of Philip Seymour Hoffman by putting on a mask of his face as it is customary in

all Mission Impossible programs. However, this time, he forces the person being

impersonated to read an excerpt (similar to the enrollment in speaker recognition)

and uploads the audio to a remote notebook computer which builds a model of the

person’s voice. The model parameters are in-turn transmitted to a device on Tom

Cruise’s neck, located over his trachea. This device adaptively modifies his vocal

characteristics to mimic the voice of Mr. Hoffman. In this scenario, the objective is

to spoof the most familiar speaker recognition engine, namely the human percep-

tion. Of course, this idea is not new to the movie industry. In the 1971 James Bond

film, “Diamonds are Forever,” too, Blofeld who is Sean Connery’s nemesis uses a

cassette tape which includes the resonance information (formants) for the voice of

Mr. Whyte to modify his vocal characteristics to those of the space program admin-
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istrator.

As for the importance of speaker recognition, it is noteworthy that speaker iden-

tity is the only biometric which may be easily tested (identified or verified) remotely

through the existing infrastructure, namely the telephone network. This makes

speaker recognition quite valuable and unrivaled in many real-world applications.

It needs not be mentioned that with the growing number of cellular (mobile) tele-

phones and their ever-growing complexity, speaker recognition will become more

popular in the future.

1.2 Speaker Recognition Branches

The speaker recognition discipline has many branches which are either directly or

indirectly related. In general, it manifests itself in 6 different ways. The author cat-

egorizes these branches into two different groups, Simple and Compound. Simple

speaker recognition branches are those which are self-contained. On the other hand,

Compound branches are those which utilize one or more of the simple manifesta-

tions possibly with added techniques. The Simple branches of speaker recognition

are speaker verification, speaker identification, and speaker classification. By the

above definition, the Compound branches of speaker recognition are speaker seg-

mentation, speaker detection, and speaker tracking. Currently, speaker verification

(speaker authentication) is the most popular branch due to its importance in security

and access control and the fact that it is an easier problem to handle than the first

runner up, speaker identification. The reason for the difficulty in handling speaker

identification will be made apparent later in Sections 1.2.2 and 17.3.

1.2.1 Speaker Verification (Speaker Authentication)

In a generic speaker verification application, the person being verified (known as

the test speaker), identifies himself/herself, usually by non-speech methods (e.g., a

username, an identification number, et cetera). By non-speech, we are strictly talk-

ing about content-based methods; such information may still be delivered using the

speech medium, but the speech carrier signal is not directly used for identification,

in the, so called, non-speech methods. The provided ID is used to retrieve the model

for that person from a database. This model is called the target speaker model.1

Then, the speech signal of the test speaker is compared against the target speaker

model to verify the test speaker. Of course, comparison against the target speaker’s

1 In some circles this is referred to as the reference model, but target speaker model is used here.
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model is not enough.

There is always a need for contrast when making a comparison. Take the evo-

lution of the monotheistic religions in human history. The first known monothe-

istic religion, by some accounts, Zoroastrianism which developed in Iran derived

its concepts from the older religions of Indo-European. In its initial developments,

darkness was attributed to Ahriman and light was attributed to Ahura-Mazda (God).

Initially, these two forces were almost equally powerful. Even later, when the role of

Ahura-Mazda became much more important, hence the creation of a monotheistic

religion, darkness was still deemed necessary to be able to contrast light and good-

ness. This ideology found itself in following monotheistic religions such as Judaism,

Christianity and Islam. The devil was always a philosophical necessity to give fol-

lowers of these religions an appreciation for the good forces. This stems from the

need for contrasting poles in order to assess the quantitative closeness of something

to one pole. Namely, the definition of something being good, needs to include how

bad it is not.

In analogy, imagine trying to assess the brightness of an object. It would be hard

to come up with a measure without having an opposite sense, which would be dark-

ness. We can have a model for brightness and we can compare to it, but we will not

be able to make any quantitative judgment of the amount of light without having a

model for darkness (or zero light). The same is true for speaker verification (or any

other verification system). To be able to get a quantitative assessment of the likeness

of the test speaker to the target speaker we would have to know how the test speaker

is unlike other speakers. This is partly due to the fuzzy nature of speech. It is impos-

sible for two instances of speech to be identical due to many reasons including the

content of speech, the nature of speech (low information content being transmitted

by a high capacity signal), and many other reasons.

To properly assess the closeness of the test speaker to a target speaker, there are

several approaches. The Two major approaches, in the literature, deal with the said

contrast by introducing one or more competing models. The first method uses a

Background Model or a Universal Background Model.[57] This is usually a model

based on data from a large population. The idea behind it is that, if the test speaker

is closer to the average population than the target speaker, then he/she is most likely

not the target speaker.

The second method uses a, so called, cohort model.[8] The members of the co-

hort of the target speaker are speakers who sound similar to the target speaker. The

philosophy behind this approach is that if the test speaker happens to be closer to

the target speaker compared to the cohort, then most likely the test speaker is the

same as the target speaker. In this method, there is no need to involve the rest of the

population. The comparison is done between the target speaker and his/her cohort.
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As we have seen, the speaker verification process involves a small number of

comparisons (generally two); so as the population grows, the amount of compu-

tation needed for the recognition stays constant. This is in part responsible for its

popularity among vendors – namely, it is an easier problem to solve. Of course,

this should not be interpreted as the problem being generally easy. Again, as it was

stated, there is a relative degree to everything. It is easier than speaker identification,

but it certainly has its own share of problems which make it quite challenging.

1.2.2 Speaker Identification (Closed-Set and Open-Set)

There are two different types of speaker identification, closed-set and open-set.

Closed-set identification is the simpler of the two problems. In closed-set identi-

fication, the audio of the test speaker is compared against all the available speaker

models and the speaker ID of the model with the closest match is returned.2 Note

that in closed-set identification, the ID of one of the speakers in the database will

always be closest to the audio of the test speaker; there is no rejection scheme.

One may imagine a case where the test speaker is a 5-year old child and where

all the speakers in the database are adult males. Still, the child will match against

one of the adult male speakers in the database. Therefore, closed-set identification is

not very practical. Of course, like anything else, closed-set identification also has its

own applications. An example would be a software program which would identify

the audio of a speaker so that the interaction environment may be customized for

that individual. In this case, there is no great loss by making a mistake. In fact, some

match needs to be returned just to be able to pick a customization profile. If the

speaker does not exist in the database, then there is generally no difference in what

profile is used, unless profiles hold personal information in which case rejection or

diversion to a different profile will become necessary.

Open-set identification may be seen as a combination of closed-set identification

and speaker verification. For example, a closed-set identification may be conducted

and the resulting ID may be used to run a speaker verification session. If the test

speaker matches the target speaker, based on the ID returned from the closed-set

identification, then the ID is accepted and it is passed back as the true ID of the

test speaker. On the other hand, if the verification fails, the speaker may be rejected

all-together with no valid identification result. An open-set identification problem is

therefore at least as complex as a speaker verification task (the limiting case being

when there is only one speaker in the database) and most of the time it is more com-

plex. In fact, another way of looking at verification is as a special case of open-set

identification in which there is only one speaker in the list. Also, the complexity gen-

2 In practice, usually, the top best matching candidates are returned in a ranked list with corre-
sponding confidence or likelihood scores.
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erally increases linearly with the number of speakers enrolled in the database, since,

theoretically, the test speaker should be compared against all the speaker models in

the database.3

1.2.3 Speaker and Event Classification

The goal of classification is a bit more vague. It is the general label for any tech-

nique that pools similar audio signals into individual bins. Some examples of the

many classification scenarios are gender classification, age classification, and event

classification. Gender classification, as is apparent from its name, tries to separate

male speakers and female speakers. More advanced versions also distinguish chil-

dren and place them into a separate bin; classifying male and female is not so simple

in children since their vocal characteristics are quite similar before the onset of pu-

berty.

As it will be made more clear in section 17.5, classification may use slightly

different sets of features from those used in verification and identification. For in-

stance, vowels and fricatives have much more information regarding the gender of

the speaker since they carry a lot more information about the fundamental frequency

of the vocal tract and its higher harmonics. These harmonic variations stem from the

variations in the vocal tract lengths [17] and shapes among adult males and females,

and children. For example, the fundamental frequencies of the vocal tracts of males,

females, and children lie around 130 Hz, 220 Hz, and 265 Hz respectively.[53] Pitch

has therefore been, quite popularly, used to determine the gender of speakers.

To classify people into different age groups, also, specialized features have been

studied. Some such features are jitter and shimmer which are defined based on

pitch variations.[47] Spectral envelopes have also been used for performing such

classification.[32] Of course, the classic features used in verification and identifica-

tion are still used with good results.[52, 65]

Similar to the above examples of gender and age classification, it is more of an

art to come up with the proper features when looking for specific features which

would be able to classify audio events such as blasts, gun shots, music, screams,

whistles, horns, etc. For this reason, there is no cookbook method which can be

used to classify such events, giving classification the vagueness of which we spoke

at the beginning of this section.

3 In practice, this may be avoided by tolerating some accuracy degradation.[7]
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Fig. 1.1: Open-Set Segmentation Results for a Conference Call
Courtesy of Recognition Technologies, Inc.

1.2.4 Speaker Segmentation

Automatic segmentation of an audio stream into parts containing the speech of dis-

tinct speakers, music, noise, and different background conditions has many appli-

cations. This type of segmentation is elementary to the practical considerations of

speaker recognition as well as speech and other audio-related recognition systems.

Different specialized recognizers may be used for recognition of distinct categories

of audio in a stream. An example of such tasks is audio transcription, like the ARPA

HUB4 evaluation task consisting of automatic transcription of radio broadcast news

shows from the Market Place program.[3, 4]

A typical radio broadcast news contains speech and non-speech signals from a

large variety of sources like clean speech, band-limited speech such as telephony

sources, music segments, speech over music, speech over ambient noise, speech

over speech, etc. The segmentation challenge is to be able to separate the speech

produced by different speakers from each other. It is also desirable to separate, mu-

sic and other non-speech segments.
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It is worth noting that most speech recognizers will break down if they are pre-

sented with music instead of speech. Therefore, it is important to separate the music

from recognizable speech. In addition, one may wish to remove all the music and

only store the speech in an archiving scenario to save space.

Another example is the ever-growing tele-conferencing application. An array of

conference calling systems have been established which allow telephone conversa-

tions among multiple speakers. Usually, a host makes an appointment for a confer-

ence call and notifies attendees to call a telephone number and to join the conference

using a special access code. There is an increasing interest from the involved parties

to obtain transcripts (minutes) of these conversations. In order to fully transcribe the

conversations, it is necessary to know the speaker of each statement. If an enrolled

model exists for each speaker, then prior to identifying the active speaker, the audio

of that speaker should be segmented and separated from adjoining speakers.

Here, we consider speaker segmentation a type of speaker recognition since the

process of segmenting audio is quite similar to other speaker recognition techniques.

Normally, statistical models of the local characteristics of two adjoining segments

of audio are created. Based on the difference between the underlying model param-

eters and features that are appropriate for modeling speaker characteristics, an as-

sessment of the similarity of the two segments is made. If the segments are deemed

sufficiently dissimilar, a segmentation mark is realized at this point of transition.

Once the basic segmentation points are identified, it is useful to classify the data

into segments associated with known speakers. Even if the speaker identities are

unknown, by knowing the number of speakers who have participated in the conver-

sation, one may classify the speakers with some common label for identical speak-

ers. As it will be seen in Section 17.4, knowledge of the number of speakers in the

conversation is quite helpful and hard to estimate. The underlying difficulty in the

estimation of the number of speakers is linked to the “contrast” argument which was

made earlier, in Section 1.2.1.

We qualify the operation of tagging the speakers as speaker classification, since

it performs a classification of the speech associated with an unknown number

of unknown speakers – see Sections 1.2.3 and 17.5. If the speaker identities are

known, then the sub-problem becomes an identification problem – see Sections 1.2.2

and 17.3. If all the speakers in a conversation have been enrolled in the system, then

it may not be necessary to know the total number of speakers in the conversation in

contrast with the case where the speakers are unknown and would have to be tagged

by the system as speaker A, speaker B, etc.

Note that the segmentation problem has two stages: a basic stage which entails

the elementary segmentation of the audio into small pieces with uniform production

properties and a more advanced stage which labels these segments and sometimes

merges similar adjoining segments. Some references in the literature only consider
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the initial stage as segmentation, but since as it shall be seen later, there will be feed-

back between these two stages, they are usually inseparable. Here, it is preferred to

include the whole process under the auspices of one category, called speaker seg-

mentation.

1.2.5 Speaker Detection

Speaker detection is the act of detecting one or more specific speaker in a stream of

audio. Therefore, the underlying theory encompasses segmentation as well as iden-

tification and/or verification of speakers. Enrollment data is usually necessary. The

choice of speaker identification, verification, or to use them both is mostly depen-

dent on the problem formulation. For example, if there are many speakers in a stream

of audio and it is known that there will always be a speaker from the database speak-

ing at any time, with no possibility of extraneous data such as music, then closed-set

identification may be applied to the results of the speaker segmentation to identify

the speaker for each segment.

A more complex problem would be one in which there are speakers outside the

known set of speakers or there may be music or other types of audio in the stream.

In this case, if the list of speakers to detect is not large, then a verification session

may be conducted on each segment for every one of the members of the list. On the

other hand if the list is large, then an identification may be conducted and the result

of the identification may be used as the claimed ID of a subsequent verification. If

the identified speaker is verified and if it is a member of the list of speakers to de-

tect, then the result is returned. One can imagine many different possible scenarios

in which a combination of speaker identification and verification may be used in

conjunction with the results of segmentation.

1.2.6 Speaker Tracking

Speaker Tracking is somewhat similar to speaker detection with the subtle difference

that one or more of the speakers are tracked across the stream. In this case, one may

envision conditions where no enrollment data is available, but not only is the audio

segmented into single speaker segments, but the segments are also tagged with la-

bels signifying the individual speakers in the stream. If enrollment data is available,

then the speaker labels for the segments may be adjusted to reflect the true speakers

of those segments from the enrollment database. However, in the general sense, it

may not be necessary to have specific labels portraying real speakers. In most cases,

as long as the different speakers in the stream are identified with general labels such
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as alphanumeric tags, then the goal is achieved. The most important application of

tracking is the tagging of speakers in a conversation such as a telephone conference

call.

1.3 Speaker Recognition Modalities

Theoretically speaker recognition may be implemented using different modalities

which are tied to the use of linguistics, context, and other means. However, in the

practical sense these modalities are only relevant for speaker verification. In this

branch, based on the requirements of the application, different sources of informa-

tion may be mixed in with the acoustic information present from the vocal tract. Of

course, identification and other branches may also be able to use some extra infor-

mation for improving performance, but the following modalities are most relevant to

speaker verification. Although, they are appended with the phrase, “speaker recog-

nition,” to show generality.

1.3.1 Text-Dependent Speaker Recognition

In the 1992 film, Sneakers, Robert Redford plays the role of an expert who is hired

to find vulnerabilities in security systems. When the plot plays out, he tries to access

a secure laboratory which is protected with many means including a text-dependent

speaker verification system. To be able to access the lab, the following was to be

spoken: “Hi. My name is Werner Brandes. My voice is my passport. Verify me.” He

pulls it off by having expected this system and preparing for it.

Since sophisticated digital recording was not common-place at that time, he

sends out a woman with the lab owner, Werner Brandes. She is wearing a recording

device and tries to ask Mr. Brandes different questions in the course of the evening

for which he would have to say the words in the expected prompt in a scattered

fashion. The audio tape is then spliced to create the expected prompt. This could be

achieved much more easily these days with the existence of small and high quality

digital recording devices and digital editing techniques.

This, so called, liveness challenge, is the very reason why the text-dependent

modality is flawed and should not be used in any serious application. So, why do

people still work on this type of recognizer? The answer is, because of its relative

high accuracy. As we shall see in the next few sections, the liveness issue is still

a problem with other speaker recognition modalities, but it is remedied in simple

fashion in those modalities. Also, Section 1.3.3 shows that it is possible to view
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the text-prompted modality as an extension of text-dependent recognition. The text-

prompted modality may be used to remedy the liveness problem of text-dependent

systems.

The text-dependent modality only applies to the speaker verification branch.

Most other branches cannot be used with specific phrases since they happen in a

more passive manner where a recognizer listens to an utterance and makes a deci-

sion.

1.3.2 Text-Independent Speaker Recognition

Text-independent speaker recognition is the most versatile of the modalities. It

is also the only viable modality which may be used in all branches of speaker

recognition. There are different degrees of text-independence. Some recogniz-

ers are completely text- and language-independent. There are engines which are

somewhat language-dependent. Some are completely language-dependent, but text-

independent to a degree. Chapter 17 will discuss these different possibilities in more

detail.

A purely text-independent and language-independent system only relies on the

vocal tract characteristics of the speaker and makes no assumption about the context

of the speech. One of the most important problems plaguing text-independent sys-

tems is the possibility of a poor coverage of the part of speech. Take an enrollment

utterance for example. Under the auspices of a text-independent process, generally,

there is no constraint on the enrollment text. Also, a common goal of all recognizers

is to try to minimize the length of enrollment and test segments.

As enrollment and test data lengths are reduced, the possibility of a common

coverage of the phonetic space is reduced. Therefore, parts of the test utterance may

never have been seen at the enrollment time. So, it is plausible that the phones in

the enrollment utterance of a non-target speaker and the test utterance of the tar-

get speaker have more in common, acoustically, than the enrollment utterance of

the target speaker and the test segment for that speaker. This commonality may con-

tribute toward a mis-recognition. To account for this problem, most text-independent

speaker recognition engines require longer enrollment and test utterances to be able

to achieve acceptable accuracies.

Text-independent speaker recognition also suffers from the liveness assessment

problem described earlier (see Section 1.3.1). In this case, one does not even need

to have specific words spoken by the individual to be able to spoof the system.

Any type of high quality recording of the individual’s voice will be enough. Sec-
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tions 1.3.3 and 1.3.4 show different solutions to the liveness problem.

1.3.3 Text-Prompted Speaker Recognition

Text-prompted speaker recognition, as it may be apparent from its name, prompts

the speaker to say a specific phrase at the time of testing. It was mainly developed

to combat spoofing from impostors. If the speaker is not anticipating the text of the

prompt, he/she will not be able to prepare for fooling the system. Take the example

of section 1.3.1. If the system, being utilized, had used a text-prompted engine, the

system would not have been easily fooled.

There are generally two main approaches to the design of a text-prompted sys-

tem. The first method would modify a text-dependent system to generate somewhat

random phrases for its prompts. These systems will randomly generate a phrase and

then build the text-dependent language model for that prompt. The response will

therefore have to match the vocal characteristics of the target speaker as well as the

context of the prompted phrase. This process will be discussed in more detail in

Chapter 17.

One of the main advantages of doing text-dependent recognition is the sufficience

of shorter enrollment texts. However, to be able to perform text-prompted recogni-

tion through the text-dependent approach, more enrollment data has to be collected

to cover the most common phones and phone sequences. Section 17.2.1 sheds more

light onto this process.

The second approach would also generate a random prompt, but will use the

combination of a text-independent speaker recognition engine and a speech recog-

nizer to perform recognition. To recognize an individual, the vocal characteristics

of the individual would have to be matched. Also, the recognized text coming from

the speech recognizer has to match the expectation of the prompted phrase.

Note that text-prompted recognition only makes sense for speaker verification.

Most other branches of speaker recognition cannot use specific prompts. This is

also the case for text-dependent recognition. It is true that one can dream up spe-

cial cases where other branches of speaker recognition may be used with dictated

prompts, but it will not be true in general.
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1.3.4 Knowledge-Based Speaker Recognition

A knowledge-based speaker recognition system is usually a combination of a text-

independent or text-prompted speaker recognition system with a speech recognizer

and sometimes a natural language understanding engine or more. It is somewhat

related to the basic text-prompted modality with the difference that there is another

abstraction layer in the design. This layer uses knowledge, supplied by the speaker,

to test for liveness.

Consider the very familiar security check used by many financial institutions in

which they ask for responses to questions that only the caller should know. This

has advanced through the years from the old “Mother’s Maiden Name,” “Last Four

Digits of a Social Security Number,” and so on to the more versatile systems which

require the client to come up with questions, the answers to which are only apparent

to him/her. There have also been newer incarnations, especially on Internet-Based

systems, where at the time of enrollment, the system asks the user to pick an image.

Later, at the verification time, the user is asked to divulge what he/she had chosen at

the time of enrollment. Since the choice would have to be limited to a few images,

the systems would allow impostors in, with the probability of at best 1
Numbero f choices

,

even if the impostor would pick an image randomly.

Therefore, such systems are usually used to strengthen other authentication pro-

cesses. An example of such fusion is to use the image-based authentication in place

of the submit button in another type of authentication. However, for personal use,

I have found it hard to remember what image I had used at the time of enrollment,

especially with systems which are seldom used.

Similar ideas may be used in conjunction with speaker recognition so that the

vocal tract characteristics are used in addition to the knowledge from the individual.

This is sometimes seen as a fusion of two different information sources, but its main

objective is to handle the liveness issue described earlier.

In this scenario, the speaker has to provide his/her voice as well as some

knowledge-base to the system so that he/she may be challenged with proper ques-

tions assessing his/her liveness. This scenario is true for a speaker verification sys-

tem; however, knowledge-based systems may also be relevant for other branches of

speaker recognition, but in a slightly different way. An example is the use of the

content of speech as well as the vocal characteristics to come up with a match in a

speaker indexing problem. Imagine hours upon hours of audio from a newswire or a

similar source. The objective may be to find a specific speaker (speaker detection),

but with additional constraints.

For instance, the user may be searching for a certain speaker (speaker detection)

when that speaker is talking about a specific topic. This is an example of knowledge-

based speaker recognition, where there is no need for the enrollment within the con-
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text, since it follows the search topic as recognized by a speech recognition engine,

with possible natural language understanding (NLU) capabilities. Also, the speaker

voice model may be an excerpt in the same stream, chosen by the user.[72]

1.4 Applications

There is truly no limit to the applications of speaker recognition. If audio is involved,

one or more of the speaker recognition branches may be used. However, in terms of

deployment, speaker recognition is in its early stages of infancy. This is partly due to

unfamiliarity of the general public with the subject and its existence, partly because

of the limited development in the field. Also, there are some deterrents that feed

the skeptics, the most important of which are channel mismatch and quality issues.

These topics have been discussed in detail in Sections 22.4 and 22.12 respectively.

Some of the major applications of speaker recognition have been discussed in the

following few sections. This list is by no means complete and it is not in any specific

order. These examples have been chosen in an effort to try and cover some of the

most popular applications. Also, some attention has been paid to covering examples

for the different branches of speaker recognition.

1.4.1 Financial Applications

It is hard to lump everything having to do with financial institutions in one cate-

gory. There are so many different applications that basically span all the branches of

speaker recognition. However, here, we will try to cover some of the more popular

applications which have direct relevance to the experiences of all of us as users of

financial services.

Most of us may have been in the position of contacting a financial institution for

questions regarding our accounts. These may be credit-card accounts or simply stan-

dard bank accounts. Since financial data is sensitive and should only be accessed by

the owners of the accounts, there are usually a number of procedures which are used

by financial companies to establish the identity of the individual (on the telephone

or in person).

At the present, most institutions provide fully automated account information,

accessible through the telephone. They usually require your account number and

a pin number to establish your identity. Then full access is granted to the account

which could be detrimental if the wrong person gains access. Pin numbers have also
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been limited to 4 digits by most financial institutions to be compatible with an in-

ternational standard. Many of these institutions also disallow the use of 0 or 1 at

the beginning and the end of the pin number, considerably reducing the number of

permutations. Add to this the fact that most people use easy-to-remember numbers

such as birthdays or important dates in their immediate family and you have a recipe

for a simple breach of security.

Also, when speaking to a customer support representative, no pin number is nec-

essary. The customer is asked for the account number in addition to some very sim-

ple questions, the answers to which are quite easily obtainable. Examples of these

questions are “Mother’s Maiden Name” which is public knowledge for most people,

“Favorite Color” which happens to be blue for over 40% of the population, “Last

Four Digits of Social Security Number” which is also something quite accessible

to the persistent impostor, etc. Some variations may exist to make these questions

somewhat harder to answer. However, to retain the loyalty of their clients, these in-

stitutions cannot make the questions too hard to answer.

An important security breach which is hardly considered these days is the pos-

sibility of sniffing DTMF sequences by tapping into the telephone line of an indi-

vidual while pin-based authentications are performed. This is quite simple and does

not require much skill. The tapping may be done close to the source (close to the

user) or in more serious cases close to the institution performing the authentication.

Once the DTMF information is recorded, it may readily be catalogued and used by

impostors with dire consequences. Another potential security breach is the readily

available personal information being sold by special sites on the Internet for typical

$19.95 prices. These are some of the reasons for the enormous number of identity

thefts being reported.

Speaker verification is a great match for this type of access problem. It may be

used in an automatic fashion. It requires an enrollment which may be performed

once a rigorous authentication is conducted by an agent. It can also be used in

conjunction or in lieu of existing security protocols. In some cases such as any

customer-agent interaction, verification may be done in a passive manner, namely,

the verification engine can listen in on the conversation between the agent and the

customer. Since the agent is an employee of the institution, his/her voice may be

pre-enrolled into the system so that it would be possible to separate the audio of

the customer using speaker segmentation followed by verification. In most cases,

separate-channel recording will even alleviate the separation problem. Once the cus-

tomer’s audio is isolated, it may be verified as the conversation between the agent

and the customer is in progress. The agent may obtain feedback on the possibility

of fraud on his/her computer screen which allows for further scrutiny of the caller

without the caller even being aware.

Another application is in passive fraud control. Instead of running speaker veri-

fication on the valid users, one may hold a list of known fraudsters’ voices. In most



18 1 Introduction

cases, a limited number of professional fraudsters call frequently to try and fool the

security system. An identification engine can try to alert the security agents of these

attacks by listening in on all established communication channels. This can also run

in parallel with the verification process described earlier. Imagine a fraudster who

has successfully been able to assume a valid client’s identity. This fraudster may

have also gone through the enrollment process and enrolled himself/herself as the

true client. Having this parallel fraud monitor can alert the agents in the institution

that there is a likelihood of fraud.

These and other applications could prove to be priceless for financial institu-

tions where fraud could be quite costly. Also, the same argument applies to many

other similar institutions with the same security and access requirements, such as

health institutions which are required by law to keep the health status and personal

information of their customers extremely confidential. There are U.S. government

mandates trying to limit the requests by agents for personal information such as so-

cial security information, in an effort to reduce the chance of misappropriation of

such information.

1.4.2 Forensic and Legal Applications

Speech has a unique standing due to its non-intrusive nature. It may be collected

without the speaker’s knowledge or may even be processed as a biometric after it

has been collected for other purposes. This makes it a prime candidate for foren-

sic and legal applications which deal with passive recognition of the speakers or

non-cooperative users. Passive recognition involves tasks in which the application

does not generally dictate the flow and type of data being processed. For example,

even if speaker verification is used for some specific needs in Forensics, it cannot

generally be text-prompted or text-dependent. It will have to be mainly utilized on

whatever audio is available and most of the time it is done without the knowledge of

the speaker, in which case even the knowledge-based modality does not apply in the

strict sense. It is true that information about textual contents of the audio may also

be used, in addition to the vocal tract information, but it will be done in the most

independent sense.

There are other biometrics such as fingerprint and DNA recognition that also al-

low some degree of passivity in terms of data collection. That is why they have been

successfully used in forensics and legal applications. However, they are not as con-

venient as speech which may be collected, intercepted, and transmitted much more

effectively with the existing infrastructure.

Forensic applications rely on a few different modalities of speaker recognition.

Based on the above discussion, speaker identification [10, 19, 21, 27, 51] is the main
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modality of interest in these applications. For example, it may be used to identify

an individual against a list of suspects. In addition, speaker segmentation and clas-

sification can be quite useful. Segmentation is needed to separate the audio of the

target individual in a stream of audio consisting of several sources of speech and

other types of audio. Classification can help in categorizing the segmented audio.

Also, it may be used to look for anomalies such as abrupt events (gun shots, blasts,

screaming, et cetera).

1.4.3 Access Control (Security) Applications

Access control is another place where speech may be utilized as a very effective

biometric. Entering secure locations is only a small part of the scope of speaker

biometrics. In that domain they compete head-to-head with most other biometrics

and possess pros and cons like any other – see Section 1.5. Where speaker recog-

nition truly excels with respect to other biometrics is in remote access control in

which the user is not physically at the location where access should take place.

Take, for example, the case of accessing sensitive data through a telephony network

or a conventional computer network. With any biometric the biometric sensor has

to be located where the user is. This, for speech, is a microphone which is readily

available in many devices we use. Most other biometric sensors have had no other

use in the past and therefore will have to be exclusively utilized for the biometric at

hand. In addition, the telephony network is so well distributed that it would be hard

to imagine an application that does not have access, at least, to a telephone.

Most access control cases would utilize the speaker verification branch of this

biometric. Sections 1.3 and 17.2 describe speaker verification and its modalities in

detail.

1.4.4 Audio and Video Indexing (Diarization) Applications

Indexing is a major application of speaker recognition which involves many of its

branches, in addition to other technologies such as speech recognition. It has also,

quite successfully, been fused with other biometrics such as face recognition.[73]

It requires segmentation of the audio stream, detection and/or tracking of speakers,

sometimes with the added burden of identifying these speakers. Generally speaking,

detection or tracking may have localized scope over a limited set of speakers, such

as the distinct speakers which may be identified in a stream of audio. After perform-

ing such localized tasks, sometimes a global identification may be required. In some

cases, though, the speaker list, used for detection and tracking, is not limited to a



20 1 Introduction

Fig. 1.2: Diagram of a Full Speaker Diarization System including Transcription for the
Generation of an Indexing Database to be Used for Text+ID searches

small set. Figure 1.2 shows the diagram for a full diarization system, including the

transcription of the audio. The results are used to build an indexing database which

allows for doing searches based on the text, the speakers or the combination of these

two sources.

1.4.5 Surveillance Applications

Surveillance applications (lawful intercept) are really very similar to forensic appli-

cations discussed in Section 1.4.2. All surveillance applications, by definition, have

to be conducted in a passive manner as discussed in the Forensics section. Unfor-

tunately, they can sometimes be misappropriated by some governments and private

organizations due to their relative ease of implementation. There have been many

controversies on this type of intercept especially in the last few years. However, if

done lawfully, they could be implemented with great efficiency.

An obvious case is one where a system would be searching on telephone net-

works for certain perpetrators which have been identified by the legal process and

need to be found at large. Of course, speaker segmentation would be essential in

any such application. Also, identification would have to be used to achieve the final

goal. Essentially, the subtle difference between forensic and surveillance applica-
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tions is that the former deals with identification while the latter requires the com-

pound branch of speaker recognition, speaker tracking.

Another method in which speaker recognition can help in the field of surveillance

is at a capacity very similar to that of speaker indexing (Section 1.4.4). Imagine hav-

ing to transcribe the speech of a target speaker. On the other hand, transcribing the

audio of other individuals, not allowed by the legal intercept rules, may not be ac-

ceptable. Speaker recognition can concentrate the transcription effort (which is also

usually quite costly) to the speech of the target individual.

1.4.6 Teleconferencing Applications

Teleconferencing can also benefit from different branches of speaker recognition. It

used to be the case that teleconferencing was limited to large corporations which

had the infrastructure to perform such meetings. With the increasing number of free

and paid sites, many more teleconferencing sessions are taking place daily. Many

of these sites are looking for ways to improve their services in hope of being more

competitive in this growing market. Many are looking for speaker diarization ca-

pabilities to add as a service. The application discussed in Section 1.4.4 may be

used for providing this value-added service. In addition, companies may implement

their own diarization systems to make sure that the minutes of the meetings are

made available to the individuals on the conference call as well as the companies’

archives for future reference.

1.4.7 Proctorless Oral Testing

Figure 1.3 shows a distant learning application of speaker recognition. This is used

for performing proctorless oral language proficiency testing. These tests take place

on a telephone network. The candidate is usually in a different location from the

tester. There is also a set of second tier raters who offer supplementary opinions

about the rating of the candidate. In one such application, the candidate is matched

by the testing office to a tester for the specific language of interest. Most of the time

the tester and the candidate are not even in the same country.

The date of the test is scheduled at the time of matching the tester and the candi-

date. In addition, the candidate is asked to speak into the Interactive Voice Response

(IVR) system which is enabled by speaker recognition technology to be enrolled in

the speaker recognition system. The speaker recognition system will then enroll the

candidate and save the resulting speaker model for future recognition sessions. Once
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Fig. 1.3: Proctorless Oral Language Proficiency Testing
Courtesy of Recognition Technologies, Inc.

it is time for the candidate to call in for performing the oral exam, he/she calls the

IVR system and enters a test code which acts as the key into the database holding

the candidate’s test details. The candidate is first asked to say something so that a

verification process may be conducted on his/her voice. The ID of the candidate is

known from the test code entered earlier, so verification may be performed on the

audio.

If the candidate is verified, he/she is connected to the tester and the oral ex-

amination takes place. In the process of taking the oral examination, the speaker

recognition system which is listening in on the conversation between the candidate

and the tester keeps doing further verifications. Since the tester is known, the audio

of the candidate may be segmented and isolated by the recognition engine from the

conversation, to be verified. This eliminates the need for a proctor to be present with

the candidate at the time of the examination which reduces the cost of the test. The

conversation is also recorded and made available for the second tier rater(s) to be

evaluated further.

This application makes use of speaker verification and segmentation. It also does

speaker tracking to make sure the candidate has not handed the phone to another

person in the middle of the test.
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1.4.8 Other Applications

The applications of speaker recognition are not limited to those described here.

There are countless other applications which are either known or will be made ap-

parent as more advancement is made in this subject and more people are made aware

of its existence. This is one of the many goals of this textbook, namely to promote

awareness of the speaker recognition discipline so that it may be applied in new

fields.

1.5 Comparison to Other Biometrics

In 1997, Bruce Feirstein touched upon an array of biometrics including speaker ver-

ification in the screenplay of the James Bond movie Tomorrow Never Dies, acted by

Pierce Brosnan as James Bond (007). It is certain that speaker recognition is not

alone in the biometric arena. Also, it is conceded that there is no single way to solve

any problem. In fact there is a place for every kind of biometric to be used and as

we will discuss later, it is most of the time beneficial to combine a few techniques

to achieve better performance. All of us use a combination of biometric measures in

our daily lives to make decisions about the identity of those around us. It is impor-

tant to be well informed about the strengths and weaknesses of all that is available

to us to be able to make a decision about the combination of systems we would need

to utilize for any specific application. Although this book concentrates on speaker

recognition, in this section, we attempt to review the most popular biometrics and

try and compare them with speaker recognition whenever possible.

Many have attempted to categorize the different types of biometrics into two

different categories, Behavioral and Physiological. The problem with this kind of

categorization is that just like any other clustering, things are not always so clear cut.

Many biometrics have elements from both categories. In fact, the specific treatment

of some biometrics may place them in any of the two categories or the combination

of the two.

Take, for example, the subject matter of this book. Speaker recognition could be

construed as a behavioral biometric if the recognition system concentrates on the

transitions of the audio and the manner of speaking. In contrast, it may be consid-

ered as a physiological biometric based on the characteristics of the vocal tract. In

fact, most text-independent treatments of the subject view it as a physiological bio-

metric. Text-dependent systems, in addition to the physiological information, also

use many behavioral tips to make their assessments.

Other, so called, behavioral biometrics also include considerable amounts of

physiological information. Behavior is something that may be consciously adapted,
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however, many of the characteristics of our voice, signature (handwriting), gait

(style of walking), keystrokes, and so on may only be changed in a limited fash-

ion and in accordance with our physiology. In general, there are certain biometrics

which are purely physiological. DNA, fingerprint, palm, iris, retina, thermogram,

and vein are some such biometrics.

Of course, there will always be more inventive biometric techniques some of

which will not be so practical, such as the lip identification system, as featured by

Eric Horsted, the writer of “A Taste of Freedom4,” an episode of the animated televi-

sion series, Futurama. Although it may be possible to do that, having to kiss a glass

scanner may not be so sanitary! In some cases, although the sensors for a specific

biometric may be harmless, public perception will dictate its success. An example

is retina imaging which happens to be very accurate and predates iris imaging, but

since the sensors shine a laser onto the retina, the public has been quite resistant

toward accepting this biometric.

With the exception of a few, most biometrics are not usable by every member

of the population since they rely on body parts or features which may be lacking,

defective or disabled in part of the population. For speaker recognition to be useful,

the person has to be able to speak. In most cases, hearing as a feedback measure is

also necessary. It is hard to find any separate census information regarding the hear-

ing impaired and mute persons. There have been numbers available since 1850 for

the deaf and mute as a whole. Based on the US Census Bureau results, the percent-

age of the population who was both deaf and mute was 0.04% in 1850 [29], 0.07%

in 1880 [29] and 0.4% in 2005 [71]. It is hard to compare these numbers since the

number in 2005 has two categories of hearing impaired individuals. The number

quoted here is those over the age of 15 who were able to hear any conversation at

all. There is another number also reported for those who can hear conversations par-

tially. We are not considering those individuals. However, most of the growth in the

percentage may possibly be attributed to more proper census practices. The 2005

number is presumed to be more accurate.

1.5.1 Deoxyribonucleic Acid (DNA)

The idea behind DNA recognition is to start with a target sequence of the 4 nu-

cleotides which make up the coding of a DNA strand, namely, A, C, G, and T.

At the time of recognition, one or more samples of a DNA or its fragments are

first replicated using polymerase chain reaction (PCR). Table 1.1 shows the 4 DNA

nucleotides and the corresponding industrial triphosphates used in the replication

4 Episode 59, fourth season. The series was created by Matt Groening and developed by him and
David X. Cohen. this episode originally aired on December 22, 2002. [76]
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process.[23] This will replicate the original sample, increasing the number by a few

orders of magnitude. Then, an hybridization process is used to compare the repli-

cated sequence with the sample sequence.

Abbreviation Short Name Chemical Formula Triphosphate Triphosphate Formula

A Adenine C5H5N5 dATPa C10H13N5O12P3Na3

C Cytosine C4H5N3O dCTPb C9H13N3O13P3Na3

G Guanine C5H5N5O dGTPc C10H13N5O13P3Na3

T Thymine C5H6N2O2 dTTPd C10H14N2O14P3Na3

a dATP: Deoxyadenosine Triphosphate
b dCTP: Deoxycytidine Triphosphate
c Deoxyguanosine Triphosphate
d Thymidine Triphosphate

Table 1.1: DNA Nucleotides

Currently, the DNA recognition procedure is at its infancy. It could potentially be

very accurate once the system matures. At the present, chips are being developed to

aid in the hybridization process of the recognition. However, with current technol-

ogy, only single strands of DNA (ssDNA) of pathogenic bacteria can be recognized

using electronic technology.[28, 66] Still the PCR and hybridization processes are

done separately and manual intervention is necessary. Work is being done to create

a single chip capable of doing the whole recognition process.[66]

Fortunately, DNA seems to be one of those biometrics which is available for

every human being. It makes DNA a powerful biometric, but there are certainly

some great disadvantages to this biometric. It will still be a while until human DNA

strands can be automatically recognized in a practical time interval. Although some

work has been done on different aspects, including the classification problem [33].

Even when automatic DNA recognition matures, there are serious other limitations

to DNA recognition. One problem is that people are not comfortable with giving up

their DNA. Part of it may be stored while being replicated by the PCR process. This

could seriously jeopardize a person’s security and could possibly be misused if it

came into the possession of the wrong people.

1.5.2 Ear

The folds in the pinna (the auricle of the ear) and the shape of the ear canal are

different among individuals. These differences are quite pronounced and are easily
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realizable by a visual inspection of the outer ear. The Ear has recently been used

for establishing the identity of individuals through different approaches. We lump

everything related to the ear together, in this section. To date, two separate branches

of ear recognition have been studied. Aside from the visual approach, there is also

an acoustic method for ear recognition.

The first branch of techniques uses images of the ear for recognition of the in-

dividual. This problem has several phases. Generally, a side image of the face is

taken and the ear is segmented out. Then, depending on the algorithm, several pro-

cesses may happen. To achieve invariance, most researchers use some flavor of the

Principal Component Analysis (PCA) method – see Section 12.1.[22, 50] To han-

dle rotational invariance, techniques such as conversion to polar coordinates and the

usage of the polar coordinate version of the Fourier Transform to obtain generic

Fourier descriptor (GFD) features have been successful.[22]

Some use a general 2-dimensional image of the ear.[80, 79, 50] Others use the

more expensive apparatus of 3-dimensional scanning to obtain more detailed infor-

mation about the contours.[18, 15] The 3-d scans usually require an additional 2-d

reference image for color information. Therefore, the 3-d systems do not seem very

practical. Some have used multiple view 2-d images to alleviate the expense and

complexity associated with the 3-d systems.[81, 42] These systems do become more

complex in the definition of the amount of rotation between different views and the

possibility of repeating the same conditions with a practical apparatus.

To improve the accuracy of image-based ear recognition, many have fused this

biometric with face recognition results to obtain a multimodal biometric.[31, 75, 78]

Results of methods with these combinations and the best of breed seem to be in the

order of about 2.5% error-rate for identification. The largest population seen in the

43 reviewed references was only in the order of 400 individuals. To date, no large-

population study has been seen.

There are some major problems associated with image-based ear recognition ap-

proaches. Changes due to illumination variations plague this technique in a similar

manner as in any other image-based biometric recognition system. These techniques

usually have to work hard to attain rotation invariance, with some degree of success.

The ear may be covered wholly or partially by hair, especially for individuals with

long hair. This will create a gender bias since in general women have longer hair.

Finally, there are issues with automatic segmentation of the image to extract the ear

from the side-view image of the head. This problem is magnified with illumination

variations.

The second ear recognition approach uses the acoustic properties of the pinna to

establish the identity of an individual. In this approach, a small speaker device and

a microphone, both point into the ear canal. The speaker sends out a wave (1.5-kHz
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- 22-kHz) into the ear canal at an angle. Once the wave goes through the canal and

reflects back from the ear drum and the wall of the canal, the microphone picks up

the reflection wave. The wave, manipulated by this reflection, is related to the trans-

fer function which is made up of the transfer functions of the speaker device, the

pinna, the ear canal and the microphone. This transfer function is estimated based

on the input and the reflected output.[2]

The phase difference between the emitted wave and the received wave is quite

sensitive and is present even among within-class samples. To avoid these within-

class variations and at the expense of losing of some biometric information, Refer-

ence [2] only uses the amplitude of the spectrum of the wave and throws away the

phase information.

Unfortunately there are not that many researchers working on this branch of ear

recognition and no test on large populations seems to be available for this method.

The tests in [2] have only been done on 17−31 subjects with best results of about

1.5%−7% equal error rate (EER) – see Section 19.1.1. Therefore, this method does

seem to show some promise, but is mostly inconclusive. An interesting point in [2] is

that several small earphone and cellular (mobile) phone installations were custom-

made for the research. The earphones had much better performance than the cellular

phones, as it would be expected, intuitively.

1.5.3 Face

Automatic face recognition has received quite a bit of attention in the last decade

mostly due to the availability of the many video cameras in public locations for se-

curity purposes. Although, there has been active research in this field for more than

3 decades.[14] There have also been a handful of books written on the subject, in

recent years.[41, 82] Face recognition may be achieved in two major forms, cooper-

ative and passive.

The term cooperative is used to describe systems which basically work on mug-

shots of individuals. These are systems installed in airports, as well as systems for

cataloging criminals. The airport versions are usually used in conjunction with other

biometrics such as fingerprint and iris recognition. Normally, a frontal profile is cap-

tured using a digital camera and it is compared against a database of pictures. The

lighting conditions are controlled in these systems and mostly take place at the desk

of an official with a fixed apparatus. This type of recognition can be most effective,

since at the time of capturing the photograph the officer will make sure that the target

is not wearing any blocking attire such as glasses or a hat. Systems of this kind use

an array of different types of features from geometric features and templates [14] to

analogs of force field transforms [31]. Features are normally based on the locations,
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shapes and distances of the different components of the face. A popular treatment

uses principal component analysis (PCA) and goes by the name of Eigenfaces. This

method uses normalization techniques to transform different frontal snapshots of

faces into the same lighting condition as well as size and pixel distribution. Then

principal component analysis is used to parametrize the faces.[38, 62]

The more challenging form is the passive one. In this method, usually a video

camera constantly surveys an area and the individual is not necessarily coopera-

tive in the data acquisition. In this case, the angle of the camera, the attire, lighting

conditions, style of walking (the way the face is pointed) and many other variables

dictate the quality of the outcome. Of all video-style face recognition applications,

analyzing video from security cameras proves most challenging. Most modern cities

such as New York and London have thousands of video cameras installed in public

areas for surveillance. However, without an automatic face recognition system, the

thousands of hours of video which are captured per day are not so useful. Another

problem is the high bandwidth required for capturing video compared to audio.

A speaker recognition system with segmentation and event classification/detection

may be used to greatly reduce the work needed for searching these video streams.

This type of speaker recognition may even be applied on-site at the location of the

camera to selectively record high resolution video, based on islands of high audio

activity. In lower audio activity situations, lower frame rates may be utilized to re-

duce the amount of storage and processing needed. There are, however, some legal

challenges with the public recording of audio. Audio-related regulations are not al-

ways treated in the same way as video regulations.[56, 34]

There are simpler cases where the video is obtained in studio quality and un-

der controlled lighting conditions. Broadcast news is one such example.[73] This

type of video-face recognition really belongs with the cooperative kind even if the

individual in the footage is not aware of face recognition being utilized on the video.

1.5.4 Fingerprint and Palm

Live scanning of fingerprints has been made possible in the last few decades. The

minimum resolution required for scanning a finger is about 300 dots-per-inch (dpi),

although the minimum required by the United States Federal Bureau of Investiga-

tion (FBI) is 500 dpi. There are many kinds of fingerprint scanners in the market,

including optical, solid-state, and ultrasound.[44] These scanners started being mass

produced years ago and are quite inexpensive. Some solid-state scanners are very

small and use a sliding apparatus – the finger is slid on the scanner and the image

is reconstructed from the data stream. Many notebook computers have these senors
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built-in. This is a testament to the popularity of fingerprint recognition.

The fingerprint pattern is classically considered to include ridges, valleys, sin-

gularities (deltas, loops, and cores), and minutiae (local discontinuities and special

features). Using these patterns, fingerprints are classified into classes starting from

five major classes of patterns which encompass most prints (left loop, right loop,

whirl, arch, and tented arch).[44] Once the main class categories are identified, the

minutiae of the test prints are usually matched against those of the target templates

on file.

Liveness is one of the major issues with fingerprint recognition. Fingerprints are

left behind when an individual touches any hard surface. In the same way that foren-

sic techniques have been collecting finger printers for more than a century, the prints

of an individual may easily be lifted and with today’s advanced latex molding tech-

niques, a replica of the target person’s finger may be created out of latex or similar

materials. Imagine a latex fingertip, which may be worn over anyone’s finger, that

has been molded from the target individual’s fingerprint. To be able to access any-

thing that the target individual is allowed, all the impostor has to do is to wear the

latex replica and pass the fingerprint recognition test. These latex impressions can

be made so thin so that they are not easily visible to the naked eye.

Another problem is that close to 2% of the population do not have usable finger-

prints. This is mostly due to damage caused by years of manual labor. Depending

on the application, this percentage could be much higher. An example is the use of

fingerprints for setting off dynamites for construction purposes. Most construction

foremen get to that position after having years of hands-on experience as laborers.

The percentage of construction workers that have non-usable prints is quite high. For

this population, the use of fingerprint recognition would simply not work. Therefore,

the dynamite detonation security systems would have to use other types of biomet-

rics.

The whole palm may also be used in pretty much the same way as a fingerprint is

used to identify individuals. The patterns on the palm of the hand possess a unique-

ness based on the random generation of the patterns while the hands is formed.

Recognition algorithms try to match the pattern of the ridges and shapes of the dif-

ferent zones of the hand to a database. Palm recognition suffers from most of the

same problems as stated for fingerprints, including the liveness issue and the fact

that palms could be somewhat damaged due to problems such as engagement in

manual labor. New fingerprint sensors with light that penetrates the skin have been

proposed to alleviate the population with damaged fingerprints. These techniques

resemble the techniques of Section 1.5.9 far more than those discussed in this sec-

tion.
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1.5.5 Hand and Finger Geometry

Hand and finger geometry techniques usually use the back of the hand. An example

is the technique used by [60] and [39] which is based on a special apparatus with

a surface containing pegs designed to keep the fingers and the hand in a specific

configuration. Envision a hand placed flat on a surface with the fingers kept wide

apart. The amount of distance between the fingers is dictated by the pivot pegs on

the specialized apparatus. Then, the shape of the fingers in that standard orienta-

tion is photographed and studied to utilize the different sizes of fingers and knuckle

locations, and other features for establishing a unique identity. The geometry may

of course be obtained by taking a photograph of the top of the hand once it is kept

in the constrained position [60, 39] or just to scan the palm for the same informa-

tion [59]. This is quite limited, due to the specialized apparatus which is certainly

not very portable and not designed for everyday remote recognition of individuals

the way speaker recognition can be utilized.

There are also techniques that concentrate on the fingers and do simple imaging

of the upper surface of the hand to establish the locations of the knuckles. They use

the lines in the knuckles just to come up with the locations of the knuckles and then

the finger geometry is used to identify the individual.[40] It is unclear how unique

these distances are since no large population study seems to be available like it is

for some other biometrics.

1.5.6 Iris

After Fingerprint recognition, Iris has received the most attention in the biometrics

field. It is partly because of the fact that based on large studies involving millions

of different people, the uniqueness of the iris pattern has been established. In 2001,

Reference [20] studied 2.3 million pairs of irides and based on the information in

the patterns of the examined images, it concluded that the chance of two identical

irides extrapolates to 1 in 7-billion. The same paper discusses a smaller study based

on comparing the left and right eyes of 324 individuals and shows that the left eye

and the right eye have the same cross entropy (see Definition 7.17) as the eyes of

different people. This suggests that the iris pattern enjoys an epigenetic randomness

which makes it an ideal candidate for a biometric measure.

As seen with other biometrics, iris recognition also has its downfall. One of the

most serious hurdles is the problem of obtaining usable images from the eye. Illumi-

nation changes the shape of the iris as the pupil size changes. Also, non-cooperative

subjects can pose problems in obtaining usable images at the proper angle. In ad-

dition, for a good image, the eye has to be still and should be close to the camera.
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Another issue is that to reduce reflectivity from the cornea, an infrared leaning light

should be used. The lighting conditions are paramount in the success of iris recogni-

tion. Again, these issues make the simplicity of obtaining audio samples for speaker

recognition stand out in competition.

Note that the same issue as mentioned for most other biometrics regarding de-

fective or missing body parts is also true for the iris. There is no known statistic on

this issue, but there are certainly a number of people with damaged irides, either

congenitally or through an accident or an illness. Another problem is the security

of keeping around data which has been obtained directly from body parts. Speech

samples do not have direct consequences on the person’s identity and by changing

the request for the audio different types of samples may be requested. Most iris

recognition systems can easily be fooled by using a high quality image of the face

of the person, so identity theft could become a real issue. Of course like any other

problem, these also have solutions such as trying to purposefully change the pupil

size of the individual while obtaining the images to test for liveness. However, it

adds to the complexity of the problem and the problems stemming from different

shapes of the iris, discussed earlier.

1.5.7 Retina

The idea for retinal scanning for biometric identification was first introduced by a

New York Mount Sinai Hospital ophthalmologist in 1935.[68, 64] It was used to cat-

alog criminals. It was shown that the tissue and vein patterns of the retina are almost

unique to each individual, even more than the iris pattern, due to the larger surface

area.

Realizing retinal patterns, has been achieved using several different signal pro-

cessing techniques, mainly through the usage of Fourier and Mellin transforms.[13, 67]

Most of the time, the color information in the image is discarded and the gray-scale

image is used to conduct the pattern analysis.[13] There does not seem to be any real

technical challenge with the image capture and the pattern recognition. However,

retinal recognition has never been accepted for many other reasons, although it has

been around longer than most other biometrics.

The failure of being widely accepted is mostly due to the invasive nature of the

imaging as well as the difficulty of obtaining an image. Traditionally, a near infrared

light was shone into the subject’s eye to obtain the retinal image. This worries many

users for the possible risk of damage to their retina. Also, the retina does not remain

unchanged through the years. Illnesses such as diabetes and glaucoma can change

the patterns of the retina. Furthermore, there are degenerative diseases such as re-

tinitis pigmentosa and other retinal dystrophies which can change this pattern. In



32 1 Introduction

addition, the image may be distorted by advanced astigmatism and cataracts. All of

these problems attribute to its lack of popularity.

The special optical systems used for retinal image acquisition have been quite

expensive in the past. To remedy this issue, there are new techniques for using nor-

mal cameras at the expense of some accuracy.[13]

1.5.8 Thermography

Thermographic biometrics utilize the distribution of thermal energy on the skin

(generally of the face). As seen in Section 1.5.3, face recognition is plagued by

the illumination curse. Namely, the within class variability due to illumination dis-

crepancies could easily exceed those across different classes. The main motivation

behind using thermographic imaging is to utilize light at a wavelength which is not

abundantly available in normal lighting conditions. Therefore, variation in the light-

ing would not cause as many problems. This is an advantage of thermal imaging,

however, like any other biometric, there are disadvantages.

Thermographic imaging inherits all other disadvantages pointed out for face

recognition in Section 1.5.3 with the exception of the remedied illumination issue.

However, as a trade-off which offsets the illumination solution, the cost of the pho-

tography increases substantially. The wavelength of the infrared light used in these

operations is in the range of 8μm − 12μm.[61] It cannot be detected using normal

Charge-Coupled Device (CCD) cameras. For this purpose, costly Microbolometer

technology has to be used which adds to the cost significantly. Prices of such cam-

eras at the time of writing this book were in excess of US$26,000.00!

1.5.9 Vein

The vein pattern (mostly of the hands) is used to identify individuals. It works by

using near-infrared light which penetrates through the skin, but gets absorbed by the

iron-rich red blood cells in the veins. The result is a pattern in which the veins look

like dark lines and the rest of the light is reflected off the subcutaneous tissues of the

hand. The vein pattern seems to be quite unique to the individual and great results

are seen in the identification results.

Like any other biometric, vein recognition has many advantages as well as disad-

vantages. One of the advantages of the vein pattern is that it does not change readily,

so it seems to be less susceptible to time lapse effects (see Chapter 20). Also, ev-
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eryone has veins in contrast with fingerprints which are not present in about 2% of

the population. Of course, we are considering people with limbs in this argument.

Missing limbs would affect both fingerprint and vein recognition in the same way.

That is more analogous to the mute population for speaker recognition.

One of the disadvantages of this technique is its need for specialized, expensive

and typically large camera scanners. This makes it unsuitable for deployment in

mobile applications such as in cellular (mobile) phones and notebook computer ap-

plications. A second problem which makes it hard for it to compete with speaker

recognition is that the technology may seem somewhat invasive to the layperson.

Although there is no indication that the light used in the process is harmful, it is not

as well understood by the general public as talking.

Another important disadvantage, which may be addressed in time, is the un-

availability of large independent studies for this biometric. Most results have been

published by vendors and this makes them biased. Also, it seems like there is no

standards development for this biometric at the time of writing of this book.

1.5.10 Gait

Some researchers have tried to recognize people based on their style of walking. The

length of a person’s stride and his/her cadence are somewhat behavioral, but they

also possess some physiological aspects. They are affected by the person’s height,

weight, and gender among other factors.[9] Cadence is a function of the periodicity

of the walk and by knowing the distance the person travels, his/her stride length can

be estimated.

The sensor for gait recognition is usually a camera which has to first try to de-

cipher the elements of walking from a video. Of course, the same issues as seen in

other image related biometrics (lighting and angle consistencies) come up again. In

addition there are specific problems related to video techniques in contrast with still

techniques such as speed and direction of movement and their effects on recognition.

There have been very limited studies with this biometric, with small number of

trials. Results seem to show some tangible correlation, but are not good enough to

be used in the same sense as the more popular biometrics listed here. Reference [9]

shows identification rates close to 40% for a handful of individuals in the database.

Also, the verification equal error rates (EER) are higher than 10%.

Furthermore, it seems like the behavioral aspect of gait is also influenced by the

company which is kept. For example, when a group of people walk together they

affect one another in the style of walking for that session. This short-term behavioral
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influence reduces the usability of this technique for serious recognition activities.

1.5.11 Handwriting

Handwriting may also be used in a similar fashion as speech. In fact it is quite

similar in the sense that it also possesses behavioral (learned style of writing) and

physiological (motor control) aspects.[6, 30] Although at a first glance it may seem

like handwriting is more behavioral, it is quite apparent that we are constrained by

our motor control in how we move a pen – if we are to do it in a natural way.[6, 30]

This is very similar to the natural characteristics of our vocal tract versus our ability

to somewhat affect the resulting audio which is uttered.

Signature verification greatly resembles speaker verification. Also, in the same

way that the speech of a person may be used to assess his/her identity, handwriting

may also be used. Of course, it is a bit vague to simply talk about handwriting. The

handwriting we normally talk about is the trace of a pen on paper. However, what

we are discussing mostly in this section is not limited to this trace. To truly be able

to use handwriting for recognition purposes, a digitizer tablet should be used to cap-

ture not only the trace, but also the dynamics of the pen on the surface of the tablet.

The tip of the pen is digitized at a fixed sampling rate. The resulting points will

provide the location and speed of the pen motion. Sometimes a pressure sensitive

pen is used to be able to use the pressure differentials as well. An offline assessment

of handwriting loses most essential information about the physiological aspects of

handwriting, hence losing most of the biometric capacity. This is not as pronounced

when the objective is simply to read the content of a handwritten text. That prob-

lem is more related to speech recognition and may show relative success without

the existence of the online features – this is the optical character recognition (OCR)

problem. Although, in general, the online features of handwriting always help in

both scenarios.

Therefore, since an online tablet seems to be a necessary device in using hand-

writing as a biometric, it becomes much harder to implement – if only for the in-

frastructural problems. Of course, if the will is present, it may be used in a wider

sense. Take the ever-growing number of signature capture devices at department

stores, your mail courier, etc. Unfortunately, at this point, these devices have been

designed to perform a very simple capture with very little performance. Relaxed

legal definitions of signature have not pushed these devices to their full potentials.

You may have noticed that the signatures captured on most of these devices generate

many spurious points and have a great miss rate which result in illegible traces of the

signatures. High quality tablets do exist which allow for high quality capture of the

online signature. If the topic receives more attention, the better quality tablets may

be placed in service. Until that time, it is no competition for speaker recognition and
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even then it will only tend to capture a specialized part of the market. Handwriting

recognition, due to its independence from speech is a great candidate for fusion and

multimodal use with speaker recognition.

1.5.12 Keystroke

Much in the same way that handwriting has its physiological angle, typing is gov-

erned by our motor control. The speed of transition between keys is not only be-

havioral, but is limited by the physiology of our fingers and hand movements. Also,

the behavioral part will present a bias toward words we have typed more often in

the past. If the text is original (of our own cognition), then another aspect becomes

essential and that is the frequency of word usage and their relative placement. In

other words, every one of us has his/her own personal built-in language model with

word frequencies and personalized n-grams [26, 5].

Most software applications do not register the speed of transition between keys,

although it is not so hard to accomplish. In a training stage, the statistics of the

key transitions and the speed of transition may be learned by an enrollment system

which may create a model in the same way as a speaker model is generated for

speaker recognition. The model may then be used to recognize the typist at the time

of testing.

1.5.13 Multimodal

Section 1.4.4 described an indexing application which can operate on the audio

track of a video stream as well as plain audio. Imagine the example of using the

audio track from a video clip. For each segment whose boundary is realized based

on a speaker change, it is possible to produce a sorted list of speaker labels – sorted

by a likelihood score. This list may be combined with other biometrics such as

face recognition for a video stream as well as textual information either in the

form of results from a natural language understanding system or raw and in the

form of a search list. Such combinations have been shown to portray promising

results.[73, 12, 77]

Figures 1.4 and 1.5 show the two parallel audio and video indexing processes

applied on a video stream. Results are combined and indexed for future searches

on the text, speaker by voice and speaker by face. The results of the face and voice

may be combined for a more seamless search where the search query will ask for

a combination of a text string being spoken by a certain speaker. The speaker tag-
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Fig. 1.4: Indexing Based on Audio Fig. 1.5: Indexing Based on Video

ging includes results from matching the audio and the face of the target individual.

Table 1.2 shows the ranking results based on Audio, Video and Fusion scores for

a sample clip. In this case, the ID of the correct individual, OH, is returned by the

fused system.[73]

Rank Audio Video Fused

1 UM 1.000 JW 1.000 OH 0.990
2 OH 0.997 OH 0.988 AK 0.966
3 UF 0.989 AK 0.961 GB 0.941
4 AK 0.988 SF 0.939 JM 0.936
5 JM 0.986 GB 0.932 JW 0.808
6 GB 0.980 JM 0.925 SF 0.759

Table 1.2: Sample Audio/Video and Fusion Results For Multimodal Speaker Recogni-
tion [73]

Since the basis for speaker recognition is the vocal tract characteristics of individ-

uals and their uniqueness, it makes sense to combine this source of information with

other presumably unrelated sources of biometric information. In fact speaker recog-

nition may be combined with any of the biometrics listed here to improve results.

Another example of such a multimodal system is the fusion of speaker recognition

with fingerprint recognition [69].
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Also, there have been studies which use microphone arrays in fixed settings such

as conference rooms to identify the active speaker by the position of the speaker in

the room. It works by comparing the strength of the signal being inputted into the

different elements of the array. This information is then combined with more clas-

sical speaker segmentation and identification techniques to come up with a better

performance.[58]

Fig. 1.6: Speech Generation Model after Rabiner [55]

1.5.14 Summary of Speaker Biometric Characteristics

Telephones and microphones have been around for a long time and have prepared

the public for their acceptance. Usage of a biometric system based on microphones

seems to be much better tolerated than newer systems using unfamiliar means. The

negative aspect of this existing infrastructure is the presence of somewhat antiquated

systems in use which degrade the quality of speaker recognition systems. Examples

are band-limited analog networks which are still in use in many countries. This is

true with all established infrastructures, but the positive aspects of the existence of

the infrastructure outweigh the difficulties with legacy networks.

Major advantages of using speech as a biometric are its the non-intrusive nature

(especially based on the modern culture revolving around the telephone) and the

possibility of remote processing, again based on the telephone and the Internet in-
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frastructures.

Notable disadvantages on the other hand are its variability, channel effects, and

background noise susceptibilities. The variability aspect may be due to illnesses

such as nasal congestion, laryngitis, behavioral variations, and variations due to lack

of coverage. Let us discuss the lack of coverage in some more detail. In most bio-

metrics, the samples are quite repeatable and one or at most a handful of samples

would be enough for acceptable recognition. In general, the speech signal is a high

capacity signal conveying a small amount of information – See Figure 1.6. In cer-

tain cases, long samples of speech may be obtained with a small coverage of all

possible speech sequences. This means that the data seen in training and enrollment

stages does not necessarily possess sufficient coverage of the data being seen at the

recognition time.

The trouble with channel effects, mentioned above, may be present in different

forms such as noise on the channel, channel variability, and compression effects.

The noise present on a channel is usually well modulated into the speech signal

with almost impossible separation. The characteristics of the noise can manifest

themselves by modifying the properties of the speaker characteristics observed in

the signal. This is also true about the channel characteristics. Since telephony net-

works are quite complex with unpredictable paths, these characteristics may change

with each instance of communication. Also, due to the small amount of informa-

tion present in the high-capacity speech signal, most of the time very aggressive

compression schemes are utilized, which still allow intelligibility of the content

of speech, but may modify the speaker characteristics significantly by eliminating

some of the dynamics of the signal.
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Chapter 2

The Anatomy of Speech

The shadow of a sound, a voice without a mouth, and words

without a tongue.

Horace Smith (Paul Chatfield)

The Tin Trumpet [6]: Echo, 1836

To achieve an understanding of human speech production, first, one should study

the anatomy of the vocal system (the speech signal production machinery). It is fair

to say that one should grasp the process of speech production, before attempting

to model a system that would understand it. Once this mechanism is better under-

stood, we may try to create systems that recognize its distinguishing characteristics

and nuances, thus recognizing the individual speaker.

Furthermore, since evolution has a way of fine tuning our anatomy, the vocal and

auditory systems have evolved to work in unison. An understanding of the audi-

tory system can help us do a better job at picking up characteristics of our voice.

In addition, evolution has already built in a recognition capability into our auditory

perception which should be studied before we attempt to create our own automatic

speaker recognition system. This natural recognition system has been designed to

allow us to recognize the voices of our parents at infancy and it generally develops

even before we start to make sense of their speech content. Reference [2] shows that

infants start recognizing human voices from other sounds between the ages of 4 and

7 months, way in advance of when they start to understand speech.

Aside from the actual speech production and sensory organs, the nervous system,

in charge of producing and deciphering the signals, plays a major role. As we shall

see later, different parts of the brain, although quite intertwined and in permanent

communication among themselves, specialize in handling specific tasks. Low level

audio processing is done in both hemispheres in the auditory cortex. Parts of the left

hemisphere specialize in the production and understanding of languages and their

mirror images in the right hemisphere of the brain are involved in understanding and

production of musical characteristics including pitch, tempo, rhythm, and speakers’
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voices.1

In the following two sections, we will study the mechanical parts of speech pro-

duction and perception, namely the vocal system and the auditory system. Then, we

will continue with the discussion of language and music production and understand-

ing mechanisms in the human nervous system.

2.1 The Human Vocal System

Figure 2.1 shows a sagittal section of the nose, mouth, pharynx and larynx. This is

the upper portion and the most significant part of the speech production machinery

in the human. The only thing missing in this schematic is the pressure production

system or the lungs. In fact the lungs do not directly play any role in the audio pro-

duction other than providing the pressure difference which is necessary to produce

speech.

2.1.1 Trachea and Larynx

Starting our way up from the bottom of Figure 2.1, we see a cross section of the

trachea followed by the laryngeal section which includes the vocal folds (vocal

chords). Figures 2.2 and 2.3 show a more detailed sagittal and coronal view of the

upper part of the trachea as well as the larynx. Figure 2.4 displays the top view of

the interior of the larynx as it may be seen using a laryngoscope. The opening dis-

plays the pathway to the trachea from the top. The folds are surrounded by cartilage

from two sides and are controlled by muscles which can fully close and open them.

2.1.2 Vocal Folds (Vocal Chords)

The opening in the vocal folds is in the shape of a triangle with a slight downward

slope from the front to the back. Figure 2.4 gives more detail. The front slopes up

in the form of the epiglottal wall. The back is surrounded by two types of cartilage,

1 The major language functions actually lie in the dominant hemisphere of the brain. For the ma-
jority of people (over 95% of right-handed people [22] and about 60% of left-handed people), this
is the left hemisphere. In the rest of the population, the right hemisphere is dominant. For the sake
of simplicity, in this chapter, we speak of the more common case which is the brain structure of an
individual with a dominant left brain hemisphere.
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Fig. 2.1: Sagittal section of Nose, Mouth, Pharynx, and Larynx; Source: Gray’s

Anatomy [13]
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Fig. 2.2: Sagittal Section of Larynx and
Upper Part of Trachea; Source: Gray’s

Anatomy [13] Fig. 2.3: Coronal Section of Larynx and
Upper Part of Trachea; Source: Gray’s

Anatomy [13]

Fig. 2.4: Laryngoscopic View of
the interior Larynx; Source: Gray’s

Anatomy [13]

Fig. 2.5: The Entrance to the Larynx,
Viewed from Behind; Source: Gray’s

Anatomy [13]
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the corniculate cartilage in the back and the cuneiform cartilages toward the sides.

The area immediately above the vocal folds is called the glottis and is the starting

point of the control units for articulation. The glottis is the transitional area between

the larynx and the pharynx. As we mentioned earlier, going up toward the front of

the tract, one reaches the epiglottis and parallel to it toward the back side of the tract,

we go through the laryngeal part of the pharynx – see Figure 2.1.

The more closed the v-shaped opening of the vocal folds becomes, the more tense

the muscles of the folds would be. When fully opened, the muscles are completely

relaxed and provide the least resistance to the air which flows from the trachea to

the upper part of the larynx and the pharynx. Depending on the amount of tension

in the muscles of the vocal folds and the difference in the air pressure between the

trachea and the pharynx, either puffs of air or voiced sounds are produced.

2.1.3 Pharynx

Working its way up, after the air has passed through the vocal folds and almost

immediately has exited the larynx, the pharynx starts which has an irregular shape

with many sections. This is essentially the beginning of what is called the vocal

tract since all articulation control starts here. Depending on the amount of air go-

ing through the vocal folds and their state of tension, vibrating laminar or turbulent

air [10] will be going through the different sections of the pharynx to produce dif-

ferent kinds of sounds.

The next interesting spot, as the air travels upward in the vocal tract, is the

epiglottis which leads to the back of the tongue. The tongue is a rounded mus-

cular mass which at this point in the journey defines a moving frontal boundary for

the oral part of the pharynx. Moving up the oral part of the pharynx, the air may

travel into two different cavities. The first is along the surface of the tongue which

is bounded on the top by the palate. This is the oral cavity which eventually leads

out to the ambiance through the opening in the lips.

Another path, the air may take, is up through the nasal cavity or the, so called,

nasal part of the pharynx – see Figure 2.1. The air then hits low pressure at the exit

of the nasal cavity, or the vestibule.
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2.1.4 Soft Palate and the Nasal System

The soft palate starts with the uvula which hangs in the back of the soft palate and

ends at the boney part of palate called the hard palate. The uvula and the soft palate

(velum) are primarily responsible for the diversion of the air into the nasal cavity or

the oral cavity. In fact, Laver [18] categorizes the soft palate and the nasal cavity as

the nasal system. The nasal cavity is essentially a sound box which mostly dissipates

the energy in speech by releasing the air into ambient pressure through the vestibule.

2.1.5 Hard Palate

If the air passage to the nasal cavity is blocked using the shape of the tongue and the

position of the uvula and the soft palate, it will flow along the surface of the tongue

into the oral cavity, constrained on top by the hard palate. As the hard palate ex-

tends toward the upper teeth, a ridge appears called the alveolar ridge – rub the tip

of your tongue on the hard palate starting from the roots of the top front teeth to the

back.

2.1.6 Oral Cavity Exit

At the exit point, the air, traveling up the vocal tract and into the oral cavity, meets

the two final hurdles which may shape the articulation. These are the upper and

lower teeth and the lips. As it will be seen later, they play important roles in articu-

lation.

2.2 The Human Auditory System

The complete auditory system includes the whole ear assembly, the vestibulo-

cochlear nerve bundle (auditory nerve bundle) and the auditory cortex of the brain.

We shall quickly examine the different parts of this system which are responsible

for registering the audio signal in our brain. Later, we shall examine complementary

parts of the brain which are responsible for interpreting these signals into parts of

language and speaker identity.
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Fig. 2.6: The External Ear and the Mid-
dle Ear; Source: Gray’s Anatomy [13]

Fig. 2.7: The Middle Ear; Source:

Gray’s Anatomy [13]

Fig. 2.8: The Inner Ear; Source: Gray’s Anatomy [13]
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2.2.1 The Ear

The auditory system includes a mechanical system and a nervous system. In this

section, we mainly concentrate on the function of the ear. Later, we shall see the

nervous-system associated with hearing. The mechanical part of hearing (the ear)

is made up of three sections. The first section, external ear, is the combination of

cartilages in the auricula and the external acoustic meatus (the ear canal) – see Fig-

ure 2.6.

Second, the middle ear includes the tympanic membrane (ear drum) and every-

thing to its right, shown in Figure 2.6. This is mainly the membrane itself and the

three special bones which transfer the motion of the tympanic membrane induced by

the sound waves going through and being amplified by the external ear. These bones

are in turn called, malleus (hammer), incus (anvil), and stapes (stirrup) – see Fig-

ure 2.7. The vibrations are transmitted from the tympanic membrane to the malleus,

from the malleus to the incus, and from the incus to the stapes. From there these

vibrations are transferred to the inner ear through the cochlear fenestra ovalis (oval

window of the cochlea) – see Figure 2.8.

Finally, the inner ear (Figure 2.8) is made up of the cochlea, a snail-like cavity,

and three semicircular canals called the superior ampulla, the anterior ampulla, and

the posterior ampulla. The cochlea and the three semicircular canals are filled with

an incompressible fluid [10] which is excited by the motion of the stapes bone at the

extreme entrance of the cochlea called the cochlear fenestra ovalis. The motion of

the stapes induces pressure waves in the fluid of the inner ear which in turn excites

the thousands of hairs (cilia) inside the spiral of the cochlea (the scala tympani).

The cilia are arranged in four rows, one row lines the inner side of the spiral (points

on the inside of the spiral closest to the center of curvature). The cilia in this row are

connected to the auditory nerve bundle and transmit the motion signal to the brain

for cognition. The other three rows in the outer extreme of the scala receive feed-

back from the brain which allows for pre-amplification of the motion of the fluid –

see Section 2.3.6.1.

The spiral shape of the scala tympani provides a semi-logarithmic cognitive abil-

ity of sound which is important in the development of the speaker models and fea-

tures. The end point of it is called the helicotrema [25]. Starting at the cochlear

fenestra ovalis, high-pitch audio is realized. As the sound travels toward the heli-

cotrema, the high-pitched components are suppressed and only the lower pitched

components survive such that, close to the helicotrema, only the lowest pitch is re-

alized.

Section 5.1.1 describes measures taken to match this semi-logarithmic (combi-

nation of linear and logarithmic) cognition using special warping of the frequency

scale used in feature analysis. In addition, the sizes of the hairs also achieve a loga-
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rithmic cognition of the amplitude as well as the said frequency warping.

Once the cilia are excited, the signal they generate is carried through the auditory

nerve bundle to the auditory cortex located in the right and left hemispheres of the

brain – see Figures 2.20, 2.21, and 2.22. In the process of traveling from the cochlea

to the auditory cortex, the auditory signal passes through several relay stations in

the brain stem and the thalamus. In the next few sections, we will study the nervous

system involved in speech production and perception, including the path that the

auditory signal takes to reach the brain.

2.3 The Nervous System and the Brain

Considering that the ear, in all its complexity, is only a transducer and that we really

hear with our brains, there has been very limited coverage of the role of the brain

in the speech and speaker recognition literature. This is partly due to the relatively

recent developments in brain sciences attributed to modern imaging techniques. On

the other hand, as engineers, we may be more biased toward electromechanically

more apparent systems. In fact, until very recently, the electrical activity of the brain

was not so readily measurable.

This may be the reason why some old cultures such as ancient Egyptians and the

Greeks downplayed the importance of the brain and placed all their emphasis on the

heart since it actually seemed to do something apparent. Aristotle believed that the

blood turned into vapor and rose up to the brain (at the top of the body) and then

the brain acted as a condenser and turned it back to fluid and returned it to the lower

part of the body.[1]

Here, we will try to study speech generation and perception, both from a content

perception point of view and the identity recognition aspect. The nervous system is

a hierarchical control system with motor-control, feedback, relay stations, and de-

cision centers at different points of the hierarchy. A special cell called the neuron

has evolved to handle the transmission and decision needs of this hierarchical sys-

tem. Here, we will start from the anatomy of a neuron and work toward the higher

levels of the hierarchy. We will only concern ourselves with parts of the nervous

system which are directly involved in the processing, understanding, and produc-

tion of speech and other forms of audio signals.
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2.3.1 Neurons – Elementary Building Blocks

Neurons are the elementary building blocks of the brain and the rest of the nervous

system. There are in the order of 100 billion neurons in the human brain alone.

Their number peaks in the first few years of life. Every cell is developed in its pre-

determined relative position to give the brain its functional structure. This structure

is coded into our genome. All the neurons are instructed to make a predetermined

set of connections at the time of the development of the brain. The genes specify

the predefined blueprint for building this network. In the course of a life-time, the

connections which are used become strengthened and the ones which are not used

become weakened. This is related to the concept of re-enforcement learning which is

used in artificial learning algorithms and which is what goes on in our brain through-

out our lives.

Fig. 2.9: A Typical Neuron

Neurons generally do not reproduce or replicate after the nervous system devel-

opment is completed. This means that they can live over 100 years and their number

will decrease after our first few birthdays. For most of our lives, each person loses

an average of 2× 105 neurons per day. This translates to about a 10% reduction in
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the number of cells in our life-time.

A neuron is made up of different parts – see Figure 2.9. The main part of a neu-

ron is its soma or perikaryon (body of the neuron) which contains the nucleus. The

nucleus contains the genes of the neuron. The job of the genes is to encode proteins,

hormones, enzymes and structural proteins which are produced and extruded into

the cellular cytoplasm.

In addition to the nucleus and the cellular cytoplasm, the soma includes sev-

eral other mechanisms involved in sustaining the neuron. Figure 2.9 shows some

of these units. In the Figure, the mitochondria produce ATP2 to provide the neuron

with its much needed chemical energy. Within the nucleus, the nucleolus produces

ribosomes which help introduce genetic information into proteins and to build them

from basic amino acids. These ribosomes are stored into Nissl granules in the soma

and are used for protein synthesis by the cell. The Golgi apparatuses were discov-

ered by Golgi [12]. They are structures which aid in the packaging of proteins and

neurotransmitters and introduce them into vesicles which are the transport mecha-

nisms for delivering these materials to different parts of the cell, most importantly

the axon.

During the development stage of the brain, as a neuron is created, it extends

an axon and many dendrites. Most neurons seem to be polarized in their commu-

nication. They receive electrical signals through their dendrites which are usually

connected to the axons of other neurons and will transmit a signal through their

axon to the dendrites of another neuron. The axon keeps growing until it makes a

connection with another neuron’s dendrites. This is the most prevalent connection

style. Although, there are cases when the axon may bond with another axon or with

the body of another neuron.

The elements of the axon that finally make the connection with the dendrites of

the receiving neuron are called Terminal Buttons. The dendrites contain elements

called receptors which are at the receiving end of the electrical signal being trans-

mitted. The connection itself is called a synapse. At a synapse, the terminal buttons

of the axon are slightly removed from the receptors of the dendrites of the receiving

neurons. This space (known as the synaptic cleft) is used to carry chemical mes-

sages in the form of Serotonin or other neurotransmitters across from the terminal

buttons of the axons to the receptors of the dendrites. The two sides of the synapse

are called presynaptic and postsynaptic nerve endings. Depending on the excitation

level of the transmitting neuron, different levels of neurotransmitters are released at

the synapse, governing the electrical excitation of the dendrites and hence that of

the receiving neuron.

2 Adenosine-5-Triphosphate is a nucleotide which is responsible for intercellular energy transfer.
It is related to the dATP nucleotide since it is basically a dATP bonded with a simple sugar called
ribose which is a 5-carbon sugar (pentose) – see Section 1.5.1.
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The soma is in the order of about 10−5m in diameter, but the axon is quite thin

and long. Length of some tactile axons can reach several feet from the sensor loca-

tions to the spinal cord. In fact, the cytoplasm embedded in the axon could be up to

an order of 105 times more than that embedded in the soma. This shows the relative

volume of an axon with respect to the body of the neuron. However, the nucleus of

the neuron has to provide the energy and oxygen needed for the cytoplasm of the

whole neuron which includes the relatively huge volume of the axon. This makes

neurons the most energy absorbing cells in the body.[15]

There are several different types of neurons in the body. They may have no axon,

or sometimes up to two. Some conduct one-way communication, some do two. As

far as our topic is concerned, we are interested in the more abundant and relevant

neurons which have a single axon and communicate in a single direction – from

the dendrites to the axon. Camillo Golgi [12], the recipient of the Nobel prize in

medicine in 1906, categorized neurons into two types. The first type, also known as

Type I neurons have a very long axon. The second type of neurons have very short

axons or none at all. These are called Type II neurons. In Type I neurons, the axon

is inhabited by small cells called Schwann cells which produce a fatty substance

called Myelin surrounding the axon. The Myelin layer (sheath) acts as an electrical

insulator which increases the electrical conductivity, therefore increasing the effi-

ciency of the axon. The length of the axon is not completely covered by Myelin.

The Myelin is extruded around the Schwann cells, so the axon looks somewhat like

a string of sausages. The small portions of the axon in between adjacent Schwann

cells, not covered in Myelin, are called Ranvier nodes. These nodes allow some

electrical current to escape from the sides of the axon.

2.3.2 The Brain

The central nervous system has two major parts, the spinal cord and the brain (see

Figure 2.10). The brain is further divided into three major sections, the forebrain

(prosencephalon), the midbrain (mesencephalon), and the hindbrain (rhomben-

cephalon). The forebrain contains the cerebrum (telencephalon) and the dien-

cephalon. The cerebrum is at the top of the control hierarchy. The diencephalon

includes the Thalamus, the Hypothalamus, the Epithalamus and the Ventriculus Ter-

tius (Third Ventricle). The midbrain (mesencephalon) is mainly a neural fiber bundle

designed for communications between the cerebrum and the spinal cord. The hind-

brain (rhombencephalon) starts from the top of the spinal cord with the medulla

oblongata, and follows up to the pons and finally to the cerebellum (the little brain).

Midbrain and hindbrain together constitute the brain stem.[13]

All parts of the brain, with the exception of part of the cerebrum, are mostly made

of white matter and generally handle low-level functions and communications in the
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Fig. 2.10: Sagittal Section of the Human Brain (Source: Gray’s Anatomy [13])

brain. White matter is called by that name since it is mostly made up of neurons with

long axons designed for transmission of messages. The fatty Myelin cover around

the axons, gives white matter its white appearance. In general, neurons with longer

axons have myelinated axons and those with shorter axons do not.[19]

The cerebrum is the most interesting part of brain, so far as this topic is con-

cerned. It, also, has many parts, the most important of which is the cerebral cortex.

The cerebral cortex is the gray mantel of tissue on the surface of the cerebrum. It is

sometimes called gray matter because of its gray shade due to the high density of

short (unmyelinated) neurons [19] which are packed together to provide the higher

functional capabilities of the brain. It is really made up of the outer layer which

only constitutes a thickness of up to 4 mm. However, to fit this, nearly 2 square me-

ter sheet, into the limited space of the scull, it is folded into hills (gyri) and valleys

(sulci). Therefore, despite its thinness, it is the largest part of the human brain.

The cerebral cortex (gray matter) is involved in handling most of the higher

functions such as thinking, language production and understanding, vision, hearing,

etc. The inner part of the cerebrum, is made up of white matter and is responsible

for lower level functions. Its neurons are generally much longer and therefore have

myelinated axons [19]. The cerebral cortex (gray matter) was developed much later

in the evolutionary path.
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As it was briefly mentioned, the cerebral cortex is a sheet of cells which has been

folded to fit within the confines of the scull. David van Essen’s lab in Washing-

ton University has developed a software called Caret [8] which takes a Magnetic

Resonance Image (MRI) of the cerebral cortex (Figure 2.11) and inflates the folded

cerebral cortex into a balloon-like surface in which the sulci are depicted in darker

shades and the gyri in light (Figure 2.12). This demonstrates the fact that the cere-

bral cortex is actually made up of a sheet of neurons. This structure is then flattened

into a sheet of cells. Several other algorithms have also been proposed for unfolding

of the brain. For example, see [14, 7].

Fig. 2.11: MRI of the Left Hemisphere of the Brain

The Cerebral Cortex is divided into 4 lobes. Figure 2.14 shows these divisions on

the left hemisphere of the human brain. The right hemisphere is basically a mirror

image of the left hemisphere. The lobes are separated by major fissures.

The Occipital lobe, located at the back of the cerebral cortex, is mostly in charge

of the visual function. The Temporal lobe, located at the bottom, performs higher

processing of visual information, handles memory, processes sound and its relation

to linguistic and musical representation. The Parietal lobe, located on top, combines

information from different senses including visual, auditory and tactile senses. It for-
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Fig. 2.12: Left Cerebral Cortex
(Inflated)

Fig. 2.13: Left Cerebral Cortex
(Flattened)

mats motor control to orient the body. It also handles spatial orientation. Finally, the

Frontal lobe, located in the front as suggested by its name, is the most highly evolved

part of the cerebral cortex in humans. It is most directly responsible for decisions

and actions, including motor control, and may be thought of as the central controller.

In our study of audio processing and production, the lateral sulcus separating the

Temporal lobe from the Frontal and Parietal lobes plays an important role. This fis-

sure is called the Sylvian fissure (or simply the lateral sulcus) [13, 5].

Fig. 2.14: Left Hemisphere of the Human Brain (Modified from: Gray’s Anatomy [13])
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2.3.2.1 Brodmann Areas

In 1905 and 1909 [4], A German neuropathologist, Korbinian Brodmann (1868-

1918), published three maps of the brain of the primates which divided the lateral

and medial parts of the cerebral cortex into 50 areas based on the cell structure,

neuron type, layers and tissue characteristics of these areas.3 Some areas are split

into smaller divisions and marked using a letter suffix in certain primates. [28] He

numbered these areas from 1 to 52 with an exceptionally named area, 8a.4 These

areas are known as Brodmann’s cytoarchitectonic areas or simply as Brodmann ar-

eas. Figure 2.15 shows the centers of the Brodmann areas in the lateral left cerebral

cortex. The missing numbers in this figure are areas which are only part of the me-

dial cerebral cortex and hence are not listed in the figure. Different Brodmann areas

have distinct shapes and sizes, however, since we were not able to use color in the

printing of this book, no shading is attempted. For a good color representation of

the area boundaries see [5]. Brodmann areas are patches on this flattened sheet of

cells which show localization of the functionality of the brain (Figure 2.13).[7]

Fig. 2.15: Centers of the Lateral Brodmann Areas

3 This study is known as Cytoarchitectonics.
4 All together there are 50 different Brodmann areas which have been numbered from 1 to 52. Two
of these areas (14 and 15) are only present in non-human primates. Also, areas 49− 51 have not
been assigned. Area 8a is the only addition which is distinguished from its counterpart sharing the
same number, area 8. Area 8a was only mentioned in the 1905 Brodmann map of the brain. It was
not mentioned in the 1909 map.
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2.3.3 Function Localization in the Brain

It is very important to note that most basic functions have been shown to be han-

dled by specific parts of the brain specializing in those functions. Franz Joseph Gall

(1758-1828) first hypothesized this function localization in the brain. Gall believed

that every mental function had to be biological and created and performed by the

brain. Namely, there were no external (spiritual) forces at work. Most importantly,

he postulated that different mental functions could be localized to different regions

of the cerebral cortex. In fact he stated that the cerebral cortex is a collection of

different organs, each of which specializes in a different function.[16]

To localize these functions, he utilized the symmetry of the two hemispheres of

the brain and studied the four lobes as the basic divisions. At the time of Gall, main

brain operations had been categorized into 40 different functions. Since the 4 lobes

were not divisive enough for these 40, seemingly distinct functions, there had to be

more than 4 specialized areas involved.[16]

2.3.3.1 Broca’s Area

Gall started observing the shapes of people’s sculls to see if he could deduce some

of these divisions based on specific characteristics. In his limited sample, he estab-

lished that more intellectual people had larger foreheads, so the frontal lobe had to

be related to intelligence.[21, 16] Although the frontal lobe is important in the mat-

ters of higher function and complex thoughts, the French neuropathologist, Pierre-

Paul Broca (1824-1880) correctly deduced that Gall was wrong and that it is not

the outer shape of the scull that governs the function of the brain. Although, he did

agree that the brain has localized functionality. Broca started examining the brain

itself to make his assessments about the functionality of its different areas. In 1861,

Broca stated, “I had thought that if there were ever a phrenological science, it would

be the phrenology of convolutions [in the cortex], and not the phrenology of bumps

[on the head].”[21]

Due to its high intellectual requirements, as compared with other animals, lan-

guage is a good function to study in an effort to localize higher functions of the brain.

From the onset, language disorders were studied to assess the localization of func-

tion in the human brain. This was done by finding correlations between language

disorders and problems in different areas of the brains of the individuals with these

disorders. The first documented person to study such disorders was Jean-Baptiste

Bouillaud, who in 1825, started publishing papers in support of Gall’s theory by

noting that damage to the frontal lobe caused speech impairments.[21]
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However, Broca, in 1865, realized that language impairment (aphasia) was lo-

calized to the frontal lobe at the left hemisphere and did not involve the right hemi-

sphere of the brain. This area is known as Broca’s area of the brain which is respon-

sible for the construction of linguistic content.[21]

Broca first noticed this in one of his patients by the name of Leborgne. Leborgne

could not produce intelligible linguistic phrases. However, he could understand spo-

ken language very well. He could even hum or whistle a tune, but could not produce

any linguistic output either in the form of speech or in written form.

Fig. 2.16: Areas of Speech Production in the Human Brain

When Leborgne died, Broca performed an autopsy on his brain, only to find that a

portion of his brain, about midway on the left side of the frontal lobe, just above the

Sylvian fissure, was damaged. This area is coincident with Brodmann areas 44 and

45 (Figure 2.15) located at the Inferior Frontal Gyrus (IFG). Apparently, Leborgne

had a syphilitic lesion in that region. Broca associated that area with the production

of language. To this date, this portion of the left hemisphere is known as Broca’s

area – see Figure 2.16.
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Later, Broca started looking for patients with similar language production imped-

iment (aphasias). He found several cases and realized that in all of them, roughly

the same area in the left hemisphere was damaged. This type of language production

impairment was named Leborgne aphasia after Broca’s patient.

Fig. 2.17: Areas of Speech Understanding in the Human Brain

It is important to note that language production is one of the many tasks being

performed by Broca’s area. Other functions include, but are not limited to, motor

imagery, object manipulation, motor planning, and understanding.[22]

2.3.3.2 Wernicke’s Area

This was the first proof of the localization of functions in the human brain. Later,

others started looking into other parts of the brain and associated them with differ-

ent functions. One such person was a German neuroscientist by the name of Karl

Wernicke (1848-1905).[21, 16] Wernicke had a patient with a language impediment

manifesting itself in the opposite way compared to Leborgne’s condition. This pa-

tient was able to articulate linguistic phrases very well, but he could not grasp any

linguistic input. He could hear and understand words. He could also create words

and sentences, but he could not understand phrases and sentences. In 1876, When
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his patient died, Wernicke performed an autopsy and found that he had a lesion at

the top of the temporal lobe, just below the Sylvian Fissure – see Figure 2.17. Con-

sidering Broca’s area and the newly found Wernicke’s area [9], Wernicke decided

that complex functions which included more than one basic function (such as lan-

guage) must be handled within a few areas which are interconnected to allow for

interaction among these areas.

2.3.4 Specializations of the Hemispheres of the Brain

Although most of the Brodmann areas are common to both hemispheres of the brain,

some areas may have different functionalities in the left and right hemispheres.

Starting with Broca, the different hemispheres were studied to better understand the

special roles of the two hemispheres. The most prevalent differences are involved in

higher functions such as the processing of language and musical discourse. The, so

called, Wada test has been used in the past to evaluate functionalities of the different

sides of the brain. Since the blood supplies to the different hemispheres are almost

independent of one another, Juhn Atsushi Wada, a Japanese-Canadian neurologist,

in 1949, proposed to anesthetize the different hemispheres of the brain, one at a

time, to assess the usage of each side in activities such as language production, lan-

guage perception and memory.[29]

More than ten years later, with the help of his colleague, Theodore Rasmussen,

a safe delivery of a barbiturate through injection was developed and some results

were achieved in larger clinical trials.[30, 23] This method became quite common

as a preamble to surgical alleviation of epilepsy in order to be able to avoid any

damage to the language sections of the individuals undergoing surgery. Since the

barbiturate would anesthetize the hemisphere of interest while the patient was still

alert, different tasks could be asked of the patient to see the level of disability due

to the nonoperational hemisphere. Results of these tests showed that in most cases

the left hemisphere is responsible for most major language functions including gen-

eration and perception.[23] Of course, in later studies, some variabilities were re-

ported including gender relations with regards to inter-hemispheric reorganization

of speech.[26]

About 20 years ago, a revolution in brain imaging techniques was begun. Today,

with the existence of advanced imaging methods, there is no longer any need for

invasive tests such as the Wada test.

fMRI (functional Magnetic Resonance Imaging), for example, shows the increase

in the blood flow and oxygen due to the increased oxygen demand in active areas

of the brain. In fact, as the hemoglobin loses its oxygen, it becomes more ferromag-
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netic, thus increasing the magnetic resonance attenuation, creating a more active

signal. Conversely, oxygenated hemoglobin loses its ferromagnetic signature and

produces less attenuation in the magnetic resonance signal. Therefore, the less ac-

tive resonance signal correlates with more active, hence oxygenated, parts of the

brain.

This type of imaging facilitates the understanding of different functional areas

of the brain. Examples are language production and perception, face recognition,

speaker recognition, music discourse, etc.

Imaging technology has shed some light into complex questions about language

production and understanding. Some recent imaging studies of the brain, related to

language generation and understanding, have shown support for the fact that after

puberty, it is harder to learn new languages. If one is bilingual and learns two lan-

guages at the same time, then the same areas (Broca and Wernicke) are responsible

for both languages. However, if one learns one language followed by the second

language, the first language will reside in the standard areas, but the new language

will extend the Broca and the Wernicke areas to the sides of these areas, utilizing

new areas for language processing.[20, 31]

Imaging has shown that tonality, rhythm, tempo, intonation and stress are de-

ciphered mostly in the right hemisphere of the brain. Although, Broca’s area (in

the left hemisphere) has been shown to be also quite active during estimation of

timing and production of rhythmic content.[3] Their production happens in the same

Brodmann areas (44 and 45) as Broca’s area, but mostly in its right hemispheric mir-

ror image. Similarly, formant structures and musical discourse are processed at the

mirror image of Wernicke’s area in the right hemisphere [17]. Also, for languages

that utilize pitch, the musical areas of the right hemisphere are used in combina-

tion with the traditional language areas of the left hemisphere. For example, it was

shown using fMRI studies that lexical analysis of the Mandarin dialect of the Chi-

nese language (see Section 4.3.1.1) involves parts of areas 22, 42 and 45 in the right

hemisphere.[31] Also, it was shown that American speakers who learned Mandarin

as a second language, underwent cortical reorganization to achieve the pitch-related

lexical analysis associate with Mandarin.[31]

fMRI has also shown that human activities, which may be normally processed

by different parts of the brain, are automatically processed using the language ar-

eas, when these activities are used for communication. An example is sign language

which is used by deaf and mute individuals. Normally, gestures are recognized us-

ing the right hemisphere. However, in those individuals who use sign language for

communication, the signs are processed in the Wernicke area. Sign production is

also processed in Broca’s area. Both of these areas are in the left hemisphere! This

is also true for languages such as the Spanish Silbo language of the people of La

Gomera in the Canary islands (see Section 4.1.8) who use different whistle intona-



64 2 The Anatomy of Speech

tions for communication. fMRI has shown that they also process whistles in their

language areas in the left hemisphere, whereas most people process whistles in the

right hemisphere with other tonal content.[5]

Speaker recognition, is mostly conducted in the right hemisphere along with

gender classification and pitch recognition.[17] This suggests that it uses cues from

tonality, rhythm, intonation and stress in the speech of the individual. In automatic

speaker recognition, we use very different features. In fact, in general, we use the

same features that are used for speech recognition. To mimic the human-style of

speaker recognition, one should use supra-segmental information and spectral anal-

ysis based on pitch variations which is usually processed by the right hemisphere of

the brain. This is an argument for introducing such features to conventional speaker

recognition techniques which developed out of basic speech recognition methods5.

However, because our brains use such information for recognizing speakers, we can

be easily fooled by an impostor who tries to mimic a target speaker’s pitch. This

type of perception is why impostors usually try to match the target speaker’s pitch.

As we will see later in this book, automatic speaker recognition techniques, dis-

cussed here, are not as sensitive to pitch values and cannot be fooled as easily using

conventional impostor techniques.

At this point, we review the role of the nervous system in speech and music pro-

duction and the auditory systems. This includes a quick overview of the relevant

parts of the left and right hemispheres of the brain and their roles in the production

and understanding of sounds. With regard to speech, individual parts of the system

are responsible for the different blocks represented in Figure 1.6. Figure 2.18 is a

replica of Figure 1.6, in which boundaries of the mechanical and nervous parts of

speech production and perception have been marked.

2.3.5 Audio Production

As it was briefly discussed in the last section, linguistic abstraction and grammar are

produced in Broca’s area in the left hemisphere – see Figure 2.16. The figure also

shows the motor control areas in charge of movements in the vocal tract and the lips.

The larynx, the pharynx, the jaw, and the tongue are all handled by the same area.

The lips are controlled by an adjacent section at the bottom tip of the motor con-

trol strip in the frontal lobe. These areas are adjacent to Broca’s area. The language

code produced by Broca’s area is therefore fed to these motor areas to cause speech

5 It is not all that unusual to use speech recognition features to conduct speaker recognition. Ref-
erence [17], in its conclusion, suggests that there may be a significant overlap between speech and
speaker recognition in the human brain.
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Fig. 2.18: Speech Generation and Perception – Adapted From Figure 1.6

output by the vocal tract, as discussed in Section 2.1.

The motor control area is just above the auditory cortex (see Section 2.3.6.1) in

the frontal lobe. It is situated at the lower part of the precentral gyrus adjacent to

the central fissure – see Figure 2.16. The motor control area is needed to interact

with Broca’s area to produce speech and writing. In fact, the lower part of the motor

control region is responsible for the control of the vocal tract. It is also known to be

related to the FOXP2 gene which has been shown to be responsible for the excep-

tional speech motor control in humans. Mutations in the FOXP2 gene have shown

to create speech production impairments.[27]

The right hemisphere is more or less symmetric with the left. Broca’s area is the

combination of Brodmann areas 44 and 45. The homologue of Broca’s area in the

right hemisphere is basically the combination of areas 44 and 45 in the right hemi-

sphere. Area 44 of the left hemisphere is slightly larger than the one in the right.

Area 45 in both hemispheres is the same size. It is also interesting to note that the

size of area 44 may vary by up to ten-fold from one individual to the next.[22]

Broca’s area and its homologue portray significant differences in their neural

anatomy (cytoarchitecture).[22]
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Fig. 2.19: Language Production and Understanding Regions in the Brain (Basic Figure was

adopted from Gray’s Anatomy [13])

2.3.6 Auditory Perception

In all mammals, audio is processed by a section below the Sylvian fissure. This por-

tion of the brain is known as the auditory cortex. As discussed earlier, Wernicke’s

area is primarily responsible for decoding language – both spoken and written. Its

homologue in the right hemisphere is also credited for the deciphering and under-

standing of musical features such as tempo, rhythm, intonation, and stress.

Figure 2.19 shows Wernicke’s area and its relation to the auditory cortex, Broca’s

area and the connective fibers called Arcuate Fasciculus and Geschwind’s Terri-

tory, in charge of interconnectivities between these regions to provide the means

for higher-level language dynamics. The following sections describe the different

regions related to language and music understanding and their relation to discourse

areas in the two hemispheres.

2.3.6.1 The Auditory Cortex

The nervous system includes an auditory nerve bundle (vestibulocochlear nerve)

which goes from the cochlea to the medial geniculate nuclei at the rear of the Tha-

lamus (situated at the anatomical core of the brain – see Figure 2.21) which is linked

to auditory cerebral cortex (just below the Sylvian fissure in both hemispheres). The
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auditory cortex neighbors areas of the brain involved in perceiving speech (in the

left hemisphere) and music (in the right hemisphere).6

Fig. 2.20: Auditory Mapping of the Brain and the Cochlea (Basic figures were adopted from

Gray’s Anatomy [13])

In Figure 2.20, the three parts of the auditory cortex are highlighted. These are

known as the primary, the secondary, and the tertiary audio cortices.

The primary auditory cortex which is coincident with Brodmann area 41 is at

the receiving end of the relayed signals from the cochlea.7 Note that the neurons in

the primary auditory cortex are organized tonotopically.8 This means that the pitch

sensitivity of the neurons in this area is arranged to map the sensitivity of the cilia

along the length of the cochlea. Figure 2.20 shows the mapping between the cilia

in the different parts of the cochlea with the different sections of the primary audi-

tory cortex. Therefore, different regions of the primary auditory cortex are trained

to be excited by specific ranges of frequencies. Pitch-sensitive mapping is preserved

at every stage of the neural transmission from the cochlea to the primary auditory

cortex – see Figure 2.21. There are also feedback pathways [24] going from the

primary auditory cortex back to the cochlear nuclei. These pathways are shown in

6 It is important to note that although we will be speaking about certain areas being responsible
for certain functions, it does not mean that they are alone in their involvement. It solely suggests
that the noted areas are also involved. The reader should be mindful of this loose expression of the
involvement of an area in any function.
7 See Section 2.3.2.1
8 Arranged according to tone
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Fig. 2.21: The Auditory Neural Pathway – Relay Path toward the Auditory Cortex

Figure 2.22 and were briefly discussed in Section 2.2.1.

Coincident with Brodmann area 42, the secondary auditory cortex surrounds the

primary cortex toward the bottom of the superior temporal gyrus – see Figure 2.20.

Although, present in both hemispheres, the secondary auditory cortex in the left

hemisphere is known to map the individual sounds from the primary cortex into

phonetic elements. In the right hemisphere, on the other hand, the secondary audi-

tory cortex extracts the harmonic, melodic and rhythmic patterns of the basic sounds

which are realized by the primary auditory cortex. This is the beginning of the spe-

cialization of the different hemispheres in linguistic and musical functions.

The tertiary auditory cortex surrounds the secondary cortex, hence the primary

cortex, to the bottom of the superior temporal gyrus. It is mostly coincident with

Brodmann area 22 [11] which is basically most of the rest of the superior temporal

gyrus. This cortex, in the left hemisphere, is responsible for mapping the phonetic

patterns deciphered by the secondary auditory cortex into lexical semantics. In the

right hemisphere, it is responsible with extracting the musical discourse of the heard

audio signal by processing the output of the secondary auditory cortex.
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Fig. 2.22: Speech Signal Transmission between the Ears and the Auditory Cortex – See
Figure 2.21 for the connection into the lower portion indicated by clouds

2.3.6.2 Speech and Music Perception – Language and Music Understanding

The role of the auditory cortex is to process the audio signal and transform it into

higher level representations so that Wernicke’s area in the left hemisphere may use

the information to understand and decipher language. The same is true for the un-

derstanding of the intended musical discourse being processed by the homologue of

Wernicke’s area in the right hemisphere. The visual cortex is in the Occipital lobe

in the back of the brain. This allows for sensory information from reading to be

shared with Wernicke’s area for understanding the read text. Wernicke, realized that

the visual cortex and the auditory cortex are connected to Wernicke’s area. Also, he

identified a set of neural fibers connecting Broca’s area and Wernicke’s area through

the inner part of the cortex, called Arcuate Fasciculus. This is a bi-directional neu-

ral pathway which enables a feedback mechanism between the language production

(Broca) area and the language understanding (Wernicke) area. A new lesion that
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interrupts the Arcuate Fasciculus is called Aconduction Aphasia. It has been noted

that these connections are far stronger in the dominant (left) hemisphere of the brain

than in the right.[22]

Fig. 2.23: The connectivity and relation among the audio cortices and audio perception areas
in the two hemispheres of the cerebral cortex

Figure 2.23 shows the hierarchical connectivity among the different areas of

the auditory cortices in the left and right hemispheres and their connectivity to the

language understanding (Wernicke) and Music Understanding (homologue of Wer-

nicke in the right hemisphere). The two auditory cortices are connected through the

corpus callosum [13]. Figure 2.24 shows this body which is in charge of commu-

nication between the two hemispheres. Disconnections in the corpus callosum have

shown many different aphasias.
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Fig. 2.24: Corpus Callosum, which is in charge of communication between the two hemi-
spheres of the brain

2.3.7 Speaker Recognition

It is important to note that speaker recognition in humans is not simply based on the

apparent pitch content of the individual speaker’s utterances. It is a complex com-

bination of many different features, some of which are quite simple to understand

and seem very apparent, and others which are not well understood. The complex

interactions between the two hemispheres of the brain in performing different tasks

make matters much more complicated. An evidence of this complicated process is in

the importance of the right hemisphere in contextual relations [3] and prosody [22]

while using idiosyncratic differences in speech content through the involvement of

the left hemisphere utilizing the connectivity of the two hemispheres through the

corpus callosum. Add to this complex structure, the feedback mechanism of the

auditory cortex to the cilia in the cochlea for an adaptive sensitivity of different

frequencies. Also, take into account the fact that some aspects such as rhythm and

timing are performed by both hemispheres with special dominance depending on

linguistic (left hemisphere) and musical (right hemisphere) content. Far more com-

plex interactions are added through the activities via the Arcuate Fasciculus and

the Geschwind’s Territory and many other connective networks. The final decision

in recognizing a speaker is then based on a multitude of different facets, some of



72 2 The Anatomy of Speech

which may include as complex a technique as specific experiences with psycholog-

ical evaluations developed over the course of our interactions with target individuals.

The automated techniques discussed in this book and all the research done in the

field of speaker recognition only scratch the surface of this complex process. The

material discussed here is at best a building block in the process of performing such

complex functionality. In this chapter we tried to give an overview of all the different

parts involved in performing the speaker recognition task by humans. It is important

to note that a machine-based recognition mechanism need not be identical to human

methods. In fact, it will be shown that the methods used here are far from the human

speaker recognition methods. Knowing about the human approach will allow us to

enhance the basic techniques used in this book and generally in most research and

practical systems in use.
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Chapter 3

Signal Representation of Speech

Nothing can please many, and please long,

but just representations of general nature.

Samuel Johnson

Preface to the Plays of William Shakespeare, 1765

The main focus of this chapter is the signal representation of speech. Hence, before

going any further we should define the concept of a signal.

Definition 3.1 (Signal). A signal is an observed measurement of a physical phe-

nomenon. It generally describes an observation of a higher level physical phe-

nomenon in correlation with lower level measurement concepts such as time or

space.

In mathematical terms, definition 3.1 may be written as,

Definition 3.2 (Signal). A signal, h(ξ1, · · · ,ξn) is a function that maps any point in

the generalized coordinate system defined by (ξ1, · · · ,ξn) in its domain {(ξ1, · · · ,ξn) :

(ξ1, · · · ,ξn) ∈ D(h)} to a point in its range {h(ξ1, · · · ,ξn) : h(ξ1, · · · ,ξn) ∈ R(h)} to

describe the relation of any physical phenomenon to its domain – i.e. {h(ξ1, · · · ,ξn) :

(ξ1, · · · ,ξn) ∈ D(h) �→ h ∈ R(h)}.

Note that the domain D(h), and the range R(h) are sets in the strict sense of the

word and may take on continuous values in an interval or be a set of limited number

of values. There is no restriction on what kind of a set may be used.

Therefore, a signal is a mapping of a point in the low level bases such as time or

space into the higher level measurement. Since space and time are continuous, all

physical phenomena observed in their presence must be related to those bases in a

continuous fashion. So, it is fair to say that most natural interactions happen in an

analog (continuous) domain.

At this point, let us customize Definition 3.2 to one that relates to the speech

signal, namely a time-dependent signal.

Definition 3.3 (Time-Dependent Signal). A time-dependent signal, h(t) is a func-

tion that maps any instance of time t in its domain {t : t ∈ D(h)} to a point in its

range {h(t) : h(t) ∈ R(h)}. i.e. {h(t) : t ∈ D(h) �→ h ∈ R(h)} in order to describe

a physical phenomenon.
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76 3 Signal Representation of Speech

The speech signal is an observed measurement, done with respect to the passing

of time as defined by Definition 3.3. It may be viewed as the mapping of time into

the strength of the speech waves at any given instance of time. It is important to

note that this value is not solely related to any single wave with a specific frequency.

This is an important note to understand when we discuss the sampling theorem in

Section 3.1.1.

To simplify the processing of continuous signals, the infinite set of possible val-

ues the independent continuum may take on in a finite interval [a,b], may be re-

duced to a finite set through another mapping process called sampling. This action

is called discretization and the newly defined signal, capable of mapping this finite

set of points to a higher level measurement, is called a discrete signal. Of course, in

general, one may also impose a similar restriction to the range of the mapping and

reduce it to a finite set, but that is not necessary.

Now, let us examine a normal speech signal in more detail. A speech signal

changes shape as the vocal tract state is changed – see Chapter 4. As you will see

in chapter 4, the human vocal system is quite dynamic and, in fact, it is designed

to change the form of the signal as a function of time. According to[3], an aver-

age phone (see Definition 4.2) lasts about 80ms. Even within the utterance of each

phone, we know that there are several transitions that happen, changing the charac-

teristics of the signal along the way. This categorizes the speech production system

into a nonlinear system with constantly changing parameters.

Therefore, the speech signal is known as a non-stationary signal.

Definition 3.4 (Stationary and Non-Stationary Signals). A stationary signal is

a signal whose statistical parameters do not change over time. These are parame-

ters which may be used to describe the signal in statistical terms such as intensity,

variance, etc. For a non-stationary signal, the statistical parameters vary over time.

All non-periodic signals are by definition non-stationary. Non-stationary signals

may be periodic for a finite interval, but taken over a longer duration, if the period-

icity ceases or changes to a different shape over the same period, the signal is still

non-stationary. The speech signal is a good example of a non-stationary signal.

In this book we only concern ourselves with discrete signal processing techniques

and algorithms which make use of sampled audio. Although it is generally possible

to perform speaker recognition based on the analog audio signal, it is outside the

scope of this book. It is well understood that analog processing is quite complicated

and usually involves the design of elaborate circuitry to do simple recognition tasks

without much flexibility. The powerful digital computing apparatuses available to us

and the rich theoretical advancements in discrete information and system theories

(starting in the early 20th century and growing exponentially to date) really leave

us no choice but to adopt the discrete approach. In fact without discrete processing,

speaker recognition, along with many similar disciplines would not have been too
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practical.

Here, we consciously steer away from using the term “digital” such as digital

signal processing, digital to analog conversion, etc. It is mostly due to the miscon-

ceptions that it creates. Digital has a binary connotation, but we are really dealing

with discrete systems which may be represented and manipulated using digital rep-

resentations, although the theory relies mostly on the discretization concepts. Also,

in the process of digitization, the imposition holds that both the domain and the

range of the signal should be discretized and possibly mapped to a binary represen-

tation, whereas, most of the theory of discrete signal processing only assumes the

discretization of the domain of the signal.

3.1 Sampling The Audio

Since speaker recognition is basically a passive process and only observes the au-

dio signal to make a decision, it is considered to use signal processing techniques

in contrast with active systems such as control systems which contribute to the dy-

namics of the system in which they are involved.1 Therefore, we are only concerned

with a sampling process at the beginning and once the signal is in a sampled state,

the algorithms are independent of the analog world. Of course in some other speech

related disciplines this is not the case. For example, take Speech Synthesis which

has to deal with the conversion of a sampled signal to an analog signal. Therefore it

needs to deal with data reconstruction techniques such as hold devices [10].

The natural starting point is to sample the analog audio signal to be processed

later. There are several possible ways to sample a signal, namely, periodic, cyclic-

rate, multirate, random, and pulse width modulated sampling.[10] In speech pro-

cessing we usually use periodic sampling in which the sampling frequency (rate

of sampling) is fixed. Although, it is conceivable that speech-related applications

would deal with low-activity signals and that they may use variable sampling tech-

niques. Many lossy compression techniques utilize variable sampling. Examples are

MP3, HE-AAC, and OGG Vorbis coded signals – see Section 26.1. For the sake of

simplicity of operation, usually speaker recognition systems convert these repre-

sentations to those using a periodic sampling rate such as Pulse Code Modulation

(PCM) – see Section 26.1.1.

Narrowing down the possibilities to the periodic sampling of the signal, there is a

fundamental question: what sampling period (or sampling frequency) should we be

using? To answer this very important question, let us examine a fundamental theo-

1 Of course the actual speech production system is an active system which we have modeled as
a control system in Chapter 5. But here we are only concerned with the observation end of the
system. In Chapter 5 this distinction will become more clear.
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rem in information theory and signal processing called, the Sampling Theorem.
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Fig. 3.1: Sampling of a Simple Sine Signal at Different Sampling Rates; f = Signal Fre-
quency fs = Sampling Frequency – The Sampling Rate starts at 2 f and goes up to 10 f

3.1.1 The Sampling Theorem

The origin of the sampling theorem, one of the most crucial and basic theorems

in engineering, has been quite controversial! Although, it has even been attributed

to, as far back as, Cauchy [1], more evidently it was used in Interpolation Theory

by E. T. Whittaker [17] in 1915. It was known to Nyquist [12] and J. M. Whit-

taker [18, 19]. In the Soviet Union it is attributed to Kotelnikov through his con-

ference proceedings publication [9] in 1933. In communication theory, in its basic

form, it is attributed to Shannon from a classic article he published in 1949 [14].

Shannon’s statement of the theorem is the most popular one in the literature, al-

though there are further extensions which were made to it later, to make it more de-

scriptive. For a good overview of the sampling theorem see the tutorial by Jerri [7]

and the corresponding errata [8].
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The following is the statement of the sampling theorem per Shannon [14] – with

some modification to his original nomenclature for uniformity with the rest of the

material in this book,

Theorem 3.1 (Sampling Theorem). If a function h(t) contains no frequencies

higher than fc cycles per second, it is completely determined by giving its ordinates

at a series of points spaced 1
2 fc

seconds apart.

Proof.

We defer the proof of the theorem to the end of this section, so that the statement of

the proof follows more smoothly. ��
This theorem is so fundamental to signal processing and communication that as

Shannon states in his paper [14], “this is a fact which is common knowledge in the

communication art.” In fact without subscribing to this recipe in practice, it will very

quickly be realized that there is something wrong with the signal, the side effects of

which will be discussed in detail. Indeed, the formal statement and the theoretical

backing which follows is what makes this theorem quite useful.

The statement that the function has no frequencies higher than fc Hz is equivalent

to saying that the function is bandlimited to frequency fc (bandwidth) from the top,

or in mathematical terms, H( f ) = 0 ∀| f | ≥ fc, where H( f ) is the spectral represen-

tation of h(t) – see Chapter 24. fc is known as the Nyquist Critical Frequency and

it sets the limits of what is more widely known as the signal bandwidth. Therefore,

the sampling rate of the signal must be fs ≥ 2 fc. There is another terminology used

in the literature; Nyquist Rate, is equivalent to the lower limit of the sampling rate,

namely, 2 fc.

Recall the statement that was made earlier in this chapter while describing the

speech signal. It was said that the value of a signal at any point in time is not solely

related to any single wave with a specific frequency. Imagine such a point at any

time t and consider its value. If at that moment there were n different sources each

creating a specific tone (frequency), then the value of the signal recorded at the mo-

ment would be the sum of the values of the individual waves. In general, this notion

extends to the fact that at any point in time, the value of the signal is the sum of the

values of an infinite number of waves with all possible frequencies. Think about the

opposite scenario. Consider an amplitude associated with a single frequency; then

this amplitude is a sum of all the signal strengths at all moments of time having

the same frequency. This is the idea behind a Fourier series expansion, discussed in

quite a bit of detail in Chapter 24.

As we mentioned earlier, Nyquist [12] knew the basic idea of the statement in

Theorem 3.1 to the extent that he prescribed that a signal must be sampled at a rate,

fs which is at least 2× fc. So, what makes Shannon’s statement of the theorem so

special?! It is that part of the theorem which deals with the reconstruction of the

signal. Let us take a detailed look at the reconstruction of a bandlimited signal from
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its points. The statement of Shannon’s theorem (Theorem 3.1) says that the signal is

completely determined from its ordinates at a series of points which are 1
2 fc

seconds

apart.

E. T. Whittaker [17] noted that if any finite number of sampled points are given,

there will be a family of an infinite number of co-tabular functions that will pass

through all the sampled points. He stated that one of these functions will have the

lowest harmonic constituents and that it is represented as an infinite series involving

the samples weighed by the sinc function (see Figure 3.2). This is the, so called,

cardinal function of the signal. He approached the problem from a function interpo-

lation perspective. J. M. Whittaker [18, 19], Kotelnikov [9] and Shannon [14], later

presented exactly the same cardinal series representation of the signal. Shannon’s

paper [14] studied the reconstruction in some detail. Equation 3.1, is the common

reconstruction given by all the above researchers. For this reason, the theorem is

known in most circles as the WKS Theorem (Whittaker-Kotelnikov-Shannon The-

orem).

h(t) =
∞

∑
n=−∞

hn

sin(ωct −nπ)

ωct −nπ
(3.1)

where,

hn
Δ
= h(

n

fs

)

= h(
n

2 fc

) (3.2)

In general, the sampling rate fs should be larger than 2 fc, however, in Shannon’s

statement of the theorem, he uses the lower limit of the sampling frequency to show

the reconstruction. In practice, one has to be careful, since it is quite important to

know the value of fc. For example, if you happen to sample a pure sinusoid at its

zero-crossings and exactly at the Nyquist Rate (2 fc), all the samples will be zero.

Of course, since we are interested in the cardinal function, as defined above, Shan-

non’s theorem will still be valid, but h(t) could theoretically become zero. A small

perturbation of the sample will, of course, alleviate this problem.

Proof. – The WKS Sampling Theorem

To prove the validity of Equation 3.1, consider the definition of the complex Fourier

transform of a function given by Equation pair 24.390 and 24.391. In the process

of this derivation and for the rest of this chapter, we shall be using the following

different relations,
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ωc
Δ
= 2π fc (Nyquist Critical Angular Frequency)

Tc
Δ
= 1

fc
(Nyquist Critical Period)

ωs
Δ
= 2π fs (Sampling Angular Frequency)

Ts
Δ
= 1

fs
(Sampling Period)

(3.3)

Also, we have re-stated Equations 24.390 and 24.391 for the convenience of the

reader (Equations 3.4 and 3.5).

H(ω) =

ˆ ∞

−∞

h(t)e−i(ωt)dt (3.4)

and,

h(t) =
1

2π

ˆ ∞

−∞

H(ω)ei(ωt)dω (3.5)

Based on the statement of Theorem 3.1, h(t) contains no frequencies higher than

fc. Using the relationship between frequency and angular frequency, Equation 3.3,

it means,

H(ω) = 0 ∀
{
ω < −ωc

ω > ωc
(3.6)

Therefore, Equation 3.5 may be written as follows,

h(t) =
1

2π

ˆ ωc

−ωc

H(ω)ei(ωt)dω (3.7)

The statement of the theorem says that the samples will be 1
2 fc

apart. In other words,

fs = 2 fc (3.8)

So, each time sample, t, would be given by,

t =
n

fs

=
n

2 fc

=
n

�2
ωc

�2π

=
nπ

ωc

(3.9)

Plugging t from Equation 3.9 into Equation 3.7, we get,
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hn
Δ
= h

(
nπ

ωc

)
=

1

2π

ˆ ωc

−ωc

H(ω)eiω nπ
ωc dω (3.10)

Now, let us write the complex Fourier expansion of H(ω) using the equation

pair 24.325 and 24.326 substituting t = −ω and T = −ωc,

h(ω) ≈
∞

∑
n=−∞

cne
−i( nπω

ωc
) (3.11)

where,

cn =
1

2ωc

ˆ ωc

−ωc

h(ω)ei( nπω
ωc

)dω (3.12)

Comparing Equations 3.10 and 3.12, we see that they would become identical if we

set,

cn =
π

ωc

hn (3.13)

Using Relation 3.13 in Equation 3.11 and changing the approximation to an equal

sign for convenience,

H(ω) =
∞

∑
n=−∞

π

ωc

hne
−inπ( ω

ωc
) (3.14)

Using the inverse Fourier Transform, Equation 3.7, with H(ω) substituted from

Equation 3.14,

h(t) =
1

2π

ˆ ωc

−ωc

H(ω)ei(ωt)dω

=
1

2π

ˆ ωc

−ωc

∞

∑
n=−∞

π

ωc

hne
−inπ( ω

ωc
)ei(ωt)dω

=
1

2ωc

∞

∑
n=−∞

hn

ˆ ωc

−ωc

e
iω(t− nπ

ωc
)dω

=
1

2ωc

∞

∑
n=−∞

hn

e
iω(t− nπ

ωc
)

i
(

t − nπ
ωc

)∣∣∣∣∣
ωc

−ωc

=
1

2ωc

∞

∑
n=−∞

hn

[
ei(ωct−nπ) − e−i(ωct−nπ)

i(ωct −nπ)

]
(3.15)

Using Euler’s identities (see Property 24.5) in Equation 3.15,
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h(t) =
1

2ωc

∞

∑
n=−∞

hn

[
2sin(ωct −nπ)

t − nπ
ωc

]

=
∞

∑
n=−∞

hn

sin(ωct −nπ)

ωct −nπ
(3.16)

=
∞

∑
n=−∞

hnsinc(ωct −nπ) (3.17)

Equation 3.17 proves the statement of Shannon’s Theorem (WKS Theorem). Fig-

ure 3.2 shows the cardinal function (sinc function) which was used in the expansion

of the signal h(t) in Equation 3.17. As it was mentioned earlier, Whittaker [17] pre-

sented this expansion for the purpose of doing the lowest constituent harmonic inter-

polation in 1915. Slight variations of this equation were later presented in chrono-

logical order in papers by Whittaker [18, 19], Kotelnikov [9], and Shannon [14]. ��
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Fig. 3.2: sinc function which is known as the cardinal function of the signal – fc is the
Nyquist Critical Frequency and ωc is the corresponding Nyquist Angular Frequency (ωc =
2π fc)
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3.1.2 Convergence Criteria for the Sampling Theorem

h(t) in the sampling theorem should be piecewise continuous (have a finite number

of discontinuities in a finite interval) which is generally the case with audio sig-

nals unless there are problems with the data acquisition apparatus in which case,

the signal would be unintelligible and would be filled with pops and clicks. Still,

theoretically, if the order of magnitude of the number of pops and clicks is less than

true sampled points in the audio signal, the Fourier representation will converge.

See Chapter 24 for more information about the convergence of the Fourier Series.

3.1.3 Extensions of the Sampling Theorem

Shannon [14] goes on with certain other observations relating to the sampling theo-

rem. He states that if we consider fs = 2 fc, for a time period, τ seconds, then we will

have 2τ fc samples and that these samples do not have to be obtained using periodic

sampling. This means that the time between every two consecutive samples need

not be fixed. However, if the 2τ fc samples are scattered within the time period τ ,

the reconstruction will become more complicated. Also, if there are dense clusters

of samples in some regions within the period τ , the accuracy of sampling should be

higher in order to be able to reconstruct the original signal.

Another observation which was later expanded and proven by Fogel [5] is that

if the first, second, and higher derivatives of the signal are also observed, the signal

may be reconstructed with a reduced number of sample points, essentially reducing

the sampling rate each time a higher derivative is added to the sample pool. Fogel’s

statement of the extended sampling theorem is a bit vague and has been slightly

modified, here, for the sake of clarity. Also, the nomenclature has been changed to

match the one used in this book.

Theorem 3.2 (Extended Sampling Theorem – Fogel). If a function h(t) contains

no frequencies higher than fc cycles per second, it is determined by giving M func-

tion and/or derivative values at each of a series of points extending throughout the

time domain with the sampling interval of T = M
2 fc

being the period between instan-

taneous observations.

Fogel [5] provides the proof of this theorem in the appendix of the paper. How-

ever, the proof is stronger than the statement of the theorem given in Theorem 3.2.

To make this theorem a bit more general and to convey what the proof of Refer-

ence [5] really conveys, the following statement of the theorem is proposed here,

Theorem 3.3 (Extended Sampling Theorem – Proposed here). If a function h(t)
contains no frequencies higher than fc cycles per second, and it is sampled for a
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period of τ seconds, then only 2τ fc number of values made up of function values or

derivatives of any order at any point of the interval are sufficient for reconstructing

the original signal.

Fogel [5] proves Theorem 3.3 and presents the essence of it in the form of ex-

amples, but does not actually state it in the universal form which is stated here.

Jerri [7, 8] describes, in detail, the Generalized Sampling Theorem. Weiss [16] ex-

tended the WKS Sampling Theorem to use integral transforms with kernels (see

Definitions 24.54 and 24.55) which are solutions to the Sturm-Liouville problem

(see Section 24.6) in place of the exponential family kernels. This extension was

later completed by Kramer to cover kernels which are solutions to general nth-

order differential equations. He demonstrated the case of a Bessel function for the

Kernel. This Generalized Sampling Theorem is known as the WKSK (Whittaker-

Kotelnikov-Shannon-Kramer) Sampling Theorem. The WKSK Generalized Sam-

pling Theorem is interesting to pursue, for the avid reader, but is outside the scope

of this text.

Another set of extensions due to Papoulis [13] deal with issues such as non-

uniform sampling. Again, due to the many subjects that should be covered in this

book, we refer the reader to the source and to Jerri’s coverage of these exten-

sions [7, 8] as well as [2].

3.2 Quantization and Amplitude Errors

Quantization acts on the amplitude of the signal. As we stated in the introduction

of this chapter, we deal with the discretization of the signal. It was also pointed out

that the range of the mapping (amplitude of the signal) may be continuous and com-

prise an infinite set. However, in practice, to be able to use a digital device such as

a computer, we have to quantize the possible values of the signal amplitude. These

quantized values are the values associated with the samples of the signal. Each sam-

ple point can take on one such quantized value.

When speaking of an audio signal, one normally specifies the sampling rate as

well as the quantization level of the signal. The quantization level is normally given

in terms of the number of bits of the range of the signal. So, when a signal is a 16-bit

signal, the values may vary from −32768 to 32767. Figure 3.3 shows a signal which

has been quantized to 11 levels. A small number of quantization levels is used so

that the quantization error may be more visually apparent.

The choice of the quantization level could make a huge difference in the storage

requirements of a signal. Note that as the number of bits used for representing the

samples increases, the number gets multiplied by the total number of samples. A

simple minded approach to quantization is to use a linear mapping of the amplitude
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Fig. 3.3: Portion of a speech waveform sampled at fs = 22050 Hz – Solid line shows the
signal quantized into 11 levels and the dots show original signal

of the signal. This will use the same number of bits to represent small values in

the amplitude, as it would for large values. However, human perception is such that

small differences between large values of the amplitude are not perceived as much as

small changes in small values. Because of this logarithmic perception model, when

we try to conserve storage, a logarithmic mapping of the amplitude is used. Some

examples of these logarithmic maps are μ-law and a-law algorithms for amplitude

mapping which have been introduced by the ITU-T G.711 recommendations [6] and

are included in PCMU and PCMA formats – see Chapter 26 for more information.

Aside from the quantization error which may be present in a signal, the amplitude

representation may suffer from other errors such as additive noise or uncertainty in

the sampling. The uncertainty is mostly hardware and process related and could take

on many different forms all of which are apparatus-dependent. The additive noise

is a hard problem with which one may have to deal at some point in the process of

speaker recognition. It is especially pronounced in low quality microphones, analog

systems and finally ambient noise which accounts for most of the trouble. Different

kinds of filters may be designed to deal with the noise. Unfortunately, all types of

filters will affect the signal as well as the noise and will somewhat color or mod-

ify the original signal. We will be talking more about noise contamination in later

chapters.
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3.3 The Speech Waveform

Given the different flavors of the sampling theorem, as stated in Sections 3.1.1

and 3.1.3, we may sample the output of an analog microphone to produce the, so

called, speech signal. Using amplitude quantization along with sampling in the fre-

quency domain, we will have a representation of the speech signal called the speech

waveform. Chapter 26 covers the many different standards available for storing and

transmitting such a signal. Figure 3.4 is a plot of such waveform sampled at 22050

Hz.
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Fig. 3.4: Speech Waveform sampled at fs = 22050 Hz

3.4 The Spectrogram

A spectrogram is a three dimensional representation of the spectral content of the

speech signal. It represents the power of the different spectral components of each

instance of speech. See Figure 3.5. The time domain is represented by the horizon-

tal axis and the vertical access shows the frequency. The extent of the frequency is

from 0-Hz, corresponding to the DC level of the signal, to fc (Nyquist Critical Fre-

quency) which is the highest frequency component of the signal. For the example of

Figure 3.5, the sampling frequency is 22050Hz (22kHz). Therefore, fc = 11025Hz
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(11kHz).2

For an instance of time, the energy level for each frequency component is des-

ignated by a shade. In the graph shown in Figure 3.5, the higher the energy is, the

darker the marking would be. So, white spots represent 0 energy in that frequency

and completely black spots represent the highest energy for that frequency at the

designated instance of time. In chapter 5, spectral techniques for computing the en-

ergy level are presented in detail.
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Fig. 3.5: Narrowband spectrogram using
∼ 23 ms widows (43Hz Band)
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Fig. 3.6: Wideband spectrogram using
∼ 6 ms widows (172Hz Band)

Figures 3.5 and 3.6 show a �narrowband and a wideband spectrogram of speech,

sampled at 22050Hz (22kHz). For the narrowband spectrogram, the bandwidth of

the sliding window which was used for the computation was 512 samples wide

which works out to about 43-Hz. Notice the horizontal lines at different frequency

levels along the timeline. These are the spectral harmonics corresponding to pitch

during voiced speech such as vowels. The wideband spectrogram of Figure 3.6 was

generated using 128 sample windows which come out to nearly 172 Hz for each

each band. The wideband spectrogram is characterized by the vertical lines for dif-

ferent time instances, along the frequency axis. These are the spectral envelopes of

individual periods of the speech waveform. The difference between the two is due

to the differences in averaging effects.

To give you a better idea of the shapes of spectrograms for different types of

speech, the spectrograms of numbers from 0 to 9 have been plotted in Figures 3.7

through 3.16. In chapter 4, we will discuss the features of spectrograms and some

2 We are using fc loosely in this section. As we shall see later, this frequency ( fs
2 ) is really the

folding frequency ( f f ) and not the Nyquist critical frequency ( fc). Here we have made the shady
assumption that the sampling frequency has been picked to be 2 fc when in reality, fc for speech
signals is much higher. This will become more clear toward the end of the chapter. For now, we
make this incorrect assumption since we have not yet defined the folding frequency.)
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heuristics to be able to recognize different parts of speech from the spectrogram.
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Fig. 3.7: Z-IH-R-OW
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Fig. 3.8: W-AH-N

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1

0

1

Time (s)

F
re

q
u

en
cy

 (
H

z)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2000

4000

6000

8000

10000

Fig. 3.9: T-UW
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Fig. 3.10: TH-R-IY

3.5 Formant Representation

The formants of speech are resonant regions within the spectrogram – see Fig-

ure 3.17. The vocal tract is changing shape so that the resonance is changing. The

definition and estimation of formant locations is a difficult task. In general, the vo-

cal tract length is inversely proportional to the height of the format in the frequency

range of a speaker. This means that the longer the vocal tract length (for example in

adult males), the lower the format. As the vocal tract length is shortened (for exam-

ple in female speakers and children), the formant locations move up higher in the

frequency domain. Figures 3.18 and 3.19 demonstrate this effect. They are identical
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Fig. 3.11: F-OW-R
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Fig. 3.12: F-AY-V
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Fig. 3.13: S-IH-K-S
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Fig. 3.14: S-EH-V-AX-N
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Fig. 3.15: EY-T
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Fig. 3.16: N-AY-N
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Fig. 3.17: Formants shown for an elongated utterance of the word [try] – see Figure 4.29 for
an explanation.

phrases spoken by a 2 year old boy and a 44 year old man. It is quite apparent that

the formants for the adult male are much lower than those of the young boy. The

variability from male to female speakers is on the average about 20% and is much

more pronounced in case of speech generated in an open vocal tract configuration

(when the vocal chords are open). [4] Chapter 4 discusses this difference in much

more detail for the fundamental frequency. Formants will be revisited in more detail

in the rest of the book.
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Fig. 3.18: Adult male (44 years old)
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Fig. 3.19: Male child (2 years old)
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3.6 Practical Sampling and Associated Errors

There are three major types of samplers which may be used for sampling time-

dependent signals such as the speech signal: Pulse Amplitude Modulation (PAM),

Pulse Width Modulation (PWM), and Pulse Width Pulse Amplitude Modulation

(PWPAM) samplers. The way PAM sampler works is that it performs an amplitude

modulation of a carrier signal, p(t) using the information in the original signal, h(t).
p(t) is essentially a pulse train with each pulse lasting for a period ofϖ seconds [10].

The time period between two consequent time pulses (from the beginning of one

pulse to the beginning of the next pulse) is the sampling period of the signal, Ts

seconds. Ts is the reciprocal of the sampling frequency, fs, i.e.,

Ts =
1

fs

(3.18)

=
2π

ωs

(3.19)

Figure 3.20 shows this process. The top part of the Figure shows the original

signal h(t) represented in a waveform against time. The middle part of the figure

shows the pulse train, p(t). Each pulse has an amplitude of 1 and a width of ϖ sec-

onds. When the two signals, h(t) and p(t) are multiplied, the resulting signal will be

the sampled signal given by h∗
ϖ (t), shown at the bottom of the figure. The bottom

figure, the original signal, h(t) is also laid over h∗
ϖ (t), in a dotted line for reference.

This sampling technique is basically the method used for doing Linear Pulse Code

Modulation (PCM) defined in the ITU-T G.711 recommendations.[6] There are also

other implementations of this PAM sampler where instead of the samples being

proportional to the instances of the amplitude of the original signal, h(t), they are

a nonlinear function of those values. In speech, these nonlinear functions are usu-

ally logarithmic in nature due to the logarithmic perception of our auditory system.

Examples of such logarithmic mappings are the PCMU (μ-law Pulse Code Mod-

ulation) and PCMA (a-law Pulse Code modulation) coding of the signal. In these

cases, the signal processing is usually carried out in the linear domain, as we will be

discussing here, and the mapping is considered a secondary operation which hap-

pened for the sole purpose of storage. The intermediate representations are mostly

carried out in the proportional mapping which will be discussed here in detail.

The second technique, Pulse Width Modulation, is represented in Figure 3.21.

At the top of the figure, the same sample signal as in Figure 3.20 is plotted in its

waveform. The bottom of Figure 3.21 shows the pulse width modulated samples.

The sampling period is still Ts which is measured from the beginning of one sample

to the beginning of the next (marked in the figure). The amplitude of the sampled

signal is always 1 in the PWM sampler. The width of the samples is a function

of the instantaneous value of h(t) at onset of each sample. As in the case of the

PAM sampler, this function may also be nonlinear (logarithmic or other), but that

would similarly be used for storage purposes and for the sake of simplicity most

operations would assume a linear function. In most cases, this function is a linearly
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Fig. 3.20: Uniform Rate Pulse Amplitude Modulation Sampler. top: Waveform plot of a
section of a speech signal. middle: Pulse Train p(t) at Ts = 5 × 10−4s (2kHz) and ϖ = Ts

10
bottom: Pulse Amplitude Modulated samples overlaid with the original signal for reference.

proportional function to the instantaneous values of h(t). Here, we have used the

following relation for computing the pulse width,

ϖ(t)
Δ
=

h(t)∣∣∣max
t

h(t)
∣∣∣Ts (3.20)

The PWM sampler [10] has been used in some audio technologies such as the, so

called, switching amplifiers. However, for the purposes of speaker recognition and

in the spirit of economy, we will not treat this sampling technique in any more detail.

The third type of sampler, Pulse Amplitude Pulse Width Modulation sampler,

modifies the amplitude and width of each pulse. It is a sophisticated sampling tech-

nique which is outside the scope of this text. For the rest of this section, we will

be concentrating on the PAM sampling technique which will be used for theoretical

development of the rest of this textbook. Furthermore, we only concern ourselves

with proportional PAM sampling which is conducted with a uniform rate.

Figure 3.22 and Equation 3.21 show the block diagram and equation representa-

tion of the PAM sampler.
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Fig. 3.21: Pulse Width Modulation Sampler. top: Waveform plot of a section of a speech sig-
nal. bottom: Pulse Width Modulated samples overlaid with the original signal for reference.

h∗
ϖ (t) = h(t)p(t) (3.21)

Fig. 3.22: Pulse Amplitude Modulation Sampler Block Diagram (after [10])

h(t) is the original analog signal, p(t) is a train of pulses with unit amplitude and

width of ϖ seconds which are Ts seconds apart (from the beginning of one pulse to

the beginning of the next one). h∗
ϖ (t) is the output of the sampler. Each pulse of p(t)

may be written as the difference between two unit step (Heaviside) functions (u(t)),
ϖ seconds apart, located at nTs for the nth pulse. In mathematical form,
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p(t) =
∞

∑
n=−∞

[u(t −nTs)−u(t −nTs −ϖ)] (3.22)

where ϖ < Ts and the unit step or Heaviside function is defined as,

u(t)
Δ
=

{
1 ∀ t ≥ 0

0 ∀ t < 0
(3.23)

p(t) has sharp edges and is basically a square wave. Therefore, its Fourier Trans-

form has many harmonic components, making the resulting output of the samples a

harmonic generator. Chapter 24 shows that the complex Fourier series is defined for

periodic functions. p(t) is a periodic function with period Ts and within the funda-

mental period, it is defined as,

p(t) =

{
1 ∀ 0 ≤ t ≤ ϖ
0 ∀ ϖ < t < Ts

(3.24)

Take the definition of the complex Fourier series, Equations 24.325 and 24.326.

Also note that the pulse train, p(t) has the period [0,Ts], in contrast with [−T,T ] used

in the definition. Therefore, the complex Fourier series expansion of p(t) becomes,

p(t) ≈
∞

∑
−∞

cne
i 2nπ

Ts
t (3.25)

where,

cn =
1

Ts

ˆ Ts

0

p(t)e−i 2nπ
Ts

t
dt (3.26)

Using Equation 3.24, we may rewrite Equation 3.26 as follows,

cn =
1

Ts

[ˆ ϖ

0

1 · e
−i 2nπ

Ts
t
dt +

ˆ Ts

ϖ
0 · e

−i 2nπ
Ts

t
dt

]
=

1

Ts

ˆ ϖ

0

e
−i 2nπ

Ts
t
dt

=
1

Ts

ˆ ϖ

0

e−inωstdt (3.27)

Performing the integration in Equation 3.27, we have,

cn =
1

Ts

1

−inωs

e−inωst

∣∣∣∣ϖ
0

=
1

Ts(−inωs)

[
e−inωsϖ −1

]
= −ϖ

Ts

1

inωsϖ
[cos(nωsϖ)− isin(nωsϖ)−1] (3.28)
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Note the following double angle relations,

sin(2θ) = 2sin(θ)cos(θ) (3.29)

cos(2θ) = cos2(θ)− sin2(θ) (3.30)

= 1−2sin2(θ) (3.31)

Using Equations 3.29 and 3.31, we may rewrite Equation 3.28 as follows,

cn = −ϖ

Ts

1

inωsϖ[
�1−2sin2

(
nωsϖ

2

)
− i2sin

(
nωsϖ

2

)
icos

(
nωsϖ

2

)
��−1

]
(3.32)

= −ϖ

Ts

1

inωsϖ

[
−2sin

(
nωsϖ

2

)(
sin

(
nωsϖ

2

)
+ icos

(
nωsϖ

2

))]
(3.33)

=
ϖ

Ts

sin
(

nωsϖ
2

)(
nωsϖ

2

) [
isin

(
nωsϖ

2

)− cos
(

nωsϖ
2

)
−1

]
(3.34)

=
ϖ

Ts

sinc

(
nωsϖ

2

)[
e−i nωsϖ

2

]
(3.35)

If we plug Equation 3.35 into Equation 3.25, we will have the following expression

for p(t),

p(t) ≈ ϖ

Ts

∞

∑
n=−∞

sinc

(
nωsϖ

2

)
e−i nωsϖ

2 einωst (3.36)

=
ϖ

Ts

∞

∑
n=−∞

sinc

(
nωsϖ

2

)
einωs(t−ϖ

2 ) (3.37)

Using Equation 3.37 in 3.21,

h∗
ϖ (t) =

∞

∑
n=−∞

cnh(t)einωst (3.38)

=
ϖ

Ts

∞

∑
n=−∞

h(t)sinc

(
nωsϖ

2

)
einωs(t−ϖ

2 ) (3.39)

Based on the definition of the complex Fourier transform given by Equations 24.390

and 24.391, let us write the transform of h∗
ϖ (t),

H∗
ϖ (ω) =

ˆ ∞

−∞

h∗
ϖ (t)e−iωtdt

=

ˆ ∞

−∞

h(t)p(t)e−iωtdt

=

ˆ ∞

−∞

h(t)

(
∞

∑
n=−∞

cneinωst

)
e−iωtdt

=
∞

∑
n=−∞

cn

ˆ ∞

−∞

h(t)einωst e−iωtdt (3.40)
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Using the shifting theorem for the Fourier Transform (see Section 24.9.4),

H∗
ϖ (ω) =

∞

∑
n=−∞

H(ω−nωs) (3.41)

where H(ω) is the complex Fourier transform of h(t).

Since the range of n is [−∞,∞],

H∗
ϖ (ω) =

∞

∑
n=−∞

H(ω +nωs) (3.42)

This shows that the sampling process has produced higher harmonics at n �= 0. If

we only consider the part of Equation 3.35, where n = 0, we have,

c0 =
ϖ

Ts

(3.43)
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Fig. 3.23: Magnitude of the complex Fourier series coefficients of a uniform-rate fixed
pulsewidth sampler

Therefore, the part of the Fourier Transform of the output evaluated for n = 0 is,
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H∗
ϖ |n=0(ω) = c0H(ω)

=
ϖ

Ts

H(ω) (3.44)

which shows that the sampled output has an amplitude which is scaled by ϖ
Ts

from

the Fourier Transform of the signal itself. Also, the magnitudes of the �complex

Fourier coefficients are,

|cn| =

∣∣∣∣sinc

(
nωsϖ

2

)∣∣∣∣ ∣∣∣e−i nωsϖ
2

∣∣∣
=

∣∣∣∣sinc

(
nωsϖ

2

)∣∣∣∣ (3.45)

Figure 3.23 shows a plot of |cn|.

Equation 3.45 enables us to compute an upper bound for the magnitude of the

sampled output as follows,

|H∗
ϖ (ω)| =

∣∣∣∣∣ ∞

∑
n=−∞

cnH(ω +nωs)

∣∣∣∣∣
≤

∞

∑
n=−∞

|cn| |H(ω +nωs)| (3.46)

3.6.1 Ideal Sampler

Consider the finite pulse width of the sampler given in Equation 3.22 and make it

small such that it approaches 0. Then, the pulse train, p(t) will change to the impulse

train, I(t) as follows,

I(t) =
∞

∑
n=−∞

δ (t −nTs) (3.47)

Therefore, the output of the sampler will be,

h∗(t) = h(t)I(t)

= h(t)
∞

∑
n=−∞

δ (t −nTs) (3.48)

Taking the complex Fourier transform of h∗(t),
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H∗(ω) =

ˆ ∞

−∞

h∗(t)e−iωtdt

=

ˆ ∞

−∞

h(t)
∞

∑
n=−∞

δ (t −nTs)e
−iωtdt

=
1

Ts

∞

∑
n=−∞

H(ω−nωs)

=
1

Ts

∞

∑
n=−∞

H(ω +nωs) (3.49)

Sampling when ϖ has a finite width, the amplitude of the output spectrum, |H∗
ϖ (ω)|

decreases as ω increases (see Figure 3.23). However, based on Equation 3.49, the

amplitude of all the harmonics of the spectrum of the sampled signal are equal, i.e.,
1
Ts

.

Note that for the case when the sampling angular frequency is greater than twice

the Nyquist critical angular frequency (ωs > 2ωc), it means that applying a low

pass filter to the sampled data with a cut-off angular frequency of ωc will produce

the original signal. However, if ωs < 2ωc, then, there will be some distortion present

in the filtered signal from the leakage of the overlapping side-bands of the sampled

spectrum, H∗(ω). This overlap is called aliasing and the output signal will portray

a different frequency from the original signal. This output frequency is called the

alias frequency. The limit, ωs
2 is called the folding frequency. When there is over-

lapping of the higher harmonics with the fundamental portion of the spectrum, the

effect is called folding.

Figure 3.24 shows the reflection of two poles marked by × on the Laplace plane.

The poles are folded to the higher frequencies in nωs intervals. This manifests itself

as a term of ±2nπi added to the polar representation in the z plane.

There are several other errors related to sampling. These are aliasing, truncation

error, jitter, and finally partial loss of information. Let’s take a look at these errors

and try to analyze them in such a way that we would minimize their effect.

3.6.2 Aliasing

Figure 3.25 shows a short segment of speech which starts with high frequency com-

ponents. The sampling rate used in this case was 22kHz. Most of the activity in the

first 0.15 seconds of the speech is between 4kHz and 10kHz. Since the sampling

rate is higher than twice the highest component of the signal, we see this activity.

In Figure 3.26, the data has simply been sampled at 1
4 of the sampling frequency of

Figure 3.25. Notice the high frequency component present in the waveform repre-
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Fig. 3.24: Reflections in the Laplace plane due to folding of the Laplace Transform of the
output of an ideal sampler – x marks a set of poles which are also folded to the higher
frequencies

sentation of Figure 3.26. This high frequency component shows up as leakage into

the low frequency region of the spectrogram. Although the 22kHz sampling of the

signal did not show much energy in the 0 − 4kHz band, in Figure 3.26, this band

does shows some high energy. This leakage is due to the aliasing effect described at

the end of the previous section.

To remedy the aliasing problem, the data should be passed through a low-pass

filter (as discussed earlier). The low-pass filter ensures that the high frequency com-

ponents of the signal are removed before sampling takes effect. This filter is some-

times called an anti-aliasing filter. The cut-off frequency of this filter should be less

than or equal to the Nyquist critical frequency of the new sampler. Therefore, in

this case, since the new sampling rate is 5512Hz, the cut-off frequency of the anti-

aliasing low-pass filter should be at most 2756Hz.

Figure 3.27 shows the result of sampling with a rate of 5512Hz after passing the

data through a low-pass filter with the cut-off frequency of 2756Hz. Notice that the

high frequency component is no longer present in the waveform representation of
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the signal in Figure 3.27. Also, there is no high-energy component in the 0−3kHz

band.
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Fig. 3.25: The first 1
2 second of the signal in Figure 3.28
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Fig. 3.26: Original signal was subsam-
pled by a factor of 4 with no filtering
done on the signal
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3.6.3 Truncation Error

Consider the reconstruction equation of the sampling theorem, Equation 3.17. In

practice, it will not be feasible to compute the whole infinite series. One method is

to truncate the summation to go from −N to N instead of going from −∞ to ∞. In

doing this, we will be computing 2N + 1 terms of the summation resulting in the

following approximation to the signal,

h(t) ≈
N

∑
n=−N

hnsinc(ωct −nπ) (3.50)

subtracting Equation 3.50 from Equation 3.17 we obtain the expression for the trun-

cation error, Et ,

Et =
∞

∑
n=−∞

hnsinc(ωct −nπ)−
N

∑
n=−N

hnsinc(ωct −nπ) (3.51)

There have been many different upper bounds given in the literature.[7] Here, we

include a general bound for a finite time interval, −τ ≤ t ≤ τ .[15] Reference [7]

reviews many other bounds which may have been developed for special cases of the

signal at hand. For a general bound, consider the power of the band-limited signal,

P ,

P
Δ
=

ˆ ωc

−ωc

|H(ω)|2 dω (3.52)

The truncation Error, E, is a function of t, bounded by the following expression,

|Et(t)| ≤
√

2

π
P
∣∣∣sin(

πt

Δ t
)
∣∣∣√ τΔ t

τ2 − t2
(3.53)

where the signal is being considered in the finite domain of −τ ≤ t ≤ τ and Δ t < 1
fc

.

Basically, we can be assured that |Et(t)| will always be smaller than the larger value

produced by the right hand side of Equation 3.53 depending on what is used for Δ t

given the restrictions.

Also, in case of the WKS Sampling theorem, [11] presented a least upper bound

for Et(t) for bandlimited signals with bounds on their energy. They reached the

important conclusion that a few percent of oversampling the signal produces signif-

icant improvement in error reduction.

Truncation error is usually not very significant for speaker recognition, since we

seldom reconstruct the sampled signal. However, we briefly covered it here, since

the indirect consequences of the results from reducing the reconstruction errors help
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in choosing the correct sampling strategy.

3.6.4 Jitter

There are two types of jitter with which we are faced, in the processing of speech.

Here, we call them micro-jitter and macro-jitter. Recall that the WKS sampling the-

orem deals with a period sampling rate. It means that the sampling period must be

fixed for the theory to hold. There are extensions to the sampling theorem such as

those due to Papoulis [13] which deal with non-uniform sampling rates (see Sec-

tion 3.1.3). However, the theory being used throughout this book and with most

practical systems, relies on uniform sampling (periodic sampling).

Given this restriction, whenever there is the slightest discrepancy in the timing of

the samples, the resulting error in the signal reconstruction (signal representation)

is called jitter. We call this type of jitter, micro-jitter, based on the fact that it is

at the lowest possible level, namely the sample level. Equation 3.54 represents the

micro-jitter error (E j) of a sample:

E j(n) = h(Ts − τ j(n)) (3.54)

where Ts
Δ
= 1

fs
and

∣∣τ j(n)
∣∣� Ts. τ j(n) is the jitter in the sampling time for sample n.

The second kind of jitter happens in network-based telephony or other types of

audio systems (such as video conferencing). In this case, the timing difference is

not at the sample level, but it is more on the packet level. Most network-based au-

dio transmission protocols are asynchronous and do not guarantee that the packets

would arrive at the same time. When this happens, it is natural for the packets that

arrive earlier than their predecessors to be held until a later time for presentation.

This is done at the remote end (receiving end) in the capacity of a buffer, called

a jitter buffer. Jitter buffers will add more delay to the overall delay of the system

since they hold on to packets for later retrieval. The larger they are, the more the

packets may be delayed, but also there is less of a chance of a packet loss.

You may have experienced something similar to this when automobile CD play-

ers had first entered the market. Expensive memory meant that only a few seconds

of audio could be buffered for jitter mitigation. Some may recall that the larger the

buffer, the more expensive the CD players were. This is a very similar idea, so that

when the car hit a bump and the CD reader lost its place for a brief moment, the

buffer would use the information it had read earlier and played it back so that there

was no interruption in the audio. If the buffers were too small, large puddles would

still cause an interruption in the playback of audio.
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Since this type of jitter relates to delays and timing differences at a macro level,

namely at the packet level, we call it a macro-jitter to distinguish it from the micro-

jitter, introduced earlier.
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Fig. 3.28: “Sampling Effects on Frica-
tives in Speech” (Sampling Rate: 22
kHz)
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Fig. 3.29: “Sampling Effects on Frica-
tives in Speech” (Sampling Rate: 8 kHz)

3.6.5 Loss of Information

It is worthwhile noting that the speech signal is not band-limited, at least to the

extent that we usually sample it. Typical sampling rates used in speech processing

systems go from about 8-kHz upwards, but they seldom go past 22-kHz per chan-

nel for speaker recognition tasks. The actual speech signal has a much wider band.

Fricatives can produce frequencies upward of 30-kHz and our ears are usually ca-

pable of hearing signals to those frequency levels. This means that we would have

to sample each channel of speech at 60+ kHz to maintain most of the information.

Figures 3.28 and 3.29 show the spectrogram of an utterance with some fricatives

sampled at 22-kHz and 8-kHz respectively. Notice the significant amount of infor-

mation which is lost in the higher harmonics of the audio. Therefore, even if we

try to avoid all the types of errors listed in the previous sections, we usually lose a

significant amount of information to limitations of the sampling rate. This problem

will probably be corrected as time progresses, since the computational power, cost

of memory, and quality of the telecommunication infrastructure keep improving,

making it possible to use higher sampling rates in the speech acquisition appara-

tuses. Once we can comfortably sample speech at 96kHz and transmit it with ease,

the problems reported in this section will no longer be significant.
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Chapter 4

Phonetics and Phonology

Language is a form of human reason, and has its reasons which

are unknown to man.

Claude Lévi-Strauss

The Savage Mind (Chapter 9), 1962

According to Summer Institute of Linguistics (SIL International) [20], the linguis-

tic hierarchy from one of the leaves to the top is as follows, Phonetics, Phonology,

Morphology, Syntax, Semantics, and Pragmatics. In Chapter 2, we reviewed the

anatomy of the human speech production and perception. In this chapter we will

start by exploring the range and limitations imposed by the speech production sys-

tem, so called phonetics. Then, we will follow to a higher level in the hierarchy by

studying how sounds are organized and used in human languages, so called Phonol-

ogy, along with the rest of the hierarchy which we will call linguistics as a whole. In

the last part of this chapter, we will pay specific attention to suprasegmental1 flow

of human speech called prosody. This is to give the reader a basic understanding of

the types of sounds produced by the vocal tract. Of course, as with many of the other

topics covered in this book, we will only scratch the surface and will concentrate on

portions of the discipline that are more directly relevant to the speaker recognition

task.

4.1 Phonetics

This section is concerned with the phonetic aspects of speech. In choosing the areas

of coverage, we have had speaker recognition in mind, although this section is quite

useful for other speech related disciplines such as speech recognition and speech

synthesis. Let us begin with the definition of Phonetics.

Definition 4.1 (Phonetics). The term Phonetics refers to the study of sounds which

are produced by the human vocal system regardless of their associated languages.

1 Suprasegmental features of speech are those which surpass the segment boundaries – phone and
phoneme boundaries.
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We will start by defining the elementary segments in speech. The following def-

initions have subtle differences which depend on the perspective of interest.

Definition 4.2 (phone). Phones are elementary sounds that occur in a language.

In another perspective, phones may be viewed as the smallest segments of speech

in a linguistic viewpoint with distinct vocal patterns.

Definition 4.3 (Phoneme). Phonemes are semantically significant sounds that oc-

cur in a language.

Another perspective would consider phonemes as the smallest conceptual seg-

ments of speech in a linguistic viewpoint which may encompass several vocal vari-

ations with the same objective.

Definition 4.4 (Allophone). Allophones are different phones which convey the same

phonemic information.

To distinguish these three concepts, take the English word, pop. There are two ps

in the word with the first p being aspirated (followed by the release of a puff of air).

We write this as ph in a phonetic representation. The second p is not aspirated, so

it is just written as p in phonetic representation. However, they are both represented

as p in a phonemic representation. Thus, the phonetic transcription of the word is

phop. In English the aspiration does not change the meaning of p, so ph and p,

although different phones, are considered to be instances of the same phoneme. In

some languages such as most Indian languages (e.g., Sindhi), interchanging ph and

p changes the meaning of the word. Thus, they are considered as separate phonemes

in these languages.

In general, any sound contains three main components. The type of sound which

is resonant and periodic can be seen in a spectrogram through the apparent activity

of the different formants. Most of these periodic sounds are a product of the vi-

bration of the vocal folds by tightening, but keeping them slightly open so that air

may pass through the small opening and generate the resonance associated with the

mode of vibration of the folds combined with the resonance chamber of the vocal

tract above them. Some other period generators also exist in the vocal tract, so peri-

odic sounds may be generated by other means than the vocal folds as well. Another

major category of sounds is composed of those which are produced due to turbu-

lent air flow and contains a full spectrum of different vibrations. A third category is

related to impulsive sounds. These are categorized by a very brief burst of energy

which quickly drops off. Please note that these categories apply to all the sounds

being generated by the vocal system and should not be confused with the phonation

categories which will be described later.

According to Laver [9], there are four major elements of speech production, ini-

tiation, phonation, articulation, and coordination. All these elements contribute to
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the creation of speech.

4.1.1 Initiation

Initiation is a function of the airstream mechanism and the direction of airflow. The

airstream may be either pulmonic, glottalic, or velaric. The pulmonic airstream is

initiated from the lungs. When the glottis is closed, the glottalic airstream is initi-

ated by the vertical motion of the larynx. This produces voiceless sounds. It can also

vibrate, in which case it produces voiced sounds through the alternating pressure

differential in the vocal tract above it. When the tongue initiates the air pressure dif-

ferential in an air-filled cavity, the airstream is called velaric. For any of these three

initiation airstreams, the air may move outward, in which case it is called egressive,

or inward, which is called ingressive.

A glottalic egressive sound is called an ejective sound and in contrast, an ingres-

sive glottalic sound is called, implosive. Velaric ingressive sounds are called clicks.

Clicks may be combined with voiced pulmonic egressive sounds to create voiced

clicks – see Section 4.1.9.1. Voiced implosives are a product of the combination of

the pulmonic egressive voiced sounds and glottalic ingressives.

4.1.2 Phonation

Phonation deals with the acoustic energy generated by the vocal folds at the larynx.

The different kinds of phonation are unvoiced, voiced, and whisper.

Unvoiced phonation may be either in the form of nil phonation which corre-

sponds to zero energy or breath phonation which is based on relaxed vocal folds

passing a turbulent air stream.

Majority of voiced sounds are generated through normal voiced phonation which

is basically when the vocal folds are vibrating at a periodic rate and generate certain

resonance in the upper chamber of the vocal tract. Another category of voice phona-

tion is called laryngealization (creaky voice). It is when the arytenoid cartilages fix

the posterior portion of the vocal folds, only allowing the anterior part of the vocal

folds to vibrate. Yet another type voiced phonation is a falsetto which is basically

the un-natural creation of a high pitched voice by tightening the basic shape of the

vocal folds to achieve a false high pitch.
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Whispered phonation happens when the speaker acts like generating a voiced

phonation with the exception that the vocal folds are made more relaxed so that a

greater flow of air can pass through them, generating more of turbulent airstream

compared to a voiced resonance. However, the vocal folds are not relaxed enough

to generate an unvoiced phonation.

4.1.3 Articulation

Articulation deals with three different notions. The first is the place of articulation

which is the location where the vocal tract has the most constriction. Secondly, the

degree of stricture is of interest. That is the amount of closure and the proximity of

it within the location of articulation. Thirdly, the aspect of articulation which is a

collection of higher level concepts such as factors related to conformation, topology

and transition. The following are some resulting phonations based on the manner

and degree of the stricture.

1. Stops – Maximum closure at some point in the vocal tract. Refer to Chapter 2.

There are two exits in the vocal tract. Depending on where the maximum stric-

ture takes place, the following two types of stops are possible, Oral and Nasal.

These may be further categorized based on the routing of the air into central

and lateral stops.)

a. Oral

b. Nasal

2. Fricatives – This happens when the stricture is such that it is slightly open so

that the air stream is partially obstructed and a turbulent flow develops making

many high frequency components in the signal. Most fricatives have a frequency

content of more than 4kHz. Examples are /s/, /f/, and /S/.

a. Normal – These are the more nominal fricatives which although they have

quite a good coverage of higher frequencies, still possess more of turbulent

nature with higher air flow so that the pitch does not surpass the limits of

audible range. An Example is /f/ in English.

b. Sibilant – These are fricatives with exceptionally high pitched sounds such

as /s/ and /S/ in English.

3. Resonants – Resonant flows are those which are produced by the passing of

the air stream through a tight opening producing vocal harmonics. These are

categorized into centrally and laterally resonant sounds.

a. Central Resonants – These are sounds for which the air flow passes through

the central part of the vocal tract and the resonance stricture. Most sounds,

especially in English are of this kind.
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i. Vocoids (Syllabic) – These are central resonant vocoids (non-contoids)

which mostly include vowels and some glides. Vowels may have a sta-

ble medial phase of resonance (see Laver [9]) in which case they are

known as monophthongs, or they may have a transitional medial phase

in which case they are called diphthongs. Triphthongs are also seen in

English such as in the word, [flower]. Triphthongs are similar to diph-

thongs, except there are two transitions and three stable regions in the

transition.

ii. Approximants (Nonsyllabic) – nonsyllabic central resonance phona-

tions such as initial sounds in the English words [you] /ju/ and [want]

/wAnt/.

b. Lateral Resonant Contoids – These are lateral resonant sounds which

means that they are generated by the diversion of the air stream to a lat-

eral part of the vocal tract for stricture. /l/ in [leaf] /lif/ is a lateral resonant.

In this example, although the front of the mouth is constricted by the tip

of the tongue, the air flows out of the sides of tongue creating the gliding

sound in /l/.

4. Affricates – This is a compound stricture which is made up of a stop followed by

a homorganically generated fricative2. An example is the word [Tsunami]. The

ts is an affricate which is made up of the stop /t/ followed by the short fricative

/s/. Other examples are the / ǰ/ and /č/ sounds in English words such as [John]

and [Charles].

5. Trills (Rolls) – This is a low frequency motion of one articulator with respect

to another where there is a slight flapping effect at the close proximity points.

Examples are the way the Scottish pronounce words starting with r such as the

word [royal] or the pronunciation of the long [r] sound in Spanish.

6. Flaps and Taps – A sound created by a quick collision of one articulator against

another. A slow collision in passing, would be called a flap and a quick almost

impulsive collision would be a tap. Examples are different usages of /t/ in En-

glish and Indian languages.

4.1.4 Coordination

Coordination is the temporal and collaborative nature of articulatory organs in uni-

son to produce an advanced sound. The concept of coordination is interconnected

with articulation and cannot be separated. It generally involves neighboring articu-

lators due to physiological restrictions, but it may be associated with farther articu-

lators such as the combination of velar ingressives and pulmonic voiced egressives

shown in Table 4.1 for Nama.

2 This means that the fricative is generated at the same location as the point of the stop.
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As we have seen, there are many overlapping possibilities for classifying phones,

depending on the initiation, phonation, articulation and coordination. Rather than

the prolific subcategorization of each of the noted segments which will produce

many overlapped segments of parts of speech, we prefer to categorize the sounds

based on a combination of articulatory classes first relying on the location of articu-

lation, followed by the type of coordination and then phonation and degrees of stric-

ture. To start, we will cover vowels, which are the most important elements used in

conducting speaker recognition due to their resonant nature, using the phonation cat-

egorization. Afterwards, consonants are split into two major groups of pulmonic and

non-pulmonic (utilizing the initiation categories with some modifications). Within

the pulmonic category of consonants which is the largest one, subcategories are

based on coordination and degree of stricture (a subclass of articulation).

In the following few sections, we will try to produce the phonetic transcription of

the sounds of interest using the International Phonetic Alphabet (IPA) [8], whenever

we discuss phones. Of course because of technical reasons, at some instances, we

were forced to use similar representations. An effort has been made to give compre-

hensive examples in English or other popular languages so that the reader would be

able to grasp the subtleties without having the need to jump back and forth between

references.

4.1.5 Vowels

Voiced and voiceless vowels exist. Here we will discuss voiced vowels. Voiceless

vowels exist in some languages like Amerindian languages 3 such as Comanche

and Tlingit (Alaska). There are other old languages with voiceless vocoids. See

Section 4.2.2 for a more detailed discussion.

The Most important part of the anatomy used for generating different vowels

is the tongue. The basic oscillations come from the partially opened vocal folds.

The tongue manipulates higher harmonics to develop different vowels. In addition,

the amount of roundedness of the opening of the lips is a factor in determining the

sounds of vowels. The tongue contributes in two ways. The height of the body of

the tongue is one and its position relative to the front and back of the month is an-

other. The combination of the tongue shape and position, with the roundedness of

the opening of the lips changes the first and second formants (second and third har-

monics).

[18] conducted a series of experiments on 10 common vowels in the English lan-

guage. 33 men, 28 women and 15 children (a total of 76 speakers) were asked to

3 Languages spoken by native inhabitants of the Americas.
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say 10 words (two times each) and their utterances were recorded. The words were

designed to examine the 10 vowels in context of an h to the left and a d to the right,

namely, hid, hId, hEd, hæd, hAd, h@d, hÚd, hud, h2d, and hÇd. [8] includes a CD-

ROM with the pronunciation of these vowels.
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Figure 4.1 shows that there is little deviation in the fundamental frequency for

an individual. Consider a man, a woman and a child as representatives of the total

population. Note that the fundamental frequency (formant 0) does not change much

for different vowels. This is the fundamental frequency of the vocal tract based on

a normal opening of the vocal folds when one is producing a vowel. However, for-

mants 1 and 2 do vary considerably depending on which vowel is being uttered (see
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Figures 4.2 and 4.3). Formant 3 does not change significantly for different vowels

(see Figure 4.4). This is the basis for the, so called, formant triangle which defines

different vowel locations as a two-dimensional function of formants 1 and 2 (Fig-

ure 4.8). Of course, it is really a trapezoid and not a triangle, but it is called a triangle

due to legacy. Front (ī – in) Mid (ā – father) and Back (o – obey).
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It is notable that children’s vocal tract lengths are different from those of adults

and the relative locations and sizes of the articulators, the larynx, the shape of the

vocal tract create completely different resonant chambers. For this reason, the ar-

ticulation method of children for generating the same vowels as adults, differ sub-
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stantially. As they grow, however, they constantly relearn the articulation techniques

to achieve similar outcomes. These changes are tantamount to shifts in the formant

triangle (trapezoid) as the children readjust for the new manner of articulation.

Vowels are not so important in speech recognition, but are of utter importance

in speaker recognition. The reason is that the goal of speech recognition is to con-

solidate all speakers into one model and to be able to understand the contents of

what is being said. On the other hand, speaker recognition’s aim is to differenti-

ate speakers and generally is uninterested in the content of speech. Of course, this

statement is only true to a certain degree – when we focus on the primary task of

speaker recognition. In the case of text-dependent speaker recognition, the content

becomes somewhat relevant, yet still secondary, compared to the primary goal of

modeling the speaker’s vocal system. Note that this discrepancy stems from the fact

that vowels contain most of the periodic parts of speech. Hence, vowels possess

more information about the resonance of the vocal tract, namely the fundamental

frequency and the formants.

• Vowels are very easy to recognize since they are all voiced and spectrally very

different.

• Formants may be easily used for recognizing vowels.

• Vowel triangle – plot of F1 (200Hz - 800Hz) vs F2 (800Hz-2400Hz) and you

will see a triangle which is called the vowel triangle.

4.1.6 Pulmonic Consonants

There are two major types of consonants, pulmonic and non-pulmonic. Pulmonic

consonants get their energy from the air stream that is generated in the lungs. Non-

pulmonic consonants, on the other hand, usually get their total energy from the

activities in the mouth itself. Most consonants are pulmonic. We will discuss non-

pulmonic consonants briefly in Section 4.1.9. The air stream that is produced in the

lungs may be used to produce different sounds depending on the location of the

sound production in the vocal tract and the different parts of the vocal tracts which

are used for the production.

Pulmonic consonants exist in a different variety. Some are voiced, which means

that there is some periodic vibration present in the production of the sound, trig-

gering formant activity. Some may be unvoiced, which means that the air stream is

somewhat turbulent and the vibrations are not as periodic as the voiced counterpart.
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4.1.6.1 Glottal Sounds

This part, in combination with instantaneous changes in the state of the vocal folds,

closure and opening, is responsible for generating glottal sounds which exist in some

languages such as in Arabic, Hebrew, and Gimi (a language from central Papua-New

Guinea).[8] Of course, depending on the dialect, even English possesses certain glot-

talized sounds especially in some local accents in Britain in which plosives, /t/,

/p/, and /k/ are glottalized.[9] Also, the hard /h/ sound which comes after certain

vowels may be categorized as a glottal sound.

4.1.6.2 Epiglottal and Pharyngeal Sounds

Epiglottal and Pharyngeal sounds involve pulling the root of the tongue (epiglottis)

back toward the back wall of the pharynx.[8] It is physically impossible to produce

a nasal epiglottal or pharyngeal sound since it works using a constriction very low

in the vocal tract and that will stop the flow of air to the nasal passage. Pharyngeal

fricatives exist in Semitic languages such as Arabic and Hebrew. Examples of Ara-

bic words with these sounds are the word for “beloved,” /èabib/ and the word for

“powerful,” /Qziz/.

4.1.6.3 Uvular Sounds

Uvular sounds are /q/, /G/, nasal version of them and /N/. They do not exist in most

English dialects. They are quite prominent in Eskimo and other Amerindian lan-

guages, Semitic languages, and some Indo-European languages such as Persian and

French. An example in French is the sound of /r/ in the word, [Paris] pronounced

in the French language, which is a trilled uvular sound. Example of /N/ is the word

[ni.hon] which in Japanese means Japan. Another example is the Quechua4, [q’aLu],

meaning “tomato sauce.”[8] An example in Persian is the word for frog, [qurbāqe].

4.1.6.4 Velar Sounds

In producing Velar sounds, the back of the tongue touches the soft palate. Examples

are /k/, /g/, /η / and /x/. Take the English word, sing for instance. The “ng” produces

a velar consonant, /η /. /η / is a Velar nasal. /k/ and /g/ are Velar stops. /x/ is a Velar

fricative. It has been lost in modern English, but it does exist in Dutch and German.

4 An American Indian language spoken in Bolivia, Chile and Peru
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An example in German is the name of the music composer, Bach.

4.1.6.5 Palatal Sounds

Palatal sounds are generated using the front of the tongue against the hard palate

while the tip of the tongue is behind the lower front teeth. An example in English is

the word, hue. Another example in German is the word, ich.[8]

4.1.6.6 Retroflex Sounds

These sounds are produced by curling the tip of the tongue upward and touching

the back of the alveolar ridge (see Section 2.1.5) while touching the sides of the

tongue against the side-upper teeth, then releasing a high-speed, steady flow of air

into the enclosed cavity. This would create a low frequency flapping (compared

to mean speech wave frequencies) of the tip of the tongue against the back of the

alveolar ridge. An example of such sounds is one that is created by saying words

with hard /r/ sounds in English. Of course, most British English pronunciations of

words with /r/ do not come out as a retroflex. As mentioned, it is a hard /r/ sound

with quick flaps of the tongue on the alveolar ridge. Irish and Scottish, and some

American dialects use more pronounced retroflexes.

4.1.6.7 Alveolar Sounds

These are sounds which are made by placing the upper tip of the tongue on the alve-

olar ridge of the roof of the mouth (see Section 2.1.5). In English, these sounds are

produced in pronouncing words that contain, /t/, /d/, /n/, /s/, /z/, and /l/.

4.1.6.8 Palato-Alveolar Sounds

These are produced by the use of the tongue blade against the back of the alveolar

ridge. The production process is pretty much similar to that described for the pro-

duction retroflexes, with the exception of the part of the tongue that is used and the

frequency of the vibration of the tongue against the alveolar ridge. An example is

the sound that the combination of characters, /S/ [sh] makes such as in the word,

show. Another example is the sound /Z/ [zh], like the sound that [s] makes in the

word, vision.



118 4 Phonetics and Phonology

It is interesting to note the differences and similarities between palato-alveolar

sounds and retroflex sounds. In fact a good example of a sound that is in between

the two which may be thought of, in the form of a transition between a retroflex and

a palato-alveolar sound is the Czech sound of /rfl/ (ř) such as in the famous Czech

music composer’s name, Dvořak. It is often quite hard for English speakers to pro-

nounce and is often pronounced as the /Z/ sound which is a palato-alveolar sound,

as we mentioned earlier.

4.1.6.9 Post Alveolar Sounds

Since /S/ (sh) and /Z/ (zh) are made more toward the front of the alveolar ridge when

compared to /s/ and /z/ (alveolar sounds), they may also be called post alveolar

sounds. Therefore, palato-alveolar sounds are also post alveolar. But a retroflex is

also a post alveolar sound. So post alveolar sounds are a superset of the two types of

sounds. Please note the example of ř given in Section 4.1.6.8 which shows another

post alveolar sound that is in between being a retroflex and a palato-alveolar sound.

4.1.6.10 Dental Sounds

Dental sounds are produced by the touching of the tip of the tongue against the

upper teeth and puffing air through so that a turbulent high frequency vibration is

generated at the tip of the tongue against the upper teeth. Examples are the /�/ (/dh/)

sound at the beginning of the word, though and the /θ / (/th/) sound at the beginning

of the word, thorax.

4.1.6.11 Labiodental Sounds

Labiodental sounds, as the name suggests are produced using the lips and the teeth.

It is usually the upper lip and the lower teeth with a turbulent air flow going through

the small openings which are left. Examples in English are /f/ and /v/, such as in the

words, father and voice.

4.1.6.12 Bilabial Sounds

Bilabial sounds are usually stops. They are produced by closing the lips, building up

pressure in the mouth and then releasing the lips for an impulsive sound. Examples

in English are /p/, /b/, and /m/ which are the unvoiced, voiced, and nasal versions of
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bilabial sounds, respectively.

4.1.7 Whisper

A good example of an egressive pulmonic whisper in English is the sound that an

[h] makes in the word home. The beginning of the word starts out with a whisper

sound /h/ and then continues to the sound of [o] which is a vowel, therefore it is

voiced. Some non-native speakers of English such as the French, do not pronounce

the whispered [h] and usually start with the voiced phonation of [o], so they would

pronounce it as [ome].

4.1.8 Whistle

The Spanish Silbo (Silbo Gomero) language which is used by the inhabitants of

La Gomera in the Canary Islands is solely based on a collection of whistles. It is

based on a dialect of Spanish and only retains the tonal parts of the language. This

language was developed to be able to communicate across mountainous regions. In

general, spoken languages have a range of about 40 meters. If they are shouted, the

range may be increased to about 200 m. However, whistles can travel about 550 m

and more. It has 5 vowels and 4 consonants. The 5 vowels, /i/, /e/, /a/, /o/, and /u/

are generated by reducing the pitch from the highest (/i/) to the lowest (/u/) in the

order given above. Only good whistlers can produce perceptually different sounds

for /o/ and /u/ by lowering the frequency substantially. In the whistled domains,

consonants are basically transient points between vowels. These are produced by

modulating the prior and posterior vowels.[13]

The bird language of Kuskoy in Turkey is spoken by about 1000 according to a

British Broadcasting Corporation (BBC) article [14] and is composed of 29 different

whistle phones, one for each of the Turkish alphabet. This means that they may ba-

sically speak any Turkish word using this dialect. The name of their village, Kuskoy,

literally means bird village. There are also whistled dialects of Greek, Siberian

Yupik and Chepang [13]. Yupik and Chepang are non-tonal languages which by

adopting whistle sounds have added tonality to these dialects. There are also whis-

tled dialects of West African languages such as Yoruba and Ewe. In Africa some

whistled dialects of French are also present.
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4.1.9 Non-Pulmonic Consonants

In this section we discuss the non-pulmonic sounds including glottalic, velaric and

combinations. One major group of non-pulmonic initiations are velaric airstreams

which are mostly made of clicks.

4.1.9.1 Clicks

Clicks velaric sounds which are present mostly in South African languages such

as Nama and Zulu. Although they are velaric phonations, they may be combined

with pulmonic and glottalic phonations. Nama is a South African language. Lade-

foged [8] has included a recording of 20 different variations of clicks in the accom-

panying CD-ROM of his book by a Nama native speaker. In Table 4.1, we have

generated spectrograms for selected regions of the recordings to show the different

shapes the formants take as well as the energy distribution across the different fre-

quency bands. Also, see Figure 4.9 for an Indo-European example of a click.

Notice that there are certain clicks which display very low energy levels similar

to stops and some have a voiced characteristic, last longer and activate some major

formants in the speech. As far as speaker recognition is concerned, we have not had

much experience dealing with languages that use clicks. However, by examining

the spectrograms, it appears that they may not possess considerable speaker dis-

criminability. Normally, long voiced phonations are much more suited for this job

since they give a better reflection of the vocal tract characteristics of the speaker.

Clicks would probably be as effective as most stops and flaps are.

4.1.9.2 Voiced Implosives

Voiced implosives are ingressive glottalic phonations which are created by the neg-

ative relative pressure developed between the larynx and any higher constriction.

This is done by closing the upper articulator involved in the stricture and then low-

ering the larynx while the glottis is closed. The sound is created by releasing the

upper stricture so that atmospheric pressure may flow into the enclosed low pres-

sure cavity. The unvoiced version of implosives is quite rare, although it exists in

some Mexican languages (see Laver [9]).

It may seem that the above process does not allow for any voicing, however, the

voiced version is more prominent and it is achieved by combining the above pro-

cess with an ingressive pulmonic process to create resonance (voicing). According

to Laver [9], this exists in Zulu which is a South African language as well as West
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Table 4.1: Types of Clicks in Nama (South African Language)
Data was extracted from samples in the CD-ROM accompanying [8]

African languages such as Hausa and Margi.

4.1.9.3 Ejectives

Ejectives are egressive glottalic phonations which are based on the momentary clo-

sure of all the exits in the vocal tract including the glottis, the velum, and the mouth.

A pressure is built up and abruptly released. If the release is followed by a stop,

an ejective stop will be generated. On the other hand, having a small release at the

upper stricture will generate a fricative and with combination of the two an ejective

affricate. These are seen in many African languages and native languages of the
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Americas.[9]

4.2 Phonology and Linguistics

In the previous section we touched upon the different aspects of phonetics. Although

we had to refer to instances in different languages to clarify specific phones, in pho-

netics, the language dependence is only secondary. This part is left to Phonological

and at the higher level to Linguistic studies and reviews.

Definition 4.5 (Phonology). Phonology is the study of phonetics in the framework

of specific languages.

Phonology deals with the assessment of the significance of phonetics and their

inter-relation in a particular language or across different languages. It comes short

of studying syntax, semantics and pragmatics which are parts of linguistics. Mor-

phological aspects of words are sometimes considered in Phonology as well. Here,

we will take a closer look at language-specific aspects of phones and their distribu-

tion across world languages.

At the beginning of this chapter we defined phones, phonemes, and allophones,

so that the proper distinction may be made among them. Since our goal is to apply

our knowledge in this area to speaker recognition problem solving, we need to un-

derstand the variability of phones and phonemes across different languages so that

we would understand the potential dependencies upon languages when we speak

about a language-independent speaker recognition system, for instance.

4.2.1 Phonemic Utilization Across Languages

Laver [9] discusses and analyzes a vast study which was reported and discussed

by Maddieson [12] in 1984. This study was conducted across 317 languages and

found that about 70% of them possessed between 20 and 37 phonemes and aver-

aged around 31 total of phonemes per language within the 70%. As a reference,

note that Ethnologue [11] states the total number of living languages to be 6909 in

May of 2009. Therefore, although the numbers presented here are probably statisti-

cally significant, they undoubtedly do not paint the whole picture, but should be just

used as reference.

In this database, the least number of phonemes exists in Rotokas which is a

Papuan language containing only 6 consonants and 5 vowels. Hawaiian, a better
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well known language and most likely to have been heard by the majority of the

readers has the second smallest number of phonemes (8 consonants and 5 vowels).

To understand the amount of restriction such a limitation would pose, it would help

to look at how English words which have entered Hawaiian had to be modified to

be pronounced with the phonemes at hand. A very popular example is the phrase,

“Merry Christmas” which changes to “Mele Kalikimaka” in Hawaiian.

On the other side of the spectrum, we can see languages such as !Xũ, which is

a Khoisan language spoken in parts of Angola and Namibia, that possess the most

number of phonemes in this study, 141 phonemes in total (95 consonants and 46

vowels).[9]

Of course, we have to be very careful with these comparisons since they are

based on phonemes and not phones. For example, although the number of vowels is

reported to be only 5, there are also 9 diphthongs in the Hawaiian language and if the

long versions of the monophthongs and diphthongs are also counted, then the total

number of vowels, could be as many as 25 in total. So the number of vocoids from

a phonetic study is 25 versus 5 vowels in the phonemic study. In addition, the con-

sonants /t/ and /w/ can apparently take on shapes of /k/ and /v/ which makes these

allophones, increasing the number of phonetic consonants by 2 from the phonemic

consonants.
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Fig. 4.9: Persian ingressive nasal velaric fricative (click), used for negation – colloquial “No”
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In another example, recall that clicks mostly occur in African languages. How-

ever, clicks are also found in some unlikely languages in the form of colloquial

gestures. An example (Figure 4.9) is the very informal articulation for “No” in

Persian5, an Indo-European language. This is an ingressive nasal velaric fricative

which is sometimes combined with negative pulmonic pressure creating a pulmonic

ingressive instance. However, this information is not included in either phonetic or

phonologic descriptions of the language. Almost every language has similar inher-

ent sounds which are ignored by phoneticians.

The evolution of languages provides us with some interesting insights regarding

recognition in general (speech recognition and speaker recognition as a side-effect).

English provides a good example for clarifying the differences between phones

and phonemes. In English, the number of phones is 49. Rabiner and Jung [19] list

48 and we have added the triphthong which is in the word [flower]. Surely, with

more careful analysis one may come up with a few more phones and they usually

vary greatly by dialect. Here is the distribution of the 49 phones as a reference,

• 19 Vocoids: 12 Vowels, 6 Diphthongs and one Triphthong

• 4 Approximants: 2 Liquids and 2 Glides

• 21 Standard Consonants

• 4 Syllabic Consonants

• 1 Glottal Stop

But, phonologically, there are only 39 phonemes in English,

• 11 Vowels

• 4 Diphthongs

• 4 Semi-Vowels – 2 Liquids (w, l) and 2 Glides (r, y)

• 3 Nasal Consonants (m, n, ng)

• 6 Voiced (b, d, g) and Unvoiced (p, t, k) Stop Consonants6

• 8 Fricatives: Voiced (v, th, z, zh) and Unvoiced (f, θ , s, sh)

• 2 Affricates ĵ and ĉ

• 1 Whisper – h

Figures 4.10 through 4.24 show 15 different vowels and diphthongs in an Amer-

ican dialect of English.

To get an idea of other well-known languages, there are 27 (5 vowels and 16

consonants) phonemes in Japanese, 51 in Hindi (11 vowels and 40 consonants), and

5 Persian is the official language of Iran, Afghanistan and Tajikistan and is spoken in many other
countries such as Uzbekistan, India and China among others. The Persian word for the language
is Farsi. Some have mistakenly referred to the language as Farsi in English. See the definition of
Farsi in the Oxford English Dictionary online (http://www.oed.com) and note the 1984 reference
on this incorrect usage. It states, “It may not be too late to put an end to the grotesque affectation of
applying the name ’Farsi’ to the language which for more than five hundred years has been known
to English-speakers as Persian.”
6 In many languages, etymologically, we see transference between voiced and unvoiced phonemes.

http://www.oed.com
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Fig. 4.10: bead /bi:d/
(In an American Dialect of English)
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Fig. 4.11: bid /bId/
(In an American Dialect of English)
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Fig. 4.12: bayed /beId/
(In an American Dialect of English)
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Fig. 4.13: bed /bEd/
(In an American Dialect of English)

29 (6 vowels and 23 consonants) in Persian.

As we have seen, languages evolve using different capabilities of the human vo-

cal system. The extreme comparison would be between Rotokas (11 phonemes) and

!Xũ (141 phonemes). In most cases, though, the differences are a bit more subtle.

For example north Indian languages differentiate between aspirated and unaspirated

stop and English does not. Let us look at one of these subtle differences in the next

section which is an example that utilizes whisper.

4.2.2 Whisper

We discussed whisper in terms of its physiological and phonetic characteristics in

Section 4.1.7. Here, we will look at its importance in a phonological and linguistic
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Fig. 4.14: bad /bæd/
(In an American Dialect of English)
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Fig. 4.15: body /bA:dI/
(In an American Dialect of English)
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Fig. 4.16: bawd /b@:d/
(In an American Dialect of English)
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Fig. 4.17: Buddhist /b� dist/
(In an American Dialect of English)

sense.

Voiced Version Meaning Whispered Version Meaning

’mayakeki?u? He came to play ’mayake
˚

ki?u? He played and came on

?u’hanikiki?u? He came to fix it for him ?u’haniki
˚

ki?u? He fixed it for him and came on

?u’ni?acı̈ki?u? He came to advise him ?u’ni?acı̈
˚

ki?u He advised him and came on

Table 4.2: Examples of whispered alterations in Comanche – the circle under a vocoid
changes it to a whispered phonation

I most languages, whisper is only a form of phonation which is unique to a certain

set of phones such as the /h/ in English and can otherwise be used for silent phona-

tion. This form of silence is performed by relaxing the vocal folds and attempting

to utter the same voiced sounds. Due to its nature, only voiced phonations are al-
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Fig. 4.18: bode /bo� d/
(In an American Dialect of English)
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Fig. 4.19: booed /bu:d/
(In an American Dialect of English)
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Fig. 4.20: bud /b2d/
(In an American Dialect of English)
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Fig. 4.21: bird /bÇ:d/
(In an American Dialect of English)

tered. A special case exists in many Amerindian languages in which case, stating the

same statement two times with a simple swap of one of the vocoids with its whis-

pered version would produce two completely different meanings. Table 4.2 shows

some examples in Comanche7 [2]. Another such language is the Alaskan Tlingit [9].

4.2.3 Importance of Vowels in Speaker Recognition

Anyone who has experienced learning a new language or has spoken to non-native

speakers of his/her language knows that most advanced students of the new lan-

guage tend to do well with learning the proper phonation of consonants, but they

7 Comanche is a North American Amerindian language.
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Fig. 4.22: bide /bAId/
(In an American Dialect of English)
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Fig. 4.23: bowed /bA� d/
(In an American Dialect of English)
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Fig. 4.24: boyd /b@:d/
(In an American Dialect of English)

would have to work much harder to master vowels.

There is an interesting saying attributed to Voltaire8 which states that in etymol-

ogy vowels count for nothing and consonants for very little.”[3]

Assuming that this is a correct statement, vowels do not carry much speech con-

tent information so their variations are tolerated more by individuals speaking the

language. This, in fact, makes vowels more attractive from a speaker recognition

standpoint in contrast with speech recognition which will suffer from the variability.

As we mentioned in Chapter 3, in terms of spectral information, vowels provide

the most discriminative features. This fact could plague speech recognition and cer-

8 Apparently, this is nowhere to be found in any of Voltaire’s writings and may have other origins.
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tainly help speaker recognition systems.

4.2.4 Evolution of Languages toward Discriminability

The evolution of languages provides some interesting insights regarding speech

recognition principally and speaker recognition as a by-product. To understand the

evolution of languages and their importance to phonological features that are impor-

tant for speech and speaker recognition, consider the Persian language. It has had

three major phases in its life since over 2500 years ago, Old Persian [6] (circa 550

BCE-200 BCE), Middle Persian [4, 16, 17, 22] (circa 300 BCE-1000 CE) and Mod-

ern Persian (circa 800 CE-present). Old Persian was quite complex in certain lin-

guistic terms (at least in phonology, morphology and syntax).[6] Since the Persian

Empire (the longest running major empire), for a long time facilitated long distance

communications among as many as 28 major nations from Europe and Africa to

South and Central Asia, its main language became known to many nations who

were not native speakers. In fact, Flanagan starts, on the second page of book [5],

to talk about the voice communication tours of the time of Cyrus the Great in the

sixth century B.C. Persian had to quickly develop into a language that would be

easily learned by many foreign nationals.

This was mostly due to the intense commerce across the silk road because the

Persian were running most of the major caravans, had created in excess of 1100

caravansaries, created the first major international road (the Kings’ road) for com-

merce and communication and most of silk road passed through their territory.[1, 21]

As more nations tried to learn the language, the language evolved to become simpler

to learn, utter and understand. Old Persian [6] started out with a highly inflectioned

grammar, having 42 possible declensions for each noun (7 cases with 3 genders and

3 numbers)9. An example is the gender attribute in old languages such as French,

Arabic, and German. French and Arabic have two genders, male and female for all

things including inanimate objects. German has the extra neutral attribute, making

three genders, similar to Old Persian. In the evolution of the Persian language, this

was completely dismantled in Middle Persian and never returned in the modern set-

ting of the language, including the annihilation of all gender information. Middle

Persian and Modern Persian have no notion of gender, and in most cases have even

lost the number categorization (single, dual, and plural). There is not even any gen-

der in the narrow sense that English has preserved (he and she).

9 Noun Inflections In Old Persian are Nominative, Accusative, Instrumental, Ablative, Genitive,
Locative, and Vocative (Avestan which is another old Iranian language has an extra Dative form in
addition). The genders are Male, Female, and Neutral. The numbers are Singular, Dual, and Plural.
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With respect to the phonetic aspect, this language evolution continued to the

point that Persian has one of the most discriminative vowel systems among world

languages10. For a proof of this concept, see Figure 4.25 and compare it to Figure 4.8

for English. The 6 vowels of Persian are almost at the utmost extremes of the vowel

trapezoid. This means that their relative formants are at maximal separation. This

maximal distance between the mean values of the relative formant locations allow

for larger variances in these formants. If the trapezoid were more crowded or two

of the vowels were closer to each other, then speakers would not be allowed to have

too much variability in their utterance of each vowel. This lack of variability would

cause a more uniform phonation of the vowels, which as we mentioned, are the most

feature-rich parts of speech. Since nobody artificially designed Persian vowels to fit

this profile, it is interesting to note that language evolution has done that automati-

cally and the vowels have fallen into optimal positions for discriminability.

Fig. 4.25: Vowel Trapezoid for the Persian Language

In fact, today, English has the same role as Persian used to have throughout

ancient history. It is becoming simplified at such a fast pace that its effects are

felt within one life time. The gender in English, because of political correctness

10 For example, Japanese has a similar distribution of vowels with the exception that there is no
fine line between /2/ and /æ/ creating a less discriminative set.
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is slowly disappearing. Until the late twentieth century, to refer to a third person

without knowing the gender of that person, the words [he] or [his] would have been

used. Now, we are in an awkward transition period, where a word is needed that

would be neutral, but since [it] and [its] have been reserved for inanimate objects

and animals11, most people use the word [they] and [them]. So, [they] is, in an indi-

rect way, referring to a singular third person. This transition, has come about due to

new needs in the language. An older equivalent is the fact that English has lost most

of the gender information from its old days when it separated from other Germanic

languages such as German and Dutch. This may even be the reason for the success

of English in becoming an international language. If it required the extra effort of

learning gender information, maybe it would not have been as successful.

The above examples were produced in order to attain an understanding of how

fluid languages may be. As long distance communication becomes more prevalent

in the world, the number of languages will most likely decrease12. Also, as more

people speak with fewer languages, those surviving languages will simplify and be-

come easier to recognize. Easy recognition means more discriminability between

different sounds. As we mentioned before, the more sounds become discriminable

(especially vowels), the more optimal their positions become in the vowel trapezoid

in terms of separation. Since vowels are the most informative forms of articulation

for a speaker recognition system due to their resonant content, speaker recogni-

tion of these types of languages becomes simpler. This is due to the fact that the

smaller the number of vowels and the more optimally positioned the vowels, most

of the variability between two speech samples would be because of the variations in

speaker differences and not because of the arbitrary positioning of the formants.

4.3 Suprasegmental Features of Speech

Suprasegmental features of speech are those which surpass the segment boundaries

– phone and phoneme boundaries. To be able to discuss suprasegmental features, it

is important to define different segments in human speech. Phones or phonemes, as

we saw earlier, are the smallest linguistic segments of audio depending on the per-

spective. The next segments are coarticulatory segments which are made up of two

or more phones. Higher up in the chain, we have the syllabic segmentation followed

by lexical (word-based) segmentation. At a higher level, the segments may go on to

any larger segments all the way to a whole utterance.

11 [It] is another one of those references which is, now, only being used for inanimate objects and
is not seen acceptable for even animals for whom the gender is known.
12 The number of living languages according to the 16th edition of Ethnologue [11], published in
2009, is 6909 and according to its 15th edition was 6912.
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Any feature of speech that encompasses segments larger than the phonetic seg-

ments is called a suprasegmental feature. These features are categorized by type into

prosody, metrical features and temporal features. In the following few subsections,

we will be discussing these type of features in some detail.

4.3.1 Prosodic Features

Definition 4.6 (Prosodic Features). Prosodic features are suprasegmental features

which incorporate pitch and its variations and/or loudness and its variations.

There are two basic categories of prosodic features. We will be discussing the

pitch related features first and follow with coverage of the, so called, sonoric fea-

tures (loudness and its variations).

4.3.1.1 Pitch

Definition 4.7 (Pitch). Pitch is a perceived quantity which is related to the funda-

mental frequency of vibration of the vocals cords over some duration.

Section 5.1.1 presents a quantitative description of pitch. The fundamental fre-

quency of vibration of the vocal cords is, of course, a function of their shape and

tension, the air flow characteristics and the vocal tract configuration at the moment

of utterance. Therefore, pitch is an averaged concept. The duration over which pitch

is averaged is fuzzy and depends on the context in which it is used. An almost instan-

taneous value of pitch may be used for signal processing. Since speech is a dynamic

system and the frequency changes rapidly, averaging is practically unavoidable. An

example is when we speak about the pitch of a syllable, we may have in mind, the

mean value throughout the syllable or the moving average along the syllable. The

vagueness is usually clarified in the description of the context of usage. The term,

pitch, may also be used in absolute terms. For example, we may speak about a pitch

range, which means all values from a lower bound in the frequency domain to the

an upper bound.

Pitch levels and their variations can also be defined at different levels of segmen-

tation. In physiological terms, the speaker has an organic pitch range which is from

the lowest tone he can utter to the highest. However, most of us do not necessarily

utilize our whole organic pitch range in conversational speech. The subrange which

we habitually use in conversation is called the linguistic pitch range. We are all fa-

miliar with how one can change the impression of his/her voice in order to convey

a paralinguistic message such as an emotion or a subtle variation in our statement.
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For example, we may all recall some instance when an Electronic Mail we have

sent may have conveyed a completely different message than intended since it is

hard to include the paralinguistic qualities of speech in an EMail. This type of ex-

pression includes pitch variation, sonority variations and many other aspects such as

body language and facial expressions. The range of pitch modification that we use

to convey such paralinguistic messages is called paralinguistic pitch range.[9]

Figures 4.26 through 4.29 show examples of such variation in the utterance of

a, grammatically classified, imperative utterance of the verb [try] expressed with 4

different paralinguistic messages. The caption explains the different messages. The

pitch variation may be seen from location and variation of the formants. A careful

examination of the formants shows the additional power shifted to high frequency

formants and their longer sustainment. The attitudes start from an expression of

dominance in Figure 4.26 and change gradually to a more submissive expression in

Figure 4.29. These paralinguistic pitch variations exist in all languages with some

differences in their meanings. The paralinguistic pitch variation could be of great

importance in speaker recognition since a lot of the content used for producing

this variation is at the subconscious level conveying emotion which is usually very

speaker-dependent.

Within any one of the segments defined in Section 4.3.1.1 (phone, syllable,

mora13, lexicon, or utterance) there may be a local pitch variation, which is called

the pitch span. It is identified by a local minimum, a local maximum and a pitch

variation.

The linguistic pitch range is usually governed by linguistic constraints in relative

pitch variation along different segments. It is usually modulated and modified with

reference to the fundamental frequency (pitch) of the speaker’s voice (the organic

pitch).

When a human tries to separate speakers based on their vocal characteristics,

he/she uses global pitch averages to realize the organic pitch of the individual for

reference. In fact, when a person is asked to mimic another person’s vocal charac-

teristics, the first thing the impostor considers is the modification of his/her average

pitch level to match the organic average pitch of the target speaker. Therefore, as

a feature for speaker recognition, the mean value of the pitch is not a very reliable

source of information for discriminability. In fact, the most popular features used in

automatic speaker recognition systems, cepstral features, do not retain much of this

tonal quality of the audio. This, in fact, allows the automatic speaker recognition

algorithms to be more resilient to such impersonations.

13 Mora is a linguistic unit that determines stress in some languages and is based on the first
syllable onset, nucleus, and coda, final syllable or long vowels. See Figure 4.34 for the the syllable
construct.
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A measure of the pitch span across any segment (phone, syllable, mora, lexicon,

or utterance) is called the pitch height which may be viewed as a moving average

of the pitch level within the segment. This value is usually attributed with a fuzzy

label of low, mid, high, or some intermediate levels in between. On the other hand,

it is considered to vary along the segment of interest in three simple manners, level,

falling and rising. Of course the variations may also be formed by any complex

combination of these simple modes.
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Fig. 4.26: [try] Decisive Imperative –
Short and powerful
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Fig. 4.27: [try] Imperative with a slight
interrogative quality – short and an im-
perative; starts in the imperative tone
and follows with an interrogative ending
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Fig. 4.28: [try] Imperative but with a
stronger interrogative quality – longer
and the pitch level rises, it is sustained
and then it drops
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Fig. 4.29: Imperative in a grammati-
cal sense, but certainly interrogative in
tone – much longer; the emphasis is on
the sustained diphthong at the end with
pitch variation by rising, an alternating
variation and a final drop

One type of pitch variation is that which spans a whole utterance. In general,

regardless of the language, most utterances start with a higher pitch and the pitch
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gradually lowers. This concept is called declination. This is a subtlety that is usually

lacking in low quality speech synthesizers giving them the expressionless quality

with which we are all familiar.

There is also the local effect of pitch variation to consider. In many Indo-

European languages such as English and Persian, pitch variations make little dif-

ference in the content of speech with some exceptions. In English, although intona-

tion is present, it does not change the essential meaning of a word. One example in

which pitch may change the meaning of an expression in English is the difference of

the pitch variation at the end of an interrogative sentence versus an informative sen-

tence. For example, notice the pitch height and pitch level variations for the word,

“station,” at the end of the following two sentences:

1. Is this your station?

2. This is your station.

In the interrogative sentence (sentence #1), the last syllable of the word station has

higher pitch than the occurrence in sentence #2.

This constitutes high level prosodic information which is not quite paralinguis-

tic and does change the linguistic expression. Although this is quite important in a

Natural Language Understanding (NLU) sense, it is probably not as important in

speaker recognition as paralinguistic pitch variation could be. Of course, usually it

is hard to separate the two types of pitch variation in an algorithmic sense. Most

likely any implementation of a pitch-based feature will include all types of pitch

variations. Usually the discriminating information follows from statistical imple-

mentations.

Most linguists believe that syllabic and lexical pitch variations do not change

the meaning of words in English. However, we know that syllabic and lexical pitch

variations are also components of linguistic stress along with other concepts such

as syllabic and lexical sonority variations and metrical variations. In those regards,

since syllabic stress does change the meaning of words in English, then so do pitch

variations – see Table 4.3.

Some languages such as different dialects of Chinese, use pitch variation to com-

pletely change the meaning of a word. Take Mandarin Chinese for example. Fig-

ures 4.30 through 4.33 are spectrograms of 4 different words in Mandarin which

have completely disconnected meanings, yet they would all be transliterated as [ma]

in the English alphabet.14 The only major differences between these utterances are

temporal variations (length of the vowel representing [a] and the pitch variations of

those vowels). The local pitch variation and durations of the vowel may easily be

seen in the spectrograms.

14 I would like to thank Mr. John Mu for his utterances of the 4 variations of [ma].
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Fig. 4.30: Mandarin word, Ma (Mother)
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Fig. 4.31: Mandarin word, Ma (Hemp)
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Fig. 4.32: Mandarin Word, Ma (Horse)
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Fig. 4.33: Mandarin Word, Ma (Scold)

Therefore, in Mandarin Chinese, intonation becomes important for speech recog-

nition applications [7]. It is unclear if it is the case with speaker recognition. It may

only be important in a text-dependent or text-prompted approach. However, since it

requires longer sustainment of the vowels, and since vowels are most informative in

speaker discrimination, it may present some positive effect. Of course, based on the

same argument made for the generic linguistic pitch variations toward the beginning

of this section, these pitch variations will blend in with paralinguistic variations in

most algorithmic implementations.

Because of the importance of pitch variations in Mandarin, some mandarin

speech recognizers use syllables as elementary segments of speech versus the usual

phonetic segmentation. This segmentation is called a syllabic lattice segmentation.

Apparently, there are about 1345 syllables in Mandarin [10].
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Ladefoged [8] produces examples of the pitch variation effects for a word in

Cantonese Chinese, /sI/, which can have 6 different meanings according to different

pitch levels and their location in the word.

însult (noun) versus inŝult(verb)

însert (noun) versus inŝert(verb)

Table 4.3: Examples, in English, where stress changes the meaning of a word

At the most extreme case of the use of pitch in languages, there are whistle-based

languages such as the Spanish Silbo or Silbo Gomero language of the La Gomera

region of the Canary islands. This language is based solely on whistles. Different

intonations, lengths, and power variations develop elements of the language which

can be used to basically convey anything other languages convey – see Section 4.1.8.

4.3.1.2 Loudness

Definition 4.8 (Loudness (Sonority)). Loudness (sonority) is a perceived quan-

tity which is a function of the intensity of vibration of the vocals cords over some

duration and pitch.

Since the perceived loudness of audio is dependent on the frequency of sound, it

is dependent on pitch as well. See section 5.1.2 for a more quantitative treatment of

loudness. As in the definition of pitch, this duration is also vague and is dependent

on the context.

Consider a wave. It has a frequency and an amplitude. One can think of prosody

as related to the variations in mean shapes of the speech wave computed over certain

durations. Therefore, most of the concepts described about pitch in Section 4.3.1.2

have a parallel counterpart for loudness. The relationships in Table 4.4 demonstrate

these parallel concepts.

Organic Pitch Range ⇐⇒ Organic Loudness Range
Linguistic Pitch Range ⇐⇒ Linguistic Loudness Range
Pitch Height ⇐⇒ Sonority

Pitch Span ⇐⇒ Loudness Span

Table 4.4: Parallels between Pitch and Loudness Concepts
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Similar to the declination of the pitch level discussed in Section 4.3.1.1, the loud-

ness of an utterance also degrades from the beginning to the end of the utterance.

4.3.2 Metrical features of Speech

Other similar suprasegmental features of speech are Rate (overall tempo of the

speech) and Continuity (length of stream of speech between pauses). These are

metrical properties of speech which are high level features partly dependent on

the language of interest and in part on individuals’ habits. In fact human percep-

tion of speaker identity seems to make use of these high level features. However,

implementation of these features in automatic speaker recognition systems is quite

challenging.

4.3.2.1 Stress (Relative Loudness)

The difference between stress and intonation is that stress is the relative loudness

of parts of speech where intonation is the variation in the pitch of different parts of

speech. Linguists generally believe that there are about 3 to 4 levels of stress in the

English language. In most cases, stress does not really change the meaning of words

and is more or less associated with the dialect or accent being used. There are some

cases where this assumption is not valid – see Table 4.3.

Although Loudness has an inherent pitch component (see Definition 4.8), stress

(relative loudness) sometimes has an added pitch variation. This extra pitch varia-

tion is called a pitch accent. An example of a language which contains a pronounced

level of pitch accent is Turkish. Pitch variations are used to change the stress level

of a word mostly due to rhythmic constraints imposed by the language. See Sec-

tion 4.3.2.2 for more detail.

4.3.2.2 Rhythm

Laver [9] defines Rhythm as “the complex perceptual pattern produced by the in-

teraction in time of the relative prominence of stressed and unstressed syllables.”

Figure 4.34 shows the construct of a typical syllable. In a syllable, only the ex-

istence of nucleus is mandatory. All other parts may or may not be present. For

example in English, the onset may be nonexistent or contain up to three consonants.

The coda may also be nonexistent, but it can go up to four consonants for English.

However, there are quite stringent constraints for the allowable consonant sequences
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which boil down to the language-dependent constraints on co-articulation – see Sec-

tion 4.3.4.

Fig. 4.34: construct of a typical syllable, [tip]

As in the case of pitch and loudness, the levels in lexical word stress are divided

into three categories: unstressed, primary stress, secondary stress.[9] Languages such

as English and Dutch have a stress-based rhythm. Some languages such as Japanese,

Turkish, and Telugu15 possess special rhythmic patterns. Japanese and Telugu seem

to be very similar in their perceptual basic rhythmic construct although they are

from different linguistic families. Turkish also has a syllabic rhythm which is some-

what different, perceptually, from Japanese and Telugu, but it is based on the same

concept. These languages are said to have a mora-based rhythm.[15]

This inherent requirement for a certain rhythm forces imported words from other

languages to take on a rhythmic pattern as well. All Japanese consonants with the

exception of the nasal consonant, n, have to always be followed by at least one of the

5 basic vowels. Therefore, English words such as [program], [stress], and [software]

change to [puroguramu], [sutoresu] and [sofutouea]. Turkish also requires a certain

rhythm to be sustained. For example, Persian words such as [hoz] and [bazaar] have

changed to [hovoz] and [bazara], when they were imported into Turkish.

Also, the rhythmic constraints of languages sometimes force them to take on spe-

cial stress levels to keep the rhythm going. In a language such as Turkish, the stress,

along with the usual relative sonority, also contains a high level of pitch accent vari-

ation (see Section 4.3.1.1) giving the language the musical tonality which no one

could miss.

15 A Dravidian language spoken in the South of India.
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4.3.3 Temporal features of Speech

Some temporal features could also be very essential for a suprasegmental analysis of

speech for speaker recognition purposes. Take the continuity of speech for example.

Different individuals usually portray different levels of continuity in their speech.

Although relative continuity is affected by fluency in a language, most native speak-

ers also express different levels of continuity. In certain circumstances, the speaker

simply pauses silently. On other occasions and much correlated with the language,

the speaker may fill the pauses with nonsense phonations such as mmmm, aaa, err,

etc. These features are quite speaker-dependent and could prove quite valuable for

increased speaker discriminability. Of course, there are languages, such as Japanese,

in which speakers learn that for social reasons they should not have silent pauses in

a conversation and should also not use mmms and aaas. They use specific words in

the Language such as [ano], [aso], etc. In this case, the continuity treatment may

become similar across different speakers of the language, but still the frequency of

such pauses will be a useful feature.

Another concept which may also be useful in speaker recognition is the tempo

or the rate of speech. Different people have different speaking rates and this may

be utilized to tell speakers apart. Laver [9] states that the average rate of speech for

English is about 5.3 syllables per second for a speaker with a medium articulation

rate.

4.3.4 Co-Articulation

Definition 4.9 (Co-Articulation). Co-Articulation is the phenomenon that binds

neighboring phone together and, in the process, modifies the phonation of each

individual phone so that a smoother transition may occur in the utterance.

Co-Articulation effects may happen due to different reasons. The most promi-

nent reason is the set of limitations of the vocal tract. These limitations are both

speaker- and language-dependent. The speaker-dependent limitations could be quite

helpful in developing features for increased speaker discriminability. An example of

language-dependent co-articulation is the fact that in some languages such as Per-

sian and Spanish, certain consonant pairs like /st/ cannot start an utterance. For this

reason, when native Persian and Spanish speakers learn languages that do allow for

this type of co-articulation, they have to modify the utterance to be able to pro-

nounce it. An example is [student] which is pronounced [estudent] by Persian and

Spanish speakers until they learn to mimic the proper delivery of the word.

Another example is the mora-rhythm languages. The underlying reason for the

presence of mora-rhythm in some languages such as Japanese seem to be tightly
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related to co-articulation – see Section 4.34.
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Chapter 5

Signal Processing of Speech and Feature

Extraction

Hark! to the hurried question of Despair: “Where is my child?”

An echo answers “Where?”

Lord Byron (George Gordon Byron)

The Bride of Abydos [10] (Canto ii, Stanza 27), 1813

In this chapter we will be reviewing signal processing techniques for speech. It is

very important for the reader to have been familiarized with the contents of Chap-

ter 3 and Chapter 24 before continuing to read this chapter. Even if the reader is a

seasoned researcher in the field, it is important to at least refer to those chapters for

details. To keep the main flow of the book fluid, most of the major technical details

have been moved to Chapter 24.

A great majority of the information in this chapter may be used for any speech

processing algorithm including, but not limited to, speaker recognition, speech

recognition, speech restoration, etc. Later in the chapter, we will introduce and dis-

cuss some of the most popular features used for speaker recognition in the literature.

It is important to note that there is an interesting duality to most of the features being

discussed here. They are mostly used in speaker recognition and speech recognition

alike in spite of the theoretical dichotomy that exists between these two branches of

speech processing.

As we mentioned in the introduction (see Figure 1.6), the speech signal has an

enormous capacity for carrying information, yet it only tends to be used for deliv-

ering about 50-bps worth of information in a normal conversation. Therefore, there

is a hugely redundant portion of the signal which is not essential for understanding

the message that comes across in a conversation. A large part of this information

is related to the individual vocal characteristics of the speaker. Therefore, although

the job of speech recognition is to try to filter out this irrelevant information from

the signal and to convey the actual message being transmitted, speaker recognition

systems must do the exact opposite. A speaker recognition system banks on the

information-rich portion of the signal (physiological information) to be able to de-

termine the custom characteristics of an individual. If you will, you may view this as

filtering out what is being said to be able to determine the identity of the individual.

This notion puts the two fields at odds with one-another. Despite all that has been

said, still they both use the same features which are apparently designed to on one

hand throw away all the information which is related to the speaker characteristics,

, H. Beigi Fundamentals of Speaker Recognition, 
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so that one system can understand all individuals (speech recognition) and on the

other hand only concentrate on what makes speakers different (speaker recognition).

In the midst of all the information that is present in the speech signal, for speaker

recognition, we would like to be able to filter out some unique features with such

information capacity that would be in the order of amount of information necessary

to tell apart the whole total population of Earth. Of course even if we did so, since

speaker characteristics are really a continuum, by catering to the whole population

of Earth, we will still only be able to do well with some individuals who are sig-

nificantly different from the rest of the population and not with those who are close

to the norm. If we assume that speaker characteristics have a Gaussian distribution

among all the speakers in the world, it is an immense challenge to separate people

who fall close to the mean.

Of course the real world is not as clear-cut and well defined as we have desired

in the last paragraph. The features only carry vague statistical information of both

kinds and just happen to be the best we know up to now. Also, in actual implementa-

tion, to reduce the amount of audio required to perform a speaker recognition task,

many systems (text-dependent and text-prompted) require that the speaker says a

specific text. This will utilize both aspects of the features, namely, speech content

and speaker content.

One main point to keep in mind is the statistical nature of the speech signal. The

features being discussed here, are also only significant in a statistical sense. For this

reason, text-independent speaker recognition systems require more data to be able

to determine the speaker since they only try to dwell on the speaker characteristics

and not the content. In reality, even text-independent speaker recognition systems do

better if the person says the same or similar text at the enrollment and recognition

tasks.

Having discussed the short-comings of the features we will be discussing in this

chapter, we can now go ahead and try to do our best with what nature has provided

for us to be able to perform both speech and speaker recognition using the same

features.

5.1 Auditory Perception

The human auditory perception mechanism distinguishes different audio signals

based on three main properties, pitch, loudness and timbre. In this section, we will

define these properties and try to assign a quantitative description to them. This is a

very difficult task due to the reliance on perception. As it will be made more clear,

these are nonlinear relations and rely, heavily, on our subjective observations. In
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fact, Stevens [71] showed that the pitch of high tones increases with intensity, the

pitch of low tones decreases with intensity, and the point where the reversal hap-

pens is dependent on the level of intensity. Despite the difficulty in separating the

frequency-related and intensity-related parts of perception, since we are concerned

about an automatic speaker recognition system, a good quantitative model for these

measurements is crucial.

Let us try to recapitulate the process of hearing. Please refer to Section 2.2 for a

clear understanding of the role and position of each component of the hearing sys-

tem. The sound waves are focused into the ear canal by the auricula. Once they enter

the canal, some very low frequency sounds are filtered out by the narrow shape of

the canal. Then they excite the tympanic membrane, causing it to vibrate, passing

its vibrations to the malleus, the incus, the stapes and from there to the inner ear

through the cochlear fenestra ovalis (oval window of the cochlea). In the cochlea,

the vibrations are transmitted to an incompressible fluid which fills the scala (the

spiral part of the cochlea).

This motion excites a row of hairs at the inner lining of the scala. The motion

of these hairs is transmitted to a bundle of neurons and the signal is carried to the

brain for cognition. The way this part of the process works is described by the basic

place theory in physics which says that depending on each frequency component,

the hairs in a different location along the scala are excited. This means that the

cochlea is actually working like a spectral analyzer somewhat in the same manner

as we have been plotting spectrograms in this book. To achieve a higher resolu-

tion for distinguishing finer differences in the frequencies of the perceived signals,

the brain provides feedback to the three rows of hair at the outer extreme of the

curvature of the scala. This feedback sets the hairs related to specific frequencies

which move the fluid inside the cochlea at a similar frequency as being processed

as incoming audio. This will create some resonance, amplifying sounds in a small

window apart from the central frequency being fed back. This amplification allows

for a better perception of frequencies in the vicinity of that central frequency. This

works as a fine-tuning mechanism which allows us to be so remarkably accurate in

our perception of audio signals.

The high frequency sounds are picked up by the cilia at the beginning of the scala

and the endpoint, the helicotrema, captures the lowest frequency sounds.[70] Loud

noise can impair our ability to hear the high frequency sounds by damaging the cilia

at the beginning of the scala.

As we are younger, our ability to hear high pitched sounds is far greater. In fact,

the youth can often hear the high frequency pitch coming from devices which are

designed to keep pests such as mice and insects out. I have had a first hand experi-

ence with this when I was around 20 years of age. I could hear the high frequency

pulse emitted by such a device in the warehouse of a company for which I was writ-

ing computer programs to do inventory control. Everyone else in the company was
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older by at least 10 years and could not hear the high pitched noise. Later, I heard

of experiments in which someone had created a similar device to keep teenagers

away from the front of a store where they were crowding at times. Of course, this

device was experimental and did not meet constitutional guidelines and was later

removed, but it did demonstrate our sensitivity to higher frequencies as youngsters.

Therefore, quantifying pitch, loudness and timbre is quite hard and the analysis is

very subjective even across different people depending on their age group and ac-

cumulative experiences (such as subjection to loud noises). However, since we do

need to make this quantification, we must proceed.

5.1.1 Pitch

We defined pitch in Section 4.3.1.1, Definition 4.7, as a perceived quantity related

to frequency of vibration. Now, we will analyze this relation in more detail.

In terms of perception, most people do not have the ability to recognize specific

pitch values. They can only recognize pitch variations. In fact, according to Ross-

ing [62], only 1 in 10,000 people can do a decent job of recognizing absolute pitch

values. This is in contrast with about 98% of the population who can recognize spe-

cific colors without having a reference to which they can compare. This is why pitch

is usually quantified by the amount it differs from a more absolute reference.

Steinberg [70] studied the sensitivity of the cilia at the different parts of the

cochlea to different frequency sounds. He conducted his experiments using tones

with a 60 dB loudness level (see Section 5.1.2) in the range of 125 Hz to 23,000 Hz.

He concluded that the 125 Hz tone affected the cilia at the helicotrema. The length

of the spiral in his experiment was 30mm. The results showed the tone of 1,000 Hz

was detected at 10mm from the helicotrema ( 1
3 of the way) and the tone of 4,000 Hz

was detected at 20mm ( 2
3 of the way) from the helicotrema. He plotted the relation

between the distance away from the helicotrema and the frequency of the perceived

tone. The plot which was done on log paper seems almost linear which is in tune

with results reported by Stevens [75] in the same issue of the Journal of the Acous-

tical Society of America in 1937. Stevens [75] introduced a scale called the Melody

(Mel) scale which is related to the distance away from the helicotrema. In fact visual

comparisons of the plot by these two papers show great likeness. Steinberg plotted

the tone frequency versus the distance in mm from the helicotrema and Stevens plot-

ted melody versus the frequency.
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5.1.1.1 Melody (Mel) Scale

Definition 5.1 (Melody (Mel)). Mel, an abbreviation of the word melody, is a unit

of pitch. It is defined to be equal to one thousandth of the pitch (℘) of a simple tone

with frequency of 1000 Hz with an amplitude of 40 dB above the auditory threshold.

The above definition is based on the experiments done by Stevens, Volkman and

Newman in late 1930s. The results were published in 1937 [75] and 1940 [74].

Equation 5.1 shows the relation between frequency ( f ) in Hz and pitch (℘) in Mels.

This equation is due to O’Shaughnessy [57] who fit an equation to the data points

reported by Stevens and Volkman [74]. Since the work of [74] was based on exper-

iments, the results were presented as a graph relating the pitch to frequency. Fant,

introduces another equation to estimate the relationship reported by [74]. [20] This

relationship is given by equation 5.2. [83] has compared these two relations to a few

others and has come to the conclusion that the best fit for the frequency range over

1000 Hz is not necessarily logarithmic, nor is it necessarily linear for frequencies

below 1000 Hz, but may be estimated as such. Table 5.1 shows the estimated values

of some points extracted by [83] from the graph of pitch versus frequency of [74].

℘=
1000

ln(1+ 1000
700 )

ln(1+
f

700
) (5.1)

℘=
1000

log(2)
log(1+

f

1000
) (5.2)
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Fig. 5.1: Pitch versus Frequency for fre-
quencies of up to 1000 Hz
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f (Hz) ℘ (Mel) f (Hz) ℘ (Mel) f (Hz) ℘ (Mel)

40 43 867 928 4109 2314
161 257 1000 1000 5526 2600
200 300 2022 1542 6500 2771
404 514 3000 2000 7743 2914
693 771 3393 2142 12000 3228

Table 5.1: Frequency versus Pitch

5.1.1.2 Bark Scale

Zwicker [102] approached the problem of pitch perception as one that may be sub-

divided into several regions along the frequency domain. This is basically a filter-

bank modeling of the hearing system (cochlea). In his studies, he subdivided the

space of frequencies into 24 basic critical bands [103], where each band has a cen-

ter frequency and a bandwidth associated with it. These 24 bands start with a center

frequency of 50 Hz and go up to the center frequency of 13,500 Hz for the 24th

band which gives a total bandwidth of 20 Hz to 15,500 Hz based on the individual

bandwidths presented in the paper. As we have seen before, the frequencies of 1000

and 4000 are important in the location of the cochlea that they excite [70]. There-

fore, he assigns bands number 3, 9 and 18 center frequencies of 250, 1000 and 4000

respectively. Zwicker proposed a unit of “Bark” in memory of Bark Hausen who is

attributed with the creation of the loudness level. Here is his definition for a Bark.

Definition 5.2 (Bark). One Bark corresponds to the width of one critical band over

the whole frequency range and corresponds to nearly a 100 Mel pitch interval.

As there have been equations fit to the Mel scale results, researchers have also

come up with equations that fit the table provided by Zwicker. One such relation

is due to Traunmüller [79] where the center frequency is given by Equation 5.3 in

Barks where fc is the center frequency in Hz.

Bc =
26.81 fc

1960+ fc

−0.53 (in Barks) (5.3)

Then the inverse is given by,

fc =
1960(Bc +0.53)

26.28−Bc

(in Hz) (5.4)

The Bandwidth for each center frequency Bc is given by,

Bw =
52548

B2
c −52.56Bc +690.39

(5.5)

Figure 5.21 shows the relationship among the log(Critical Frequency in Hz),
Bark, and Mel. The horizontal axis depicts the 24 critical band center frequencies
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in Barks. The stem plot shows the corresponding Mels for each critical center fre-

quency with the corresponding labels at the left vertical axis. The right vertical axis

corresponds to log(Critical Frequency in Hz).

5.1.2 Loudness

In Section 4.3.1.2 we defined the concept of loudness (Definition 4.8) to be a func-

tion of both intensity and pitch. We have already covered the quantitative analysis

of pitch. Here, we will define the Intensity of speech followed by the quantitative

analysis of loudness, in terms of intensity and pitch.

As its name suggests, intensity is a measure of power of the wave. It is actually

the power per unit area which may be presented in the units of W
m2 (

J/s

m2 or N
ms

). We

mentioned that our ears have different sensitivity at different frequencies. One im-

portant frequency value which is perceived at 1
3 of the length of the cochlea away

from the helicotrema is 1000 Hz.[70] This value is also important because it is the

frequency threshold between a linear perception and a close-to logarithmic percep-

tion of the frequencies. To measure intensity, a standard threshold of hearing has

been established based on the order of magnitude of the average intensity threshold

of hearing.

Intensity, I, is proportional to the square of the pressure differential, P, and in-

versely proportional to the specific acoustic impedance of the sound medium, ζ . ζ
is a product of the density of the medium and the speed of sound in that medium.

Therefore,

ζ = ρc (5.6)

Then the relation between Intensity, I, and the pressure differential, P, is given by

the following,

I =
P2

ζ

=
P2

ρc
(5.7)

The units of ζ may be computed as follows,

Unit of ζ =

(
kg

m3

)(m

s

)( s

s

)
=

kgm

s2

s

m3

=
Ns

m3
(5.8)
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At the pressure of 1 atm (1.01325 × 105Pa), and room temperature (20◦C), the

density of dry air is,

ρ = 1.204
kg

m3
(5.9)

and the speed of sound is,

c = 343.2
m

s
(5.10)

so the specific acoustic impedance may be computed as follows,

ζ = ρc

= 1.204×343.2

= 413.21
Ns

m3
(5.11)

According to Fant [20], the root mean squared value of the pressure threshold

(value at the frequency of 1000 Hz) is,

P0 = 2×10−5 N

m2
(5.12)

Therefore, the standard intensity threshold may be computed by Equation 5.7 to be,

I0 =
P2

0

ζ

=
(2×10−5)2

413.21

= 9.68×10−13 W

m2

≈ 10−12 W

m2
(5.13)

Therefore, Equations 5.12 and 5.13 are respectively the amount of pressure and In-

tensity at 1000 Hz that would be enough for us to hear that tone.

The Pressure, P, is the closely related to the amplitude returned from an analog

microphone and Intensity, I, is related to the concept of Loudness. Given a tone with

an Intensity of I Watts
m2 , we can compute the relative intensity1 of this tone in deci

Bells as compared to the standard intensity threshold. For convenience we refer to

this relative intensity(Ir) as simply the intensity of the sound wave which is in dB,

not to be confused with the absolute Intensity of the wave, I, which is in Watts
m2 . Ir is

given by the equation for deci Bells (dB) in the following form,

Ir = 10log

(
I

I0

)
(5.14)

1 The Relative Intensity is a dimension-less number.
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Note that,

Ir = 10log

(
P2

P2
0

)
= 20log

(
P

P0

)
(5.15)

The maximum intensity of hearing is at frequencies between 3000 to 4000 Hz

which is coincident with the resonant frequency of the ear canal that is used to am-

plify sounds. It is important to note that the ear is less sensitive to intensities in the

lower frequencies. The human ear can comfortably hear sounds with intensities of

about 10 − 80 dB. To get an idea about the meaning of a dB scale of loudness, a

quiet library contains intensity levels of about 40− 60 dB and a loud rock concert

can easily produce sounds of over 110 dB.

Now that we have established a quantitative definition for sound intensity, we

can attempt a definition for loudness. As we saw in the previous section, pitch was

related to loudness as well. Psychological tests have been conducted to assess the

loudness concept in human hearing. This has been done by graphing the so called,

Equal Loudness Curves. These curves plot loudness in terms of a unit called a phon

on a plot of intensity versus frequency. These curves have a similar shape and relate

intensity and pitch to loudness for different loudness levels.

The following two units of loudness were proposed by Stevens [72] based on his

experiments.

Definition 5.3 (Phon). A Phon is the unit of loudness which is equal to the loudness

associated with the intensity of 1 dB at 1000 Hz. i.e, It is the dB level of intensity for

1000 Hz tones.

Definition 5.4 (Sone). A Sone is equivalent to 40 phons.

The reason 40 phons are used is that 40 dB is what gives the general perception

of doubling the loudness of a sound wave. Therefore, each sone would amount to

double the loudness. Phon and sone are not SI standards. They are only used as

convenient measures of the perceptual level of loudness.

5.1.3 Timbre

Timbre is a musical term which is associated with the harmonic content of the au-

dio plus the dynamic characteristics of the audio such as complex modulations and

rise and fall of the signal. In human speech, the harmonic content is related to the

speaker-related locations of formants and their characteristics. The complex mod-

ulations could for example be frequency or amplitude modulations which in music
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terms would be concepts like vibrato and tremolo respectively. If we wanted to cat-

egorize pitch, loudness and timbre in relation to speech, I would say that pitch and

loudness (both relative) provide the information that reflects the content of speech

and timbre would be the speaker characteristics. Therefore, in general, we are trying

to distinguish the different timbres when we do speaker recognition. Unfortunately,

this definition is quite broad and it encompasses the whole speaker recognition dis-

cipline, so aside from completing the total information we have about sound as a

complement of pitch and loudness, it does not help us in our quantitative analysis of

speaker recognition.

5.2 The Sampling Process

Let us begin where we left off in Chapter 3 when we spoke about the sampling of

the speech signal. Although, there is some freedom in choosing the order in which

the samples are generated from the analog signal, there is evidence that a certain

order would give better results. Figures 5.3 though 5.5 show three of these possible

combinations. When we design our sampling process, we should keep in mind the

type of errors which were discussed in detail in Chapter 3.

Fig. 5.3: Block Diagram of a typical Sampling Process for Speech – Best Alternative

Fig. 5.4: Block Diagram of a typical Sampling Process for Speech – Alternative Option

Fig. 5.5: Block Diagram of a typical Sampling Process for Speech – Alternative Option
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5.2.1 Anti-Aliasing

The first matter to anticipate is the aliasing issues discussed in Section 3.6.2. To

avoid aliasing, the analog signal (output of the microphone) should pass through an

anti-aliasing filter which is really a low-pass filter with a cutoff frequency which is

less than the folding frequency, fc which is defined as fs
2 . Notice that we are not call-

ing this the Nyquist Critical Frequency since the Nyquist Critical Frequency is defi-

nitely higher than the rates which are customary for doing speaker recognition. See

Section 3.4 for more information regarding this difference. Once the anti-aliasing

filter is done, the new analog signal has lost most of its high frequency components.

Of course, as we mentioned in Section 3.6.5, we have to be careful to use our re-

sources wisely in order to be able to retain as much of the spectral information as

possible. Figures 5.3 though 5.5, all, include the anti-aliasing filter at the same lo-

cation. This is one of those blocks which has a mandatory location. Of course, note

that most of the sampling process is usually done by an independent software which

is contained in the sound system driver of the microphone system being used. This

is true for both computer and telephony based interfaces.

5.2.2 Hi-Pass Filtering

In the best scenario, which is represented in Figure 5.3, there is a hi-pass filter im-

mediately after the low-pass anti-aliasing filter. The reason for doing this hi-pass

filtering is that all microphones are not created equal! They will have different Di-

rect Current (DC) components which are not necessarily tied to the speech content

being provided by their signals. A hi-pass filter with a low cut-off frequency will

remove this DC offset and allow less variability and microphone dependence across

different platforms and configurations.

If this hi-pass filter is not provided by the sampling software being used, it may

be placed right after the sampler. However, it is best to keep it toward the beginning

of the process and acting on the analog signal before entering the sampler. In Fig-

ures 5.3 and 5.4 the hi-pass filtering is done before the sampling and in Figure 5.5,

afterwards. Of course, It is also possible to combine the low-pass anti-aliasing filter

and the hi-pass filter into a single band-pass filter.

5.2.3 Pre-Emphasis

The next step is pre-emphasis. Figure 5.6 shows the power spectral density of the

speech waveform that was previously represented in Figure 3.4, however, here it is
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Fig. 5.8: The spectrogram of the original
speech signal sampled at 44100 Hz
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Fig. 5.9: The spectrogram of the pre-
emphasized speech signal sampled at
44100 Hz

sampled at 44100 Hz. Notice the sharp drop in the power of the signal at higher fre-

quencies. [17] estimates that about 80% of the power is contained within frequency

components below 1000 Hz. From 1 kHz to 8 kHz, the power drops at a rate of

about −12 dB/Octave2 and it is almost negligible in frequencies higher than 8-kHz.

However, as stated in Chapters 2 and 4, the cochlea utilizes a fine-tuning mecha-

nism based on feedback from the brain that amplifies special frequencies. It is noted

that the human ear can easily recognize these low energy regions. Since we are de-

signing an automatic speaker recognition system, we need to do something similar,

to be able to utilize the important features embedded in higher frequencies such as

2 An Octave is the amount of increase in the frequency that would make the new frequency double
the original.
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fricatives, etc. This can be achieved through pre-emphasis. One method which has

been used quite often is a differentiator (which is a single zero filter – see Defini-

tion 24.44) with the following transfer function,

Hp(z) = 1−αz−1 (5.16)

The most popular range of values for α is between 0.95 and 0.97, although values

in the range of 0.9 and just less than 1.0 have also been used in different systems.

Figure 5.7 shows the power spectral density of the pre-emphasized signal using

α = 0.95. Notice that the absolute power for each frequency range has been reduced,

but the relative power is now better distributed along the different frequencies. To

get a better feel of this process, compare Figures 5.8 (original signal) and 5.9 (pre-

emphasized signal). You will notice that the high frequency part of the spectrum is

significantly more prevalent. Also note the amplitude distribution in the waveform

of the signal above each figure.

It is important to note that if the speech of interest (or any other audio) happens to

lie below around 200-Hz, the pre-emphasis creates unwanted attenuation that may

hurt the performance of speaker recognition. For normal speech, this should not be

a problem. However, if the techniques which are discussed in this book are used

for audio recognition from a non-speech source, such as music, audio signatures of

machinery and nature or similar sources, this type of pre-emphasis may not be a

good idea. More sophisticated pre-emphasis filters may be designed for those spe-

cial cases, which would affect the higher frequencies and spare the low frequencies.

It would be very beneficial if we could do the pre-emphasis before the sampling

block. This goes back to the quantization error which we discussed in Section 3.2.

If we wait and do the pre-emphasis after the sampling block as Figures 5.4 and 5.4

suggest, the energy of the high frequency components of the audio signal may be so

low that an increased relative amount of quantization error may be added to some

of the high frequency information or at best the resolution may be reduced. On the

other hand, if the pre-emphasis is done on the analog signal before sampling takes

place (Figure 5.3), then better resolution will be attained on the high frequency com-

ponents.

5.2.4 Quantization

We started talking about quantization in Chapter 3. Since we are dealing with digi-

tal representation of the samples, the magnitude of the samples will have a dynamic

range as well as a resolution associated with it. These are usually functions of the

application as well as the hardware being used. We mentioned the logarithmic na-

ture of the human perception associated with loudness as well as pitch and spoke
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about the intensity component of loudness earlier in this chapter. According to [17],

the average intensity of speech is about 58 dB (male speakers are about 4.5 dB

louder than female speakers). However, this is an average and there is great variabil-

ity across speakers, within any speaker and across different tasks. One important

aspect to remember is that if we map the sample values to a linear digital scale,

then we have to make sure that the resolution for that scale is enough to be able to

represent the extreme ends. At one end, we have to worry about quiet speakers and

at the other, we will have to worry about saturation issues. Normally, most linear

quantization is done at a 16 bit resolution meaning that the values could vary from

−32768 to 32767. However, these digital numbers require some normalization to

happen in order to make sure that we do not saturate the scale. Anyone who has

ever recorded his/her audio on tape is familiar with the saturation issue.

One method of handling the saturation issue is to utilize a dynamic sound-level or

volume estimation technique. The mapping may then be adjusted quickly to make

sure it is optimal for the specific instance. Section 18.2 talks about this in more

detail. Also, in Section 5.2.3, we mentioned that it would better to have the pre-

emphasis done on the analog signal so that the high resolution information contain-

ing low energy does not get lost due to quantization issues.

One may ask, “Why shouldn’t we use much higher quantization levels?” The

answer lies in the complexity that brings about. Aside for the need for more so-

phisticated sound digitization systems, there are other difficulties associated with

using higher resolutions. One main problem would be the exponentially increasing

amount of data that has to be processed for higher resolutions. As we increase the

quantization resolution, the increased amount gets multiplied by the total number

of samples being processed, generating higher demands on memory and processing

capabilities.

One compromise has been the use of the close to logarithmic perception of vol-

ume in humans. Many techniques such as the ITU-T recommendations in ITU-T

G.711 [36] use logarithmic mappings (utilizing μ-law and a-law algorithms) which

increase the resolution of the volume at lower values in terms of bits and decrease

the number of bits needed to represent larger changes in the volume. This is a stan-

dard in the coding of telephony audio which allows resolutions of only 8 bits to be

used for the same dynamic range as a 16-bit linear scale. Other similar methods in-

clude many flavors of the, so called, Adaptive Differential Pulse Code Modulation

(ADPCM) which code the difference between adjacent samples of a μ-law or a-law

PCM with some extra steps in making estimates of a varying quantization step to be

able to use only 4 bits per channel of audio.
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5.3 Spectral Analysis and Direct Method Features

In this section, we will set up the problem of feature extraction of the speech signal

for speaker recognition. These features, as we shall see, are essentially the same

features that are used for speech recognition. At this point of the research into the

speaker recognition problem, the most popular features are the Mel-Frequency Cep-

stral Coefficients (MFCC). There are many variants of these features with different

normalization techniques, but the essence remains the same. There are also several

approaches to computing the MFCCs. The first approach is the one shown in this

section which is based on the usage of spectral estimation, Mel-scale warping and

cepstral computation. This method utilizes the Discrete Fourier Transform which

was shown in Section 24.14 to be a special case of the z-transform. z-transform

is based on an infinite series involving an infinite number of zeros – see Defini-

tion 24.44. The special case of Fourier Transform is an infinite set of zeros which

are all located on the unit circle. Moreover, the Discrete Fourier Transform which,

as we shall see, is the method used for the computation of the MFCC features, is

a finite series approximation with N zeros. Therefore, it is known as the all-zero,

moving average (MA) model or the direct model. The next few sections show other

approaches to computing cepstral features and spectral features such as linear pre-

dictive coding (Section 5.4) and perceptual linear prediction (Section 5.5).

We can view the human speech production system as a control system with the

plant dynamics being related to the vocal tract characteristics and the controller be-

ing related to the constriction and air flow mechanisms discussed in detail in Chap-

ter 4. Figure 5.10 shows the control system block diagram based on this perspec-

tive. Of course, in the real system, there are many different types of disturbances

and feedback loops. We have simplified the number of disturbances with the un-

derstanding that the transfer functions may include the effect of disturbances in-

trinsically. Also, any feedback control system may be unraveled and written in the

form of an open loop system where the inputs get modified to include the feedback

dynamics. This is what we have done to simplify the control flow represented in

Figure 5.10.[22]

In the figure, U(s) is the Laplace transform of u(t) which is the input coming

from our brain to drive the speech production system into producing a specific seg-

ment of speech. The transfer functions for our nervous system (Gb) and motor con-

trol (Gm, the neuro-muscular dynamics) are combined and labeled as Gc. This block

is analogous to a classical controller. The transfer function of the plant which is be-

ing controlled is Gv. This represents our vocal tract characteristics and dynamics.

The output of the vocal tract is represented by H(s) in the Laplace domain, which

is the Laplace transform of h(t), the sound waves that are uttered. For an automated

system (speaker or speech recognition system) we should capture the audio, usually

using a microphone, and either store it for future processing or transport it to it final
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Fig. 5.10: Block diagram of the human speech production system viewed as a control system

destination where the actual recognition occurs. As the audio, h(t), is propagated

through its medium (usually air), other noises (disturbances) may be added to it

such as environmental noises. In the Laplace domain, we are using D(s) to repre-

sent these additive disturbances (d(t) in the time domain). Finally, the combination

of the audio and noise are modified by the audio capture and communication trans-

fer function and the output, Y (s) in the Laplace domain (y(t) in the time domain) is

produced.

Let us derive the relationship between the input, U(s) and the output, Y (s),

H(s) = Gv(s)Gc(s)U(s) (5.17)

and

Y (s) = Gr(s) [H(s)+D(s)] (5.18)

Therefore, combining Equations 5.17 and 5.18,

Y (s) = Gr(s) [Gv(s)Gc(s)U(s)+D(s)] (5.19)

Our goal is to observe the output Y (s) and try to identify the system. Speech

recognition engines try to identify the Gc portion of the system. To them, Gv is con-

sidered to be a disturbance. In the perspective of text-independent speaker recogni-

tion engines, Gc is a disturbance and they are only interested in identifying Gv from

the Y (s).

The system identification problems of speech and speaker recognition are nor-

mally reduced to parameter estimation problems, by making certain assumptions

about the transfer functions of interest (Gc and Gv respectively). The assumptions
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are somewhat different for the two disciplines. In speech recognition, also, some

assumptions are made to be able to model U(s) based on neighboring observa-

tions. That is precisely what language modeling does for speech recognition. Text-

independent speaker recognition on the other hand tries to look at the problem much

in the same way as a classical system identification is done on a control system with

an impulse as the input and looking at the impulse response of the system. Therefore,

in general text-independent speaker recognition engines, look for a more overall es-

timation of the system parameters.

Of course, there are also text-dependent and text-prompted speaker recognition

engines that look at the system identification problem by limiting the type of input,

U(s) such that now they would be estimating the parameters for the combination

of the control and plant blocks, namely G = GvGc. That makes the job of text-

dependent speaker recognition much easier, since one of the hardest problems is the

separation of Gv from Gc. Also, since the input is limited to a small set, the task

of parameter estimation becomes much simpler as well. Since Gc and Gv are really

quite nonlinear in nature, reducing the set of valid control inputs is tantamount to

the process of linearization of a nonlinear system along a nominal path – see [22]

for such linearization examples in classical control.

At this point, let us simplify the problem in Figure 5.10 by observing the signal

before Gr is applied to it and even before D(s) is added to it. Therefore, we will be

observing h(t).

In Section 24.9 we showed that the Complex Fourier Transform is a special case

of the Laplace Transform where s = iω . If we assume that the amount of damping

in the speech production system is negligible, then the Laplace transforms of Fig-

ure 5.10 may be converted to Fourier transforms.

In the Fourier transform domain, the expression for H(ω) will be as follows,

H(ω) = Gv(ω)Gc(ω)U(ω) (5.20)

The transfer function for this system will then be,

G(ω) =
H(ω)

U(ω)

= Gv(ω)Gc(ω) (5.21)

Here we are assuming that we can observe H(ω). Keep this control analogy in

mind since we shall return to it in order to clarify certain choices that are made such

as the choice of features.

Now that we have identified the speaker recognition problem as the identification

of Gv(ω), we can proceed with the design of our features. Since we are assuming

that we have the Fourier transform of our signal, we should convert the signal from
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the time domain to the frequency domain of the Fourier transform. At this point,

it is quite important for the reader to be completely familiar with the contents of

Chapter 24. As we mentioned earlier, to make the material in this chapter flow more

smoothly without having to digress into proving theorems and stating definitions of

related transforms, the core of the mathematical content has been moved to Part IV,

at the end of the book.

As we mentioned in Section 24.12, the speech signal is quite dynamic. That

means Gv(ω) is changing quite dramatically since it is nonlinear and its nominal

state depends on the state of Gc(ω). Gc(ω) is also quite nonlinear and its nominal

state is dependent on U(ω). Therefore, either we have to model a tremendously

nonlinear system, or as it is done in most treatments of nonlinearities, we can lin-

earize the system around a nominal trajectory. This is the control systems approach

to the problem. The statistician’s approach is worded in a slightly different way, but

it really amounts to the same meaning.

Statistically speaking, as we mentioned in Chapter 3, the speech signal is a non-

stationary signal. Therefore, we would like to consider portions of the signal around

a specific instance of time to have a more stationary snapshot of the total signal.

This was the motivation for the development of the STFT and its discrete variants,

DTSTFT and DSTFT – see Section 24.12.

5.3.1 Framing the Signal

The STFT has been used throughout the previous chapters to provide us with the

spectrograms which have been so helpful in elaborating our discussions. However,

doing a complete STFT is not feasible for the process of feature extraction. Alter-

natively, a limited version has been developed, which does not compute the STFT

for all the points in the time domain. Still, a windowing is done to isolate a portion

of the signal and a DFT is performed on that windowed signal much in the same

way as in the STFT. But only one evaluation is done per portion of the signal at the

window location pertaining to the first time instance.

In an STFT, when it comes to shifting the time instance for which the STFT

is performed, a single sample is shifted such that there are STFT values available

for all time instances. In the speech spectral analysis of the speech signal used for

recognition, it is assumed that although the speech signal is non-stationary, but it is

somewhat stationary for the duration of the shift. Therefore, the window of interest

moves at a much larger step size, assuming that if the window were moved by a

single sample, not much change would be seen in the results of the DFT.
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The window of interest is, therefore, moved by an amount in the same order of

magnitude as the window width, but slightly smaller, so that there is some overlap

among consequent portions of the signal. As we have done in our treatment of the

DFT, we pick the window size to be N samples. Let us define the shift period to be

Ξ samples. Each N-point portion of the data which is isolated to be processed by

the DFT is called a frame and the act of picking these semi-stationary portions of

the data to be spectrally processed is called framing. Let us assume that the index

of each frame is denoted by l. The index, l is used on the left of any variable that

it modifies. Of course, since the length of the signal could theoretically be infinite

(e.g., a streaming audio source), there is no upper limit for l. The absolute index of a

frame will then be the index of its first sample point which would be Ξ l. The frame

is then shifted every time by an amount of Ξ samples.

It is quite important to choose a good window size, N, and a corresponding shift

period for the processing, Ξ . At first glance, one may think about requiring the win-

dow size to be in the order of about 80 ms which is the average length of a phone.

However, the average has been inflated because of the relatively lengthy aspect of

vowels. On the other hand, stops are quite short, in the order of 5 ms. Therefore, if

the window size were to be 80 ms, the effect of stops would be almost missed, in the

presence of adjacent long vowels. To account for the great variation, most systems

use values of N to be such that the window width would be about 20− 30 ms. By

the same argument, to make sure that the onset and offset of the phone are captured,

the frames are usually shifted by about 10 ms.
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5.3.2 Windowing

Once a frame of speech at time instance, lΞ , and for the duration, N, has been iden-

tified, it is sent to the spectral analyzer and feature extractor. Therefore, our final

goal is to have a feature vector, lx associated with every frame of audio at time in-

stance lΞ , where l ∈ {0,1, · · ·} and is used as a left index to avoid the confusion

with sample indices.

The windowing process is the act of multiplying the N samples of the signal by a

window as defined in Section 24.12.2 – see Equation 5.22. Some popular windows

are Hamming, Hann (Hanning), Welch, Triangular, Gauss, Blackman and Bartlett.

There are many more windows, each with a slightly different feature. Some win-

dows taper off (e.g., Hann) to zero and some do not (e.g., Hamming). According

to our convention of denoting the DSTFT (Section 24.12.2), we will denote the nth

sample of the lth frame by lhn and lHk depending on if we speak about the sample

or its DFT.

l h̃n = lhnw(n) f or n ∈ {0,1, · · · ,N −1} (5.22)

One practical point to consider is that just like the STFT, at the start and end of

the sample sequence, when there is not enough data to cover the whole N-sample

period of a frame, the data is padded with zeros to make the total number of points

N. Naturally, when processing the beginning of the data stream, the beginning of

the sequence is padded with zeros, and when at the end, the end of the sequence is

padded.
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5.3.2.1 Hamming Window

The Hamming window is by far the most popular window used in speech processing.

Equation 5.23 presents the N-point Hamming window and Figure 5.15 shows the

Hamming window with N = 64 plus its spectrum. One reason for the popularity

of the Hamming window is the fact that its spectrum falls off rather quickly, so it

allows for better isolation. However, its, so called, side-lobes (higher harmonics)

stay quite flat and it covers most of the spectrum. Although, it is still popular mostly

due to legacy.

w(n) = 0.54−0.46 cos

(
2πn

N −1

)
(5.23)

5.3.2.2 Hann (Hanning) Window

The Hann window is a variation of the Hamming window and is known to belong

to the Hamming window family. The main difference between the two is that Hann

becomes 0 at n = 0 and n = N − 1. The zero values at the tails may or may not

be desirable depending on the circumstances of signal processing. One argument is

that when the tails go to zero, the full extent of the data has not been used. In speech

recognition, however, this may not be a problem since there is usually sufficient

frame overlap in computing the features.

w(n) = 0.5

(
1− cos

(
2πn

N −1

))
(5.24)

Figure 5.16 shows the Hann window for N = 64 and its spectrum. It is apparent

from comparing the spectra of the two windows that the frequency response of the

Hamming window drops very quickly for low frequencies and then becomes almost

flat for higher frequencies. On the other hand, the Hann window drops a bit more

slowly for low frequencies, but quickly drops for higher frequencies. Therefore,

each of them has its own advantages and disadvantages. This was the motivation

behind new families of windows that would combine the two types of responses.

5.3.2.3 Welch Window

The Welch window is quite similar to the Bartlett window. The following is the

N-point Welch window. If the square in Equation 5.25 is replaced with an abso-

lute value, the window will be identical with the Bartlett window. Both Welch and

Bartlett windows become 0 at n = 0 and n = N −1. Welch used this window for the

method of PSD estimation that he proposed in 1967 [87] – see Section 24.10.4 for

a description of this technique.
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Fig. 5.15: Hamming Window
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Fig. 5.16: Hann Window
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Fig. 5.17: Welch Window
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w(n) = 1−
(

n− N−1
2

N−1
2

)2

(5.25)

Figure 5.17 shows the Welch window for N = 64 and its spectrum. Comparing

the frequency response of the Welch window to Hamming and Hann, we see some-

thing in between the two responses in that Welch drops somewhat faster than Hann

and has a lower power for higher frequencies compared to Hamming, however, the

higher frequencies do not fall off as fast as Hann.

5.3.2.4 Triangular Window

The triangular window, as the name suggests, is just a triangularly weighted win-

dow which peaks at the center of the window (n = N
2 ). It is important since it is

usually used in the computation of the Mel-Frequency Cepstra Coefficients – see

Section 5.3.4. The following is the equation for an N-point triangular window. It is

quite similar to the Bartlett window (see Section 5.3.2.3) with the exception that the

Bartlett window is 0 at n = 0 and n = N −1 and the triangular window is not.

w(n) = 1−
∣∣∣∣2n−N +1

N −1

∣∣∣∣ (5.26)

Figure 5.18 shows the Triangular window for N = 64 and its spectrum. As it is

apparent from the spectrum, it drops off quite abruptly. The side-lobes are much

wider than the ones for the smoother-transition windows we have discussed until

now. However, it still portrays an acceptable drop at higher frequencies.

5.3.2.5 Blackman Window Family

The Blackman window family is part of a larger Blackman-Harris family which is

basically a multi-term cosine series. The Blackman window family uses three terms

in the series. The following is the equation for the Blackman family.

w(n) = a0 −a1 cos

(
2πn

N −1

)
+a2 cos

(
4πn

N −1

)
(5.27)

where

a0 =
1−α

2

a1 =
1

2

a2 =
α

2
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Fig. 5.18: Triangular Window and its spectrum
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Fig. 5.19: Blackman Window (α = 0.16) and its spectrum
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Fig. 5.20: Gauss Window (σ = 0.4) and its spectrum
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When α = 0.16, the window is known as simply the Blackman window or the clas-

sic Blackman window. Figure 5.19 shows the Classic Blackman window for N = 64

and its spectrum. Judging from the spectrum, the Blackman window portrays the

best of Hamming and Hanning; it has a sharp drop, with a large main lobe and then

its sidelobes which are quite narrow, drop off quite rapidly as well. This is achieved

by the use of the higher order in a trigonometric series.

5.3.2.6 Gauss Window

There are several definitions for the Gauss or Gaussian window. All of them are

based on the Gaussian function. Of course there are some that use a power of 2

instead of e. In Section 24.12, we saw a continuous form of the window, Equa-

tion 24.483, which was used for the definition of the Gabor transform. Here is one

possible definition for an N-point discrete Gaussian window.

w(n) = e
− 1

2

(
n− N−1

2

σ N−1
2

)2

(5.28)

where,

σ ≤ 1

2
(5.29)

Figure 5.20 shows the Gauss window for N = 64 and its spectrum with σ = 0.4.

The performance of the Gauss window is quite similar to that of the Hamming win-

dow.

5.3.3 Discrete Fourier Transform (DFT) and Spectral Estimation

The next step in the processing of the speech data to be able to compute its spectral

features is to take a Discrete Fourier Transform of the windowed data. This is done

using the FFT algorithm – see Sections 24.10 and 24.10.5. The following is the

result of the FFT,

lHk =
N−1

∑
n=0

l h̃ne−i 2πkn
N

=
N−1

∑
n=0

lhnw(n)e−i 2πkn
N (5.30)

where, k = {0,1, · · · ,N −1} is the index of the frequency domain with k = 0 corre-

sponding to the DC component and k = N
2 corresponding to the folding frequency
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(half of the sampling frequency).

Now that we have computed the DFT of the lth N-sample overlapping frame, we

would like to estimate the spectrum of the sequence. Aside from the two points at

the DC level (ω = 0) and ω = 1
2ωs where ωs is the angular frequency of sampling,

the lHk are complex numbers which include a magnitude and a phase if viewed in

their polar coordinates,

lHk = |lHk|+ i�(lHk) (5.31)

Traditionally, in most speech-related systems, the phase of the Fourier Trans-

form is ignored and only the magnitude is used for deriving recognition features.

Although, there have been some studies suggesting that this may be inappropri-

ate [58]. Nevertheless, next, we will compute the magnitude of the FFT bins,

|lHk| =
√

Re(lHk)2 +I m(lHk)2 (5.32)
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Once we have the N FFT parameters, |lHk| of a signal, we may define a spectral

analysis measure which allows us to examine its variations in the frequency content

of the signal, as follows.

Definition 5.5 (Spectral Flatness). The spectral flatness of a signal is the ratio of

the geometric mean to the arithmetic mean of its power spectrum.

Fs(lH
N−1
0 ) =

N

√
∏

N−1
k=0 |lHk|

1
N ∑

N−1
k=0 |lHk|

(5.33)

A large Fs(lH
N−1
0 ) denotes a more uniform presence of spectral components in

the signal and a small one signifies concentration of power in certain frequencies.

Although Equation 5.33 uses the spectrum for the lth frame, in general, sometimes

it makes more sense to use the spectrum of a larger portion of the signal, HN−1
0 , to

evaluate its spectral flatness, Fs(H
N−1
0 ).

5.3.4 Frequency Warping

As we discussed in Section 5.1.1, the human auditory perception is based on a scale

which is somewhat linear up to the frequency of 1000 Hz and then becomes close

to logarithmic for the higher frequencies. This was the motivation for the definition

of Pitch, ℘ in the Mel-scale. Also, the experiments of Zwicker [103, 102] used a

24-band filter-bank to model the auditory system. The center frequencies of these

nonlinearly located filters were dubbed the Bark scale. Figure 5.21 shows the rela-

tionship among the three different measurement scales, Bark, Mel and log( f ).

Since the human perception works with these critical bands, the speech features

have been adapted to pertain to these specific bands. However, up to now, our sig-

nal processing has not taken this into consideration. Magnitudes of the spectra, |lHk|
which were computed in the last section pertain to the linear frequency scale. There-

fore, they have to be converted to have a smaller number of values corresponding to

the critical band center frequencies defined by [103, 102] using the Mel scale.

The way this can be done is to build a filter bank of, say, 24 filters as pre-

sented in Figure 5.21 and convert the total number of N DFT bin frequency cen-

ters which were equally spaced between − fc and fc to these 24 representations.

Note that since we are dealing with a real signal, based on the argument of Sec-

tion 24.10.1, the values of lHk for k ∈ {N
2 , · · · ,N − 1} are complex conjugates of

lHk for k ∈ {1, · · · , N
2 −1}. Therefore, since we are not considering the phase of the

transform, their amplitudes are redundant. This means that we have N
2 +1 values of

|lHk| which have to be mapped to 24 critical bands.
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One prevalent way of doing this mapping is to apply a critical band filter-bank

with center frequencies and bandwidths given by the bark scale. Another popular

method is to set these filters in equidistant centers based on the Mel scale. Although

these two are similar, as noted by the graph of Mels versus Barks in Figure 5.21,

the relationship is not quite linear. In practice, most systems have been reported to

be using the latter. In doing so, the distance between consecutive center frequencies

has to be set.

To find that distance, note that the distances between two adjacent critical fre-

quencies in the bark scale vary from 110 to 440 Mels, averaging about 160 Mels (due

to the slight nonlinearity demonstrated in Figure 5.21). The most prevalent sampling

frequency is 8000 Hz which is the frequency used most frequently in the telephony

industry and in the definitions of the different PCM flavors of ITU-T G.711 [36].

Considering this sampling frequency which corresponds roughly to 2840 Mels and

20 barks, we can divide the Mel frequency space into a set of filters. Some have

used 20 filters [16] for this set, based on the critical locations on the bark scale, but

then used a uniform spacing between center frequencies.

A more popular approach is to use the minimum difference between the first and

second critical bands to model the rest of the bands. That would be almost 110 Mels.

If we divide 2840 Mels by using 110 Mels in between two adjacent filters, we would

end up with 24 filters. For a 16000 Hz sampling rate, an average of 145 Mels would

probably be better, leaving us with 32 filters and so on.

Now that we have the filter spacing figured out, all we have to do is to pass

the magnitudes of the spectra, |lHk|, through these filters and obtained the Mel-

frequency versions of the spectral magnitudes. Before doing this, there is one more

detail to which we have to tend and that is the shape of the filters. We spoke about

window functions in Section 5.3.2. The most popular and one of the simplest ap-

proaches is to use a triangular shape for the filters (see Section 5.3.2.4).[16]

Figure 5.22 shows the filter locations based on the 24 division filter-bank with

the center frequencies chosen to be 110 Mels apart. These weighting windows are

applied on the linear spectral magnitudes to provide us with the Mel-scale spectral

magnitudes denoted by
∣∣
l H̆m

∣∣,∣∣
l H̆m

∣∣= Mmk |lHk| (5.34)

where m = {0,1, · · · ,M −1} is the critical filter index and M is the total number of

filters in the critical band filter-bank (24 in the case we are examining). The matrix

Mmk is the (m,k)th element of matrix M , {M : RN �→ RM}, which is the mapping

given by the triangular filters from the linear frequency scale to the Mel scale.
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5.3.5 Magnitude Warping

Now that we have warped the magnitudes of the spectra into a Mel-frequency scale,

recall the discussions we had about loudness in Section 5.1.2. |lHk|2 is related to

the intensity, I. Our goal is to convert it to a value that would represent loudness so

that we may mimic human perception. As you recall, loudness is both a function

of pitch,℘, and intensity, I. In warping the magnitudes to the pitch scale, Mel, we

built in the pitch dependency. Now we should warp |lHk|2 such that the amplitude

is logarithmic and similar to the DB scale. Of course to make sure it is in the DB

scale, we should divide it by the standard intensity threshold, I0, before taking the

log. Therefore, a measure related to loudness would be,

lC̃m = 10log

(∣∣
l H̆m

∣∣2
I0

)
(5.35)

Let us also define another variable, lCm which lacks the normalization of lC̃m. lCm

is the log spectrum of the signal in the lth frame. We will discuss its properties in

the next section.

lCm = log
(∣∣

l H̆m

∣∣2) (5.36)
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5.3.6 Mel Frequency Cepstral Coefficients (MFCC)

In the previous section, we derived the log of the PSD of the signal in the Mel scale.

We will refer to this as the log spectrum from here on for convenience. Also, in

Section 24.15 we discussed the cepstrum of a signal in detail. In general, one of the

most attractive features of the cepstrum which makes it a good candidate for usage in

speaker recognition is its inherent invariance toward linear spectral distortions. Re-

call the control system analogy used at the beginning of Section 5.3. Equation 5.20

showed the relationship between the input and the output of the speech production

system where the transfer function, G(ω) was composed of the controller and the

plant transfer functions, Gc and Gv. According to Section 24.15, the convolution of

the signals in the time domain which shows up as the product in the block diagram

(in the spectral domain), ends up being a summation of components in the cepstral

domain. This makes cepstral analysis ideal for speech and speaker recognition pur-

poses since the vocal tract dynamics and the pulse train associated with the glottal

motor control become additive components in the cepstral domain.

In Section 24.15, no assumption was made regarding the frequency scale used in

the cepstral processing. However, we did discuss the short-time analysis in the cep-

stral domain for pitch detection as initially proposed by Noll in [54, 55]. To evaluate

the cepstral coefficients, based on the analysis of the short-time Mel-Frequency log

spectrum, we may compute the inverse Fourier transform of lCm of Equation 5.36.

Note that the resulting inverse is in general complex. One possibility is to take the

square of the inverse as suggested by Equation 24.601. Another possibility is to

take the real part of the inverse Fourier transform. Yet another possibility is to take

the inverse Discrete Cosine Transform (DCT) of lCm which provides us with real

numbers. This approach was introduced by [16]. See Section 24.13, for more on the

DCT.

In the inverse DCT approach, the Mel-Frequency Cepstral Coefficients will then

be defined by the following using Equation 24.518,

lcd =
M−1

∑
m=0

am lCm cos

(
π(2d +1)m

2M

)
(5.37)

where using Equation 24.519, the coefficients, am, are given by,

am =

⎧⎨⎩
1
M

f or m = 0

2
M

∀ m > 0

(5.38)

The Mel-Frequency Cepstral Coefficients (MFCCs) are always real and convey

information about the physical aspects of the speech signal. Consider the spectro-

gram of the signal in Figure 5.28. Figure 5.29 is a plot of the trajectories of the

short-time MFCCs c1 and c2 across 260 frames of overlapping speech in the signal.
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Right at the location of the largest trough in c1 (about 0.3s into the utterance and

again at around 2.1s), the spectrogram shows a fricative (energy in the high fre-

quency region). A negative c1 relates to the local minimum of the cosine in the DCT

noting that the higher Mel-frequency indices in the summation of the DCT are con-

tributing more. On the other hand, a positive peak means that there must be more

power in the lower frequency range, signifying sounds such as stops which have

most of their energy in the lower frequencies. The time instance of about 0.6s hap-

pens to be part of phoneme /t/ which demonstrates a high peak in the c1 value and a

concentration of power in the lower frequencies as depicted by the spectrogram. As

the MFCC dimension d becomes larger, the number of alternating partitions in the

frequency range increases. For example, c2 is a combination of the first and third

partitions of the frequency scale in contrast with the second and fourth partitions.

This goes on as d increases. When d = 0, the cosine term of the DCT becomes

1. c0 is then the average power of the signal. Although the computation of c0 has

involved many transformations, so it is a better idea to compute the power from

the autocorrelation of the signal based on the Wiener-Khintchine theorem (see Sec-

tion 24.9.11). Figure 5.30 shows the shortpass liftered version of the trajectories of

c1 and c2. Section 18.4 describes the benefits of this type of liftering in more detail

– see Section 24.15.
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As we have seen, Mel Frequency Cepstral Coefficients carry significant infor-

mation about the structure of the signal and are ideal candidates for being used

as features for speaker and speech recognition. In the next section, we will speak

about extracting the dynamics of these features to complement the basic features. It

is worth noting that even without any added dynamics, the windowing has already

built in some local dynamics into the MFCC features.



5.3 Spectral Analysis and Direct Method Features 175

0 0.5 1 1.5 2 2.5
−1

0

1

Time (s)

F
re

q
u

en
cy

 (
H

z)

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 5.28: Spectrogram of the audio being analyzed for MFCC computation
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Fig. 5.29: Trajectory of the first two
MFCC components over the whole ut-
terance
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Fig. 5.30: Shortpass liftered Trajectory
of the first two MFCC components over
the whole utterance

5.3.7 Mel Cepstral Dynamics

To capture the dynamics of the Mel Cepstral coefficients, the first and second order

differences are used. In general, the first and second order differences are somewhat

independent of the actual MFCC coefficients and are used to model the local dy-

namics of speech. These differences are known by Delta and Delta-Delta Cepstral

Coefficients. In treating Mel Frequency Cepstral Coefficients and their first and sec-
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ond differences, some researchers have used the same number of dynamic features

as actual MFCCs themselves. However, there is practical evidence that this need

not be the case. Since as the number of features in a feature vector are increased,

more data is needed to properly estimate the statistical parameters of the models,

it is advisable to use a smaller number of delta cepstra and yet a smaller number

of the delta-delta cepstra in the feature vector. The actual number is a function of

the amount of data available for training and testing as well as the speed require-

ments. As size of the feature vector increases more data is required for both training

and testing and there may be significant slow-downs associated with larger feature

vectors. This is especially true for the training process.

5.4 Linear Predictive Cepstral Coefficients (LPCC)

In Section 5.3, we covered the, so called, all-zero, moving average (MA), or di-

rect method of computing the spectra. Then, after frequency and magnitude warp-

ing, we computed the MFCC features. In this section, we will review a counterpart

which differs mostly in the way it approximates the PSD of the signal, |H(ω)|2. This

method is known by the names, all-pole model, maximum entropy model (MEM),

or the autoregressive (AR) model and estimates the PSD by fitting with an all-pole

model.

Several types of features are generated by the AR model. These are Linear Pre-

dictive Coding (LPC) coefficients, reflection or Partial Correlation (PARCOR) co-

efficients and log area ratio coefficients. As we will see, one efficient method for

computing these features relies on the short-time signal autocorrelation. There is

also a covariance method for solving the corresponding equations [60].

In practice, most recognizers that rely on the AR estimates convert the LPC coef-

ficients to cepstral coefficients. First, we are going to derive the equations for finding

the LPC coefficients. Then we will be exploring other related coefficients and finally

convert the LPC coefficients to cepstral coefficients.

The first few steps leading to the computation of the PSD for extracting the

LPC coefficients are identical to the method used in pursuing MFCC features in

Section 5.3. Therefore, the sampling is done in the prescribed fashion, following

by a hi-pass filter and pre-emphasis. Then the signal is divided into overlapping

frames exactly in the fashion described in Section 5.3.1 followed by the applica-

tion of a low-pass window as prescribed in Section 5.3.2. After all this processing,

we will have L overlapping frames, each of which is N samples long. Therefore,

each sample is denoted by lhn where l ∈ {0,1, · · · ,L−1} is the frame number and

n ∈ {0,1, · · · ,N −1} is the sample index within the frame.
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5.4.1 Autoregressive (AR) Estimate of the PSD

In the Section 5.3, we reviewed a method which started with a spectral estimation

(estimation of the PSD) for the sampled signal, hn. Recall the derivation of the

DFT in Section 24.10 where we decided to estimate the spectrum of the signal by

truncating the approximation to the Complex Fourier Transform. This gave us the

following expression for the DFT,

Hk =
N−1

∑
n=0

hne−i 2πkn
N (5.39)

and the power spectral density (PSD) associated with it,

P◦
d (k) =

1

N2
|Hk|2

=
1

N2

∣∣∣∣∣N−1

∑
n=0

hne−i 2πkn
N

∣∣∣∣∣
2

(5.40)

This is only an approximation, where not only time has been discretized, but the

frequency has also been discretized using Equations 24.434 and 24.435. Therefore,

the PSD estimation based on the DFT (Periodogram) is truly an estimate and not

the actual PSD itself. To obtain a better estimate of the PSD, recall that we may use

the DTFT of the signal which does not discretize the frequency,

H(ω) =
∞

∑
n=−∞

hne−iωn (5.41)

This, as we showed in Section 24.14, is a special case of the two-sided z-transform

of the signal with z = eiω ,

H(z) =
∞

∑
n=−∞

hnz−n (5.42)

The PSD associated with the DTFT is given By Equation 24.465 and repeated here

for convenience,

P◦
d (ω) =

1

2π
|H(ω)|2

=
1

2π

∣∣∣∣∣ ∞

∑
n=−∞

hne−iωn

∣∣∣∣∣
2

(5.43)

If we write Equation 5.43 with the change of variable, z = eiω , we obtain the

following,

P◦
d (ω) =

1

2π

∣∣∣∣∣ ∞

∑
n=−∞

hnz−n

∣∣∣∣∣
2

(5.44)
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Recall the relation between the discrete frequency, ωk and k given by Equa-

tion 24.461 where,

ωk =
2πk

N
0 ≤ k < N (5.45)

substituting this in Equations 5.39 and 5.40, we have,

H(ωk) =
N−1

∑
n=0

hne−iωkn (5.46)

and

P◦
d (ωk) =

1

N2

∣∣∣∣∣N−1

∑
n=0

hne−iωkn

∣∣∣∣∣
2

=
1

N2

∣∣∣∣∣N−1

∑
n=0

hnz−k

∣∣∣∣∣
2

(5.47)

Comparing Equations 5.44 and 5.47, we see that Equation5.47 is a polynomial es-

timate of the infinite series in Equation 5.44 (not bothering with the normalization).

Refer to the definition of the Laurent series expansion of an analytic function in an

Annular region, Definition 24.43. Note that the z-transform may be thought of as

a special case of the Laurent series of the function it transforms. Therefore, Equa-

tion 5.44 is just a Laurent series expansion. In general, the Laurent series may be

approximated by a rational function with a finite number of poles and zeros. There-

fore, Equation 5.42 may be approximated as,

H(z) =
∞

∑
n=−∞

hnz−n

≈ G1(z)

G2(z)

=

N

∑
n̂=1

βn̂z−n̂

α0 +
Q

∑
q=1

αqz−q

(5.48)

This Equation describes the, so called, AutoregRessive Moving Average (ARMA)

model which contains both poles and zeros.

Notice that Equation 5.46 is just the special case of the approximation given by

Equation 5.48 where G2(z) = 0, namely, the number of poles is 0 leaving us with

an all-zero approximation of the Laurent series expansion of the DFT of the sig-

nal, hn. It is conceivable that we may choose to use only poles to approximate the

Laurent series and to set G1(z) = 0. This leads to the all-pole method which will be
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discussed here.

Assuming that H(z) is approximated only by poles, which is called an Autore-

gressive (AR) model, we will have,

H(z) ≈ 1

α0 +
Q

∑
q=1

αqz−q

=

1
α0

1+
Q

∑
q=1

αq

α0
z−q

(5.49)

Now let us define the following variables,

Ĝ
Δ
=

1

α0

aq
Δ
= −αq

α0
where q = {1,2, · · · ,Q} (5.50)

Using Definitions 5.50 in Equation 5.49, we have,

Ĥ(z) =
Ĝ

1−
Q

∑
q=1

aqz−q

(5.51)

which is equivalent to

Ĥ(ω) =
Ĝ

1−
Q

∑
q=1

aqe−iωq

(5.52)

where Ĥ(ω) is the all-pole approximation of the DTFT. Now, if we write the PSD

given by Equation 5.43 in terms of the new all-pole estimate of DTFT (Ĥ(ω)), we

have,

P̂◦
d (ω) =

1

2π
|H(ω)|2

=
1

2π

Ĝ2∣∣∣∣∣1−
Q

∑
q=1

aqz−q

∣∣∣∣∣
2

(5.53)

where P̂◦
d (ω) is the all poles approximation of P◦

d (ω).

Let us further simplify Equation 5.53 by defining

G
Δ
=

Ĝ√
2π

(5.54)
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Plugging G into Equation 5.55 we have the final form of the all-pole approximation

of the PSD,

P̂◦
d (ω) =

G2∣∣∣∣∣1−
Q

∑
q=1

aqz−q

∣∣∣∣∣
2

(5.55)

Let us examine the all-pole estimate of the DTFT in terms of z, given by Equa-

tion 5.51. The homogeneous part of the difference equation related to Equation 5.51

gives us the relationship between the nth sample and its prior Q samples in the fol-

lowing form,

(h)ĥn =
Q

∑
q=1

aqhn−q (5.56)

where (h)ĥn is the estimated output of the homogeneous portion of the difference

equation defined by Equation 5.51. In reality, since this is an all-pole method, it

includes no dynamics related to the input of the system. So, the particular solution

of the difference equation will be dependent on the input signal which is unknown.

If we assume that the input signal remains constant within Q or more samples, then

we can simply add a constant DC level to the signal for each computation, namely3,

ĥn = (h)ĥn +(p)ĥn

=
Q

∑
q=1

aqhn−q +(p)ĥn (5.57)

where (p)ĥn is the particular solution of the difference equation related to Equa-

tion 5.51.

The real output is the actual value (observed value) of the signal at sample n, hn.

Therefore, the modeling error would become,

ên = hn − ĥn

= hn −
Q

∑
q=1

aqhn−q +(p)ĥn (5.58)

Since we assumed that we are going to have a constant input signal for a period

greater than or equal to Q samples, resulting in a constant particular solution, (p)ĥn,

we may define a new error function, en, which does not include the constant partic-

ular solution in it. Namely,

en
Δ
= ên − (p)ĥn (5.59)

Therefore,

3 If you need to refresh your knowledge of difference equations, please see [41].
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en = hn −
Q

∑
q=1

aqhn−q (5.60)

This is the error for each sample in the frame. Now, the problem is to find the

parameters, aq, such that we have minimum error in some sense. We have to decide

on the metric that we would like to choose for the minimization. A popular choice

is to minimize the sum of squares of errors over all the samples in the frame. This

means that our minimization objective function will be,

E =
N−1

∑
n=0

En

=
N−1

∑
n=0

e2
n

=
N−1

∑
n=0

[
hn −

Q

∑
q=1

aqhn−q

]2

(5.61)

where En is the square of the error for sample n and E is the sum of squares of errors

over all N samples in the frame.

To minimize E, we can take its partial derivative with respect to the AR parame-

ters, aq, and set it equal to zero and then solve for the aq,

∂E

∂aq

= 0 (5.62)

The solution to problem 5.62 has been attacked from two different perspectives.

Rabiner and Juang [60] use the signal samples in a similar fashion as we have dis-

cussed here, with a slight difference in handling the particular part of the solution

to the difference equation. However, after taking the derivative, the same results are

obtained in their approach and the one we have presented here.

Makhoul [46] has approached the problem from its dual perspective. Namely, he

has defined the error in the spectral domain as,

Es =
G2

2π

ˆ π

−π

P◦
d (ω)

P̂◦
d (ω)

dω

=
1

2π

ˆ π

−π
P◦

d (ω)

∣∣∣∣∣1−
Q

∑
q=1

aqe−iωq

∣∣∣∣∣
2

(5.63)

where Es is the error defined by [46] in the spectral domain, P̂◦
d (ω) is the all-pole

estimate of the PSD given by Equation 5.55, and P◦
d (ω) is the true PSD. Therefore,

the minimization problem according to [46] becomes,

∂Es

∂aq

= 0 (5.64)
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Due to Parseval’s theorem, the results of both minimizations become identical

and may be written in terms of the autocorrelation function of the signal, hn, in the

form of Q simultaneous linear equations in aq [60, 46],

Q

∑
q=1

aq lr(| j −q|) = lr( j) where j = {1,2, · · · ,Q} (5.65)

where lr( j), j ∈ {0,1, · · · ,Q} is the autocorrelation of the signal in frame l for up to

Q+1 values. The actual autocorrelation function is defined over all time, namely,

lr( j) =
∞

∑
n=−∞

hnh(n+ j) (5.66)

where −∞ < j < ∞. However, in the AR model we have assumed that the signal is

stationary. As we have discussed before, the speech signal is a non-stationary signal.

This is the reason we have chosen to use a short-time formulation, which means that

we have multiplied an N-sample window with the signal with vanishing tails so that

at most N samples have non-zero values. Therefore, we can rewrite the short-term

autocorrelation function as,

lr( j) =
N−1−Q

∑
n=0

lhn lhn+ j

(5.67)

where, j ∈ {0,1,2, · · · ,Q} and l is the frame number (see Section 5.3.1). Note that

in the short-time version, we are allowing for Q + 1 numbers ranging from j = 0

to j = Q. Although the autocorrelation is defined past Q + 1 points, we are only

interested in Q + 1 points to be able to solve Equation 5.65. The relations in Equa-

tion 5.65 are known as the Yule-Walker Equations [39].

Let us define the, so called, autocorrelation matrix, lR,

lR
Δ
=

⎡⎢⎢⎢⎢⎢⎣
lr(0) lr(1) lr(2) · · · lr(Q−1)

lr(1) lr(0) lr(1) · · · lr(Q−2)

lr(2) lr(1) lr(0) · · · lr(Q−3)
...

...
...

. . .
...

lr(Q−1) lr(Q−2) lr(Q−3) · · · lr(0)

⎤⎥⎥⎥⎥⎥⎦ (5.68)

and the autocorrelation vector,

lr
Δ
=

⎡⎢⎢⎢⎣
lr(1)

lr(2)
...

lr(Q)

⎤⎥⎥⎥⎦ (5.69)
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Then we can rewrite the Yule-Walker equations, Equation 5.65, in matrix form as

follows,

lR la = lr (5.70)

where la : R1 �→ RQ is the vector of the all-pole parameters for frame l.

Therefore, the least squares solution to the all-pole estimate is given by,

la = lR
−1

lr (5.71)

Note the structure of lR in the definition of Equation 5.68. lR is a Toeplitz matrix

which shows up in many solutions to difference equations, especially in control sys-

tems and signal processing. Its structure makes it quite simple to solve for la using

the Levinson-Durbin algorithm which was introduced by Levinson [42] and then

modified by Durbin [18, 19, 8, 60]. There is also another algorithm called Schür

recursion [66], which is more efficient for parallel implementations.

From the spectral perspective, due to Parseval’s theorem (see Section 24.9.7),

element q of lr, denoted by lr|q is as follows [46],

lr( j) =
1

2π

ˆ π

−π
lP

◦
d (ω) cos( jω)dω

=
∞

∑
n=−∞

hnh(n+ j) (5.72)

Note that in the spectral form of Equation 5.72, the angular frequency, ω , is treated

as a continuous variable. It is possible to discretize the frequency as we did in the

DFT method by Equation 24.461 so that we obtain the discretized version of Equa-

tion 5.72, namely,

lr( j) =
0

N −1
lP

◦
d (ω) cos(2πk j)

=
N−1−Q

∑
n=0

lhn lhn+ j (5.73)

In the discretized version,

E =
G2

N

N−1

∑
n=0

P(ωk

P̂(ωk)
(5.74)

Equation 5.74 means that only discrete values of the frequency are contributing to

the error being computed. This means that the minimum error is only valid for the

discrete frequencies within the range of ωk. This re-iterates the fact that if there are

higher frequencies present, they will not be modeled. Note that one other possible

method for computation of the all-pole estimate is to use a discrete cosine transform

through an FFT as apparent by Equation 5.74 See [46] for a complete treatment of
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the spectral path of the solution of the Linear Predictive Coefficients.

Let us return to the Yule-walker equations. As we mentioned, up to the window-

ing step, the LPC method is identical to the direct method of Section 5.3. In the next

step, we will use the short-time autocorrelation (Equation 5.67) for the N-sample

frame and solve Equation 5.71 to compute the LPC coefficients and then follow on

to compute the LPCC features.

5.4.2 LPC Computation

At this point we have arrived at Equation 5.71 which should be solved for every

frame of the signal. As we noted, the Toeplitz structure of the autocorrelation ma-

trix, lR, allows us to use the efficient Levinson-Durbin method to solve the Yule-

walker Equations (Equation 5.70) directly, without having to compute lR
−1, for the,

so called, Linear Predictive Coding (LPC) coefficients, laq,q ∈ {1,2, · · · ,Q} and l ∈
{0,1, · · · ,L−1}.

The following pseudo-code represents the steps of the Levinson-Durbin method

as stated by Rabiner and Juang [60] (some typographical errors which existed in

[60] have been corrected here),

Initialize E:

E(0) = lr(0) (5.75)

for (q = 1 to Q),

1.

lκq =

lr(q)−
q−1

∑
j=1

α
(q−1)
j lr(q− j)

E(q−1)
(5.76)

2.

α
(q)
q = lκq (5.77)

3. for (j = 1 to Q),

α
(q)
j = α

(q−1)
j − lκqα

(q−1)
q− j (5.78)

endfor

E(q) = (1− lκ
2
i )E(i−1) (5.79)
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endfor

Once the above recursion is completed, the LPC parameters are extracted from

the results as follows,

laq = α
(Q)
q (5.80)

By plugging in the LPC parameters given by Equation 5.80 into Equation 5.55

we are able to compute values which are proportional to the estimated short-time

PSD of the signal. It is proportional to it since we still have not computed the value

of G. Well, since G2 is actually the error of the estimate, it may be written as

lG
2 = lr(0)−

Q

∑
q=1

laq lr(q) (5.81)

where laq are the newly computed LPC parameters.

Now we have everything needed to be able to write the estimate of the PSD using

the all-pole method, Equation 5.55.

Aside from recognition, LPC has been used to compress audio. One application

of the LPC coefficients is in the underlying coding of GSM signal compression used

in most cellular (mobile) telephones. GSM is sampled at 8 kHz and the frames are

20 ms long. It actually uses the Log Area Ratios (LAR) which are coefficients de-

rived from the LPC computation process. We will speak about them shortly.

In the next few sections, we will study a series of different features which have

been derived from the LPC coefficients or have been computed in the process of

computing the LPC coefficients. Some of them have been given physical interpreta-

tions.

5.4.3 Partial Correlation (PARCOR) Features

There are several other features with physical interpretation which come out of the

computation of the LP coefficients. One such feature is the κq which was generated

as a part of the computation of the LP coefficients. The κq are known as the Partial

Correlation (PARCOR) coefficients (see Definition 6.60) and an interpretation is

made that they only contain the non-redundant part of the autocorrelation which is

used in the computation of the LP parameters, hence the name. Another expression

for κk is4,

4 The Source of this equation is a lecture by Stéphane Maes at IBM T.J. Watson Research Center
in 1995.
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Fig. 5.31: Cylinder Model of the Vocal Tract; Source: Flanagan [21]

κq =
E {E f (q)Eb(q)}√

E {E f (q)2}E {Eb(q)2} (5.82)

where E f (q) and Eb(q) are the errors associated with the LPC computation of the

signal. E f (q) is the error for a forward linear prediction and Eb(q) is the error for a

backward prediction, which means that the causality of the signal has been reversed.

In the backward case, the last sample of the signal is treated as its first and the first

sample as its last.

The above is the mathematical description of the PARCOR features. There is

also a version based on physical attributes. Figure 5.31 has been reproduced here

from Flanagan’s book [21] by the author’s permission. It is a simple model of the

major cavities and constrictions along the vocal tract by a series of cylinders with

different cross-sectional areas. The κq are also known as reflection coefficients. They

are related to the reflection between consecutive cylinders in a resonance chamber

model which flattens the cylinders of Figure 5.31 into a long series of concentric

cylinders with different areas. This enables the use of a one dimensional form of

the wave equation, derived for modeling wave propagation through a nonuniform
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pipe (with a varying cross-section)– see Figures 5.32 and 5.33. Equation 5.83 is

Webster’s equation in terms of the pressure in the pipe which is a one-dimensional

form of the wave equation [21].

∂ 2 p(x, t)

∂x2
+

1

A(x)

∂ p(x, t)

∂x

∂A(x)

∂x
=

1

c2

∂ 2 p(x, t)

∂ t2
(5.83)

where p(x, t) is the pressure and it is a function of time, t and the longitudinal di-

mension of the pipe, x. A(x) is the cross-sectional area, and c =
√

k
ρ is the speed

of sound in the conditions of the compressible fluid, where ρ is the density of air

and k = −V
∂ p
∂V

is its bulk which gives a notion of the compressibility of the com-

pressible fluid (air).[23] Equation 5.83 assumes a constant temperature in the fluid

in which case the B ≈ 105Pa and ρ for air at 37◦C is about 1.145 kg

m3 . This makes

c2 = 87336 m2

s2 (c = 296 m
s

).

As we mentioned, Equation 5.83 is a one dimensional wave equation and may be

solved with the following boundary conditions,

p(0, t) = P0

p(L, t) = 0 (5.84)

where x = 0 signifies the glottis and x = L is the opening of the mouth. Since the

opening of the mouth terminates into ambient pressure and since the pressure dif-

ferentials are computed against ambient pressure, P(L, t) = 0. Also, we may assume

that at the onset of a phone, the pressure at the glottis has some constant value, P0.

The wave equation in terms of the volume velocity, U(x, t), is as follows,

A(x)
∂

∂x

(
1

A(x)

∂U(x, t)

∂x

)
− 1

c2

∂ 2U(x, t)

∂ t2
(5.85)

where the volume velocity,

U(x, t) = u(x, t)A(x) (5.86)

where u(x,t) is the velocity of an infinitesimal control volume of the fluid at position

x and time t.

The steady state solutions to Equations 5.83 and 5.85 may be computed. If we

assume the model given by Figure 5.33, then the area is constant within each cylin-

der. If the equations are solved for each cylinder along the way and the boundary

conditions are matched between solutions obtained by the left cylinder and the right

cylinder, then the impedance at any transition point may be given in terms of the

pressure differentials.
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Flanagan [21] shows the reflection coefficient, κq based on this solution in terms

of the pressure differential and eventually in terms of the cross sectional areas of

two adjacent cylinders, by Equation 5.87.

κq =
Aq−1 −Aq

Aq−1 +Aq

(5.87)

where q ∈ {1,2, · · · ,Q}, A1 signifies the area at the glottis and AQ+1 stands for the

area of the pipe at the lips (see Chapter 2). The boundary condition at the ambient,

x = xQ+1 may be computed by setting AQ+1 = ∞ and by applying l’Hôpital’s rule

to Equation 5.87, we will have κQ+1 = −1. If we set A0 = A1 at the glottis, we get

κ0 = 0 which is the other boundary condition.

Fig. 5.32: Concentric cylinder model of the vocal tract

Fig. 5.33: Physical interpretation of the reflection coefficients
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5.4.4 Log Area Ratio (LAR) Features

From Equation 5.87, consider the following ratio,

Gq =
1−κq

1+κq

=

Aq−1+Aq−Aq−1+Aq

Aq−1+Aq

Aq−1+Aq+Aq−1−Aq

Aq−1+Aq

=
Aq

Aq−1
(5.88)

Gq is known as the Area Ratio, but it is usually used in its log form,

gq = log(Gq)

= log(
Aq

Aq−1
) (5.89)

gq,q ∈ {1,2, · · · ,Q} are known as the Log Area Ratio (LAR) coefficients.

5.4.5 Linear Predictive Cepstral Coefficient (LPCC) Features

In Section 5.3.6 we made the case for the robustness of cepstra as features and

the fact that they are more reliable than spectral features. Rabiner and Juang [60]

present a recursive algorithm for computing the cepstral coefficients from the LPC

coefficients. As we know, the c0 is the energy term, so it will be given in terms of G

which was defined in Equation 5.81 as follows,

c0 = log(G2) (5.90)

The rest of the coefficients are given by the following recursive algorithm,

1. For 1 ≤ d ≤ Q, the following recursion is used,

cd = ad +
d−1

∑
j=1

(
j

d

)
c jad− j (5.91)

2. For d > Q,

cd = ∑
j=1

d −1

(
j

d

)
c jad− j (5.92)

N.B., In Equation 5.92, it is possible for d− j to become larger than Q, in which

case, ad− j = 0 ∀ (d − j) > Q.
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These are called Linear Predictive Cepstral Coefficients (LPCC). As you recall,

the order, Q, of the AR model is physically related to the number of concentric cylin-

ders that are used to model the vocal tract. [60] recommends between 8 ≤ Q ≤ 16.

If we set the upper limit to the number of critical filters, determined by [103] (see

Section 5.1.1.2), then the ratio of D which is the dimension of the cepstral coeffi-

cient vector becomes 3
2 Q.

Note that the LPCC are not based on any perceptual frequency scale (Mel or

Bark), although they may be warped to do so. However, historically, the pure com-

putation of LPCC does not warp the frequency domain. This led to the development

of the Perceptual Linear Predictive (PLP) analysis which borrows ideas from MFCC

and LPCC computations, but uses the Bark scale instead of the Mel scale. It also in-

cludes some other subtleties. PLP will be discussed in detail in the next section.

Also, we will see in Chapter 18 that the cepstral features are seldom used as

they are. To attain a higher level of robustness to noise and condition variabilities,

several liftering (filtering in the cepstra domain) techniques have been used. These

techniques plus other signal enhancement methods form the topic of Chapter 18.

5.5 Perceptual Linear Predictive (PLP) Analysis

Perceptual Linear Prediction (PLP) was introduced by Hermansky [30] to work in

the warping of the Frequency and spectral magnitude, based on auditory perception

tests (Section 5.1), into pitch and loudness to be used mainly as a preprocessor for

the Linear Prediction method (Section 5.4). The preprocessing that leads to the LP

stage is very similar to the preprocessing which was discussed in the process leading

to the MFCCs. There are some minor differences which will be made apparent once

we go through the steps. Figure 5.34 shows the block diagram of the PLP method

which was first introduced in [30].

Fig. 5.34: Perceptual Linear Predictive Analysis due to Hermansky [30]
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5.5.1 Spectral Analysis

The first step in the PLP is identical to the spectral analysis which was described in

the computation of MFCC features in Section 5.3.3, Equation 5.32, repeated here

for convenience,

|lHk| = Re(lHk)
2 +I m(lHk)

2 (5.93)

5.5.2 Bark Frequency Warping

Next, analogous to the Mel Frequency Warping that was done in Section 5.3.4, [30]

chooses to use the Bark scale as we had noted to be a possible alternative. There-

fore, the new Spectral Magnitude in the bark scale will be given by the following

conversion formula due to Schroeder [65] which converts the linear version of the

angular frequency, ω , to the Bark frequency, B,

B = 6 ln

(
ω

1200π
+

[( ω

1200π

)2

+1

] 1
2

)
(5.94)

and does a warping somewhat similar to what we did in Section 5.3.4.

Of course, one should be able to just apply the Equations of Section 5.1.1.2 due

to [79] which were published in the same year that Hermansky’s paper on PLP was

published. Then, the triangular filters used in Section 5.3.4 may be redesigned for

the center frequencies given by Equation 5.3 and the critical bandwidths given by

Equation 5.5 in terms of Barks yielding the warped Spectral Magnitudes,∣∣
l H̆m

∣∣= M̃mk |lHk| (5.95)

where M̃mk is the critical filter weights based on barks, m : 0 ≤ m < M is the new

index in the Bark domain and l is the frame number. Of course, although this is

the concept, [30] has not exactly taken this approach. See [30] for detailed imple-

mentation. Also note that we have been using the spectral magnitude and not the

Power Spectral Density (PSD), which is the square of the magnitude. Hermansky

uses the PSD instead. However, from here on, we shall use the PSD as well by

squaring the term given by Equation 5.95 to produce the warped PSD, lP̆m defined

in Equation 5.96,

lP̆m =
∣∣
l H̆m

∣∣2 (5.96)

for frame index, l, and Bark scale index, m.
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5.5.3 Equal-Loudness Pre-emphasis

This step is designed to do some pre-emphasis in the spirit of combining the con-

cept of Equal Loudness Curves, discussed in Section 5.1.2, and the concept of pre-

emphasis which changes the weights of the spectral magnitudes. Reference [30] uses

an approximation to the Equal Loudness Curves, due to Makhoul and Cosell [47]

to compute the pre-emphasis factor, Fp.e., as a function of the angular frequency, ω ,

for band-limited signals with an upper cut-off frequency of 5kHz, as,

Fp.e.(ω) =
(ω2 +5.68×107)ω4

(ω2 +6.3×106)2(ω2 +3.8×108)
(5.97)

This pre-emphasis filter causes a 12dB/Octave drop in the signal strength for

frequencies of up to 400Hz. For this frequency range, the drop is similar to that

used in the pre-emphasis of the signal in Section 5.2.3 for frequencies higher than

1kHz. However, here, the drop is only 6dB/octave for frequencies between 1200Hz

and 3100Hz and 0 for all other frequencies up to the Nyquist Critical Frequency of

5kHz for bandlimited signals.

For signals with a higher frequency content, an additional term is utilized which

adds a sharp drop of 18dB/octave in the power for frequencies higher than 5kHz.

Fp.e.(ω) =
(ω2 +5.68×107)ω4

(ω2 +6.3×106)2(ω2 +3.8×108)(ω6 +9.58×1026)
(5.98)

The pre-emphasized and frequency-warped power spectral density, lΦm, for

frame l and bark scale index m is given by,

lΦm = �p.e.(B) lP̆m (5.99)

where the pre-emphasis filter transfer function, �p.e.(B), is the transfer function,

Fp.e.(ω) written in terms of the Bark scale using the identity given in equation 5.94.

One practical note is the fact that the value of lΦm is not well-defined for

m = 0 (corresponding to the D.C. component) and m = M −1 (corresponding to the

Nyquist Critical Frequency). Reference [30] sets lΦ0 = lΦ1 and lΦM−1 = lΦM−2 to

alleviate this problem.
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5.5.4 Magnitude Warping

Hermansky [30] calls this step Intensity to Loudness Conversion. It is in the same

spirit as the Magnitude warping, discussed in Section 5.3.5, for computing the

MFCC features. The difference is that instead of using the dB scale and normalizing

against the Standard Intensity Threshold, I0, [30] uses a cube root approximation to

the Psychophysical Power Law of Hearing due to Stevens [73], namely,

lΦ̆m = 3
√

lΦm (5.100)

lΦ̆m is the Bark-warped, pre-emphasized, magnitude warped power spectral den-

sity for frame l and Bark index m.

5.5.5 Inverse DFT

At this point, the transformed PSD values are run through an inverse Discrete

Fourier Transform to obtain the autocorrelation function to be used in an autoregres-

sive analysis of an all-pole model (Linear Predictive model) much in the same way

as we discussed in the section on LPC (Section 5.4). [30] uses a 34-point IDFT (In-

verse Discrete Fourier Transform) which produces the autocorrelation values needed

for solving the Yule-Walker equations (Equation 5.70). These equations are solved

to compute the autoregressive coefficients using a method such as the Levinson-

Durbin method [60].

As we saw in Section 5.4, these coefficients may then be used to compute the

cepstra. Cepstra derived by this process are called PLP Cepstra. In Reference [32],

a RelAtive SpecTrAl (RASTA) filter is added to the PLP process. The new process is

called RASTA-PLP. In Section 18.4.4, RASTA and its variations are discussed and

their effects are studied on clean and noisy speech data. Also, their effectiveness

levels for speech and speaker recognition applications are reviewed.

5.6 Other Features

Many other features have been proposed and tested by researchers in the past few

decades. Some are new audio features [86, 64, 27, 97, 33, 29, 48, 81, 82, 38, 37, 88,

4, 51, 99, 68, 3], others are based on visual cues [11, 43, 63] and some others are just

variations and transformations of established features [14, 61, 5, 101, 94, 95, 91, 40,

31, 53]. In this section we will review a few of these features. There are also many

other features which have not been covered here. For example, there are many dif-
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ferent features based on filterbank concepts spaced in uniformly, non-uniformly and

uniformly in nonlinear scales. An example of one such filterbank is the Ensemble

Interval Histogram (EIH) model [26] which uses a non-uniform filterbank designed

with having a special ear model in mind.

5.6.1 Wavelet Filterbanks

For the past two decades, many pattern recognition approaches have been uti-

lizing wavelet transforms for feature extraction. Some examples are ear [98, 56,

89, 84, 96], multimodal ear and face [85, 90, 93], speaker recognition in gen-

eral [1, 15, 25, 24, 69], speaker identification [7, 13, 34, 52, 52, 59, 67, 78, 92],

speaker verification [6, 80], and speaker segmentation [12].

In Section 24.7, we reviewed a brief introduction to wavelet series expansion.

As we saw, there are an infinite number of possible wavelets that may be used.

Therefore, given the broader scope of this textbook, we will not be able to cover all

these different wavelets. Also, in Section 24.12 we saw that for example the Gabor

wavelet is nothing but a Short Time Fourier Transform which chooses a Gaussian

window, given by Equation 24.483.

Therefore, given the STFT interpretation of the wavelet and the fact that they

may be used in the capacity of a filter bank to process the audio and create features

somewhat akin to the STFT-based spectra, their implementation would not deviate

much from the other methods which we have covered in this chapter.

[44] did a comparison study in speaker recognition using SVM among 17 differ-

ent types of wavelets and found that there is not much variation in the results based

on the choice of wavelet. The families of wavelets, they compared, were Coiflets,

Daubechies, Symlets, biorthogonal, reverse biorthogonal, Haar, and DMeyer. How-

ever, they found biorthogonal-3.5 to perform the best across the board and Haar and

DMeyer performed the worst, although the difference between and the best and the

worst cases was nominal.

5.6.1.1 Mel-Frequency Discrete Wavelet Coefficients

Mel-Frequency Discrete Wavelet Coefficients (MFDWCs) are computed in much

the same way as the MFCC features were computed in Section 5.3.6 with the ex-

ception of the final step where the DCT of the log of the spectrum is computed.

The only difference in this case is that instead of using the DCT, a Discrete Wavelet
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Transform (DWT) is used – see Section 24.7.

[28] proposed the usage of these features in speech recognition. [80] used them in

speaker verification and reported some improvement using these features compared

to standard MFCC features in aggressively noisy environments. The justification for

this improvement is based on two arguments,

1. Since the basis vector of DCT encompasses all frequencies, the corruption of

one frequency band affects all the MFCCs. DWT works by having the spill over

from one frequency band only affect a few coefficients.

2. In the development of MFCCs the assumption was made that each frame only

carries information from one phoneme. If a frame contains two consecutive

phonemes, then effectively, the information of the dominant phoneme will pre-

vail. This is especially true when a voiced phoneme is adjacent to an unvoiced

phoneme and the window includes the boundary between these two phonemes.

It is suggested that this may be alleviated by processing subbands separately.

5.6.1.2 Wavelet Octave Coefficients Of Residues (WOCOR)

Also known as vocal source features, Wavelet Octave Coefficients of Residues

(WOCOR) is a feature set which is extracted by doing a pitch-synchronous wavelet

transform of the linear predictive (LP) residual signals. Since Wavelet analysis may

be seen as a variable window version of an analysis similar to Fourier spectral anal-

ysis [35], the idea of using WOCOR features started by using a window which is in

line with the pitch cycle of the speech signal instead of being a fixed length window.

According to [12], WOCOR features are less sensitive to the content of speech than

MFCC features. WOCOR features are called vocal source features because they are

dependent on the source of the speech, namely the pitch being generated by the vo-

cal folds. On the other hand, MFCC features are thought to model the vocal tract

characteristics since they model fundamental frequencies based on the shape of the

vocal tract.

These features are well suited for pitch-based languages such as different dialects

of Chinese (e.g., Mandarin and Cantonese). See Section 4.3.1.1 for more discussion

on such languages and the role of pitch.

The following is the process of extracting WOCOR features used in [12] which

has used these features for performing speaker segmentation.

1. Hipass filter

2. Pre-Emphasis

3. Pitch Extraction: For pitch extraction be able to create the pitch-synchronous

wavelet transform, the Talkin’s Robust Algorithm for Pitch Tracking (RAPT) [76]
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was used to extract only voiced segments. RAPT segments the speech signal

into variable length frames with common pitch values (Larynx frequencies).5

4. Only the voiced segments of the speech signal are processed similar to the stan-

dard overlapping windowing used in MFCC and LPCC computations. Then, the

residual of the Auto Regressive method given by Equation 5.60 is computed for

each frame and its amplitude is normalized to the range [−1,1] for each frame.

5. In the residual signal, the pitch pulses are detected by finding the maximum

amplitude in each pitch period. Then a pitch-synchronous wavelet transform is

computed for each pitch period using a Hamming window which spans from the

pitch pulse to the left of the current pitch pulse to the one on its right, covering

two pitch periods.

6. [12] uses a fourth order Daubechies wavelet basis function [9] to expand the

residual signal in the window discussed in the last step. Equation 5.101 repre-

sents this expansion.

w(a,b) =
1√
a

N−1

∑
n=0

enψ

(
n−b

a

)
(5.101)

where N is the window size, a = {2k|k = 1,2, · · · ,K} is the scale parameter and

b ∈ {0,1, · · · ,N −1} is the shift parameter for the discrete wavelet transform as

defined in the original definition by Morlet [50] in order to generate the child

wavelets. Note that ψ is the mother wavelet for the fourth order Daubechies

wavelet basis function, ψ .

7. Assuming that there are K octave groups, the wavelet coefficients are,

Wk = {w(2k,b)|b = 0,2, · · · ,N −1} where k ∈ {1,2, · · · ,K} (5.102)

Since the Wk do not contain the temporal information about the signal, they are

subdivided into M subgroups,

W M
k (m) =

{
w(2k,b)|b ∈

(
(m−1)N

M
,

mN

M

]}
(5.103)

where, m ∈ {1,2, · · · ,M}.

8. In this final step, the KM dimensional WOCOR features are computed as fol-

lows,

WOCOR = {‖W M
k (m)‖2} (5.104)

where, m ∈ {1,2, · · · ,M} and k ∈ {1,2, · · · ,K}.

[12] relies on the content independence of these features to be able to use shorter

segments for determining segments. It uses K = 4 and M = 4 for the speaker seg-

5 Only voiced segments of speech are retained and the unvoiced signal is considered to be approx-
imated by random noise. As we have noted in many occasions in this book, there is great evidence
that most of the speaker-dependent characteristics are within the voiced sections of the signal.
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mentation implementation. In another paper [100], the authors of [12] showed that

increasing K to larger than 4 does not produce any better results in speaker recog-

nition. In [12], the domain of interest was telephone speech with a band-limitation

between 300 Hz and 3400 Hz. The sub-band groups were defined to be f > 2000

Hz for k = 1, 1000 < f ≤ 2000 Hz for k = 2, 500 < f ≤ 1000 Hz for k = 3, and

250 < f ≤ 500 for k = 4. M is used to retain some temporal information. If M = 1,

then all the WOCOR features are bundled into one temporal group losing all tem-

poral information.

Since WOCOR features are derived in trying to model the vocal source char-

acteristics and the MFCC features are related to the shape of the vocal tract, it is

conceivable that combining these two sets of features would produce better results.

5.6.2 Instantaneous Frequencies

Recently, some researchers have been working with the idea that aside from ex-

tracting magnitude information for different spectral or cepstral bands, it may be

beneficial to explore other information such as phase [2], the amplitude and fre-

quencies of instantaneous spectral components [4]. One method is to use the so

called, modulated features which have been shown to improve speech recognition

results in both amplitude modulated (AM) and frequency modulated (FM) forms.

There is also another set of features which are related to the extraction of the in-

stantaneous frequencies. These are the, so called, Empirical Mode Decomposition

(EMD) features proposed by Huang, et al. in [35].

5.6.2.1 Modulation Features

As we mentioned earlier, power cepstra lose all phase information. One possible

improvement may come from using the phase information by using the complex

cepstrum. However, another method would be the avoidance of the usage of Fourier

transforms directly. Instead, one may represent the non-stationary speech signal as a

sum of amplitude modulated (AM) and frequency modulation (FM) signals [45, 4].

In these techniques it is essential to be able to estimate the instantaneous frequencies

of the signal to be able to devise a filter bank with these frequencies as the center

frequencies of the filters. This idea resonates in many of the techniques discussed

in Section 5.6 including EMD and WOCOR features. The use of modulation fea-

tures in the speaker recognition field is quite new and exploratory [4, 77, 81, 82].

There have been some special names assigned to these features as well, such as

FEPSTRUM which was coined by [82] to refer to the feature vector made up of the

lower modulation frequency spectrum of the downsampled AM signal used in the
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AM-FM decomposition. Another name is the Mel Cepstrum Modulation Spectrum

(MCMS) coined by [81] which is another variation using a filter bank in the Mel

domain.

5.6.3 Empirical Mode Decomposition (EMD)

Empirical Mode Decomposition (EMD) features were introduced by Huang, et

al. [35] in 1998 and since then, they have been used in speech recognition with

considerable benefits. Their merit has not been totally proven in speaker recogni-

tion yet, since their use is quite new to the field. The main idea behind EMD is the

decomposition of a non-stationary signal such as speech, hn, into a sum of band-

limited functions called Intrinsic Mode Functions (IMF) denoted by Cm(t) where

m ∈ {0,1, · · · ,M − 1}. The only condition is that these functions must satisfy the

following basic conditions,

1. The number of extrema and zero-crossings must differ by at most one through-

out the whole signal.

2. At any point, the mean value between the values of the envelopes defined by the

local maxima and the local minima should be equal to 0.

The following procedure is used to evaluate these functions from the signal,

h(t) [49].

1. Extract the extrema of the signal, h(t)
2. Create two envelopes, u(t) and l(t) which would go through the maxima and

minima respectively, using a cubic spline interpolation.

3. Compute the mean value of the two envelope values for each instant of time, t,

μ(t) =
u(t)+ l(t)

2
(5.105)

4. Since based on the second condition listed above, the mean value computed by

the last step should be zero, subtract it from the signal,

g(t) = h(t)−μ(t) (5.106)

5. Check to see if g(t) abides by the two conditions set previously for IMFs. If it

does not, repeat the previous steps until it does.

6. Once the conditions are met by g(t), make it the first IMF, C1(t) = g(t).
7. Now, compute the residue of the signal, by subtracting C1(t) from the original

signal, h(t), and perform the above steps on the residue, r(t) = h(t)−C1(t) to

find the next IMF.

8. Continue the above step until the final residue is a monotonic function.

Therefore,
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h(t) =
M

∑
m=1

Cm(t)+ rM(t) (5.107)

These, so called, empirical modes of the signal act in such a way that as we obtain

a new IMF for the signal, we are covering the higher frequency parts of the signal.

Therefore, the lower the indices of the IMFs, the higher their frequency contents

would be. The idea is then to apply regular feature extraction techniques such as

MFCC or LPCC on the subbands created by the EMD. This is essentially a filter-

bank technique, using the bands generated by the EMD as the bands with which the

filtering is done. [49, 48] has presented a neural network-based EMD system for

performing speaker identification.

5.7 Signal Enhancement and Pre-Processing

It is really important to discuss signal enhancement and other pre-processing tech-

niques at this point to make sure that the features are not tainted by noise and

other disturbances. However, since we have not yet covered some essential topics

on speaker recognition which are pre-requisite to this topic, we will have to defer

this discussion to Chapter 18. You may want to skim through Chapter 18, just to see

what will be discussed. However, it is recommended to go through the rest of this

book and once you have read Chapter 18, to return to this chapter and review it with

a new perspective.
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Chapter 6

Probability Theory and Statistics

One might perhaps say that this very thing is probable, that

many things happen to men that are not probable.

Agathon, 445 B.C.

(Quoted by Aristotle in the Art of

Rhetoric Chapter 24: 1402a)

In this chapter we will review some basic Probability Theory and Statistics to

the level that applies to speaker recognition. This coverage is by no means com-

plete. For a more complete treatment of these subjects, the avid reader is referred

to [27, 37, 39, 42, 31, 22].

To attain a good understanding of Probability Theory, some basic Measure The-

ory is presented with coverage of elementary set theory. This framework is then used

to define a probability measure and its related concepts as a special case.

6.1 Set Theory

To define the basics of measure theory, some pre-requisite definitions in set theory

are given. Let us begin with the definition of a Sample Space.

Definition 6.1 (Sample Space). The Sample Space is the set X of all possible

values that a random variable, X, may assume. It is the set of all possible outcomes

of an experiment. In other words, it is the domain of the probability function.

Definition 6.2 (Event). An Event ε is any subset of outputs of an experiment in-

volving a random variable. Namely, ε ⊂ X .

Before defining the concept of a measure, consider Figures 6.1, 6.2, 6.3, and 6.4.

These figures are Venn diagram representations of different scenarios involving one

or two subsets (A ,B). In the figures, X is the superset, which in measure theory, is

known as the sample space. Each of the sets A and B may represents an event. A
and B are called measurable subsets of X – see Definition 6.20 and its follow-up

notes on the completion of a σ -field. Figure 6.1 corresponds to mutually exclusive

or disjoint events. In figure 6.2, the two events A and B have a common space. This

intersection (A ∩B) relates to a Logical And, namely, (A ∧B) in the sense that an

outcome is a member of both sets, A and B. In some circles, this relationship may

, H. Beigi Fundamentals of Speaker Recognition, 
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Fig. 6.1: A ∩B = {∅}
(Disjoint) (Mutually Exclusive)

Fig. 6.2: Intersection, A ∩B
(A ∧B)(A ,B)

Fig. 6.3: Union, A ∪B
(A ∨B)(A +B)

Fig. 6.4: Complement of A ,A � =
X \A
(!A )(A ′)

be denoted as (A ,B) [31] and some others use, (A B) [42]. In this book, we will

be using (A ∩B) to refer to sets and (A ,B) or (A ∩B), interchangeably,when re-

ferring to events. Figure 6.3 indicates the union of two events, (A ∪B). It is related

to the Logical Or, namely, (A ∨B), and is sometimes written as (A +B) [42]. The

case described by figure 6.4 refers to any outcome which is not a part of event A . It

is denoted as A � in this text. Also, whenever there is ambiguity about the universe,

then the complement is denoted in terms of the difference between the universe, X
and the set A written by the following notation, X \A , which may be viewed as

the complement of A with respect to the universe, X . It is related to the Logical

Not and in the notation of logic it may be written as (!A ). It is sometimes written

as A ′ or A .

Now let us examine the very intuitive but powerful, De Morgan’s law.

Law 6.1 (De Morgan’s Law). De Morgan’s law states the following two identities,

{
N⋃

i=1

Ai}� =
N⋂

i=1

A �
i (6.1)
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and

{
N⋂

i=1

Ai}� =
N⋃

i=1

A �
i (6.2)

Equations 6.1 and 6.2 may be easily verified by observing Figure 6.3 and extending

the results to more than two subset.

Another useful definition in set theory which will come in handy in working

toward the definition of a measure is the concept of a class.

Definition 6.3 (Class). A class, C, is a collection of sets which have something in

common allowing them to be specifically identified by this specific trait.

For example, one may speak of the class of Indo-European Languages. In this

case, each language belonging to this class may be a set of different dialects. In

application to probability theory, any subset which is a member of a class may also

be thought of as a representation of one or more events.

As we shall see later, the following concepts will be needed for a rigorous defi-

nition of a measure and for that of random variables.

Definition 6.4 (Countable Base). see [39]

A countable base at x is a countable class, C, of neighborhoods of x such that every

neighborhood of x contains a member of C.

Definition 6.5 (Countable Space). A countable space, X , is a space which is sep-

arable and has a countable base at every point {x : x ∈ X }.

Note that space X may be separable into an infinite number of points, xi. How-

ever, at every point, xi, X has a countable base. If the number of points becomes

infinite, then the superset representing that space is known to be a countably infinite

set. Here is a simple definition of a countably infinite space which also presents an

alternative perspective of a countably infinite set.

Definition 6.6 (Countably Infinite Space). A countably infinite space is a space

which has a finite number of points in a finite interval. Note that a set representing

a countably infinite space may have an infinite number of members overall, such as

the set of natural numbers, �. Such a sample set with an infinite number of overall

members is said to be a countably infinite set and the corresponding space is said

to be a countably infinite space.
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One of the properties, that certain classes of sets may possess, is the notion of

closure (being closed) under certain set operations.

Definition 6.7 (Closure under a set operation). A class, C, is closed under a set

operation such as a union, an intersection, a complement, et cetera, if the operation

as applied to its members would generate partitions which are also contained in

that class.

6.1.1 Equivalence and Partitions

Often we speak of members of a set being equivalent. The concept of equivalence

has to be defined with respect to an equivalence relation. Basically, this means that

every time we speak of equivalence of objects, we would have to qualify this equiv-

alence by defining an equivalence relation which gives us the logic for the equiva-

lence at hand. Consider an equivalence relation given by the symbol, R. Then x
R≡ y

means that x and y are equivalent as far as the logic in the equivalence relation R

dictates.

Definition 6.8 (Equivalence Relation). An equivalence relation, R, is a relation

which generally allows for a binary response to the question of equivalence between

objects. All equivalence relations must obey the following three properties,

1. Reflexivity: x
R≡ y

2. Symmetry: x
R≡ y ⇐⇒ y

R≡ x

3. Transitivity: x
R≡ y ∧ y

R≡ x =⇒ x
R≡ z

Therefore, any relation that maintains the above three properties is called an equiv-

alence relation.

Another way of looking at equivalence is the amount of indiscernibility1 between

objects. Therefore, R is also called an indiscernibility relation [43].

Definition 6.9 (Equivalence Class). If we pool all the objects that are equivalent

into distinct classes of objects in the universal set X , each distinct class containing

only equivalent objects is called an equivalence class and is denoted by [ξ ]R for

equivalence relation R. A formal mathematical definition of [ξ ]R is as follows,

Xξ = [ξ ]R (6.3)

Δ
= {x ∈ X : x

R≡ ξ} (6.4)

1 Indiscernible means “not distinct”, hence indiscernible objects are objects that are similar.
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Definition 6.10 (Quotient Set). A quotient set of universe X , with respect to equiv-

alence relation R, is the set of all equivalence classes of X due to R and it is denoted

by Q = X /R.

Definition 6.11 (Parition). A partition, P , is a quotient set of X according to a

partition equivalence relation, P. Therefore,

P = X /P (6.5)

where P is generally designed to split the universal set into equivalence classes hav-

ing some desired features.

As we shall see later, an equivalence relation is quite similar to the concept of a

measure which will be defined in Section 6.2. It will become more clear as we cover

more equivalence concepts in this section and when we continue with the treatment

of measure theory and the concept of a measurable space. In fact, we shall see that

an equivalence relation may be viewed as a discrete measure in space X , creating a

measure space, (X ,X,R). X would then be a Borel field of X and R is the measure.

All the set theoretic definitions up to this point have made the assumption that

objects either belong to a set or they do not. This, so called, crisp logic, responds

to the question of equivalence in a binary fashion. Other types of sets have been

developed in the past few decades which handle the concept of uncertainty in mem-

bership. This uncertainty may be viewed as the existence of objects in the boundary

that a set shares with its complement, such that the membership of these objects

into the set A , and its complement A � = X \A , is defined by non-crisp logic or

in other words through an uncertain membership.

A generic two-class crisp partition may be denoted as follows, P = {A ,X \A }.

In a crisp partitioning logic, we may define a binary function associated with set A ,

called the characteristic function and denoted by ϒA (x). This function defines the

membership of object x to set A and is defined as follows,

ϒA (x)
Δ
=

{
1 ∀ {x : x ∈ A }
0 ∀ {x : x /∈ A } (6.6)

As we shall see later, the characteristic function of a general set need not be bi-

nary for sets that allow soft membership such as rough sets and fuzzy sets. However,

the definition does require that in a universe consisting of Γ disjoint sets denoted by

Aγ ,γ ∈ {0,1, · · · ,Γ },

0 ≤ϒAγ (x) ≤ 1 ∀ γ ∈ {1,2, · · · ,Γ } (6.7)

and
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Γ

∑
γ=1

ϒAγ (x) = 1 (6.8)

In reality, it is possible that there exist objects which are indiscernible against

x and yet some of them belong to A while some others belong to A � = X \A .

There are two different approaches for handling these cases, the rough set approach

and the fuzzy set approach. In the next two sections, we will provide some of the

fundamental definitions for these two approaches. As we will see soon, the two ap-

proaches are quite similar and it is possible to map the two approaches back and

forth.

6.1.2 R-Rough Sets (Rough Sets)

R-rough sets (rough sets in short) were introduced by Pawlak [43], in 1982, to han-

dle the non-exact memberships of objects to sets based on the indiscernibility of

those objects. In the rough set approach to handling uncertainty in set boundaries,

one defines an approximation [44, 46] to R-exact set A , induced by equivalence

relation R, called the lower approximation, R(A ), which includes those objects, x,

whose equivalence class, based on equivalence relation R, and denoted by [x]R, is

completely contained in A . Therefore, x ∈ A in the traditional (crisp) sense, or in

other words, x ∈ A with certainty.

On the other hand, there are those objects which are members of the equivalence

class [x]R : [x]R ∩A �= {∅}∧ [x]R �⊂ A . These objects make up the, so called, upper

approximation of A , R(A ). Therefore, we may define the boundary of A with its

complement, based on equivalence relation R, as follows,

BR(A )
Δ
= R(A )\R(A ) (6.9)

In other words, BR(A ) is the set of all objects in [x]R which are possibly a part of

A , but not those which are members of A with certainty.

A rough set associated with the crisp set, A is represented by its lower ap-

proximation (lower bound) and upper approximation (upper bound) sets, R(A ) and

R(A ) [44, 46], respectively.
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6.1.3 Fuzzy Sets

In the fuzzy set approach to handling uncertainty, instead of defining lower and up-

per approximations to sets, the characteristic function of a set, A , given by ϒA (x),
is redefined from the binary function given by Equation 6.6 to a function that may

take on any value in [0,1].

We may split the closed interval, [0,1], into two separate intervals, [0,1) and 1.

Then all objects {x :ϒA (x) = 1} belong to the crisp set A with certainty, and all

objects {x :ϒA (x) ∈ (0,1)} belong to set A probably. Of course there is another set

of objects, {x :ϒA (x) ∈ 0}, which do not belong to set A in any form.

We noted that there is a mapping between R-rough and fuzzy sets. Let us examine

these mappings. Assume that we have a partition logic, P, that would generate the

lower and upper approximations for set A (R(A ) and R(A )) in a rough set ap-

proach. Then the fuzzy set characteristic function may be calculated based on these

approximations as follows [46],

ϒA (x) =
|A ∩ [x]P|

|[x]P| (6.10)

where |A | denotes the number of objects in A or any other defined magnitude func-

tion. The fuzzy membership due to the characteristic function in Equation 6.10 will

then produce results which are equivalent to the R-rough set partition logic P.

Similarly, if we are presented with the fuzzy set characteristic function, ϒA (x),
we may deduce the R-rough partition logic by the following dual relation [46],

[x]P = [ξ ]P ⇐⇒ϒA (x) =ϒA (ξ ) (6.11)

Polkowski [46] presents hybrid uncertain sets in the form of rough-fuzzy sets and

fuzzy-rough sets. An elaborate treatment of these hybrid sets, along with a full treat-

ment of the two topics is given in [46].

6.2 Measure Theory

At this point, we develop the definition of a measure, en route to a further refine-

ment in order to be able to define a specific type of measure, namely, a probability

measure.
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6.2.1 Measure

Let us start by defining a fundamental class of subsets called a Field which in some

circles is known as an Algebra.

Definition 6.12 (Field, Algebra, or Boolean Algebra). See [39, 28, 42]. Con-

sider the superset, X , over which a Field, F, is defined as a non-empty class of

subsets of X such that it is closed under finite complementation and union opera-

tions. Namely, a Field, F, possesses the following properties:

1. Field F is non-empty:

F �= {∅} (6.12)

2. Field F is closed under complementation:

A ∈ F =⇒ A � ∈ F (6.13)

3. A Field is closed under union. In other words,

{Ai : i ∈ {1,2, · · · ,N}} ∈ F =⇒
N⋃

i=1

Ai ∈ F (6.14)

Note that from the fundamental properties of closure under complementation

and finite union, other properties of the Field follow including closure under all

finite set operations.

4. A Field is closed under finite intersection. Namely,

{Ai : i ∈ {1,2, · · · ,N}} ∈ F =⇒
N⋂

i=1

Ai ∈ F (6.15)

Rationale:

This is easy to show by noting that since Ai ∈ F, then based on property 2,

A �
i ∈ F (6.16)

Also, by applying property 3, on the A �
i ,

B =
N⋃

i=1

A �
i ∈ F (6.17)

Again, applying property 2 to B,
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B� = {
N⋃

i=1

A �
i }� ∈ F (6.18)

According to De Morgan’s law (see Law 6.1), B� is just the intersection of Ai,

namely,

B� =
N⋂

i=1

Ai ∈ F (6.19)

5. A Field contains the complete superset, X , also known as the certain event.

Rationale:

Based on property 1, F is non-empty, so it must contain at least one event. Let

us call this event (member), A . Then,

A ∈ F (6.20)

Based on property 2,

A � ∈ F (6.21)

Due to property 3, then we can write,

A ∪A � ∈ F (6.22)

But A ∪A � = X . Therefore,

X ∈ F (6.23)

6. F contains the empty set, {∅} also known as the impossible event.

Rationale:

Let us apply property 4 on A and A �,

A ∩A � ∈ F =⇒ {∅} ∈ F (6.24)

Based on the extended properties which followed the three main properties listed

in Definition 6.12, namely being a non-empty class and being closed under comple-

mentation and finite union operations, we may make a more convenient statement

of the definition of a Field as follows:

Definition 6.13 (Field). A Field, F, defined in the space of a superset, X , is a non-

empty class of subsets of X such that it is closed under all finite set operations.

Definition 6.13 specifies closure under all finite operations. Let us increase N

which is the number of subclasses of X to become infinite, but apply the restriction
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that X must remain countable. The new category of Field which emerges from

this extension is a class which remains closed under all countable set operations,

known as a σ -Field which is, of course, still a Field. Therefore, we formally define

a σ -Field as follows,

Definition 6.14 (σ -Field (σ -algebra)). A σ -Field (also known as σ -algebra), X,

defined in the space of a superset, X , consisting of a countably infinite number of

subsets, {Ai : i ∈ �} is a non-empty class of subsets of X such that it is closed

under all countable set operations. Namely,

1. X �= {∅}
2. {Ai : i ∈�} ∈ X =⇒

∞⋃
i=1

Ai ∈ X

3. A ∈ X =⇒ A � ∈ X, namely, X −A ∈ X

4. {Ai : i ∈�} ∈ X =⇒
∞⋂

i=1
Ai ∈ X

Note that based on the definition of X, X and {∅} are also members of X,

namely, X ∈ X and {∅} ∈ X.

Now consider the open set of all finite real numbers, namely, {X : −∞ < x < ∞},

known as the Real Line [39]. Then these definitions may follow:

Definition 6.15 (Borel Field). See [39, 27]. In a space, {X : X =�}, the small-

est σ -Field, X, of all the closed intervals in X, {{x : a ≤ x ≤ b} ∀ a,b ∈ �}, is

known as a Borel field or a Borel σ -field in X .

Note that the definition of a Borel field may very well have been made using

open intervals in X , {{x : a < x < b} ∀ a,b ∈�}, since the difference between the

two definitions is only the inclusion of the end-points. Because these end-points

are arbitrary, the resulting Field would be identical. By the same argument, the

definition is true even for half-closed intervals, {{x : a ≤ x < b} ∀ a,b ∈ �} and

{{x : a < x ≤ b} ∀ a,b ∈ �}. In fact, the Borel field contains all closed intervals,

open intervals, half-closed intervals and their countably infinite unions and intersec-

tions [39].

Definition 6.16 (Borel Sets). The subsets making up a Borel field in {X : X =�}
are known as Borel Sets of space X .

Definition 6.17 (Measurable Space). The combination of the superset, X , and its

σ -Field, X, is known as a measurable space and is written as, (X ,X) [29, 28]. If

X is a Borel field, this space is known as a Borel Line [39].
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Definition 6.18 (Measure). 2 Let us assume that {Ai : i ∈�} are disjoint mem-

bers of a σ -Field, X, of a superset, X . Then, a measure, ρ(A ) for {A : A ∈ X}
is defined over the measurable space (X ,X) if it meets the following criteria:3

1. {ρ(A ) ∈� ∨ ρ(A ) = ∞} ∀ {A : A ∈ X}
2. ρ(A ) ≥ 0 ∀ {A : A ∈ X}
3. If {Ai : i ∈�} are disjoint subsets of X , namely,

Ai ⊂ X ∀ {Ai : Ai ∈ X, i ∈�}, then,

∞⋂
i=1

Ai = {∅} =⇒ ρ(
∞⋃

i=1

Ai) =
∞

∑
i=1

ρ(Ai) (6.25)

If Definition 6.18 includes the possibility of ρ(A ) = ∞, then measure ρ(A ) is

known as an unbounded measure. However, ρ(A ) may also be defined with the

restriction that ρ(A ) ∈ � and that it may not become infinite. In that case, it is

referred to as a bounded measure.

Definition 6.19 (Lebesgue Measure). See [38, 20, 14, 27]. If X is a Borel field,

as described by Definition 6.15, of all half-closed intervals in X signified by the

subset, A such that {{x : a ≤ x < b} ∀ a,b ∈�}, then the length of each interval,

λ (A ) = |b−a|, adhering to the criteria set by the definition of a measure (Defini-

tion 6.18), is known as the Lebesgue measure for that interval.

Lebesgue measure is defined and is equivalent for half-closed, open and closed

subsets as discussed following Definition 6.15 of a Borel field.

Definition 6.20 (Lebesgue Measurable Subsets). The class of Lebesgue measur-

able subsets of X is the smallest σ -Field of Borel Subsets of X plus an additional

subset made up of a set contained in any of the Borel Sets with a zero Lebesgue

measure.

The methodology for the generation of the σ -field with respect to the Lebesgue

measure given in Definition 6.20 may be applied to any measure. It is called the

completion of the σ -field with respect to a measure [27].

Definition 6.21 (Lebesgue Field). The completed Borel field with respect to the

Lebesgue measure, λ , of all Lebesgue measurable subsets of X is known as the

2 In most measure theory literature, a measure is signified by μ(A ), but in this book, since we use
μ to signify the mean, we have chosen to use ρ(A ) instead. This should not cause much trouble
since this notation is only used in passing in order to create the foundation needed for defining a
probability measure and then it will no longer be needed.
3 A number {ρ : ρ ∈�∨ρ = ±∞} is called an extended Real number
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Lebesgue Field, L, in X .

Definition 6.22 (Lebesgue Measure Space). The combination of the superset, X ,

and the Lebesgue field of Lebesgue measurable subsets of X , L, and the Lebesgue

measure given by Definition 6.19 denoted by λ (A ) for any subset A representing

an interval {x : a ≤ x < b} is known as a Lebesgue measure space and is written as

(X ,L,λ ).

In Chapter 15, as well as later in this chapter, when we speak about the Hilbert

space (Section 6.2.6.2), we will use the concept of a complete space. Defini-

tion 24.53 was the formal mathematical definition of a complete space. The fol-

lowing is a useful verbal definition.

Definition 6.23 (Complete Space). A complete space is a vector space in which

every fundamental sequence4 (Definition 6.71) converges – see Definition 24.53.

6.2.2 Multiple Dimensional Spaces

To be able to define a topological product space, let us first define a Cartesian

product (×).

Definition 6.24 (Cartesian Product). If we have two sets, X and Y which may

generally be defined in different spaces, then the Cartesian product of X and Y ,

written as X ×Y is defined as the set of all ordered pairs, {(x,y) : x ∈ X ∧ y ∈
Y }.[28]

The Euclidean space is a good example for a Cartesian Product Space. For exam-

ple the two dimensional Euclidean space may be written as the space created by the

Cartesian product of real lines X and Y , written as {X ×Y : X =�,Y =�}.

This two-dimensional case of the Euclidean space is known as the Euclidean plane.

Other descriptions of Euclidean geometry follow. For example, if we have two sub-

sets of X and Y such that, {A : A ⊂ X } and {B : B ⊂ Y }, then the Cartesian

product, A ×B ⊂ X ×Y is the set of ordered pairs which make up a rectangle in

the Euclidean plane, X ×Y . With the same analogy, A and B are known as the

sides of this rectangle in the Euclidean plane.

In general, we may consider a Cartesian product space of M Real Lines such

that,

4 A fundamental sequence is also known as a Cauchy sequence.
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X =

M�

m=1

Xm (6.26)

where {Xm : Xm = � ∀ m ∈ {1,2, · · · ,M}}. X is known as a Real Space. As a

short-hand, we state that, {X : X = Rm} If there is a Borel field associated with

each Xm, denoted as Xm, then the Borel Field corresponding to the subsets of space

X , denoted as X, may be written in terms of the product of Borel fields, Xm, as

follows,

X =

M�

m=1

Xm (6.27)

The resulting product space, (X ,X) is known as a Borel Space.

In general, the Lebesgue measure space, (X ,L,λ ), given by Definition 6.22,

may be defined in the product space such that {X : X = Rm,m ≥ 1}, with the

Borel field of all Lebesgue measurable subsets of X written as L, and the Lebesgue

measure, λ . However, generally speaking, not all subsets of Rm are measurable. For

example, if we consider m > 2, we come across some subsets which are not measur-

able, leading to anomalies such as the Banach-Tarski paradox [6]. Therefore, we are

only concerned with measurable subsets of the space. This is also the rationale for

specifying the need to use the Borel field which is the smallest σ -field in the space

to avoid such non-measurable subsets.

6.2.3 Metric Space

Definition 6.25 (Metric Space). A Metric Space, M (X ,d), is a space, X , for

which a function, {d : {X ×X } �→�}, is defined and associated with some pre-

scribed properties. Since the real-valued metric function d (also known as a dis-

tance) has, for its domain, the Cartesian product space of {X ×X }, it will be

written in terms of a pair of values of X, namely, d (x1,x2). The prescribed proper-

ties of the distance, d (x1,x2), are as follows,

1. d (x1,x2) ∈�
2. d (x1,x2) ≥ 0 ∀ x1,x2 ∈�
3. d (x1,x2) = 0 ⇐⇒ x1 = x2

4. d (x1,x2) = d (x2,x1) (Symmetry)

5. d (x1,x2) ≤ d (x1,x3)+d (x2,x3) triangular inequality

Definition 6.26 (Distance Between Subsets). The distance, d (A1,A2), between

two subsets of X , {A1 : A1 ⊂ X } and {A2 : A2 ⊂ X }, is given by,

d (A1,A2) = inf{d (x1,x2)} (6.28)
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where {x1 : x1 ∈ A1} and {x2 : x2 ∈ A2}.

Definition 24.23 introduces the concept of convexity, used for defining a convex

function. A similar definition may be made for a metric space and more specifically

for special subsets of the Euclidean space as follows,

Definition 6.27 (Convex Metric Space). A metric space, M (X ,d), is said to be

a convex metric space if for every two of its distinct members, x0,x2 ∈ X : x0 �= x2,

there exists a member, x1 ∈ X such that,

d (x0,x2) = d (x0,x1)+d (x1,x2) (6.29)

Definition 6.28 (A Convex subset of the Euclidean Space). A Convex subset of

the n-dimensional Euclidean Space, denoted by convA ⊂ Rn, is one in which all

the points on any straight line between any two members of the subset are also mem-

bers of that subset.

Definitions 24.53 and 6.23 presented the concept of a complete space. The fol-

lowing definition is an extension which applies to metric spaces.

Definition 6.29 (Complete Metric Space). A complete metric space is a metric

space in which every fundamental sequence (Cauchy sequence) converges.

The difference between this definition and the general statement of Defini-

tion 6.23 is the fact that here, a distance measure, d, is defined in conjunction with

the space, making it a metric space.

Chapter 8, presents a number of well-known metrics (distances) as well as diver-

gences. A detailed definition of a divergence will be given in Chapter 7.

6.2.4 Banach Space (Normed Vector Space)

A Banach space, (B,B,‖.‖), is a general measure space which encompasses many

other multidimensional and infinite dimensional spaces such as the Hilbert space

(Definition 6.33) and the Lebesgue space (Definition 6.49). The most general Ba-

nach space is defined as follows.

Definition 6.30 (Banach Space). A Banach space, (B,B,‖.‖), is a measurable

vector space which has a norm (‖.‖) associated with it.

See Section 23.2 and Equation 6.107 for norms defined on finite and infinite di-

mensional spaces. A Banach space may be defined over the Borel field of Real or

Complex numbers. In Section 6.2.6, we will discuss infinite dimensional spaces.

The Banach space may be defined over a finite or infinite dimensional space. It was
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named after Stéfan Banach who studied the work of Hilbert and others, and pro-

vided thorough generalizations on the theory of integral equations [5]. Banach [5],

also defines norms in an axiomatic form. He studied weak and strong completeness

of the space, in the sense of weak and strong convergence (see Definitions 6.69

and 6.70) of the Cauchy sequences in the space.

It is important to note that all finite dimensional spaces defined over the Borel

field of Real or Complex numbers are complete. Therefore, all finite dimensional

Banach spaces are also complete spaces (see Definition 6.23). However, this is not

true for infinite dimensional spaces. As we will see in Section 6.2.6, the complete-

ness of a space becomes material in infinite dimensions.

6.2.5 Inner Product Space (Dot Product Space)

As a special case of the Banach space, one may define an inner product function be-

tween the elements of the space. This new vector space is known as an inner product

space or a dot product space. It may be a finite dimensional space as well as infinite

dimensional. The infinite dimensional inner product space is generally known as

the pre-Hilbert space and its completed form is known as the Hilbert space. Both of

these will be defined and discussed in more detail in Section 6.2.6.1.

Therefore, the formal definition of an inner product space is as follows,

Definition 6.31 (Inner Product Space (Dot Product Space)). An inner prod-

uct space (also known as a dot product space) is a vector space which provides

an inner product defined between all its elements, (X × X ,X × X), namely,

〈x,y〉 : (X ×X ,X×X) �→ X, where x,y ∈ (X ,X) and X is a Borel field which

may either be X =� or X =�.

In Chapter 15, while studying the, so called, kernel trick, we will see that the

space associated with the kernel, known as the feature space, is actually an inner

product space which may theoretically become a Hilbert space, in the limit, when

the feature space takes on infinite dimensions.

6.2.6 Infinite Dimensional Spaces (Pre-Hilbert and Hilbert)

In Section 6.2.2, we visited multiple dimensional vector spaces. In this section, we

will review an extension of this concept to infinite dimensions. Infinite dimensional

vector spaces are used in a variety of problems including integral equations and
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integral transforms, as well as applications of these techniques to many problems

in mathematics and physics. For the topic of this book, the most important infinite

dimensional vector space is the Hilbert space which shows up, implicitly in support

vector machines (Chapter 15) and explicitly in integral transforms (Chapter 24).

6.2.6.1 Pre-Hilbert Space

Let us begin with a general extension of an N-dimensional vector space such as

a Cartesian product space into infinite dimensions. A general extension to infinite

dimensions is called a pre-Hilbert space5. A formal definition is as follows:

Definition 6.32 (Pre-Hilbert Space). An extension of a multi-dimensional vector

space to infinite dimensions with an inner product function defined between ele-

ments of the space is known as a pre-Hilbert space (Hp,Hp).

See Definition 24.49 of a an inner product; also note the text immediately af-

ter the definition. In general, it is possible to have a pre-Hilbert space which is not

complete (see Definition 6.23). If the inner product is defined over a complete Borel

field, such as � or �, then the space is known as a Hilbert space. However, not

all pre-Hilbert spaces are complete. In the next section, we will discuss the Hilbert

space in more detail.

6.2.6.2 Hilbert Space

Hilbert space [30] is extremely useful in allowing for the extension of vector

concepts to an infinite dimensional space. Hilbert space was named after David

Hilbert [18] who was instrumental in the development of integral equations and in-

tegral transforms. The following is a formal definition of the Hilbert space.

Definition 6.33 (Hilbert Space). A Hilbert space is an infinite dimensional com-

plete space which provides an inner product defined between all its elements, in the

vector product space, (H ×H ,H×H), namely, 〈x,y〉 : (H ×H ,H×H) �→ H,

where x,y ∈ (H ,H).

See Definitions 6.23 and 24.49 for definitions of a complete space and an inner

product, respectively.

5 Naturally, pre-Hilbert space is sometimes loosely called an inner product space or a dot product

space.
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In Definition 6.33, the inner product was defined on the Borel field H which may

either be the Real line, � or the Complex plane, �. A special case would be one

where all the elements of the Hilbert space, and consequentially the inner product,

are only defined on the Real line,�. If the measurable space is one where the inner

product is defined in �, then we will have a Hilbert metric space. The following is

a formal definition.

Definition 6.34 (Hilbert Metric Space). A Hilbert metric space (H ,H,〈., .〉) is

an infinite dimensional complete space which provides an inner product defined be-

tween all its elements, mapping the vector product space, (H ×H ,H×H), to the

real line,�. Namely, 〈x,y〉 : (H ×H ,H×H) �→�, where x,y ∈ (H ,H).

The difference between Definitions 6.34 and 6.33 is in the fact that a general

Hilbert space may have a complex or real inner product depending on if the infi-

nite dimensional Hilbert space has been constructed from elements which are on

an infinite dimensional complex planes or real lines respectively. In the special case

where the elements are made up of real numbers (producing an inner product which

is real), the space becomes a metric space (see Definition 6.25).

Recall Definition 6.30 of a Banach space. Hilbert space may be viewed as a spe-

cial case of an infinite dimensional Banach space where it is associated with the

Euclidean norm (2-norm).

A good example for revealing the practical usage of the Hilbert space is the ex-

tension of the generalized secant method [8, 13] to the infinite dimensional space.

Barnes [8] introduced the generalized secant method for the purpose of solving lin-

ear equations with unknown coefficients. This technique, in the finite dimensional

Euclidean space, was used by Beigi, et al [40, 12, 9, 10, 11] to formulate new it-

erative learning control and adaptive control techniques. The generalized secant

method was then extended to the Hilbert space in order to be able to handle con-

tinuous time adaptive control and iterative learning control [3, 4, 2]. Comparing

the Euclidean space versus Hilbert space versions of the generalized secant method

will provide a practical perspective of the Hilbert space.

6.3 Probability Measure

Consider a bounded measure, as a special case, in Definition 6.18 of a measure.

Furthermore, add one more criterion requiring that,

ρ(X ) = 1 (6.30)
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The new bounded measure is called a probability measure and is denoted as P(A )
for any event {A : A ⊂ X ∧ A ∈ X}.

At this time, we can proceed with the definition of probability from an axiomatic

point of view. The following axioms of probability are apparent from observations

of nature and cannot be simplified any further. Any discussion of probability theory

has to deduce its propositions either directly or indirectly from these axioms.

These axioms were first formalized by Kolmogorov, in a German publication, in

1933 [34]. An English version of this formalization was published in 1950. Later,

a second English edition was published [35] which includes many fundamental

measure-theoretic treatments of probability theory. This work is still the basis for

most modern probability textbooks.

Definition 6.35 (Probability Measure). Let us assume that {Ai : i ∈ �} repre-

sent disjoint subsets of the sample space X , each embodying a mutually exclu-

sive event in X . Then a probability measure, P(A ), for any event represented by

{A : A ∈ X} where X is a Borel field of all the measurable subsets of X is defined

over the measurable space (X ,X) if it meets the following axioms:

1. P(A ) ∈� ∀ {A : A ∈ X}
2. P(A ) ≥ 0 ∀ {A : A ∈ X}
3. If {Ai : i ∈� ∧ i ≤ N} are disjoint subsets of X , where N ∈� and may be

finite or infinite. Namely,

Ai ⊂ X ∀ {Ai ∈ X, i ∈� ∧ i ≤ N}, then,

N⋂
i=1

Ai = {∅} =⇒ P(
N⋃

i=1

Ai) =
N

∑
i=1

P(Ai) (6.31)

4. P(X ) = 1

The following properties follow directly from the above axioms.

Property 6.1 (Probability of the Impossible Event). The probability of the impos-

sible event, {∅}, is zero. In other words,

P({∅}) = 0 (6.32)

Proof.

P(A ) = P(A ∪{∅}) (6.33)

= P(A )+P({∅}) (6.34)

since A ∩{∅} = {∅} and A ∪{∅} = A .
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∴ P({∅}) = 0

��
Property 6.2 (Probability of the Complement).

P(A ) = 1−P(A �) (6.35)

≤ 1 (6.36)

Proof.

Setting N = 2 in axiom 3 of Definition 6.35, where A1 = A and A2 = A �, since

A ∪A � = X ,

P(X ) = P(A )+P(A �) (6.37)

= 1 (6.38)

Therefore using axiom 2, P(A ) ≤ 1 and 1−P(A �) ≤ 1.

��
Property 6.3 (Probability of a Union).

P(A ∪B) = P(A )+P(B)−P(A ∩B) (6.39)

= P(A )+P(B)−P(A ,B) (6.40)

Proof.

Note that,

A ∪B = A ∪ (A � ∩B) (6.41)

however,

A ∩ (A � ∩B) = {∅} (6.42)

therefore,

P(A ∪B) = P(A )+P(A � ∩B) (6.43)

In the same manner,

B = (A ∩B)∪ (A � ∩B) (6.44)

where

(A ∩B)∩ (A � ∩B) = {∅} (6.45)

Therefore,

P(B) = P(A ∩B)+P(A � ∩B) (6.46)

and
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P(A � ∩B) = P(B)−P(A ∩B) (6.47)

Plugging Equation 6.47 into Equation 6.43 we have,

P(A ∪B) = P(A )+P(B)−P(A ∩B)

= P(A )+P(B)−P(A ,B) (6.48)

��
Property 6.3 may be extended to three events, A1, A2, and A3 as follows,

P(A1 ∪A2 ∪A3) = P(A1)+P(A2)+P(A3)−
P(A1,A2)−P(A2,A3)−P(A1,A3)−
P(A1,A2,A3) (6.49)

This can be easily extended to any number of events, but the generalization no-

tation would be somewhat complicated, so it is not shown here. Keep in mind that

for a larger number of events, as in the 3-event case, the probabilities of all possi-

ble combinations of intersections of events must be subtracted from the sum of the

probabilities of all individual events.

Definition 6.36 (Conditional Probability). If A ⊂ X ,B ⊂ X , and P(B) > 0,

then the probability of event A given that event B has occurred is called the con-

ditional probability of A given B and is written as,

P(A |B) =
P(A ,B)

P(B)
(6.50)

or equivalently,

P(A ,B) = P(A |B)P(B) = P(B|A )P(A ) (6.51)

where P(A ,B) (or P(A ∩B)) is called the joint probability of events A and B.

Note that Equation 6.51 does not need the requirements that P(B) > 0 or P(A ) > 0.

Consider the two cases where A ⊂ B and B ⊂ A . The condition probability,

P(A |B), will have the following properties for each case,

1. A ⊂ B,

P(A |B) =
P(A )

P(B)

≥ P(A ) (6.52)

2. B ⊂ A ,

P(A ,B) = P(B) =⇒ P(A |B) = 1 (6.53)
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Theorem 6.1 (Total Probability). Let X = {A1,A2, · · · ,AN} where Ai, i =
{1,2, · · · ,N} are disjoint events completely partitioning sample space X into N

sections. Also, let B be any event in X . Then, the total probability P(B) is given

as follows,

P(B) =
N

∑
i=1

P(B|Ai)P(Ai) (6.54)

Proof.

Since Ai, i = {1,2, · · · ,N} are disjoint,

N⋂
i=1

Ai = {∅} (6.55)

then,

B =
N⋃

i=1

[B∩Ai] (6.56)

Using Equations 6.51, 6.56, and axiom 3 of Definition 6.35,

P(B) =
N

∑
i=1

P(B|Ai)P(Ai) (6.57)

��
Next, we will examine one of the most fundamental theorems in probability the-

ory. Together with the expression for Total Probability (Equation 6.54), they consti-

tute the basic tools for pattern recognition.

Theorem 6.2 (Bayes Theorem). 6 Let X = {A1,A2, · · · ,AN} where Ai, i =
{1,2, · · · ,N} are disjoint events completely partitioning sample space X into N

sections. Also, let B be any event in X where P(B) > 0. Then,

P(A j|B) =
P(B|A j)P(A j)

∑
N
i=1 P(B|Ai)P(Ai)

(6.58)

Proof.

The proof is somewhat simple. Let us write Equation 6.51 for any event A j with

respect to another event B.

P(A j,B) = P(A j|B)P(B) = P(B|A j)P(A j) (6.59)

If we substitute the total probability expression for P(B) from Equation 6.54 into

Equation 6.59, we will have the following form of Bayes’ Theorem,

6 Named after the English mathematician, Thomas Bayes (1702-1761), who initiated the thought
process of a special case of this theorem.



226 6 Probability Theory and Statistics

P(A j|B)
N

∑
i=1

P(B|Ai)P(Ai) = P(B|A j)P(A j) (6.60)

Equation 6.60 may be written in terms of P(A j|B) to form the more popular

statement of Bayes’ Theorem given by Equation 6.58.

��
Definition 6.37 (Statistical Independence). Any two events A ⊂ X and B ⊂ X
are said to be statistically independent if and only if,

P(A ,B) = P(A )P(B) (6.61)

Explanation:

For events A and B to be independent, the following must hold,

P(A |B) = P(A ) (6.62)

Plugging in Equation 6.62 in Equation 6.51, the statement of Equation 6.61 follows.

Definition 6.38 (Mutual Statistical Independence). {Ai : i ∈ {1,2, · · · ,N}} are

mutually independent events if and only if,

P(
⋂

j∈Mk

A j) = ∏
j∈Mk

P(A j) (6.63)

where Mk is a set of exhaustive k combinations of numbers ∈ {1,2, · · · ,N}, where

k ≤ N. This is a generalization of the two-event version given by Definition 6.37.

It is interesting to note that if we consider an experiment on a real line, defined

by the measure space, (X1,X1,P) with {X1 : X1 =�}, then, the repetition of the

experiment by n times is equivalent to the outcome of the experiment in the measure

space of the n-dimensional Cartesian product space of the initial single dimensional

space, namely, (X ,X,P) such that,

X =

n�

i=1

Xi (6.64)

and

X =

n�

i=1

Xi (6.65)

For example, throwing a dye ten times is tantamount to an experiment in the 10-

dimensional space.
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Now let us examine a continuous random variable which is the underlying char-

acteristic of most natural processes, although quantization effects for easier manipu-

lation of the variables may sometimes render them discrete in practice. This is not to

say that there are no discrete random processes in nature, but we certainly deal with

more of them due to quantization for convenience, such as sampling of a continuous

signal into a discrete representation.

Definition 6.39 (Continuous Random Variable). A continuous random variable,

X, is a variable which may take on a continuous set of values in a finite interval

[a,b] with the exception of a finite number of discontinuities. See the definition of a

continuous function in Section 24.17.

6.4 Integration

As it will become clear in the next few sections, it is important to be able to com-

pute the integral of a function of a random variable, g(x), with respect to a measure,

ρ(x). Here, we will use ideas from Definition 24.39 of a Riemann integral with ref-

erence to [27] to develop a methodology for computing the integral of a function,

g(x), with respect to a measure, over a measure space, (X ,X,ρ). More detailed

information on the topic may be found in [39, 27, 28].

Let us consider a function {g(x) : � �→ �} defined over the measure space,

(X ,X,ρ). Initially, we assume g(x) to be a statistic (see Definition 6.72), bounded

from both sides,

GL < g(x) < GH (6.66)

Also, ρ(x) is a bounded measure, ρ(A ) ∈�. Note that� does not include ±∞,

making ρ(x) bounded. Therefore, we may define an ordered sequence [20, 27],

GL = G0 < G1 < · · · < Gn = GH (6.67)

where,

Gi −Gi−1 ≤ ε ∀ i ∈ {1,2, · · · ,n} (6.68)

Then, the integral over the whole measure space, X , is defined as,

ˆ
X

g(x)dρ(x) = lim
n→∞
ε→0

n

∑
i=1

Gi ρ({x : Gi−1 < g(x) ≤ Gi}) (6.69)

Notice the resemblance of this result to that of a Riemann integral given by Equa-

tion 24.119. As it stands, this is indeed a Riemann integral due to the definite domain
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which has been defined and the nature of the function being integrated.

At this stage, we may relax the boundedness requirement for g(x). Let us define

a new function, f (x) where,

f (x)
Δ
=

⎧⎨⎩GL ∀ {x : g(x) ≤ GL}
f (x) ∀ {x : GL < g(x) < GH}
GH ∀ {x : g(x) ≥ GH}

(6.70)

then, for an unbounded g(x), we can write the integral,

ν =

ˆ
X

g(x)dρ(x) (6.71)

= lim
GL→−∞
GH→∞

ˆ
X

f (x)dρ(x) (6.72)

Therefore, if the limit on the right hand side of Equation 6.72 is finite as GL → −∞

and GH → ∞, we can deduce that the integral of interest, ν , exists.

At this point, we need to change the domain of integration from the whole sample

space, X to an arbitrary subset of the Borel field of our measurable space, A ∈ X.

This may be simply achieved through the introduction of the characteristic function

of A (Equation 6.6). Since we have defined ϒA (x) ∀ x, the characteristic function

is measurable. Therefore, we may write the integral of g(x) with respect to the

measure, dρ(x), over the region defined by subset A of the measurable space as

follows,

ˆ
A

g(x)dρ(x) =

ˆ
X
ϒA (x)g(x)dρ(x) (6.73)

6.5 Functions

In this section, we will review functions, metrics and function spaces related to

measures in general, but also as special forms relating to a probability measure. The

related functions include density functions, cumulative distribution functions, vari-

ances, etc. Let us start with the probability density function.

We generally speak of real valued functions which are functions with the follow-

ing property, {g : X �→�}. However, as we shall see later, sometimes we need to

consider the, so called, extended real valued functions.

Definition 6.40 (Extended Real Valued Function). An extended real valued func-

tion is a function such that, {g : X �→ {�,−∞,∞}}. Namely, its domain is extended

to include the points at ±∞.
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6.5.1 Probability Density Function

Before defining a probability density function, we need to introduce a few more

concepts in measure theory, the first of which is the absolute continuity of measures.

Definition 6.41 (Absolute Continuity of Two Measures). Given two measures of

a set A , defined in the measurable space (X ,X), and represented by ρ(A ) and

ν(A ), ν(A ) is said to be absolutely continuous with respect to ρ(A ) if for all

events where ρ(A ) = 0, also ν(A ) = 0. This is written in the following mathemat-

ical notation,

ν(A ) � ρ(A ) (6.74)

Definition 6.42 (Equivalence). If two measure are absolutely continuous with re-

spect to one another, namely, if ν(A ) � ρ(A ) and ρ(A ) � ν(A ), then they are

said to be equivalent and the following notation is used7,

ν(A ) ≡ ρ(A ) (6.75)

Another notation which is useful in the context of measure theory is that of the

modulo of a measure, [ρ].

Definition 6.43 (Almost Everywhere (Modulo)). Let us assume that a proposi-

tion in x is defined as π(x) over the measurable space (X ,X). Then, stating the

proposition with respect to a measure, ρ(x), may be written as, π(x)[ρ] (read as

π(x) modulo ρ), meaning that π(x) is true for all x where ρ(x) �= 0. For example,

if proposition π(x) is defined as π(x) : f (x) = g(x), then π(x)[ρ] or f (x) = g(x)[ρ]
means that f (x) = g(x) ∀ {x : ρ(x) �= 0}. Another way is to say that the proposition

π(x) is true almost everywhere with respect to the measure ρ(x).

At this point, we can state the very powerful Radon-Nikodým Theorem [29, 28]

which defines a generalized density function in connection with absolute continuity

of measures. This statement of the Radon-Nikodým Theorem is an alternative state-

ment which is useful in defining a generalized density function and its uniqueness.

For the original statement of the theorem see [28].

Theorem 6.3 (Radon-Nikodým). Given two measures on any measurable subset

A ∈ X, defined in the measurable space (X ,X), and represented by ρ(A ) and

ν(A ), a necessary and sufficient condition for ν(A ) � ρ(A ) is that there exists a

function, {g(x) : g(x) ≥ 0 ∀ x ∈ A ∈ X} such that,

7 Although notations, �, ", and ≡ are used for denoting much less than, much greater than,
and equivalent under normal circumstances, it is understood that within the context of comparing
measures, they refer to absolute continuity of two measures. Equivalence in the context of measure

theory is also only related to continuity relations and not numerical equivalence.
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ν(A ) =

ˆ
A

g(x)dρ(x) (6.76)

Furthermore, g(x) is unique almost everywhere with respect to ρ – see Defini-

tion 6.43.

Proof.

The proof is somewhat lengthy and is available in [28].

��
The uniqueness statement of the Radon-Nikodým Theorem means that any two

functions satisfying the theorem may be different only at points where ρ(x) = 0.

This unique function, g(x), is called a generalized density function. g(x) may be

obtained by taking the derivative of ν(A ) with respect to ρ(x),

g(x) =
dν

dρ
[ρ] (6.77)

Based on Equation 6.77, g(x) is also called the Radon-Nikodým derivative.

Consider any three measures defined in the measurable space (X ,X) such that

ν � ρ and ρ � λ . Then, it is apparent that ν � λ . It follows from this property

that the Radon-Nikodým derivatives with respect to different measures satisfy,

dν

dλ
=

dν

dρ

dρ

dλ
[λ ] (6.78)

See [28] for a proof of Equation 6.78.

As a consequence of Equation 6.78, we may write Equation 6.76 as follows,

ν(A ) =

ˆ
A

g(x)dρ(x)

=

ˆ
A

g(x)
dρ(x)

dλ (x)
dλ (x) (6.79)

Equation 6.79 allows us to express a measure in terms of a third measure given its

relation to a second measure. This powerful result enables us to change the variable

of integration for example from the measure associated with a probability distribu-

tion to say the Lebesgue measure.

Now let us define a probability density function as a special case of the Radon-

Nikodým derivative.

Definition 6.44 (Probability Density Function). Consider the special case where

P(A ) is a probability measure defined in the measurable space, (X ,X), of a real

line ({X : X =�}) with respect to a probability distribution measure, λ (x). Then

g(x) is defined as the generalized probability density function with respect to mea-

sure λ (x) and is defined such that,
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P(A ) =

ˆ
A

g(x)dλ (x) (6.80)

where λ (x) is the measure associated with the probability distribution function of

random variable X.

Note a very important consequence of Equation 6.79. A specific measure is as-

sociated with every probability distribution. Equation 6.79 allows us to take the

description of a probability measure given by Equation 6.80 in terms of one prob-

ability distribution (base on its probability measure) and to rewrite it in terms of

a different probability distribution (with a different probability measure) as long

as the probability measure associated with the first distribution is absolutely contin-

uous with respect to the probability measure associated with the second distribution.

For example, the binomial distribution has a probability measure which is abso-

lutely continuous with respect to the probability measure of a Poisson distribution.

However, it is not absolutely continuous with respect to the measure of the Normal

distribution.[27] This means that we will be able to take a probability measure de-

fined on a Binomial distribution and express it in terms of Poisson distributions.

A very important outcome is due to the fact that every probability distribution,

defined in the measurable space of a real line, (X ,X) where {X : X = �}, is

absolutely continuous with respect to the Lebesgue measure. This is quite powerful,

since it allows us to define a probability measure in terms of a new distribution, p(x)
which is really the product of the generalized probability density, g(x) in terms of

the original probability distribution measure λ , and the Radon-Nikodým derivative

of that distribution measure with respect to theLebesgue measure. This gives rise to

the definition of the probability density function p(x) which satisfies the following

Equation,

P(A ) =

ˆ
A

p(x)dx (6.81)

where p(x)
Δ
= g(x) dλ (x)

dx
.

Here is an alternative statement of Definition 6.44 for the probability density

function,

Definition 6.45 (Probability Density Function). The probability density function

of a random variable X, {p(x) ∈� :� �→�∧ p(x) ≥ 0∀x ∈�} is a function such

that the probability of the closed interval A = [a,b] ⊂� is given by,

P(A ) =

bˆ

a

p(x)dx (6.82)
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Equation 6.82 is a Riemann integral as given by Definition 24.39 which also pro-

vides insight into the meaning behind this integral and its computation. As such, it

also possesses all the properties listed for the Riemann integral after the statement

of Definition 24.39.

Even if the probability density function, p(x), does not exist, the integral in Equa-

tion 6.80 may still be computed using standard Lebesgue integration [35].

If p(x) does exist, then using the Radon-Nikodým theorem, it may be written in

terms of probability measure P and the Lebesgue measure, in the following form,

p(x) =
dP

dx
[x] (6.83)

Equation 6.83 holds for all probability measures since all probability measures are

absolutely continuous with respect to the Lebesgue measure [27].

Sufficient conditions for any function of a continuous variable, p(x), to be a prob-

ability density function is that p(x)≥ 0 and that the probability of the domain of p(x)
be 1, or formally,

P(X ) =

∞̂

−∞

p(x)dx

= 1 (6.84)

Note that these conditions do not require p(x) to have an upper limit of 1, only the

integral of p(x) in any interval has to be less than or equal to 1.

6.5.2 Densities in the Cartesian Product Space

If we consider the n-dimensional Euclidean space as a Cartesian product of real

lines, as discussed earlier, the probability density function will then be {p : Rn �→
�}. In that case, one way of writing the random variable X is to express it in terms

of a vector, {x : R1 �→ Rn} in which case,

P(A ) =

ˆ
A

g(x)dλ (x) (6.85)

Based on the statement of Equation 6.79, Equation 6.85 may be written in terms of

a generalized density function for λ as follows,

P(A ) =

ˆ
A

g(x)
dλ (x)

dx
dx (6.86)

=

ˆ
A

p(x)dx (6.87)
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An important observation is that the probability density function is only defined

for continuous random variables. However, as we stated earlier, although the prob-

ability density function may not exist, the integral in Equation 6.85 may still be

computed using standard Lebesgue integration. Therefore, a probability measure is

still defined for discrete random variables. We shall discuss discrete random vari-

ables later in the chapter.

Assuming that the probability density function is defined in the Cartesian Prod-

uct space for the random variable of interest, we can define the joint probability

density function as follows,

Definition 6.46 (Joint Probability Density Function). Given a differential proba-

bility measure, dP, defined in the Cartesian product probability space {X : X =
Rn} (see Equation 6.26), the joint probability density function, pX (x1,x2, · · · ,xn) is

defined as an extended form of the Radon-Nikodým derivative such that

pX (x1,x2, · · · ,xn)
Δ
=

∂ nP

∂x1∂x2 · · ·∂xn

(6.88)

According to this definition, the Probability measure, P, evaluated over an event

A may be written as follows,

P(A ) =

˚

A

· · ·
ˆ

pX (x1,x2, · · · ,xn)dx1dx2 · · ·dxn (6.89)

Another useful probability density function in the Cartesian product space is

known as the marginal probability density function which is defined as follows,

Definition 6.47 (Marginal Probability Density Function). Given a differential

probability measure, dP, defined in the Cartesian product probability space {X :

X = Rn}, there are n marginal probability density functions associated with the

n variables, {Xi : xi ∈ Xi} respectively (see Equation 6.26). The marginal proba-

bility density function is defined in terms of the joint probability density function,

pX (x1,x2, · · · ,xn), as follows,

pXi
(xi)

Δ
=

∂P

∂xi

∀ i ∈ {1,2, · · · ,n} (6.90)

=

˚
· · ·
ˆ

pX (x1,x2, · · · ,xn)dx1dx2 · · ·dxi−1dxi+1 · · ·dxn (6.91)

It is important to note that if the {Xi,{i ∈ {1,2, · · · ,n}} are mutually independent,

then the joint probability density function is equal to the product of all marginal

probability density functions. Therefore,

pX (x1,x2, · · · ,xn) =
n

∏
i=1

pXi
(xi) (6.92)
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6.5.2.1 Combining two Random Variables

Let us consider the probability density function of a function of two random vari-

ables. In other words, let us assume that,

ξ
Δ
= g(x1,x2) (6.93)

is a function of the two random variables, {X1 : x1 ∈ X1} and {X2 : x2 ∈ X2}, itself

a random variable, {X : ξ ∈ X }. Then, by Theorem 6.3, the differential probability

measure, dP, may be written as a product of the probability density function (Radon-

Nikodým derivative) in terms of the random variable X and the differential Lebesgue

measure associated with ξ ,

dP = p(ξ )dξ (6.94)

dP is the probability measure evaluated over some {A ∈ X } associated with the

differential increment dξ . If we write the joint probability density function defined

for X1 and X2, as pX (x1,x2), then, according to Equation 6.89, dP may be written in

terms of x1 and x2 as follows,

dP = p(ξ )dξ

=

ˆ
A

pX (x1,x2)dx1dx2 (6.95)

If we consider the case where

ξ = g(x1,x2)

= x1 + x2 (6.96)

then Equation 6.95 may be written in terms of x2 and ξ only, by using the relation

given by Equation 6.96,

p(ξ )dξ =

∞̂

−∞

pX (ξ − x2,x2)dx2dξ (6.97)

Now, let us make the assumption that x1 and x2 are mutually independent. There-

fore, according to Equation 6.92, joint probability density function, pX (x1,x2), is

equal to the product of the marginal probability density functions, pX1
(x1) and

pX2
(x2),

pX (x1,x2) = pX1
(x1)pX2

(x2) (6.98)

If we use the relationship given by Equation 6.98 to rewrite Equation 6.97, dividing

both sides of Equation 6.97 by dξ ,
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p(ξ ) =

∞̂

−∞

pX1
(ξ − x2)pX2

(x2)dx2 (6.99)

= (pX1
∗ pX2

)(ξ ) (6.100)

(6.101)

Notice that Equation 6.99 is just the expression for the convolution of the two

marginal probability density functions , (pX1
∗ pX2

)(ξ ). See Section 24.2.1 for more

information about convolution.

Similarly, it is easy to show that if

ξ = g(x1,x2)

= x1 − x2 (6.102)

then

p(ξ ) =

∞̂

−∞

pX1
(ξ + x2)pX2

(x2)dx2 (6.103)

= (pX1
◦ pX2

)(ξ ) (6.104)

Equation 6.97 is the expression for the correlation between the two marginal prob-

ability density functions, (pX1
◦ pX2

)(ξ ) – see Section 24.2.2.

6.5.3 Cumulative Distribution Function

Definition 6.48 (Cumulative Distribution Function). The Cumulative Distribu-

tion Function of a continuous random variable, X on the measure space defined on

a real line, (X ,X,λ ) where {X : X =�}, is defined as follows,

F(x) =

xˆ

−∞

g(ξ )dλ (ξ ) (6.105)

=

xˆ

−∞

p(ξ )dξ (6.106)

= P(X ≤ x)

where g(ξ ) and p(ξ ) are the density functions presented in Equations 6.80 and 6.81

respectively.

An important note in defining the Cumulative Distribution Function is that

F(−∞) = 0 and F(∞) = P(X ) = 1. Definition 6.48 may easily be generalized to

apply to any bounded measure ρ(x) in measure space (X ,X,ν) which does not
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necessarily need to be a Probability measure.

6.5.4 Function Spaces

Definition 6.49 (Lp Class of p-integrable Functions (Lebesgue space)). Let us

consider a measure space (X ,X,λ ). Lp(λ ) is defined as the class of extended

real valued p-integrable functions associated with measure λ for {p : p ∈ �, p ≥
1} – definition 6.40 describes an extended real valued function. For g(x) to be p-

integrable,

‖g‖p

Δ
=
∣∣∣(ˆ |g(x)|pdλ (x)

) 1
p ∣∣∣ (6.107)

should exist and be finite, namely, ‖g‖p ∈�.

Equation 6.107 describes the, so called, p-norm of a function. The special case,

where p = 2 is equivalent to the positive square root of the inner product of the

function and itself,

‖g‖ Δ
= ‖g‖2

=
√

〈g,g〉 (6.108)

Definition 24.38, presented in Chapter 24 and used for the development of inte-

gral transforms, is a special case of definition 6.49, where p = 1.

Note that the definition given in Equation 6.107 is somewhat more precise than

that presented in the literature (e.g., see Halmos [28]). Here, we have taken the ab-

solute value of the pth root of the integral. This has been overlooked in the literature.

It is important to include the absolute value since for example for p = 2, the square

root may be either positive or negative, but we are only interested in the positive

roots, since as we will see, one of the properties we will seek is for this function to

be always positive semi-definite (see property number one, below). With this said

and done, we may at times omit the absolute value sign, for simplicity of the nota-

tion, knowing that the positive semi-definiteness of ‖g‖p is well understood.

We define the functional,

ρp(g1,g2)
Δ
= ‖g1 −g2‖p (6.109)

Let us examine the properties of ρp(g1,g2). It is apparent from Equations 6.107

and 6.109 that,

1. ρp(g1,g2) ≥ 0 ∀ g1,g2

2. ρp(g1,g2) = 0 ⇐⇒ g1 = g2[λ ]
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3. ρp(g1,g2) = ρp(g2,g1)

The above three items match the properties stated for a metric space in Defini-

tion 6.25. Halmos [28] shows that ρp(g1,g2), in addition to having the above three

properties, also possesses the following properties,

4. ρp(g1,g2) ∈�
5. ρp(g1,g2) satisfies Hölder’s inequality (Theorem 6.4)

6. ρp(g1,g2) satisfies Minkowski’s inequality (Theorem 6.5)

We will not attempt to prove the last three properties, but we will define Hölder’s

inequality and Minkowski’s inequality to understand the consequences and to show

that these inequalities are general cases of other inequalities used elsewhere in this

book.

Theorem 6.4 (Hölder’s Inequality). If g1 ∈ Lp and g2 ∈ Lq where {p,q ∈ �},

{p,q ≥ 1}, and if

1

p
+

1

q
= 1 (6.110)

then, g1g2 ∈ L1 and

‖g1g2‖1 ≤ ‖g1‖p ‖g2‖q (6.111)

Equation 6.111 is known as Hölder’s inequality.

Proof. See Halmos [28].

��

Theorem 6.5 (Minkowski’s Inequality or Triangular Inequality). If g1,g2 ∈ Lp

where {p ∈�, p ≥ 1}, then,

‖g1 +g2‖p ≤ ‖g1‖p +‖g2‖p (6.112)

Equation 6.112 is known as Minkowski’s inequality and it is a generalization of the

Triangular inequality as applied to the function space.

Proof. See Halmos [28].

��
Definition 6.50 (Schwarz’s Inequality). The special case of Hölder’s inequality

where p = 2 and q = 2 is known as Schwarz’s inequality.

Schwarz’s inequality comes in handy in many occasions, since for the special

case of matrix norms it applies to the popular Euclidean norm (see Section 23.2)

and for functions, it helps in the definition of the variance (see Section 6.6.2).
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Given Definition 6.49 of the class, Lp(λ ), of p-integrable extended real valued

functions and the resulting properties, all the requirements of a metric space per

Definition 6.25 have been met. Therefore, ρp(g1,g2) may be considered to be a dis-

tance, and it is known as the Lp distance [17]. See Definition 8.2 for more on the Lp

distance.

6.5.5 Transformations

In this section, we will make a few definitions and work our way toward the def-

inition of a measurable transformation. As we will see, it will become necessary

for a few definitions such as that of the conditional expectation. For more detailed

definitions and treatment of transformations, refer to Halmos [28].

Definition 6.51 (Transformation). A transformation, T : (X ,X) �→ (Y ,Y), is a

function, defined for all the elements in X such that its values would be in Y , if Y
includes only elements which are the results of transforming elements in X .

Definition 6.52 (One-to-One Transformation). If every element in X is trans-

formed into a distinct element in Y or to a unique member of disjoint subsets of Y ,

then there exists an inverse transformation such that,

x ∈ X = T−1(y ∈ Y )∀y ∈ Y (6.113)

Such a transformation (T ) is known as a one-to-one transformation.

Definition 6.53 (Product of Transformation). If y = T (x)∀x ∈X andz =U(y)∀y ∈
Y , are one-to-one transformations, then the product of the two transformations is

defined as follows,

(UT )(x)
Δ
= U(T (x)) : (X ,X) �→ (Z ,Z) (6.114)

Definition 6.54 (Inverse Image of a Transformation). If we define a one-to-one

transformation, T : (X ,X) �→ (Y ,Y), and any Borel subset, B ∈ Y, then the in-

verse image of Borel subset B is the set of elements in X , A ∈ X such that their

transformation lies in B. Namely,

T−1(B) = A = {x : T (x) ∈ B} (6.115)

Definition 6.55 (Measurable Transformation). A measurable transformation, de-

fined as, T : (X ,X,ρ) �→ (Y ,Y,ν), maps every value of measure ρ in measure

space (X ,X,ρ) to a value of measure ν in measure space, (Y ,Y,ν) where ν is

defined for every Borel subset, B ∈ Y as follows,
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ν(B) = ρ(T−1(B)) (6.116)

Following Halmos’s notation [28], we may, at times, use the shorthand,

ρT−1(B)
Δ
= ρ(T−1(B)) (6.117)

6.6 Statistical Moments

Statistical moments are quantities which have been inspired by concepts in mechan-

ics. They quantify the nature of random variables, their behaviors and their func-

tions. In the following few sections, we will define some of the moments which are

used most often. Theoretically, one may define an infinity of statistical moments,

but the first four are most widely used.

6.6.1 Mean

Definition 6.56 (Expected Value (Expectation)). The expected value of a function

of a random variable, {g(x) : X �→ �}, denoted by E {g(x)}, is defined by the

following integral,

E {g(x)} Δ
=

ˆ
X

g(x)dP(x) (6.118)

It is important to note two important points. The expected value may or may not

exist. For the expected value of g(x) to exist, the integral in Equation 6.118 must

exist. Also, in Equation 6.118 the expected value of g(x) has been defined over the

entire sample space, X . It is possible to compute E {g(x)} over any subset of the

Borel field of the probability space (X ,X,P), such as {A ∈ X}. In general, when

the domain of the expected value is not specified, the entire sample space is used.

If the random variable of interest is defined on the real line, {X = �},

then based on the Radon-Nikodým theorem (Theorem 6.3), we may rewrite Equa-

tion 6.118 in terms of the Lebesgue measure and the Radon-Nikodým derivative of

the probability measure with respect to the Lebesgue measure. Namely,

E {g(x)} Δ
=

∞̂

−∞

g(x)p(x)dx (6.119)

Now that we know the definition for the expected value of a function of a ran-

dom variable, let us consider the expected value of the random variable itself. This
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would be E {g(x)} where g(x) = x, or E {X}.

Definition 6.57 (Expected Value or Mean). Consider a random variable X defined

in the probability space (X ,X,P). The expected value (E {X}) or the mean (μ) of

{X} is defined by the following integral,

μ = E {X}
Δ
=

ˆ
X

xdP(x) (6.120)

Note that X may be continuous, discrete or may take on any other general form as

long as it is defined in the probability space, (X ,X,P).

Let us consider the more specific class of continuous random variables defined on

the real line, {X : X =�}, also known as the one-dimensional Euclidean space.

Then, using the Radon-Nikodým theorem (Theorem 6.3), we may write the integral

in Equation 6.120 in terms of the Lebesgue measure. The following is the expression

for the expected value (mean) of random variable {X : x ∈�}.

E {X} =

∞̂

−∞

xp(x)dx (6.121)

where p(x) is given by Equation 6.83 in terms of the probability measure P and the

Lebesgue measure.

As it may be deduced from an analogy with a property in mechanics, the mean is

sometime referred to as the first statistical moment of the random variable, X . More

will be said about the mean and methods for its estimation after we have covered

the concept of a discrete random variable.

Definition 6.58 (Conditional Expectation). Recall Equation 6.71 for an unbounded

real valued function g(x). Let us rewrite this equation for the measure ν(B) over

Borel subset B ∈ Y, defined in measure space (Y ,Y,ν) in terms of the measurable

transformation (Definition 6.55), T : (X ,X,ρ) �→ (Y ,Y,ν), as follows,

ν(B) =

ˆ
T−1(B)

g(x)dρ(x) (6.122)

Based on the definition of measurable transformation T (Definition 6.55), ν(B) �
ρT−1(B) (see Definition 6.41 and Equation 6.117). Therefore, from the Radon-

Nikodým theorem (Theorem 6.3),
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ν(B) =

ˆ
T−1(B)

g(x)dρ(x) (6.123)

=

ˆ
B

f (y)dρT−1(y) (6.124)

Note that f (y) in Equation 6.124 is a measurable function which is dependent on

the function g and is conditioned upon the variable y. This special function is called

the conditional expectation or conditional expected value and is written as,

E {g|y} Δ
= f (y) (6.125)

Using the notation of Equation 6.125 in Equation 6.124, we have,

ˆ
T−1(B)

g(x)dρ(x) =

ˆ
B

E {g|y}dρT−1(y) (6.126)

where E {g|y} is known as the conditional expectation [27, 28] of g given y.

As we will see, the conditional expectation plays an important role in the deriva-

tion of expectation maximization which is a method for solving the maximum likeli-

hood estimation problem – see Sections 11.3.1 and 10.1.

At this point, let us examine a very important inequality associated with convex

functions and their expectations.

Theorem 6.6 (Jensen’s Inequality). Consider a probability density function, p(x),
defined as a Radon-Nikodým derivative of a probability measure P with respect to

the Lebesgue measure as prescribed by Definition 6.45, in the probability measure

space, (X ,X,P). Furthermore, consider a function, f : Y �→� which is convex8 in

X – see Definition 24.23. Then for any real-valued function, y(x), where y : X �→
Y , Jensen’s inequality may be written as follows,

ˆ
X

f (y(x))p(x)dx ≥ f

(ˆ
X

y(x)p(x)dx

)
(6.127)

Furthermore, for concave functions, the direction of the inequality in Equation 6.127

is reversed.

Proof. See [1].

��
Note that Jensen’s inequality basically states that

E { f (y)} ≥ f (E {y}) (6.128)

8 Since all convex functions are also continuous (see Definitions 24.12 and 24.23, the continuity
of f is implied.
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for any convex function, f .

A special case of Jensen’s inequality is one where y(x) = x, in which case,

∞̂

−∞

f (x)p(x)dx ≥ f

⎛⎝ ∞̂

−∞

xp(x)dx

⎞⎠ (6.129)

for any convex function, f .

6.6.2 Variance

Consider a general random variable X defined in the probability space (X ,X,P).
Let us examine the L2 function space with respect to probability measure P. Based

on Equation 6.107, the metric ρ2(g1,g2) is,

ρ2(g1,g2)
Δ
= ‖g1 −g2‖2 (6.130)

where,

‖g‖2 =
∣∣∣(ˆ |g(x)|2dP(x)

) 1
2 ∣∣∣ (6.131)

Note that ‖g‖2 must exist and be finite for the arguments in this section to hold.

Recall that Hölder’s inequality will have to hold for this metric. Since we are

considering the L2 class, then the special case of Hölder’s inequality with p = 2 in

Equation 6.111, namely Schwarz’s inequality must hold.

Let us write the expression for distance ρ2(x,μ) between x and μ ,

ρ2(x,μ) =
∣∣∣(ˆ |x−μ|2dP(x)

) 1
2 ∣∣∣ (6.132)

Schwarz’s inequality may then be written for ρ2(x,μ) as follows,

‖xμ‖1 ≤ ‖x‖2‖μ‖2 (6.133)

The expression on the left hand side of the inequality in Equation 6.133 may be

expanded as such,
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‖xμ‖1 =

ˆ
X

|xμ|dP(x)

=

ˆ
X

|xμ|dP(x)

= |μ|
ˆ

X
|x|dP(x)

= μ2 (6.134)

By the same token, here is the expansion of the expression on the right hand side of

Equation 6.133,

‖x‖2‖μ‖2 =
∣∣∣(ˆ

X
x2dP(x)

) 1
2 ∣∣∣ ∣∣∣(ˆ

X
μ2dP(x)

) 1
2 ∣∣∣

=
∣∣∣(ˆ

X
x2dP(x)

) 1
2 ∣∣∣ ∣∣∣(μ2

ˆ
X

dP(x)

) 1
2 ∣∣∣

=
∣∣∣(ˆ

X
x2dP(x)

) 1
2 ∣∣∣ |μ| (1)

1
2

=
∣∣∣(ˆ

X
x2dP(x)

) 1
2 ∣∣∣ |μ| (6.135)

Plugging in the expanded forms of the left and right sides of the inequality of Equa-

tion 6.133 using Equations 6.134 and 6.135 respectively, and dividing both sides of

the inequality by μ , Schwarz’s inequality for the metric of Equation 6.132 may be

expressed as,

|μ| ≤
∣∣∣(ˆ

X
x2dP(x)

) 1
2 ∣∣∣ (6.136)

We can square both sides of the inequality in Equation 6.136 without affecting the

inequality,

μ2 ≤
ˆ

X
x2dP(x) (6.137)

We call the distance function in function space L2, as expressed in Equa-

tion 6.132, the standard deviation of random variable X , and denote it by σ(X),

σ(X)
Δ
= ρ2(x,μ)

=
∣∣∣(ˆ

X
|x−μ|2dP(x)

) 1
2 ∣∣∣

=
∣∣∣(ˆ

X
(x−μ)2dP(x)

) 1
2 ∣∣∣ (6.138)

Note that up to now, we have not restricted random variable X to have any specific

form. However, if we consider the continuous random variable, X , defined on the
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real line, {X =�}, then by the Radon-Nikodým theorem (Theorem 6.3), we may

write the standard deviation, σ(X) using the Lebesgue measure as follows,

σ(X)
Δ
= ρ2(x,μ)

=
∣∣∣
⎛⎝ ∞̂

−∞

(x−μ)2 p(x)dx

⎞⎠ 1
2 ∣∣∣ (6.139)

The variance of the generic random variable X is defined as the square of its

standard deviation. From Equation 6.138, the expression for the variance becomes,

σ2{X} Δ
=

ˆ
X

(x−μ)2dP(x) (6.140)

= E
{
(x−E {x})2

}
(6.141)

where, μ (the mean) is given by Equation 6.120.

The integral expression for variance given by Equation 6.140 may be expanded

as follows,

σ2{X} =

ˆ
X

(x−μ)2dP(x)

=

ˆ
X

x2dP(x)+

ˆ
X
μ2dP(x)−2

ˆ
X

xμdP(x)

=

ˆ
X

x2dP(x)+μ2

ˆ
X

dP(x)−2μ

ˆ
X

xdP(x)

=

ˆ
X

x2dP(x)+μ2(1)−2μ(μ)

=

ˆ
X

x2dP(x)−μ2 (6.142)

Comparing Equation 6.142 with Schwarz’s inequality given by Equation 6.137, it

is interesting to note that the variance, σ2{X}, of random variable X turns out to

be a measure of the residue between the two sides of Schwarz’s inequality for the

distance defined in the metric space expressed in the L2 class.

Once again, if we restrict our attention to the continuous random variable defined

on the real line, {X =�}, we may use the Radon-Nikodým theorem (Theorem 6.3)

to express the variance expression of Equation 6.142, in terms of the probability

density function and the Lebesgue measure,

σ2{X} =

∞̂

−∞

x2 p(x)dx−μ2 (6.143)

where {X : x ∈�}.
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Using an analogy with a property in mechanics, the variance is sometimes re-

ferred to as the second statistical moment of the random variable, X .

Let us define a couple of statistics which are used for comparing two random

variables, namely, the covariance and the Correlation Coefficient. These statistics

are joint statistical moments which are designed to signify the level of dependence

of two random variables on one another.

Definition 6.59 (Covariance). Consider two random variables, X1 and X2, with

expected values, μ1 and μ2, respectively. Then the covariance, Cov(X1,X2), is

Cov(X1,X2)
Δ
= E {(X1 −μ1)(X2 −μ2)} (6.144)

= E {X1X2}−μ1μ2 (6.145)

If X1 and X2 are statistically independent, then Cov(X1,X2) = 0 since E {X1X2}=
E {X1}E {X2} for independent random variables.

Definition 6.60 (Correlation Coefficient). The correlation coefficient of two ran-

dom variables, X1 and X2, is defined as,

κ(X1,X2)
Δ
=

Cov(X1,X2)

σ(X1)σ(X2)
(6.146)

where Cov(X1,X2) is given by Equation 6.145 and σ(X) (the standard deviation of

a random variable, X) is given by Equation 6.138.

The correlation coefficient is a dimensionless measure of the dependence of two

random variables on one another. |κ(X1,X2)| ≤ 1 (see [42] for the proof) with equal-

ity when a variable is completely dependent on another variable, namely when

X1 = X2. κ(X1,X2) = 0 means that the two random variables are statistically in-

dependent. This can be easily seen since their covariance will be zero.

6.6.3 Skewness (skew)

The skew of a random variable {X : x ∈�} is defined by the following integral.

s{X} Δ
=

1

σ3

∞̂

−∞

(x−μ)3 p(x)dx (6.147)

where, μ is given by Equation 6.121 and σ is given by Equation 6.138.
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The definition in Equation 6.147 may have easily defined skew in the general

probability space using the Probability measure P instead of the Lebesgue measure

as we saw in the definition of Mean and Variance in the previous sections.

Using the mechanics analogy, the skew is also referred to as the third standard-

ized statistical moment of the random variable X . The term standardized refers to the

normalization done about the variance term in Equation 6.147. Its physical meaning

in the case of a Normal density is a measure of the lopsidedness of the distribution

(the asymmetry of it).

6.6.4 Kurtosis

Kurtosis of a random variable {X : x ∈ �} is generally defined by the following

integral,

k{X} Δ
=

1

σ4

∞̂

−∞

(x−μ)4 p(x)dx (6.148)

where, μ is given by Equation 6.121 and σ is given by Equation 6.138.

As with definitions of the mean and the variance we could have easily defined

kurtosis in the general probability space using the Probability measure P instead of

the Lebesgue measure.

Using the mechanics analogy, kurtosis is also referred to as the fourth standard-

ized statistical moment of the random variable X . As in the case of the definition

of skewness, the term, standardized refers to the normalization about the variance-

related term in Equation 6.148.

Definition 6.61 (Excess Kurtosis). The most popular usage of kurtosis is one which

is defined relative to a Normal density. This definition is called excess kurtosis be-

cause it computes the extra kurtosis compared to a Normal density. It has been

defined such that the kurtosis of a Normal density becomes 0. In this definition, a

value of 3 (kurtosis of a Normal density) is subtracted from the expression in Equa-

tion 6.148 producing the following definition,

k{X} Δ
=

1

σ4

∞̂

−∞

(x−μ)4 p(x)dx − 3 (6.149)
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Kurtosis is a measure of the sharpness of the peak of the distribution and the

flatness of its tails. The higher the kurtosis, the sharper the distribution peak and the

flatter its tails. The Bernoulli random variable (see Definition 6.63) with a maximum

entropy distribution, (see Section 7.3.1), where p1 = p2 = 0.5, has the lowest excess

kurtosis (−2). There is no upper bound for kurtosis.

6.7 Discrete Random Variables

Definition 6.62 (Discrete Random Variable). A discrete random variable is a ran-

dom variable which has a finite number of values in a finite interval. Namely, it has

at most a countably infinite sample space, X – see Definition 6.6. This means that

the random variable may still take on an infinite number of values, but there are any

finite number of such values in a finite interval.

Definition 6.63 (Bernoulli Random Variable). A very special discrete random

variable is one that may only take on binary values, {X : x ∈ {0,1}}. Such a random

variable is called a Bernoulli random variable with the sample space X = {0,1}.

The Bernoulli random variable is especially interesting because of its relevance

to the Von Neumann digital computer used in everyday life, specially in signal pro-

cessing.

The following definition has been a cause for confusion in many circles. The

loose utilization of the term, “distribution” as applied to different situations has

been the culprit. Note that the probability distribution which is about to be defined

for the discrete random variable is quite different from the probability distribution

as defined for continuous random variables later in this chapter. We shall address

these differences in more detail at a later stage.

Definition 6.64 (Probability Distribution (Probability Mass Function)). The

probability distribution of a discrete random variable is p(x) = P(X = x) where

X is a discrete random variable and x is any value it may assume (across sample

space X ). Note that,

∑
x∈X

p(x) = 1 (6.150)

Definition 6.65 (Cumulative Probability Distribution). The cumulative probabil-

ity distribution function,

F(x)
Δ
= P(X ≤ x) ∀ x ∈ X

= ∑
ξ≤x

p(ξ ) (6.151)



248 6 Probability Theory and Statistics

where X is the sample space of the discrete random variable X and F(x) is the

probability of the ordered set of all X with less than or equal to x.

Definition 6.66 (Expected Value (Mean) of a Discrete Random Variable). The

expected value or mean of a discrete random variable X is defined as,

μ = E {X}
Δ
= ∑

x∈X

xp(x) (6.152)

The expected value or mean is also known as the first statistical moment of random

variable X.

Definition 6.67 (Expected Value of a Function of a Discrete Random Variable).

Assume that we are interested in the expected value of a function f (X) of the discrete

random variable X. X is the observed variable. Then we may write the expected

value of f (X) as follows,

E { f (X)} = ∑
x∈X

f (x)p(x) (6.153)

As an example, take the linear function, f (x) = αX +β , then,

E {αX +β} = ∑
x∈X

(αx+β )p(x)

= α ∑
x∈X

xp(x)+β ∑
x∈X

p(x)

= αE {X}+β (6.154)

since ∑x∈X p(x) = 1 and ∑x∈X xp(x) = E {X}.

This reveals two main properties of the mean, namely,

Property 6.4 (Scaling).

E {αX} = αμ (6.155)

and

Property 6.5 (Translation).

E {X +β} = μ +β (6.156)

If the sample space for the discrete random variable, X , has the following set of

finite possible outcomes, X = {X1,X2, · · · ,XN}, with the probability mass function,

p(x) defined in that set, the Jensen’s inequality, stated by Theorem 6.6, may be

written for a convex function, f (x),

N

∑
i=1

p(Xi) f (Xi) ≥ f

(
N

∑
i=1

p(Xi)Xi

)
(6.157)
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The proof for the discrete case is fairly straight forward and is given in [19].

Definition 6.68 (Variance of a Discrete Random Variable). The variance of X

is defined as the expected value of the square of deviation of x from its mean μ . In

mathematical terms,

Var(X) = σ2(X)

Δ
= E

{
(X −μ)2

}
= E

{
X2 −2μX +μ2

}
= ∑

x∈X

x2 p(x)−2μ ∑
x∈X

xp(x)+μ2 (6.158)

(6.159)

Equation 6.158 may be rewritten in terms of expectations in the following form,

σ2(X) = E
{

X2
}−2μ2 +μ2

= E
{

X2
}−μ2

= E
{

X2
}− [E {X}]2 (6.160)

σ(X) is known as the standard deviation of random variable X .

Let us examine the variance of a linear function of X :

σ2(αX +β ) = E
{
(αX +β )2

}− [E {(αX +β )}]2
= E

{
(α2X2 +2αβX +β 2)

}− (αμ +β )2

= α2E
{

X2
}

+���2αβμ +��β
2 − (α2μ2 +���2αβμ +��β

2)

= α2E
{

X2
}−α2μ2

= α2σ2(X) (6.161)

The results from Equation 6.161 convey the following properties of the variance,

σ2(X),

Property 6.6 (Scaling).

σ2(αX) = α2σ2(X) (6.162)

and

Property 6.7 (Translation). Translation:

σ2(X +β ) = σ2(X) (6.163)

Note the similarities between the variance of a discrete variable and that of a

continuous variable defined in Section 6.6. Higher order statistical moments such

as skewness (skew) and kurtosis may be defined much in the same manner as for the
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mean and variance, from their more general forms described in Section 6.6.

6.7.1 Combinations of Random Variables

The convolution results of Section 6.5.2.1 regarding the combination of two random

variables apply to discrete random variables. If the discrete random variable {X :

ξ ∈ X } is produced from the summation of two independent random variables, X1

and X2 such that,

ξ = g(x1,x2)

= x1 + x2 (6.164)

then the probability mass function p(k) is given in terms of the discrete convolution

of the marginal probability mass functions, pX1
(i) and pX2

( j) as follows,

p(i) =
∞

∑
k=−∞

pX1
(i− k)pX2

(k) (6.165)

= pX1
∗ pX2

(6.166)

As in most cases, results related to the probability density function of a continuous

random variable have parallels with the probability mass function of a discrete ran-

dom variable.

6.7.2 Convergence of a Sequence

Let us assume that there is an ordered set (sequence [20]) of random variables,

{X}n
1 = {Xi : 1 ≤ i ≤ n}.9 In this section, we examine different definitions of the

convergence of this sequence to a specific random variable, X , as n → ∞. The crite-

ria of convergence will be presented here in the order of their strictness. First let us

start with the definition of a weak convergence.

Definition 6.69 (Weak Convergence (Convergence in Probability)). Weak con-

vergence of a sequence of random variables, {X}n
1, to X, also known as convergence

in probability is defined as follows [33],

9 Note that, here, we are using Xi to denote different random variables, which is different from the
notation used for samples of the same random variable (xi). Also, here, Xi does not signify disjoint
members of the sample space, as the notation does in the rest of the book. As much care as has been
afforded, unfortunately, because of the limitations on the number of symbols available, maneuvers
like this become necessary in parts of the book.
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lim
n→∞

P(|Xn −X | < ε) = 1 ∀ ε > 0 (6.167)

The statement of Equation 6.167 may alternatively be presented as follows [35],

lim
n→∞

P(|Xn −X | ≥ ε) = 0 ∀ ε > 0 (6.168)

The following notation is sometimes used to denote a weak convergence,

Xn
prob.−→ X (6.169)

Definition 6.70 (Strong Convergence (Almost Sure Convergence or Conver-

gence with Probability 1)). Strong convergence of a sequence of random variables,

{X}n
1, to X, also known as almost surely or with probability 1 is defined as follows,

P
(

lim
n→∞

Xn = X
)

= 1 (6.170)

The following notation is sometimes used to denote a strong convergence,

Xn
a.s.−→ X (6.171)

In Definition 6.23, we spoke about a complete space which used the fundamental

sequence of a metric space. The following is a formal definition of such a sequence.

Definition 6.71 (Fundamental Sequence or a Cauchy Sequence). Consider an

ordered set (sequence), {X}n
1 = {Xi : 1 ≤ i ≤ n}, defined in a metric space, (X ,X,ρ),

where ρ is a bounded metric, ρ ∈�, such that ∃ε(r) > 0 : ρ(Xl ,Xm) < ε(r) ∀ r <
l,m. Such a sequence is known as a fundamental sequence or a Cauchy sequence.

6.8 Sufficient Statistics

In this section, we will discuss the concept of sufficient statistics which was in-

troduced by Fisher [26], discussed in detail by Darmois [21], Koopman [36] and

Pitman [45], and later generalized by many including Barankin and Mitra [7].

The definition of sufficient statistics is necessary for the undertaking of statistical

estimation and model selection when we deal with a finite sample size. To be able

to define sufficient statistics, we should first define the notion of a statistic. Later,

we will introduce efficient statistics through the definition of efficiency of a statistic.

These concepts were first introduced by Fisher [26] for the general case and then

elaborated for the very special exponential family of densities [21, 36, 45, 7].
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Definition 6.72 (Statistic). A statistic is any function of a sample which is indepen-

dent of the sample’s distribution.

A statistic may have different purposes. Any statistic that is used to estimate a

statistical parameter is called an estimator. For example, the sample mean defined

by Equation 6.173 is a statistic and an estimator of the statistical parameter, the true

mean, of a distribution.

An important statistic is the sufficient statistic associated with a random variable,

X .

Definition 6.73 (Sufficient Statistic). A sufficient statistic, v(x), is a statistic de-

fined for a random variable, X : x ∈ X which contains in itself, all the relevant

information in the X.

Definition 6.74 (Efficiency of a Statistic). The efficiency of a statistic is the ra-

tio of the intrinsic accuracy of its random sampling distribution to the amount of

information in the data from which it has been derived.

This definition is valid for small samples of data with any distribution and is not

limited to Normal distributions. For large samples, this is the relevant information

utilized by the statistic of interest. For large samples with an underlying Normal

(Gaussian) distribution, if we know the variance of any sufficient statistic, then we

may compute the efficiency of any other statistic by the following ratio,

Ei
Δ
=

σ2
s

σ2
i

(6.172)

where Ei denotes the efficiency of statistic si, σ
2
i is the variance computed based

on statistic si and σ2
s is the variance computed from any efficient statistic, ss. Note

that efficiency, Ei, is the fraction of relevant information utilized by the statistic of

interest, si (for large samples).

Definition 6.75 (Statistical Efficiency Criterion). The efficiency criterion requires

that the variance of a statistic weighed by the number of samples used for computing

the statistic approaches the smallest possible value for the underlying distribution.

This is apparent from the special case related to large number of samples, given

in Equation 6.172.

Definition 6.76 (Efficient Statistic). Any statistic that meets the statistical effi-

ciency criterion is known as an efficient statistic and any such parameter estimate

is an efficient estimate.
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When we deal with the problem of estimating the statistics from a finite sam-

ple size where the data may not even be distributed normally and estimation errors

may be large, then different efficient statistics may exist and they will have differ-

ent efficiencies. It will be important to distinguish between these different efficient

statistics.

Fisher [26] proved that when sufficient statistics exist, they are the solutions of

the equations of maximum likelihood – see Section 6.9. Therefore, for a random

variable for which there is a normal underlying distribution, the sufficient statistic

would be the maximum likelihood estimate of the mean of the distribution which is

given by the sample mean for large samples (Equation 6.173). Based on Fisher’s ter-

minology [26] and the law of large numbers (Section 6.9.2), we see that the sample

mean is also considered to be a consistent statistic. Fisher [26] defines a consistent

statistic as follows.

Definition 6.77 (Consistent Statistic). A consistent statistic is an estimate of any

parameter such that when computed from an indefinitely large sample, it converges

to that parameter with high accuracy.

The estimated parameter which is a consistent statistic is known as a consistent

estimate.

6.9 Moment Estimation

The expressions for the mean and the variance are both based on knowing the prob-

ability density function, p(x), for the continuous case (Equations 6.121 and 6.143)

and the probability mass function, p(x), for the discrete case (Equations 6.152

and 6.158). In this section, we will examine methods for estimating these statis-

tical moments when p(x) is unknown.

6.9.1 Estimating the Mean

Take the expected value (or mean) of X given by Definition 6.66. In most cases, p(x)
is not known in advance. So, how do we compute μ , without having the probability

mass function of X? One method is to use the sample mean, X , to estimate the true

mean, μ . The sample mean for a discrete random variable, X , is defined as,

X |n Δ
=

1

n

n

∑
i=1

xi (6.173)
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where n is the number of samples taken in the experiment for estimating the mean,

μ . Equation 6.173 provides the maximum likelihood estimate of the mean of X . The

idea is that if n becomes large, the number of times, each unique value of X shows

up, is proportional to its probability of appearance. Therefore, by dividing the sum

by n, the normalization allows for estimating the true mean (μ) of X . To clarify this

argument, take a Bernoulli random variable which, based on Definition 6.63, can

only take on one of two possible values, namely, X = {0,1}.

For the moment, let us assume that the underlying probability mass function for

the system of interest is,

p(x) =

{
0.25 f or x = 0

0.75 f or x = 1
(6.174)

Then, the true mean computed based on Definition 6.66 will be

μ = E {X}
= ∑

x∈X

xp(x)

= (0.25) (0)+(0.75) (1)

= 0.75 (6.175)

Now, let us assume that p(x) is unknown, but we may do an experiment to esti-

mate μ . Assume that we do 1000 trials and based on the underlying nature of the

system at hand, for 725 times, X = 1, and for 275 times, X = 0, in which case the

sample mean will be,

X |1000 =
1

1000
(725×1+275×0)

= 0.725 (6.176)

As n increases, the nature of X drives the relative frequency of each possible

value of X toward the underlying probability distribution, so

X |n → μ as n → ∞ (6.177)

Equation 6.177, known as the law of large numbers, is valid under certain assump-

tions made about the random variable, X . These assumptions will be discussed in

some detail momentarily.

6.9.2 Law of Large Numbers (LLN)

The Mean Value Theorem (the Law of Mean), for analytic functions is presented

in Theorem 24.10. Similar incarnation of this theorem exist for random variables.

Depending on the nature of the conditions and limitations imposed by the specific
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case, two basic laws are described and proven in the form of theorems.

The first law is known as the weak law of large numbers and in one of its most

complete forms, it was expressed in the form of a theorem by the Russian mathe-

matician, Khintchine [33, 24, 20]. The second law with more strict conditions on

the moments of the random variables of interest is known as the strong law of large

numbers which was stated by many people with one of the best forms being the the-

orem which was stated and proven by Khintchine [20] and another Russian mathe-

matician, Kolmogorov [35, 25].

6.9.2.1 Weak Law of Large Numbers (WLLN)

Theorem 6.7 (Khintchine’s Theorem (Weak Law of Large Numbers – WLLN)).

See [37]. If X1,X2, · · · are independent and identically distributed (i.i.d.) random

variables with a finite mean, μ ,

μ =

ˆ
X

xdP(x) (6.178)

Furthermore, if we define a number, X |n, evaluated over n samples as

X |n Δ
=

1

n

n

∑
i=1

Xi (6.179)

then,

lim
n→∞

P
(|X |n −μ| < ε

)
= 1 ∀ ε > 0 (6.180)

Equation 6.180 states that the expression in Equation Equation 6.179 converges,

in probability, to μ . The convergence stated in Equation 6.180 is known as weak

convergence. In short,

Xn
prob.−→ X (6.181)

See Definition 6.69.

Proof. See [20, 24].

��

6.9.2.2 Strong Law of Large Numbers (SLLN)

Under the additional constraint that the set of all n random variables have finite vari-

ances, the results of Theorem 6.7 may enjoy a much stronger statement called the
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strong law of large numbers. Many different versions of the strong law of large num-

bers exist, according to Borel [15], Cantelli [16], Khintchine [32], Kolmogorov [32],

etc. [41]

Theorem 6.8 (Strong Law of Large Numbers (SLLN)). See [24]. In general

most of the statements of the law of large numbers state that the sample mean (X |n)

approaches the true mean, μ , of the random variable X almost surely (a.s.), if the

variance (σ2
n ) of X evaluated for a sequence of n trials is finite for all n – see

Definition 6.70. Namely,

Xn
a.s.−→ X (6.182)

or in other words,

σ2
n < σ2

max ∀ n ∈� =⇒ P
(

lim
n→∞

X |n = μ
)

= 1 (6.183)

where σ2
max < ∞ and

μ =

ˆ
X

x dP(x) (6.184)

Proof.

For the different convergence criteria, there are slightly different limitations imposed

in the statement of SLLN. The following are some of the references with slightly

different treatments: Borel [15], Cantelli [16], Khintchine [32], Kolmogorov [32],

Feller [23].

��
The strong law of large numbers is quite complex and detailed. The different

versions, with slight variations in the conditions met by the random variables of in-

terest, make this topic out of reach. In the scope of our discussion, the weak law of

large numbers, stated in Khintchine’s theorem is sufficient.

In essence, for the purposes of speaker recognition, we are concerned with the

following loosely defined limit,

lim
n→∞

X |n = lim
n→∞

1

n

n

∑
i=1

Xi

= μ (6.185)

X |n, defined by Equation 6.179, is also known as the sample mean.
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6.9.3 Different Types of Mean

Depending on the problem of interest, there have been many different concepts rep-

resenting the mean of a set of samples. Here, we will define four different such

measures which have different usages, depending on our objectives. For these def-

initions, we assume that we have observed a set of N samples of X : x ∈ X = �,

denoted by, {X}N
1 = {xn},n ∈ {1,2, · · · ,N}.

Definition 6.78 (Arithmetic Mean). The arithmetic mean, μA(XN
1 ), of a set of N

samples of random variable X is given by the following equation,

μA(XN
1 ) =

1

N

N

∑
n=1

xn (6.186)

The sample mean, estimating the true mean of X , given by Equation 6.179 is

arithmetic mean of the set of N observed samples. In most cases, when one speaks

of the mean of a sequence, the arithmetic mean is intended.

Definition 6.79 (Geometric Mean). The geometric mean, μG({x}N
1 ), of a set of N

samples of random variable X is given by the following equation,

μG({x}N
1 ) = N

√
N

∏
n=1

xn (6.187)

The geometric mean has the tendency of accentuating the effects of non-conforming

members of the set. As we saw in Definition 5.5, this contrast with the arithmetic

mean is used to define spectral flatness of a spectrum.

Definition 6.80 (Harmonic Mean). The harmonic mean, μH({x}N
1 ), of a set of N

samples of random variable X is only defined for a set of positive real numbers,

xn > 0 ∀ n ∈ {1,2, · · · ,N}, and it is given by the following equation,

μA({x}N
1 ) =

N

N

∑
n=1

1
xn

(6.188)

The harmonic mean has the property that it takes on a small value if xn for any n

is small. In this sense, it is more related to the minimum of the set than its arithmetic

mean. As we shall see, the harmonic mean is used in the k-harmonic means algo-

rithm, which is used for unsupervised clustering and described in Section 11.2.9.

Definition 6.81 (Quadratic Mean (Root Mean Square – RMS)). The quadratic

mean or RMS, μQ{x}N
1 , of a set of N samples of random variable X is defined as,
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μQ({x}N
1 ) =

√
N

∑
n=1

x2
n

N
(6.189)

The quadratic mean has the property that it is concerned with the magnitude of

the samples rather than just their values. It is actually a second order statistic. It

provides a good indication of the deviation of the samples from the origin, treating

positive and negative samples in the same manner.

6.9.4 Estimating the Variance

There are several techniques for estimating the variance of a random variable. The

first estimator (see Definition 6.72 for the definition of an estimator) is known as

the biased sample variance or the maximum likelihood estimator and is defined as,

Definition 6.82 (Sample Variance (Biased Estimator)). The biased sample vari-

ance σ̂2|n (see Section 6.9.4 for a definition of variance) is defined as,

σ̂2|n Δ
=

1

n

n

∑
i=1

(
Xi −X |n

)2
(6.190)

The sample variance given by Equation 6.190 is biased since it uses the same

sample for computing the sample mean as it uses for computing the sample vari-

ance. In fact the expected value of the biased sample variance is

E
{
σ̂2|n(X)

}
=

n−1

n
σ2(X) (6.191)

Definition 6.83 (Sample Variance (Unbiased Estimator)). The unbiased sample

variance σ̃2|n (see Section 6.9.4 for a definition of variance) is defined as,

σ̃2
n

Δ
=

1

n−1

n

∑
i=1

(
Xi −X |n

)2
(6.192)

σ̃2
n (X) is known as the unbiased sample variance of X and has the property that

its expected value is,

E
{
σ̃2

n

}
= σ2(X) (6.193)
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6.10 Multi-Variate Normal Distribution

In most pattern recognition problems, and generally in most practical statistical

problems, we are interested in probability density functions which belong to a spe-

cial family of functions known as the Darmois-Koopman-Pitman exponential family

or sometimes as the regular exponential family [7]. The following is a representation

of this parametric family of density functions.

p(x|ϕϕϕ) = a(x)exp
(
ϕϕϕT v(x)−b(ϕϕϕ)

)
(6.194)

where x is a possible value of the random variable, X : x ∈ X = RD and the pa-

rameter vector, {Φ : ϕϕϕ ∈ φ ⊂ RM}. ϕϕϕ is sometimes called the vector of natural

parameters of the density function and it is a function of another parameter which is

called the conventional parameter vector. The natural parameter vector is used to

present a canonical form of the exponential family. In our discussion, we will avoid

complicating matters by steering away from the conventional parameters and only

use the natural parameters.

In Equation 6.194, {v(x) : X �→ V = RM} is the vector of sufficient statistics

of X . a(x) is called the base measure. It is an arbitrary function of x to be able

to formalize different members of the family in a common normalized form. b(ϕϕϕ)
is a function of the parameter vector, which is specific to members of the family.

It is another normalization term which may be written in terms of the rest of the

parameters in the following way and is designed to offset the weight of a(x).

b(ϕϕϕ) = ln

(ˆ
x∈X

exp
(
ϕϕϕT v(x)a(x)

)
dx

)
(6.195)

In speaker recognition we mostly deal with multi-variate random variables.

Equation 6.196 is the expression for the multi-dimensional Normal density func-

tion which is a member of the exponential family of Equation 6.194.

p(x|μμμ,ΣΣΣ) =
1

(2π)
d
2 |ΣΣΣ | 1

2

exp

(
−1

2
(x−μμμ)TΣΣΣ−1(x−μμμ)

)
(6.196)

where

{
x, μμμ ∈ Rd

ΣΣΣ : Rd �→ Rd

In 6.196, μμμ is the mean vector where,

μμμ = E {x}
Δ
=

∞̂

−∞

x p(x)dx (6.197)

The integral in Equation 6.197 is really equivalent to the vector of expected val-

ues of individual components x.
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The, so called, Sample Mean10 approximation for 6.197 is,

x|N =
1

N

N

∑
i=1

xi (6.198)

≈ μμμ

where N is the number of samples.

The Variance-Covariance matrix of a multi-dimensional random variable is de-

fined as,

ΣΣΣ
Δ
= E

{
(x−E {x}) (x−E {x})T

}
(6.199)

= E
{
(xxT −x(E {x})T −E {x}xT +E {x}(E {x})T )

}
= E

{
xxT −xμμμT −μμμxT +μμμμμμT

}
= E

{
xxT

}−E
{

xμμμT
}−μμμ(E {x})T +μμμμμμT

= E
{

xxT
}−μμμμμμT −μμμμμμT +μμμμμμT

= E
{

xxT
}−μμμμμμT (6.200)

This matrix is called the Variance-Covariance since the diagonal elements are

the variances of the individual dimensions of the multi-dimensional vector, x. The

off-diagonal elements are the covariances across the different dimensions. Some

have called this matrix the Variance matrix. Mostly in the field of Pattern Recogni-

tion it has been referred to simply as the Covariance matrix which is the name we

will adopt from this point onward due to its popularity and brevity.

The unbiased estimate of ΣΣΣ , Σ̃ΣΣ is given by the following expression (see Defini-

tion 6.83),

10 Here, we are using x|N to denote the N-sample, sample mean of X where X is a random variable
in the d-dimensional Euclidean space. If we had used X |N , we would not be able to portray the
multi-dimensional nature of X . If we made X bold, it would be confused with a matrix. So, although
it is technically sloppy, we would have to stick with the notation of x|N for the sample mean of a
multidimensional random variable.
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Σ̃ΣΣ |N Δ
=

1

N −1

N

∑
i=1

(xi −x|N)(xi −x|N)T (6.201)

=
1

N −1

N

∑
i=1

(
xix

T
i −xix

T |N −x|NxT
i +x|NxT |N

)
=

1

N −1
S|N +�������N

N −1
x|NxT |N − N

N −1
x|NxT |N −�������N

N −1
x|NxT |N

=
1

N −1
S|N − �N

N −1

(
s|N
N

sT |N
�N

)
=

1

N −1

[
S|N − 1

N
s|NsT |N

]
(6.202)

=
1

N −1

[
S|N −N(x|NxT |N)

]
(6.203)

where the sample mean, x|N , is given by equation 6.198, the first order sum is

s|N Δ
=

N

∑
i=1

xi (6.204)

= N x|N (6.205)

and the second order sum matrix, S|N , is given by,

S|N Δ
=

N

∑
i=1

xixi
T (6.206)

If the components of random variable x are statistically independent, namely if

the covariance matrix, ΣΣΣ ,is diagonal, then,

(
Σ̃ΣΣ |N

)
[i][ j]

=

⎧⎪⎨⎪⎩
(S|N)[i][ j] = 0 ∀ i �= j

1
N−1

[
(S|N)[i][i] − 1

N
si|NsT

i |N
]
∀ i = j

(6.207)

In the next chapter, we will examine the different, but related concepts of Infor-

mation as defined by Fisher, Shannon, Wiener and and many others. This leads to

the whole concept of Information Theory.
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Chapter 7

Information Theory

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

T.S. Eliot

The Rock, 1934

Fig. 7.1: Information Flow in a Single Direction of a Generic Communication System

Figure 7.1 presents a generic communication system. In this figure, the message

is composed at the source. Then, it undergoes some coding to become suitable for

transmission through the channel. Most channels are noisy and this is signified by

the noise that affects the channel from the block on top. At the receiving end of

the channel, a decoder must decode the encoded and noisy message into one that

the recipient will understand. This is the basis for the development of the topic of

Information Theory which started with the advent of the telegraph and telephone

systems. Fisher [7], Nyquist [14, 15], Hartley [9], Shannon [18], Wiener [22], and

Kullback [12] were among some of the early developers of Information Theory. A

lot of this work was developed in response to the encryption and decryption needs

for sensitive communications during the second world war.

As we have seen in Section 6.8, Fisher [7] used the concept of information in his

development of sufficient statistics. In the definition of efficiency of statistics (Defi-

nition 6.74), he referred to the amount of information in the sampled data and used

it to compute efficiency of a statistic. His definition had to do with the convergence

of variance of sampled data to the variance of the underlying distribution. This

concept is somewhat different from later definitions of information (although very

related [12]). Shannon [18] and Wiener [22] defined information in a manner quite

similar to each other, although they had different motivations. Nyquist [14] speci-

fied two factors for determining the speed of transmission of intelligence and did

occasionally call what was being transmitted, information; but he mostly referred to

, H. Beigi Fundamentals of Speaker Recognition, 
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it as intelligence. Hartley [9] developed a concept of information but not in much

of a rigorous fashion. Nyquist had started talking about the concept of symbols with

equal probability, which as we will see later, have to do with entropy and informa-

tion concepts. He also used a logarithmic form for their representation. The most

complete work was done by Wiener [22] and Shannon [18]. Shannon [18] expanded

on the works of Nyquist [14] and Hartley [9] and this work provided the basis for

future developments in the field of Information Theory.

7.1 Sources

Before attempting to produce a formal definition for information, let us examine the

components of Figure 7.1. The whole essence of communication is to reproduce the

output of the source block at the receiving end, once it undergoes some encoding to

become compatible with the transmission channel. Generally, the signal is affected

by the noise in the channel before a decoding process takes place to attempt to re-

produce the original signal.

Shannon [18] qualifies the source as an information source and states that it may

take on the following different forms,

1. A sequence of letters from an alphabet – an example is the telegraph, Telex,

electronic mail, or even any digital transmission, since it is essentially a source

of data from a binary alphabet. From a language modeling standpoint, many

regard speech communication as such a source where the alphabet is the list of

phonemes of the language.

2. A function of time, f (t) – such as the analog signal from a telephone or a radio.

From a signal processing standpoint, speech may be regarded as having such a

source in its analog form.

3. A function of time and other variables – an example is black and white televi-

sion which produces a function of not only time, but the two-dimensional pixel

value at coordinates x and y.

4. Multiple functions of time, { f1(t), f2(t), · · · , fn(t)}. An example would be the

transmission from a microphone array recording a conversation in a meeting, or

even multiplexed audio from two different sources of a conversation on one side

of a transmission such as a conference call where there are multiple speakers in

one office, communicating with a few speakers in another office, using analog

telephony.

5. Multiple functions of time and other variables. This is an extension of the func-

tion of time and other variables listed above – as the previous (multi-function
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of time) source was an extension of the single function of time source. An ex-

ample of this kind of source is the source of a color video transmission where

each color is transmitted as a separate function of time in addition to the x and

y coordinate information.

6. Any combination of the above sources such as the multiplexing of video and

audio.

Depending on the definition of the boundary between the source and the en-

coder/transmitter, the source may be interpreted differently. For example, in Fig-

ure 1.6, any number of blocks at the transmission end may be combined to form the

source as defined by Figure 7.1 and the remaining blocks then become contained

in the encoder of Figure 1.6. The same is true at the receiving end. Based on what

components one bundles into the source, the encoder, the decoder and the receiver,

the information source for the speech production process would be one of the many

possible types of sources listed above.

From a statistical standpoint, all sources may be viewed as mechanisms based

on some underlying statistics which generate random numbers associated with the

information being conveyed. Let us examine the different concepts of measurement

of information and the related terminology. Once we have defined information and

its related concepts, we will be able to analyze it at different stages of the process

depicted by Figure 7.1.

In another perspective, information sources may be categorized into the follow-

ing types. These categories, as we shall see later, are quite pertinent to the topic of

our discussion.

Definition 7.1 (Discrete Source). A discrete source is one whose output is con-

strained to take on values from a finite set (atoms or alphabet),

i.e., X = {X1,X2, · · · ,Xn}.

Definition 7.2 (Discrete Memoryless Source). Let us assume that the sample

space associated with the discrete random variable X, defined in probability space

(X ,X,P), is given by X = {X1,X2, · · · ,Xn},n ∈�, known as the atoms (alphabet)

of X. Also, consider the time sequence {T}t
0 = {0,1,2, · · · , t}} such that the value of

X at time t is denoted by xt . If we denote the output history of a discrete memoryless

source by the following output sequence, {x}t
0 = {x0,x1, · · · xt}, then a memoryless

source is a discrete source such that its output at any time t is independent of all its

previous outputs. Namely,

P({x}t
0) = P(xt ,xt−1, · · · ,x0)

=
t

∏
τ=0

P(xτ) (7.1)
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Definition 7.3 (Discrete Markov (Markoff) Source). Let us assume that the sam-

ple space associated with discrete random variable X, defined in probability space

(X ,X,P), is given by X = {X1,X2, · · · ,Xn},n ∈ �. Also consider the time se-

quence {T}t
0 = {0,1,2, · · · , t} such that the value of X at time t is denoted by xt ,

then we may denote the output history of a discrete source by the following output

sequence, {x}t
0 = {x0,x2, · · · xt}. Such a source is called a Discrete Markov source

if

P(xt |{x}t−1
0 ) = P(xt |xt−1) (7.2)

Equation 7.2 is known as Markov property. Furthermore, the output sequence,

{x}t
0, is known as a Discrete Markov Process.

Therefore, a Markov process is one that possesses some memory and that mem-

ory is summarized in the latest state of the system. As we will see later, either this

memory is present in its entirety in the last output of the system (unifilar Markov

source) or in a hidden state (non-unifilar Markov source). There are other modeling

mechanisms which are based on time series, portraying similar memory modeling

such as auto regression (e.g., LPC – Section 5.4), moving average (Section 5.3), the

combination of the two, auto regressive moving average ARMA and its extension,

known as the Kalman filter (Section 18.4.7.5).

Definition 7.4 (Unifilar Markov Source). 1 A unifilar Markov source [1, 20] is

one that has no hidden states, meaning that the state sequence is completely deter-

mined by knowing the initial state and observing the output sequence.

The details of a unifilar Markov source will become more clear in Section 13.3.

The unifilar Markov source is in contrast with a non-unifilar Markov source. The

following is a simple definition of the non-unifilar Markov source.

Definition 7.5 (Non-Unifilar Markov Source). A non-unifilar Markov source [1,

20] is one whose states are not uniquely determined based on the observation of the

output sequence and the knowledge of the initial state. An example of a non-unifilar

Markov source is the hidden Markov model (Section 13.4).

In Section 13.4 we will see alternative definitions for the unifilar (Definition 13.2)

and non-unifilar (Definition 13.3) Markov sources.

Another important categorization of Markov sources is in terms of their ergodic-

tiy.

1 Unifilar, literally, means single-threaded. It is composed of the Latin expressions, uni: one and
filum: thread.
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Definition 7.6 (Ergodic Sources). 2 An ergodic source is a type of discrete Markov

source such that every sequence it produces has the same statistical properties.[18]

All natural languages including English may be modeled by ergodic Markov

sources.[21] Also, every memoryless source is ergodic.

Definition 7.7 (Continuous Source). A continuous source is one whose output is a

continuous random variable, X, given by Definition 6.39.

7.2 The Relation between Uncertainty and Choice

To be able to define information, we should first try to understand some related

concepts. One such concept is uncertainty. Consider the uncertainty attached to the

outcome of a fair coin (one which has an equal probability, 1
2 , of producing heads

or tails, X = {h, t}). Now, without quantifying this uncertainty, consider the un-

certainty of the outcome of a fair die with six sides (having the probability of 1
6

in producing each of its faces, X = {1,2,3,4,5,6}). In each of these examples,

X (sample space) is also called the set of possible symbols or the alphabet of the

process. Although in both examples, each outcome is equally probable among the

possible outcomes for that mechanism (source), the uncertainty associated with the

outcome of the coin is less than that associated with the outcome of the die.

Therefore, uncertainty is related to the structure of possible choices in a process.

Shannon [18] presented a formal definition of this entity (uncertainty) by requiring

it to possess a set of specific properties. In his treatment of uncertainty and infor-

mation, Shannon only considered discrete sources. Therefore, at this point we will

focus our attention toward discrete sources. After making certain observations, we

will discuss the properties of uncertainty per Shannon’s remarks. Later, we shall

extend the definition of uncertainty as applied to continuous sources.

7.3 Discrete Sources

If our information source is considered to be a discrete Markov process capable of

producing a finite set of n distinct outcomes, then the sample space, X , of random

variable X may be written as X = {X1,X2, · · · ,Xn}, with a probability of p(Xi) for

2 Ergodic is a term which was coined by Josiah S. Gibbs from the two Greek words, εργoν (work)

and oδo′ς (path).[22]
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the ith possible outcome, {Xi : i ∈ {1,2, · · · ,n}}. {p(x) : x ∈ X } is known as the

probability mass function of the discrete random variable X – see Definition 6.64.

The Xi are known as the atoms of the sample space X . Then, a measure of uncer-

tainty, H , would be a function of the only knowledge we have about this Markov

process, namely, its output probabilities for each of the n outcomes. As a shorthand

notation, we will denote the probability of the distinct outcome, Xi (p(Xi)) as just

pi. Therefore,

H (X) = H (p1, p2, · · · , pn) (7.3)

7.3.1 Entropy or Uncertainty

For clarification, let us review some notation being used in this book, related to this

topic.

• X : A Random Variable

• X = {Xi} where i ∈ {1,2, · · · ,n} is the set of possible outcomes or sample

space of X

• x is a single sample (X = x) which may take on any of the values Xi with prob-

ability p(X = Xi) = p(Xi) = pi

Shannon determined that a set of reasonable properties to demand for uncertainty

is the following,

1. H should be a continuous function of the probabilities of the outcomes,

{pi : i ∈ {1,2, · · · ,n}}.

2. If pi = 1
n

∀ i ∈ {1,2, · · · ,n}, then H should increase monotonically as n in-

creases. This is to achieve the property stated earlier when we compared the

uncertainty of the outcome of a fair coin with that of a fair die with 6 sides.

This means that as we have different sources, each emitting equally likely out-

comes, the source with more choices contains more uncertainty. In other words,

the amount of choice in a process is a measure of its uncertainty.

3. If a choice is split into two successive choices, the original H should be

equivalent to the weighted sum of the subsequent values of H for the new

choices. Shannon [18] illustrates this property with the example depicted in

Figure 7.2. In the figure, there are 3 original choices with the following prob-

abilities, p1 = 1
2 , p2 = 1

3 , and p3 = 1
6 . The process on the right is equivalent

in the sense that the final choices still have the same cumulative probabilities.

However, in the system on the right, the second choice has been split into two

subsequent choices. Since the final path probabilities are the same in the two

systems, the uncertainty must be the same. Namely,
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H

(
1

2
,

1

3
,

1

6

)
= H

(
1

2
,

1

2

)
+

1

2
H

(
2

3
,

1

3

)
(7.4)

The 1
2 in front of H ( 2

3 , 1
3 ) means that the whole set, containing the second

choice and the third choice, only happens half the time.

Fig. 7.2: Decomposition of three choices into a binary set of choices – after Shannon [18]

Theorem 7.1 (Entropy). The only entity, H , that satisfies all the properties listed

above, would have the following form,

H = −k
n

∑
i=1

pi logb pi (7.5)

where b is the choice of the base being used for the logarithm and k > 0 is a constant

which depends on the unit of H .

If the logarithm of base e is used (b = e), the expression in Equation 7.5 will be

identical with Gibbs’ formula for entropy [2] defined in the second law of Thermo-

dynamics, where k would be the Boltzmann constant.

Due to its similarity to Gibbs’ formula, Shannon [18] called H , entropy, which

is a measure of the amount of choice, or uncertainty, and is eventually related to

information. Shannon’s definition uses k = 1 which concentrates on the logarithmic

units of entropy and removes the proportionality constant of Boltzmann, which was

designed to give entropy a physical interpretation (as energy) to fit in the statement

of the second law of Thermodynamics.
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Definition 7.8 (Entropy).

H
Δ
= −

n

∑
i=1

pi logb pi (7.6)

= −E {logb p(X)} (7.7)

Depending on the base, b, of the logarithm, entropy has different logarithmic

units. In Equation 7.6, if log (log10) is used, the unit of entropy is one ban, dit (a

contraction of decimal digit), or Hartley due to the logarithmic definition of infor-

mation which he introduced in his 1928 paper [9].

If log2 is used, then the unit of entropy is a bit which is a contraction for binary

digit, first introduced by J.W. Tukey [18] to represent the information needed to

qualify the choice between two equally likely events (as a binary digit does).

Finally, if the Napierian (natural) logarithm (ln) is used in Equation 7.6, then the

unit of entropy is a nat (a contraction of natural) which is the unit used in Thermo-

dynamics when quantifying entropy.3

Sometimes the entropy of a random number is written as H (X). This does not

mean that entropy is a function of X . It only specifies that the entropy of interest is

the entropy related to the outcome of random variable X in contrast with any other

random variable, say Y or Z.

For a Bernoulli process (binary source – see Definition 6.63), if p1 = p, then

p2 = q = 1− p. Therefore,

H = −(p log2 p+q log2 q) (7.8)

= −(p log2 p+(1− p) log2(1− p)) (7.9)

Figure 7.3 shows the entropy of such a process as a function of p. Notice the fact that

this process has maximum entropy at p = 0.5, which is the point where outcomes 0

and 1 are as likely (such as in a fair coin toss).

The entropy, H , has some very interesting properties. Let us examine some of

these properties as well as try to define some important concepts based on entropy.

Property 7.1 (Zero Entropy). H = 0 if and only if all but one of the probabilities

on which it depends are zero. This means that there is really no uncertainty, since

the output of the system is always the same with probability 1 (this is the probability

which is nonzero and which has to be 1 for the sum to be 1).

3 Kullback [11] also cites the use of a nit from MacDonald who suggested it in his 1952 paper [13].
MacDonald made this suggestion to be, in essence, a contraction for natural digit. He even states in
his paper that this has an unattractive etymological significance. Later, nats became a much more
popular choice.
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Fig. 7.3: Entropy of a Bernoulli Process

Property 7.2 (Maximum Entropy). For a process with n outcomes,

Hmax(X) = maxH

= log2 n (7.10)

where pi = 1
n

∀ i ∈ {1,2, · · · ,n}. This is the most uncertain situation since there

are no outcomes that would have a higher probability than the rest.

Definition 7.9 (Relative Entropy – as defined by Shannon). 4 See [18].

The relative entropy of a process is defined as its entropy divided by its maximum

entropy while it is still confined to the same alphabet,

HR(X)
Δ
=

H (X)

Hmax(X)

=

−
n

∑
i=1

p(Xi) log2 p(Xi)

log2 n
(7.11)

4 This entity, called relative entropy by Shannon [18], is rarely used today. There is another relative

entropy which is the same as the Kullback-Leibler divergence and which will be discussed in quite
a detail later.
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The relative entropy, as defined by Shannon [18], may be interpreted as the com-

pression rate achieved by the said process using the same alphabet. This is different

from what, today, most people call relative entropy. We will present a definition for

the more popular relative entropy, or the Kullback-Leibler Directed Divergence,

later. For now, we have stated the Definition 7.9 only for the purpose of presenting

the following definition of redundancy.

Definition 7.10 (Redundancy). The redundancy of a process is defined as the frac-

tion of unnecessary bits used to code a sequence relative to the maximum entropy

which the process may have, with the same alphabet. Therefore,

R(X)
Δ
= 1−HR(X) (7.12)

Shannon [18] reports the redundancy of the written English language to be

around 50%. This means that if we throw out every other letter in an English sen-

tence, we will still be able to reconstruct the sentence based on the remaining half

of the letters.

In Khintchine’s theorem, Theorem 6.7, also known as the weak law of large num-

bers, there is a corresponding statement of the convergence of an estimate of the

entropy of a source stemming from that law. It is called the asymptotic equipartition

property. The following is a statement of the corresponding theorem.

Theorem 7.2 (Asymptotic Equipartition Property (AEP)). If X1,X2, · · · are in-

dependent and identically distributed (i.i.d.) random variables with a finite mean,

μ ,

μ =

ˆ
X

xdP(x) (7.13)

Furthermore, if we define a number, H̃ |n, in terms of the joint probability mass

function,

H̃ |n Δ
= −1

n
logb pX (X1,X2, · · · ,Xn) (7.14)

then,

lim
n→∞

P
(|H̃ |n −H (X)| < ε

)
= 1 ∀ ε > 0 (7.15)

In other words, Equation 7.14 converges, in probability, to the entropy of X, H (X).
This, similar to Khintchine’s theorem, is a weak convergence statement.

Proof.

Since {Xi : 1 ≤ i ≤ n} are statistically independent, we may write,
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H̃ |n = −1

n

n

∑
i=1

logb pXi
(Xi) (7.16)

where pXi
(Xi) are marginal probability mass functions. Also, by Theorem 6.7,

lim
n→∞

−1

n

n

∑
i=1

logb pXi
(Xi) = −E {logb p(X)} (7.17)

The right hand side of Equation 7.17 is just H (X).
��

AEP, as in the case of WLLN and SLLN for the computation of the mean, is used

on many occasions when dealing with practical aspects of computing the entropy of

a source of a process. For more on the asymptotic equipartition property, see [3].

Definition 7.11 (Joint Entropy). The joint entropy, H (X ,Y ), of two random vari-

ables, X and Y is

H (X ,Y )
Δ
= −

n

∑
i=1

m

∑
j=1

p(Xi,Yj) log2 p(Xi,Yj) (7.18)

= −E {log2 p(X ,Y )} (7.19)

(7.20)

Note that,

p(Xi) =
m

∑
j=1

p(Xi,Yj) (7.21)

p(Yj) =
n

∑
i=1

p(Xi,Yj) (7.22)

Therefore,

H (X) = −
n

∑
i=1

p(Xi) log2 p(Xi)

= −
n

∑
i=1

m

∑
j=1

p(Xi,Yj) log2

m

∑
j=1

p(Xi,Yj) (7.23)

H (Y ) = −
m

∑
j=1

p(Yj) log2 p(Yj)

= −
m

∑
j=1

n

∑
i=1

p(Xi,Yj) log2

n

∑
i=1

p(Xi,Yj) (7.24)

Based on Equations 7.18, 7.23, and 7.24, we may write the following triangular

inequality for joint entropy,
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H (X ,Y ) ≤ H (X)+H (Y ) (7.25)

In Equation 7.25, equality holds when X and Y are statistically independent (see

Definition 6.37) in which case, the joint probability may be written in terms of the

product of the individual probabilities, namely, p(Xi,Yj) = p(Xi)p(Yj).

The inequality of Equation 7.25 states that the entropy of the joint event is less

than or equal to the sum of the entropies of the individual events. In other words,

considering the joint event removes uncertainty if the events are in any way depen-

dent on one another.

The amount of uncertainty which is removed, based on partial dependence of X

and Y , may be viewed as the information shared by these two random processes.

We call this information, mutual information, which will be defined in more detail

in Section 7.6.1.

Property 7.3 (Averaging increases uncertainty). If there exists a set of constants

such that,

n

∑
j=1

a j = 1 (7.26)

and

a j ≥ 0 ∀ j ∈ {1,2, · · · ,n} (7.27)

Then, if pi goes through a linear transformation such that,

p′(Xi) =
n

∑
j=1

a j p(Xj) (7.28)

then the new entropy associated with the transformed probabilities will be greater

than or equal to the original entropy, namely,

H ′ = −
n

∑
i=1

p′(Xi) log2 p′(Xi)

≥ H (7.29)

where

H = −
n

∑
i=1

p(Xi) log2 p(Xi) (7.30)

The transformation of Equation 7.28 describes any general averaging technique,

an example of which is the case of joint entropy mentioned previously. Therefore,

Equation 7.29 means that averaging increases uncertainty. This is quite intuitive
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since any averaging tends to cause some loss of information which is akin to in-

creasing uncertainty (entropy).

Definition 7.12 (Conditional Entropy). For two random variables, X and Y , with

output probabilities p(Xi) and p(Yj) respectively, based on Equation 6.50,

p(Yj|Xi) =
p(Xi,Yj)

p(Xi)

=
p(Xi,Yj)

m

∑
j=1

p(Xi,Yj)
(7.31)

Therefore, the conditional entropy of Y given X is defined as,

H (Y |X)
Δ
= −

n

∑
i=1

m

∑
j=1

p(Xi,Yj) log2 p(Yj|Xi) (7.32)

which tells us about the uncertainty of the random variable Y on the average, when

X is known.

If we plug in for the conditional probability, p(Yj|Xi), from Equation 7.31 into

Equation 7.32, we will have,

H (Y |X) = −
n

∑
i=1

m

∑
j=1

p(Xi,Yj) log2 p(Xi,Yj)+

n

∑
i=1

m

∑
j=1

p(Xi,Yj) log2

m

∑
j=1

p(Xi,Yj) (7.33)

= −
n

∑
i=1

m

∑
j=1

p(Xi,Yj) log2

p(Xi,Yj)

p(Xi)
(7.34)

Substituting Equations 7.18 and 7.23 into Equation 7.33, we have the following

Equation, known as the chain rule for conditional entropy,

H (Y |X) = H (X ,Y )−H (X) (7.35)

Equation 7.35 may also be written as

H (X ,Y ) = H (X)+H (Y |X) (7.36)

Therefore, the uncertainty (entropy) of the joint events is equal to the uncertainty

(entropy) of the first event plus the uncertainty (entropy) of the second event when

the first event is known.
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Property 7.4 (Information reduces uncertainty). Based on Equation 7.25, H (X)+
H (Y ) ≥ H (X ,Y ). Also, based on the chain rule (Equation 7.36), H (X ,Y ) =
H (X)+H (Y |X). Therefore,

H (Y ) ≥ H (Y |X) (7.37)

which is quite intuitive since it says that the uncertainty of an event decreases once

more information is provided, in this case, in the form of the outcome of event X.

The equality in Equation 7.37 happens when the two events are statistically inde-

pendent, in which case, since they are independent, there is no uncertainty removed

from Y by knowing anything about X.

7.3.2 Generalized Entropy

As with many other entities in mathematics, Shannon’s entropy has also been gen-

eralized based on certain criteria. Réyni [16] started with stating Fadeev’s [6] four

proven postulates (axioms) on Shannon’s entropy. Let us consider a probability mass

function, {p(X) : p(X) = {p1, p2, · · · , pn}}. Then the entropy, H (p(X)) may alter-

natively be written as, H (p1, p2, · · · , pn). Then the following are the f our postu-

lates (axioms) of Fadeev for entropy:

1. H (p1, p2, · · · , pn) is a symmetric function of its variables for n ≥ 2.

2. H (p,1− p) is continuous ∀ 0 ≤ p ≤ 1

3. H ( 1
2 , 1

2 ) = 1

4. For any distribution, p(X) and any {q : 0 ≤ q ≤ 1},

H ( qp1,(1−q)p1, p2, · · · , pn) =

H (p1, p2, · · · , pn)+ p1H (q,1−q) (7.38)

Next, [16] relaxes the last postulate (axiom 4) to a weaker condition which is

quite significant in practice, but is not as strict as postulate 4. Let us define a second

probability mass function, {q(X) : q(X) = {q1,q2, · · · ,qm}}. Postulate 4′ is the

additivity of entropy, namely,

H (p(X)×q(X)) = H (p(X))+H (q(X)) (7.39)

where (p(X)×q(X)) is the direct product of p(X) and q(X). The direct product is

a Cartesian product of the two sets (Definition 6.24), creating a new distribution

whose elements are piq j where i = {1,2, · · · ,n} and j = {1,2, · · · ,m}.

Given postulates 1 through 3 and replacing postulate 4 with the weaker postulate

4′, given by Equation 7.39, Reýni defined a new generalized entropy which meets

all the new postulates,
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Hα(p(X)) =
1

1−α
log2

⎛⎜⎜⎝
n

∑
i=1

pαi

n

∑
i=1

pi

⎞⎟⎟⎠ (7.40)

where {p(X) : p(X) = {p1, p2, · · · , pn}} and {α : α > 0 ∧ α �= 1}. Réyni [16]

calls Hα(p(X)) entropy of order α . Note that

lim
α→1

Hα = H1 (7.41)

=

−
n

∑
i=1

pi log2 pi

n

∑
i=1

pi

(7.42)

Also, for the case when

n

∑
i=1

pi = 1 (7.43)

we have,

H1 = −
n

∑
i=1

pi log2 pi (7.44)

= H (p(X)) (Shannon’s entropy) (7.45)

7.3.3 Information

Fisher, in his 1925 paper [7] gave a definition of information. He introduced the

concept of sufficient statistics (see Section 6.8) in which he stated that sufficient

statistics “contain in themselves the whole of the relevant information available in

the data.” Although this definition of information is somewhat different from that

defined by others (starting with Hartley [9] in 1928), as stated by [8] and shown

by [12], it is still related in a limiting sense. In other words, the Wiener-Shannon

information, which will be defined momentarily, becomes invariant if and only if

sufficient statistics are used – see Section 7.7 for more details. One important fea-

ture which is necessary for the definition of information is its invariance to the used

statistic.

Information, the way it is used today in Information Theory, was probably first

introduced by Hartley in his 1928 paper [9] which influenced Claude Shannon [18]

in his definition of uncertainty and information from the telecommunication stand-

point. In parallel, Norbert Wiener [22] reached the same definition from the control

and statistical system prediction point of view. Hartley gave a rough definition of

information. He defined it for n equally likely hypotheses as,
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IHartley(X) = logn (7.46)

where x ∈ X : x ∈ X = {Xi}, i ∈ {1,2, · · · ,n}.[9]

In his book, Wiener [22] stated, correctly, that information is the opposite of en-

tropy and therefore is the negative of entropy. At this point, we will clarify what

seems to be a discrepancy in terminology and which is really not so.

7.3.4 The Relation between Information and Entropy

There has been great confusion from the day Shannon defined the, so called, en-

tropy of a discrete source in 1948 [18]. Although he referred to Gibbs’ Equation for

entropy, as used in Thermodynamics and statistical mechanics, he did not qualify

the fact that in the statement of the second law of Thermodynamics, one speaks of

the change in entropy, ΔS, and not the absolute entropy. When we speak of infor-

mation, we refer to the change of information due to an observation. With the same

analogy, we may only quantify the change in entropy and not the absolute entropy.

We may, however, speak of information or Entropy relative to some reference point.

For example, this reference may be a state of nature.

As MacDonald stated in his 1952 paper [13], many scientists who were present

at the 1950 Symposium on Information Theory in London were confused about why

entropy and Information should have the same sign when they measure opposing

qualities (disorder and order, respectively). Wiener [22] also stated that information

is the negative of entropy.

I recall a similar confusion and discussion in my Thermodynamics class many

years ago, as a student of mechanical engineering. Most of this confusion stems

from the relative measure of entropy and the choice of the reference point used as

origin. For the sake of simplicity and only for this discussion, let us confine our

discussion to discrete sources.

In Shannon’s definition of entropy (Equation 7.6), the probability distribution,

p(Xi) is a set of a-priori probabilities associated with possible outcomes. If we con-

sider the a-posteriori state of a statistical system when an outcome is revealed, then

the a-posteriori probability, p(Xj), becomes 1 and all the complementary outcomes

will have p(Xi) = 0 ∀ i �= j. We may call the entropy of the a-posteriori state of

the process, H (1;X) and its a-priori entropy, H (0;X). Then, the change in the

entropy based on the observed outcome becomes,

ΔH (0 : 1;X)
Δ
= H (1;X)−H (0;X) (7.47)
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Equation 7.47 defines the amount of change in the entropy based on the order (in-

formation) made available from observing the outcome of the system. This average

gain in information, may be written as,

ΔI (0 : 1;X) = −
n

∑
i=1

p(Xi) log2 p(Xi) (7.48)

Also, as it is stated in [22],

ΔH (0 : 1;X) = −ΔI (0 : 1;X) (7.49)

Combining Equations 7.47 and 7.48 using the relation in Equation 7.49, we will

have,

ΔH (0 : 1;X) = H (1;X)−H (0;X)

= −
(

−
n

∑
i=1

p(Xi) log2 p(Xi)

)

=
n

∑
i=1

p(Xi) log2 p(Xi) (7.50)

If we consider the a-posteriori state, one of complete information and no uncer-

tainty5, then,

ΔH (0 : 1;X) = 0−H (0;X)

=
n

∑
i=1

p(Xi) log2 p(Xi) (7.51)

which leads to the following expression for H (0;X),

H (0;X) = −
n

∑
i=1

p(Xi) log2 p(Xi)

= H (X) (7.52)

Equation 7.52 coincides with Shannon’s definition, but it should be noted that the

direction of the change of entropy and change of information were indeed opposite

as prescribed by Equation 7.49 and information is indeed the negative of entropy as

Wiener correctly stated in multiple occasions in his book [22]. Therefore, Wiener’s

definition of information coincides with that of Shannon, namely, Gibbs’ formula

with k = 1.

5 Of course this is only used as a reference point and no more. In fact, Kullback [11], as we will see
later, assumes absolute continuity between two hypothetical distributions related to the a-priori and
a-posteriori hypotheses. He also quotes from Savage [17] who states, “... definitive observations
do not play an important part in statistical theory, precisely because statistics is mainly concerned
with uncertainty, and there is no uncertainty once an observation definitive for the context at hand
has been made.” Of course, this statement only re-iterates the relevance of a limiting case where
there is no uncertainty, even if it is not used directly.
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As we mentioned, the definition of Information makes sense for a specific out-

come, revealing the amount of information based on the observation of an event.

If the source is a discrete source, then we will have a discrete random variable, X ,

as defined in the previous section. Therefore, for a discrete source, the amount of

information gained for every event, Xi is,

IWiener−Shannon(Xi) = − log2 p(Xi) (7.53)

where, Xi ∈ X , i ∈ {1,2, · · · ,n} are distinct subsets (atoms) of the sample space

X .

In comparison, entropy (Equation 7.6) may be thought of, as the expected value

of information. For the discrete case, this will be,

H (X) = −
n

∑
i=1

p(Xi) log2 p(Xi)

=
n

∑
i=1

p(Xi)I (Xi) (7.54)

= E {I (X)} (7.55)

The unit of information as defined by Equation 7.54 is a bit. If we changed the

base of the logarithm, we would get different units – as discussed earlier in the def-

inition of entropy.

If Xi is one of n equally probable outcomes, then the probability of any of these

outcomes will just be 1
n

which produces the following expression for information,

I (Xi) = − log2 p(Xi)

= − log2

1

n
= log2 n (7.56)

in bits, coinciding with Hartley’s definition of information, if the logarithm were to

be taken in base 10 (Equation 7.46).

7.4 Discrete Channels

We started this chapter by speaking about the onset of information theory because

of the development of communication infrastructures. In general, Information The-

ory is concerned with transmission of information through channels. In the past few

decades, with the advancement of digital communication systems, discrete channels

have become the most prevalent types of channels discussed in this field. Here, we

will define a discrete channel and continue with the definition memoryless discrete

channels. In future chapters we shall see the use of discrete channel analogies for
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handling concepts such as hidden Markov models and speech transmission.

Definition 7.13 (Discrete Channel). A discrete channel is a mechanism which out-

puts a discrete random variable, Y : y ∈ Y , for every discrete random variable,

X : x ∈ X , that is presented to it with the conditional probability mass function

p(Y |X) : p(y|x) ≥ 0 ∀x∧∑Y p(Y |X) = 1. Such a discrete channel is represented by

(X , p(Y |X),Y ).

Definition 7.14 (Discrete Memoryless Channel). Consider two discrete random

variables, {X : x ∈ {X1,X2, · · · ,XM}} and {Y : y ∈ {Y1,Y2, · · · ,YN}}. Furthermore, Y

is dependent on X according to the conditional probability mass function, p(Y |X),
given by the stochastic matrix (see Definition 23.18) A : RN �→ RM, such that the

elements of A are defined as follows,

Ai j
Δ
= p(y = Yj|x = Xi) (7.57)

Also, consider the time sequence, {T}t
0 = {0,1,2, · · · , t} such that the value of X

and Y at time t are denoted by xt and yt respectively. Then a discrete memoryless

channel is a channel such that, given an input random variable X at time t, its output

is random variable Y with the following output probability,

P(yt = Yj) =
M

∑
i=1

p(yt = Yj|xt = Xi)P(xt = Xi) (7.58)

=
M

∑
i=1

Ai jP(xt = Xi) (7.59)

Therefore, the output of a discrete memoryless channel at time t is independent of

its input at previous times, {xτ : τ < t}.

Note that Ai j is a stochastic matrix since the following should always be true,

N

∑
j=1

P(yt = Yj) = 1 (7.60)

A is also known as the channel matrix. Figure 7.4 shows a diagram of a memoryless

channel.

Fig. 7.4: A Memoryless (Zero-Memory) Channel
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Definition 7.15 (Binary Symmetric Channel). Take the discrete memoryless chan-

nel described in Definition 7.14. A binary symmetric channel [21] is a popular con-

figuration for a discrete channel which is a discrete memoryless channel with the

following channel matrix,

Ai j = p(y = Yj|x = Xi)

=

[
1− p p

p 1− p

]
(7.61)

where p is the probability of a mistake in transmission. For example, if the channel

is a perfect channel, then p = 0 in which case, there will be no mistakes made in

transmission. Therefore, the channel matrix would become the identity matrix, I,

outputting a 0 for every input 0 and a 1 for every input 1 with probability 1. A less

perfect channel would transmit output 1 for an input of 0 and a 0 for an input of 1

with probability p.

Generally, the performance of a channel may be assessed using a distance mea-

sure such as the Hamming distance allowing the comparison of the output sequence,

{y}t1
t0

with the corresponding input sequence, {x}t1
t0

– see Definition 8.1.1.

7.5 Continuous Sources

For a continuous source, the output is a continuous random variable, X . For this

source, every possible value of X may be given by x with a probability density, p(x)
– see Definition 6.45.

7.5.1 Differential Entropy (Continuous Entropy)

Shannon [18] only defined entropy for a discrete source, in terms of the probability

mass function of the source. It is, however, conceivable to define a similar entity

in the more general probability space, (X ,X,P), and then to consider a continuous

random variable with a relation to the newly defined entity. This new entity is called

differential entropy or continuous entropy. Generally, in the literature, h(X) is used

to denote differential entropy. However, since we have reserved h(t) for signals, to

reduce confusion, we utilize the symbol for Planck’s constant, h̄ to denote entropy

differential, knowing that we will not be using Planck’s constant anywhere in this

text.

To simplify matters, let us define the differential entropy in terms of the measur-

able Euclidean probability space, for a continuous random variable, X , using the

Lebesgue measure,
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h̄(X)
Δ
= −

∞̂

−∞

p(x) log2 p(x)dx (7.62)

where p(x) is the probability density function associated with X .

In the same spirit, the joint entropy, h̄(X ,Y ) is,

h̄(X ,Y ) = −
∞̂

−∞

∞̂

−∞

p(x,y) log2 p(x,y)dxdy (7.63)

where p(x,y) is the joint probability density of X and Y such that,

∞̂

−∞

∞̂

−∞

p(x,y)dxdy = 1 (7.64)

The properties and definitions stated in the previous section extend to the case

of the continuous source except for a couple of exceptions. The first thing to note

is that differential entropy is only defined when the integral in Equation 7.62 exists

and when X has a probability density. Another important distinction is due to the

fact that we are using the probability density function which may be larger than

1. Unlike discrete entropy which is positive semi-definite, due to the fact that the

probability mass function may never be more than 1, the differential entropy may

become negative. Take the example of a uniform distribution, with the probability

density function,

p(x) =

⎧⎨⎩
0 ∀ x < a
1

b−a
∀ a ≤ x ≤ b

0 ∀ x > b

(7.65)

Then, the differential entropy is

h̄(X) = −
∞̂

−∞

1

b−a
log2

1

b−a
dx

= −
bˆ

a

1

b−a
log2

1

b−a
dx

= log2(b−a) (7.66)

which is negative for all (b−a) < 1.

In speaker recognition we are usually interested in random variables which have

a normal density function. Since differential entropy is really a function of the prob-

ability density, p(x), we can compute it for a generic normal density in terms of its
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parameters, μ and σ2,

p(x) = N (μ,σ2)

=
1√

2πσ
e
− 1

2

(
(x−μ)2

σ2

)
(7.67)

Let us consider the expectation interpretation of differential entropy,

h̄(X) = −
∞̂

−∞

p(x) log2 p(x)dx

= −E {log2 p(x)} (7.68)

Therefore, the problem reduces to the computation of the expected value of

log2 p(x). Let us evaluate log2 p(x),

log2 p(x) = −1

2
log2(2πσ

2)− (x−μ)2

2σ2
log2 e (7.69)

Now we have to compute the expected value. Since the two parts of log2 p(x) have

negative signs and since we are interested in the negative expected value of this

expression, we can write,

h̄(X) = −E {log2 p(x)}
= E {− log2 p(x)}

= E

{
1

2
log2(2πσ

2)+
(x−μ)2

2σ2
log2 e

}

=
1

2
log2(2πσ

2)+
1

2
log2 eE

{
(x−μ)2

σ2

}

=
1

2
log2(2πσ

2)+
1

2

log2 e

σ2
E
{

(x−μ)2
}

=
1

2
log2(2πσ

2)+
1

2

log2 e

��σ2 ��σ
2

=
1

2
log2(2πeσ2) (7.70)

7.6 Relative Entropy

We will now cover some important concepts leading to the definition of relative en-

tropy (also known as Kullback-Leibler directed divergence) and mutual information.

Following the derivations in Kullback and Leibler [12, 11], we will examine differ-

ent concepts of Information Theory as well as provide insight into the meaning of

relative entropy, which of course they do not call by that name and simply present

it as directed divergence.
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Let us assume for the moment that we have two hypotheses H0 and H1 – see Sec-

tion 9.1. Furthermore, assume that the probability spaces associated with H0 and H1

are given by (X ,X,P0) and (X ,X,P1) respectively where probability measures P0

and P1 are equivalent (P0 ≡ P1) – see Definition 6.42. The equivalence assumption

is such that it would avoid any a-priori hypothesis for which the a-posteriori hy-

pothesis would not be allowed and vice-versa.

Recall the Radon-Nykodým theorem (Theorem 6.3) and consider a measure, λ (x)
in the measurable space, (X ,X), where

{Pi, i ∈ {0,1}} � λ (7.71)

Then,

Pi(A ) =

ˆ

A

gi(x)dλ (x) ∀ i ∈ {0,1} (7.72)

In Equation 7.72, gi(x) is the generalized probability density (Radon-Nikodým

derivative, Equation 6.77) for hypothesis {Hi : i ∈ {0,1}}. An important application

of the use of information is its assessment in favor of picking, say, a hypothesis H0

(see Section 9.1) when compared to hypothesis H1 after observing X = x. In this

case, the index i in Equation 7.72 may be i ∈ {0,1}.

According to the definition of information (Equation 7.53), the increment of in-

formation gained by observing X = x in favor of hypothesis H0 against H1 may be

written as,

I (0 : 1,x) = log2 g0(x)− log2 g1(x)

= log2

(
g0(x)

g1(x)

)
(7.73)

The mean value of the information in the observation of an event which is made

up of a subspace of X , A ∈ X, in favor of hypothesis H0 against H1 for P0(A ) is

I (0 : 1,A ) =

⎧⎪⎨⎪⎩
1

P0(A )

´
A log2

g0(x)
g1(x)dP0(x) ∀ P0(A ) > 0

0 ∀ P0(A ) = 0

(7.74)

Let us write Equation 7.74 for the whole sample space, X . In this case, we can

drop the X and denote the mean value of information gained by observing {X = x}
in favor of hypothesis H0 against H1 by I (0 : 1). Since the probability of the entire

sample space, P0(X ) = 1, then I (0 : 1) may be written as follows,

I (0 : 1) =

ˆ
X

log2

g0(x)

g1(x)
dP0(x) (7.75)

But we know from the definition of the Radon-Nikodým derivative,
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dP0(x) = g0(x)dλ (x) (7.76)

Using Bayes’ theorem (Theorem 6.2), we can write the following expression for

the conditional probability of hypothesis Hi where i ∈ {0,1} [11],

P(Hi|x) =
gi(x)P(Hi)

1

∑
j=0

g j(x)P(Hj)

[λ ] ∀ i ∈ {0,1} (7.77)

Therefore, the integrand of Equation 7.75 may be written, almost everywhere, in

terms of the gain in the relative information from the prior state of the two hypothe-

ses (before knowing x) to the posterior state (after x is known). Namely,

I (0 : 1,x) = log2

g0(x)

g1(x)

= log2

P(H0|x)
P(H1|x) − log2

P(H0)

P(H1)
[λ ] (7.78)

We can define the entity given by Equation 7.78 as the information gained by

knowing that X = x to decide in favor of the null hypothesis (Definition 9.1), H0,

versus the alternative hypothesis (Definition 9.2), H1. Note that g0(x) and g1(x) are

actually conditional probability densities, conditioned upon hypotheses H0 and H1

respectively. They are also known as the likelihoods of H0 and H1 given the obser-

vation, X = x. Therefore, I (0 : 1,x) is the log-likelihood ratio of hypothesis H0

against H1. As we shall see, the log-likelihood ratio is used to make a Bayesian de-

cision in favor of hypothesis H0 against H1 – see Section 9.2.

Let us use Equation 7.76 to write I (0 : 1) in terms of the measure, λ ,

I (0 : 1) =

ˆ
X

g0(x) log2

g0(x)

g1(x)
dλ (x) (7.79)

I (0 : 1), given by Equation 7.79 is a directed divergence derived by Kullback

and Leibler in [12]. It is a divergence of the null hypothesis against the alternative

based on the information gain in observing X = x, but it does not obey the triangular

property, so it is not a true metric. In addition, it is a directed divergence, since it is

not symmetric. Namely, I (0 : 1) �= I (1 : 0).

Although the notation, I (0 : 1) was used briefly in the above derivation based

on Kullback and Leibler’s [12] convention, the entity in Equation 7.79 is really the

expected value of the relative information presented by Equation 7.78, computed

over the entire sample space, X . Therefore, being the expected value of relative

information, it should really be called relative entropy6 – see the interpretation of

Equation 7.7 for the definition of entropy (Definition 7.8).

6 Not to be confused with Shannon’s relative entropy (Definition 7.9).
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Since we will be using the Kullback-Leibler directed divergence in the rest of the

book, we will refer to it by the following notation,

DKL (0 → 1)
Δ
= I (0 : 1) (7.80)

=

ˆ
X

g0(x) log2

g0(x)

g1(x)
dλ (x) (7.81)

and

DKL (1 → 0)
Δ
= I (1 : 0) (7.82)

=

ˆ
X

g1(x) log2

g1(x)

g0(x)
dλ (x) (7.83)

DKL (0 → 1) and DKL (1 → 0) do, however, obey all other properties of a metric

(see Definition 6.25).

Note that if X is defined on the real line, {X = �},λ (x), the λ (x) is the

Lebesgue measure, so that g0(x) and g1(x) will become the same as p0(x) and p1(x)
which are the probability density functions of X with respect to probability measures

P0 and P1. In that case, the variable of integration becomes x. So we can write the

following,

DKL (0 → 1) =

ˆ
X

p0(x) log2

p0(x)

p1(x)
dx (7.84)

and

DKL (1 → 0) =

ˆ
X

p1(x) log2

p1(x)

p0(x)
dx (7.85)

Recall the statement of Jensen’s inequality given by Equation 6.128. If we define

y(x) as follows,

y(x)
Δ
=

p1(x)

p0(x)
(7.86)

since y(x) is always positive, because p1(x) and p0(x) are probability density

functions, log2(y) = log2(
p1(x)
p0(x) ) is concave, which means that we may say f (y) is

convex if,

f (y) = − log2(y) (7.87)

Then, Equation 6.128 may be written out in integral form in terms of x and p0(x) as

follows,

−
ˆ

X
p0(x)

(
log2

p1(x)

p0(x)

)
dx ≥ − log2

(ˆ
X

���p0(x)
p1(x)

���p0(x)
dx

)
(7.88)

If we invert the argument of the log2 at the left side of Equation 7.88, we will have
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ˆ
X

p0(x)

(
log2

p0(x)

p1(x)

)
dx ≥ − log2(1) (7.89)

The left hand side of Equation 7.89, based on Equation 7.84, is just DKL (0 → 1).
Therefore, we can say,

DKL (0 → 1) ≥ 0 (7.90)

which is a very important result, proving an important property of a divergence.

Note that Equation 7.90 may be written in terms of the expected values of the

f (q(x)) and f (p(x)), where f (x) is given by Equation 7.87,

−
ˆ

X
p0(x) log2 p1(x)dx ≥ −

ˆ
X

p0(x) log2 p0(x)dx (7.91)

where the right hand side of Equation 7.94 is known as the cross entropy of the true

density of X with any other density, p1(x), and is denoted by h̄(p0 → p1) for the

continuous case and H (p0 → p1) for the discrete case. Note the following formal

definitions of cross entropy:

Definition 7.16 (Differential Cross Entropy). The differential cross entropy,

h̄(p0 → p1), of two probability density functions, p0(x) and p1(x) is given by the

following expression, when the Lebesgue measure is used,

h̄(p0 → p1)
Δ
= −

∞̂

−∞

p0(x) log2 p1(x)dx (7.92)

Definition 7.17 (Cross Entropy). Consider the discrete source of Section 7.3. The

cross entropy, H (p0 → p1), of two different probability mass functions, p0(X) and

p1(X), for the discrete random variable X is given by,

H (p0 → p1)
Δ
= −

n

∑
i=1

p0(Xi) log2 p1(Xi) (7.93)

Therefore,

h̄(p0) ≤ h̄(p0 → p1) (7.94)

for the continuous case and

H (p0) ≤ H (p0 → p1) (7.95)

for the discrete case.

Equation 7.94 is known as Gibb’s inequality and it states that the Entropy is al-

ways less than or equal to the cross entropy, where p0(x) is the true probability
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density function of X and p1(x) is any other density function.

Before Kullback and Leibler [12], Jeffreys [10] defined a measure, now known

as Jeffreys’ divergence, which is related to the Kullback-Leibler directed divergence

as follows,

DJ (0 ↔ 1) =

ˆ
X

log2

dP0

dP1
d(P0 −dP1) (7.96)

Jeffreys called it an invariant for expressing the difference between two distributions

and denoted it as I2. It is easy to see that this integral is really the sum of the two

Kullback and Leibler directed divergences, one in favor of H0 and the other in favor

of H1. Therefore,

DJ (0 ↔ 1) = DKL (0 → 1)+DKL (1 → 0) (7.97)ˆ
X

(p0(x)− p1(x)) log2

p0(x)

p1(x)
dx (7.98)

It is apparent that DJ (0 ↔ 1) is symmetric with respect to hypotheses H0 and H1,

so it is a measure of the divergence between these hypotheses. Although DJ (0 ↔ 1)
is symmetric, it still does not obey the triangular inequality property, so it cannot be

considered to be a metric.

Throughout this book, we use D (0 → 1) to denote a directed divergence, D (0 ↔ 0)
to denote a (symmetric) divergence and d (0,1) for a distance. The subscripts, such

as the KL in DKL (0 → 1), specify the type of directed divergence, divergence or

distance.

It was mentioned that the nature of the measure is such that it may specify any

type of random variable including a discrete random variable. In that case, the KL-

divergence may be written as,

DKL (0 → 1) = ∑
xi∈X

P0(xi) log2

P0(xi)

P1(xi)
(7.99)

See Section 8.2.1 for the expression for the KL-divergence between two normal den-

sity probability density functions.

7.6.1 Mutual Information

Consider a special case of relative entropy for a random variable defined in the

two-dimensional Cartesian product space (X ,X), where {X = R2} – see Sec-

tion 6.2.2. Then the relative entropy (KL-divergence) in favor of hypothesis H0 ver-
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sus H1 is given by

DKL (0 → 1) =

∞̂

−∞

∞̂

−∞

p0(x1,x2) log2

p0(x1,x2)

p1(x1,x2)
dx1dx2 (7.100)

Now, let us assume that the null hypothesis, H0, states that x1 and X2 are dependent

on one another and the alternative hypothesis states that they are mutually indepen-

dent. Based on the statement of H1, the joint probability density function, p1(x1,y2),
is given by the product of the marginal probability density functions, pX1

(x1) and

pX2
(x2) (see Equation 6.92),

p1(x1,y2) = pX1
(x1)pX2

(x2) (7.101)

Therefore, the expected value of the relative information in favor of the depen-

dence of X1 and X2 versus their independence is given by,

DKL (0 → 1) =

∞̂

−∞

∞̂

−∞

p0(x1,x2) log2

p0(x1,x2)

pX1
(x1)pX2

(x2)
dx1dx2 (7.102)

We can omit the subscript 0 since for the true X1 and X2, there is only one joint

probability density function with respect to the Lebesgue measure. Therefore,

DKL (0 → 1) =

∞̂

−∞

∞̂

−∞

p(x1,x2) log2

p(x1,x2)

pX1
(x1)pX2

(x2)
dx1dx2 (7.103)

Note that Equation 7.103 is symmetric about X1 and X2. Also, it may be viewed as a

measure of the expected value of the information in X1 about X2, or by symmetry in

X2 about X1. Therefore, it is called the mutual information between X1 and X2, and

it is denoted as,

I (X1;X2) = I (X2;X1)

=

∞̂

−∞

∞̂

−∞

p(x1,x2) log2

p(x1,x2)

pX1
(x1)pX2

(x2)
dx1dx2 (7.104)

Examining Equation 7.104, we can also say that,

I (X1;X2) = I (X2;X1) (7.105)

= DKL (p(x1,y2) → pX1
(x1)pX2

(x2)) (7.106)

Based on Equation 7.106, the discrete version of mutual information would be

given by the following,

I (X ;Y ) = I (Y ;X) (7.107)

Δ
=

n

∑
i=1

m

∑
j=1

p(Xi,Yj) ln
p(Xi,Yj)

pX (Xi)pY (Yj)
(7.108)
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As we shall see in Problem 7.2, mutual information may be viewed as the amount

of information which is present when comparing the entropy of a random vari-

able with its entropy conditioned upon the observation of another random variable.

Namely,

I (X ;Y ) = H (X)−H (X |Y ) (7.109)

= H (Y )−H (Y |X) (7.110)

According to Equation 7.98, Jeffreys’ divergence between the hypothesis of de-

pendence versus independence of X1 and X2 would be given by the following,

IJ (X1;X2) = DJ (p(x1,y2) ↔ pX1
(x1)pX2

(x2))
∞̂

−∞

∞̂

−∞

(p(x1,x2)− pX1
(x1)pX2

(x2))

log2

p(x1,x2)

pX1
(x1)pX2

(x2)
dx1dx2 (7.111)

Example 7.1 (Mutual Information of two Normally Distributed Random Vari-

ables). Recall the definition of a multi-dimensional Normal density function (Equa-

tion 6.196). Let us consider the special case of a two-dimensional Euclidean space.

We shall treat each dimension as a random variable and denote them as X1 and X2,

with correlation coefficient κ(X1,X2) between them (see Definition 6.60). Then we

can write the mean vector, μμμ , and the Covariance matrix, ΣΣΣ , of the two-dimensional

random variable, {X : x ∈ R2}, in terms of the mean, the variance and the correla-

tion coefficient of its two components, as follows,

μμμ =

[
μX1

μX2

]
(7.112)

ΣΣΣ =

[
σ2

X1
κσX1

σX2

κσX1
σX2

σ2
X2

]
(7.113)

Therefore, we may write the joint probability density function for X1 and X2, which

are normally distributed random variables, in terms of their individual means

(μX1
,μX2

), variances (σ2
X1

,σ2
X2

), and their correlation coefficient, κ(X1,X2),

p(x1,x2) =
1

2π
√

(1−κ2)σX1
σX2

exp
{

− 1
2(1−κ2)(
(x1−μX1

)2

σ2
X1

−2κ
(x1−μX1

)(x2−μX2
)

σX1
σX2

+
(x2−μX2

)2

σ2
X2

)} (7.114)

Also, the marginal probability density functions may be written in terms of one-

dimensional Normal density functions as follows,

pX1
(x1) =

1√
2πσX1

exp

(
−1

2

(x1 −μX1
)2

σ2
X1

)
(7.115)
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and

pX2
(x2) =

1√
2πσX2

exp

(
−1

2

(x2 −μX2
)2

σ2
X2

)
(7.116)

Substituting Equations 7.114, 7.115 and 7.116 into Equation 7.104, we have the

expression for the mutual information of normally distributed random variables, X1

and X2, as a function of their correlation coefficient only,

I (X1;X2) = I (X2;X1)

= −1

2
log

(
1− [κ(X1,X2)]

2
)

(7.117)

7.7 Fisher Information

In Section 10.1, we will discuss the idea behind maximum likelihood estimation of

parameters which would model a statistical system. At the beginning of this chapter,

we discussed the fact that in the limit, the Fisher information is related to the infor-

mation defined by Wiener and Shannon (Section 7.3.3). In this section, we will start

with the Kullback-Leibler directed divergence and Jeffreys’ divergence and show

that under certain limiting conditions and in relation with statistical parameter esti-

mation, they are related to the Fisher information matrix, hence the relation between

this information measure and the Wiener-Shannon concept of information.

The topic of this section is quite related to the concept of maximum likelihood

parameter estimation which will be discussed in Section 10.1. Therefore, it is rec-

ommended that the two sections be studied side-by-side.

Consider the random variable X , defined in measure space (X ,X,λ ), where

{X : x ∈ X = RD}. Also, for simplicity, let us assume that the measure, λ (x) is just

the Lebesgue measure. In addition, let us say that we have a parametric model which

estimates the probability density function associated with X , p(x), by p̂(x|ϕϕϕ), where

ϕϕϕ ∈ φ = RM is the parameter vector. Furthermore, let us assume that another model

exists, with a probability density function of the same form, with the exception that

it has a slightly different parameter vector, ϕ̃ϕϕ , such that the difference between the

two parameter vectors may be written as a deviation vector, Δϕϕϕ , as follows,

ϕ̃ϕϕ =ϕϕϕ +Δϕϕϕ (7.118)

Using the natural logarithm, the Kullback-Leibler directed divergence from the

first model to the second, may be written as follows,

DKL (ϕϕϕ → ϕ̃ϕϕ) =

ˆ
X

p̂(x|ϕϕϕ) ln

(
p̂(x|ϕϕϕ)

p̂(x|ϕ̃ϕϕ)

)
dx (7.119)
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If we defined the following two notations,

Δ p̂(x|ϕϕϕ)
Δ
= p̂(x|ϕ̃ϕϕ)− p̂(x|ϕϕϕ) (7.120)

and

Δ ln(p̂(x|ϕϕϕ))
Δ
= ln(p̂(x|ϕ̃ϕϕ))− ln(p̂(x|ϕϕϕ)) (7.121)

Then, using the definition in Equation 7.121, we may write Equation 7.119 as fol-

lows,

DKL (ϕϕϕ → ϕ̃ϕϕ) = −
ˆ

X
p̂(x|ϕϕϕ)Δ ln(p̂(x|ϕϕϕ))dx (7.122)

Since we have made the fundamental assumption that Δϕϕϕ is a small deviation

vector, we may try to approximate DKL (ϕϕϕ → ϕ̃ϕϕ) by writing the Taylor series ex-

pansion (Definition 24.42) of Δ ln(p̂(x|ϕϕϕ)), about the parameter vector, ϕϕϕ[11].

If we write the terms of the series, up to the second order term, the remain-

der [19] may be added in terms of the third order, evaluated at ϕϕϕ +αααTΔϕϕϕ such

that 0 < (ααα)[m] < 1, ∀ m ∈ {1,2, · · · ,M}.

Δ ln(p̂(x|ϕϕϕ)) =
M

∑
i=1

(Δϕϕϕ)[i]
∂ ln p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i]

+
1

2!

M

∑
i=1

M

∑
j=1

(Δϕϕϕ)[i] (Δϕϕϕ)[ j]

∂ 2 ln p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i] ∂ (ϕϕϕ)[ j]

+
1

3!

M

∑
i=1

M

∑
j=1

M

∑
k=1

(Δϕϕϕ)[i] (Δϕϕϕ)[ j] (Δϕϕϕ)[k]

∂ 3 ln p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i] ∂ (ϕϕϕ)[ j] ∂ (ϕϕϕ)[k]

∣∣∣
(ϕϕϕ+αααTΔϕϕϕ)

(7.123)

Therefore, Equation 7.122 may be written in terms of the Taylor expansion of

Equation 7.123. Also, we may use the chain rule to write the first and second order

partial derivatives of the log of the density in terms of the density function itself as

follows,

∂ ln p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i]
=

1

p̂(x|ϕϕϕ)

∂ p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i]
(7.124)

∂ 2 ln p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i] ∂ (ϕϕϕ)[ j]

=
1

p̂(x|ϕϕϕ)

∂ 2 p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i] ∂ (ϕϕϕ)[ j]

− 1

(p̂(x|ϕϕϕ))2

∂ p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i]

∂ p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[ j]

(7.125)

Using Equations 7.124 and 7.125 in conjunction with the Taylor series expansion

of Equation 7.123, we may write the expression for DKL (ϕϕϕ → ϕ̃ϕϕ) from Equation
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7.122 as follows,

DKL (ϕϕϕ → ϕ̃ϕϕ) = −
M

∑
i=1

(Δϕϕϕ)[i]

ˆ
X

∂ p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i]
dx

− 1

2

M

∑
i=1

M

∑
j=1

(Δϕϕϕ)[i] (Δϕϕϕ)[ j]

ˆ
X

(
∂ 2 p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i] ∂ (ϕϕϕ)[ j]

− 1

p̂(x|ϕϕϕ)

∂ p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i]

∂ p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[ j]

)
dx

− 1

6

M

∑
i=1

M

∑
j=1

M

∑
k=1

(Δϕϕϕ)[i] (Δϕϕϕ)[ j] (Δϕϕϕ)[k]

ˆ
X

p̂(x|ϕϕϕ)
∂ 3 ln p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i] ∂ (ϕϕϕ)[ j] ∂ (ϕϕϕ)[k]

∣∣∣
(ϕϕϕ+αααTΔϕϕϕ)

dx (7.126)

As we saw in Section 7.6 and we will see in more detail in Section 10.1, the

probability density function, p̂(x|ϕϕϕ), is also known as the likelihood of ϕϕϕ given x.

Cramér [4] specifies a set of regularity conditions after Dugué [5] which are used for

showing the asymptotic properties of maximum likelihood estimation 10.1. These

conditions are required by Kullback [11], in order to show the relation between the

Kullback-Leibler directed divergence and the Fisher information matrix which is

being discussed here. Therefore, we require the likelihood, p̂(x|ϕϕϕ), to meet these

three regularity conditions in order to be able to simplify Equation 7.126.

Regularity conditions on p̂(x|ϕϕϕ):

1. p̂(x|ϕϕϕ) is C3 continuous (see Definition 24.19) with respect to ϕϕϕ in the interval

[ϕϕϕ,ϕϕϕ +Δϕϕϕ] and for almost all x (x[x]).

2.
∂ p̂(x|ϕϕϕ)
∂ (ϕϕϕ)[i]

and
∂ 2 p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i]∂ (ϕϕϕ)[ j]
are absolutely integrable (see Definition 24.38) in the

interval [ϕϕϕ,ϕϕϕ +Δϕϕϕ] and ∀ x[x]. Also, if G(x) is the upper-bound, on the third

partial derivative of p̂(x|ϕϕϕ), i.e.,∣∣∣∣∣ ∂ 3 ln p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i] ∂ (ϕϕϕ)[ j] ∂ (ϕϕϕ)[k]

∣∣∣∣∣< G(x) (7.127)

thenˆ
X

p̂(x|ϕϕϕ)G(x)dx < β < ∞ (7.128)

3. Finally,

ˆ
X

∂ p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i]
dx = 0 ∀ i ∈ {1,2, · · · ,M} (7.129)
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and

ˆ
X

∂ 2 p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i] ∂ (ϕϕϕ)[ j]

dx = 0 ∀ i, j ∈ {1,2, · · · ,M} (7.130)

It is important to note that since due to the regularity assumption 1, p̂(x|ϕϕϕ) is a C3

continuous function in the interval [ϕϕϕ,ϕϕϕ +Δϕϕϕ], then based on Definition 24.19 and

Property 24.6 all its derivatives up to the third derivative are bounded. Therefore,

this property is implied and need not be listed.7

Given the above regularity conditions, Equation 7.126 may be simplified as fol-

lows,

DKL (ϕϕϕ → ϕ̂ϕϕ) =
1

2

M

∑
i=1

M

∑
j=1

(III F)[i][ j] (Δϕϕϕ)[i] (Δϕϕϕ)[ j] (7.131)

where III F is the Fisher information matrix and its elements are given by the fol-

lowing definition,

(III F)[i][ j]
Δ
=

ˆ
X

p̂(x|ϕϕϕ)

(
1

p̂(x|ϕϕϕ)

∂ p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[i]

)(
1

p̂(x|ϕϕϕ)

∂ p̂(x|ϕϕϕ)

∂ (ϕϕϕ)[ j]

)
dx (7.132)

Using Equation 7.124, we may write the Fisher information matrix in terms of the

log-likelihood as follows,

(III F)[i][ j] =

ˆ
X

p̂(x|ϕϕϕ)

(
∂ ln(p̂(x|ϕϕϕ))

∂ (ϕϕϕ)[i]

)(
∂ (p̂(x|ϕϕϕ))

∂ (ϕϕϕ)[ j]

)
dx (7.133)

Equation 7.133 may be seen as the expected value of the product of partial deriva-

tives of the log-likelihood, namely,

(III F)[i][ j] = E

{(
∂ ln(p̂(x|ϕϕϕ))

∂ (ϕϕϕ)[i]

)(
∂ (p̂(x|ϕϕϕ))

∂ (ϕϕϕ)[ j]

)}
(7.134)

Then the Fisher information matrix may be written in matrix form as follows,

III F = E
{(

∇ϕϕϕ p̂(x|ϕϕϕ)
)(

∇ϕϕϕ p̂(x|ϕϕϕ)
)T
}

(7.135)

where ∇ϕϕϕ p̂(x|ϕϕϕ) is known as the Fisher score or score statistic – see 10.1.

Also, we may write the Kullback-Leibler divergence of Equation 7.131 in matrix

form as,

7 Cramér [4] and Kullback [11] include these conditions as a part of the second regularity condi-

tion, but aside from having a role in clarity and completeness, they do not technically need to be
specified as conditions, since they are implied.
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DKL (ϕϕϕ → ϕ̂ϕϕ) =
1

2
(Δϕϕϕ)T III F (Δϕϕϕ) (7.136)

In a similar fashion, Kullback [11] shows the intuitively apparent result that Jef-

freys’ divergence may be approximated, using the above assumptions as follows,

DJ (ϕϕϕ ↔ϕϕϕ +Δϕϕϕ) =

ˆ
X

(p̂(x|ϕϕϕ)− p̂(x|ϕϕϕ +Δϕϕϕ)) ln
p̂(x|ϕϕϕ)

p̂(x|ϕϕϕ +Δϕϕϕ)
dx (7.137)

≈
M

∑
i=1

M

∑
j=1

(III F)[i][ j] (Δϕϕϕ)[i] (Δϕϕϕ)[ j] (7.138)

= 2DKL (ϕϕϕ →ϕϕϕ +Δϕϕϕ) (7.139)

= (Δϕϕϕ)T III F (Δϕϕϕ) (7.140)

It is important to remember that the above derivations made the basic assumption

that the divergences of interest are from a point in the parameter space, ϕϕϕ , to one

which is a small distance away, at ϕϕϕ+Δϕϕϕ . Therefore, we have shown that in a lim-

iting sense, Fisher information is related to Wiener-Shannon information.

Earlier we showed (Equation 7.90) that the Kullback-Leibler directed divergence

is positive semi-definite. Also, due to Equation 7.135 we may arrive at the conclu-

sion that the Fisher information matrix should also be positive semi-definite.
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Problems

For solutions to the following problems, see the Solutions section at the end of the

book.

Problem 7.1 (Conditional Entropy).

Show that

H (X ,Y |Z) = H (X |Z)+H (Y |X ,Z) (7.141)

Problem 7.2 (Mutual Information).

If I (X ;Y ) is the mutual information between X and Y , show that,

I (X ;Y ) = H (X)−H (X |Y ) (7.142)

= H (Y )−H (Y |X) (7.143)
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Chapter 8

Metrics and Divergences

All places are distant from the heaven alike, ...

Robert Burton

The Anatomy of Melancholy, 1621

In this chapter, we continue the treatment of distances (metrics) and divergences by

a introducing the terminology and the notation which will be used throughout this

book for these two concepts. Comparing feature vectors and model parameters are at

the heart of speaker recognition algorithms. As it will become more clear with the

definition and coverage of distance, divergence, and directed divergence, we will

use the notations, d (., .), D (. ↔ .), and D (. → .) respectively.

8.1 Distance (Metric)

In the definition of a metric space (Definition 6.25), the concept of a metric or a

distance was formally introduced. In general, different metrics may be defined for

different entities. For example, the distance between complex numbers was defined

in Chapter 24 (Definition 24.4).

First, the distance between sequences is introduced, which is of some importance

in comparisons related to binary sequence corruption, encryption, search, decision,

etc. Then the general concept of the distance between measurable subsets is revis-

ited with the introduction of many different types of metrics being used, or having

the potential of being used, in speaker recognition.

Consider two random variables X1 and X2 in the measurable spaces, (X1,X1)
and (X2,X2) respectively where we may define a measurable space, (X ,X) such

that {X1,X2 ⊂ X } and {X1,X2 ∈ X}. The metric space, M (X ,d), may be

then defined (Definition 6.25) according to measurable space (X ,X). The dis-

tance between these X1 and X2 according to this metric space would be denoted

by d (X1,X2). More specifically, the distance between two instances of X1 and X2

is written as, d (x1,x2) and the distance between two subsets of the Borel fields,

A1 ∈ X1 and A2 ∈ X2 may be written in the space of the supersets including these

, H. Beigi Fundamentals of Speaker Recognition, 
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two Borel fields, X, as d (A1,A2) – see Definition 6.26.

8.1.1 Distance Between Sequences

It sometimes makes sense to talk about distance between sequences. One such ex-

ample is when we consider a binary sequence of length n. For example, consider a

pattern which is stored in binary code in a sequence of n bits and call this sequence,

in the form of a binary vector, x. Now let us consider a second pattern, y of the same

length. The Hamming distance [20], dH (x,y) is defined as the number of bits where

x and y differ. The Hamming distance becomes important, for example, in the anal-

ysis of the corruption of a binary message when it passes through a noisy channel.

8.1.2 Distance Between Vectors and Sets of Vectors

In this section, we will be defining several distance measures which meet all the

properties stated in the definition of a metric space (Section 6.2.3). First, we define

two random variables in the same sample space, {X : x ∈ Rd} and {Y : y ∈ Rd}
Now, let us consider a set of outcomes for each of these random variables, A =
{xi, i = {1,2, · · · ,m} and B = {y j = {1,2, · · · ,n}. Furthermore, the sample means

for these two sets are denoted by x and y.

We are generally interested in computing distances between two outcomes,

d (x,y), between an outcome and a set, d (x,A ), or between two sets, d (A ,B).
There are different ways of interpreting the meaning of distances between two sets

of random variables. We introduce one method in Definition 6.26 based on the in-

fimum of the distance between their members. However, another method is to use

the sufficient statistics (Section 6.8), as representatives of the sets and compute the

distance based on these sufficient statistics such as the sample mean and sample co-

variance.

Definition 8.1 (Euclidean Distance). The Euclidean distance between two vectors,

x and y is defined as the Euclidean norm (Definition 23.7) of their difference vector,

dE (x,y) = ‖x−y‖E

=
√

(x−y)T (x−y) (8.1)

Generally, when one speaks of the Euclidean distance between two sets of vec-

tors, A and B, the understanding is that this would be a distance between their

sample means, x and y.
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dE (A ,B) = dE (x,y)

=
√

(x−y)T (x−y) (8.2)

As the Euclidean norm is generalized into the p-norm, the Euclidean distance

may also be generalized into the Lp distance as follows,

Definition 8.2 (Lp Distance). The Lp distance between two vectors, x and y is

defined as the p-norm (Definition 23.7) of their difference vector,

dLp (x,y) = ‖x−y‖p (8.3)

=

(
D

∑
i=1

((x)[i] − (y)[i])
p

) 1
p

(8.4)

where x,y : R1 �→ RD.

Therefore, the Euclidean distance is just the L2 distance.

As in the case of the Euclidean distance, the Lp distance between two sets is

normally understood to be,

dLp (A ,B) = dLp (x,y) (8.5)

Also, the Lp distance between two probability density functions was given by

Equation 6.109. Therefore,

dLp (g1,g2) = ρp(g1,g2) (8.6)

In Section 6.5.4 we examined some properties of the Lp distance between PDFs.

See Section 23.2 for more on the Lp norm. Also, more on the Lp distance may be

found in [5].

Definition 8.3 (Weighted Euclidean Distance). At times, some dimensions of a

multidimensional vector may possess more relevant information than the rest in a

distance study. In such cases, we may weigh the different dimensions differently. A

weighted Euclidean distance is a Euclidean distance where each dimension has a

different weight in the distance computation and it may be written as follows

dWE (x,y) =
√

(x−y)TΛΛΛ(x−y) (8.7)

where ΛΛΛ : Rd �→ Rd is a diagonal matrix with diagonal elements, {Λii = λi, i ∈
{1,2, · · · ,d}} are the weights of the distance measure.

Definition 8.4 (Mahalanobis Distance). Mahalanobis [13] defines a general weighted

distance which is based on the same idea as that of Definition 8.3, except here

the waiting matrix is the covariance matrix. He also adds a scalar weight, k, for

normalization. The normalization factor, k, may always be used in any distance or
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divergence. It is especially important to keep the proper units and to stay within ex-

pected range. In addition, Mahalanobis makes the assumption that the two random

variables, X and Y , have the same estimated covariance. We have dropped the ∼
above the estimate of the covariance for convenience. ΣΣΣ is actually the estimated

covariance. It may either be the biased or unbiased estimate.

ΣΣΣ =ΣΣΣX =ΣΣΣY (8.8)

Then, the Mahalanobis’ General Distance is defined as,

dM (x,y)
Δ
= kδδδTΣΣΣ−1δδδ (8.9)

where,

δδδ
Δ
= x−y (8.10)

When k = 1, the General Mahalanobis Distance is known, simply, as the Maha-

lanobis distance.

8.1.3 Hellinger Distance

The Hellinger distance is used to compute the distance between two different dis-

tributions. It is a distance since it obeys all the properties of a metric presented in

Section 6.2.3 including symmetry and satisfying the triangular inequality. To under-

stand the Hellinger distance, please read Sections 8.2.3, 8.2.4, and 8.2.5.

To make this metric a distance, it is defined based on the Hellinger Integral [15],

the form of Bhattacharyya measure (Equation 8.22), ρBc(0,1), such that the trian-

gular inequality is satisfied. Here is the definition of the Hellinger distance between

two distributions [10],

dHe (0,1) = k
√

1−ρBc(0,1) (8.11)

where k is a normalization constant. Reference [15] defines dHe (0,1) with k = 2,

whereas [10] uses k = 1.

8.2 Divergences and Directed Divergences

We have already introduced two types of divergences, Kullback-Leibler directed

divergence and Jeffreys’ divergence, in Section 7.6. Here, we shall review a few
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more and present simple comparisons among them. Let us start with a review of the

Kullback-Leibler, Jeffreys and a few more divergences. Then, we will continue by

looking at the f -divergence which is a class including most others.

8.2.1 Kullback-Leibler’s Directed Divergence

The Kullback-Leibler directed divergence [11] has also been called a distance or

a divergence, but it is neither. We saw, in Section 7.6, that it does not satisfy the

triangular inequality nor is it generally symmetric. It is really a measure of rela-

tive entropy which has many uses including the comparison of two related distri-

butions. There have been many attempts to symmetrize the Kullback-Leibler diver-

gence [18]. Also, Jeffreys’ divergence is a way of symmetrizing the Kullback Leibler

divergence (see Equation 7.96). Here is the Kullback-Leibler directed divergence in

favor of hypothesis H0 against H1, repeated for convenience (see Section 7.6 for

more detail),

DKL (0 → 1) =

∞̂

−∞

p0(x) log2

p0(x)

p1(x)
dx (8.12)

= E

{
log2

p0(x)

p1(x)

}
(8.13)

Consider two N-dimensional normal density probability density functions, where

the means and covariances are denoted by μμμ0, μμμ1, ΣΣΣ 0, and ΣΣΣ 1. Then the Kullback-

Leibler directed divergence, from density 0 to density 1 may be written as follows,

DKL (0 → 1) =
1

2ln(2)

(
tr(ΣΣΣ−1

1 ΣΣΣ 0)−N +(μμμ1 −μμμ0)
TΣΣΣ−1

1 (μμμ1 −μμμ0)

− ln

(
det(ΣΣΣ 0)

det(ΣΣΣ 1)

))
(8.14)

where tr(A) stands for the trace of matrix A (see Section 23.2).

8.2.2 Jeffreys’ Divergence

Jeffreys [9] defined two different measures which he dubbed invariants for express-

ing the difference between two distributions, I1 and I2,

I1 =

ˆ
X

(√
dP0 −

√
dP1

)2
(8.15)

and
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I2 =

ˆ
X

log2

dP0

dP1
d(P0 −P1) (8.16)

We discussed I2 in some detail in Section 7.6. It is known as “the divergence” and

is basically the sum of the two Kullback-Leibler directed divergences, one in favor

of H0 and the other in favor of H1. For convenience, here, we repeat Equation 7.98

which is the form of Jeffreys’ divergence where we use the Lebesgue measure and

therefore we end up with probability density functions in the integrand.

DJ (0 ↔ 1) = DKL (0 → 1)+DKL (1 → 0) (8.17)
∞̂

−∞

(p0(x)− p1(x)) log2

p0(x)

p1(x)
dx (8.18)

Based on Equation 8.17 and Equation 8.14, the expression for DJ (0 ↔ 1), where

the probability density functions are normal densities, may be written as follows,

DJ (0 ↔ 1) = DKL (0 → 1)+DKL (1 → 0)

=
1

2ln(2)

(
tr(ΣΣΣ−1

1 ΣΣΣ 0)−2N

+(μμμ1 −μμμ0)
T (ΣΣΣ−1

1 +ΣΣΣ−1
0 )(μμμ1 −μμμ0)

)
(8.19)

Kullback [11] often called the Jeffreys divergence, “the divergence.” In fact, be-

cause of its symmetry, it has been used in many speaker recognition applica-

tions [2, 16, 4, 7]. However, it is usually called a symmetric Kullback-Leibler diver-

gence by mistake. In this book, we have tried to address it by its proper name where

we have referred to the corresponding publications.

8.2.3 Bhattacharyya Divergence

Although the Bhattacharyya divergence [3] is sometimes called a distance, it does

not satisfy the triangular inequality. However, it is symmetric, therefore, it is a di-

vergence. It is usually used to compare two different distributions.

In July of 1946, Bhattacharyya [3] defined a divergence between two multinomial

distributions by first defining a statistic which is a measure of the dissimilarity of

two sets of samples, in discrete form. The continuous form of this measure is known

as the Bhattacharyya measure [10, 19]. We have written it here in its most general

form in terms of the two probability measures, P0 and P1.

ρBc(0,1) =

ˆ
X

√
d(P0P1) (8.20)

If we assume that the real line is the sample space, then Equation 8.20 may be

written in terms of the Lebesgue measure and the probability density functions for
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the two distributions. It will be the Bhattacharyya measure [10],

ρBc(0,1) =

∞̂

−∞

√
p0(x)p1(x)dx (8.21)

ρBc(0,1) has also shown up in the work of Hellinger while studying integral equa-

tions.

It is quite interesting to note that we may rewrite the expression for ρBc(0,1) in

the following form,

ρBc(0,1) =

∞̂

−∞

p1(x)

√
p0(x)

p1(x)
dx (8.22)

= E

{√
p0(x)

p1(x)

}
(8.23)

which is just the expected value of the square root of the ratio of the probability

density functions. This may be compared to the Kullback-Leibler divergence 8.13

which is the expected value of the negative of the log of the same ratio. In fact this

idea gives rise to a generalization called f -divergence (Definition 8.6).

Definition 8.5 (Bhattacharyya Divergence). It is also important to note that 0 ≤
ρBc ≤ 1. Since it has the same range as a probability measure, one possible way of

defining the Bhattacharyya Divergence is,

DBc (0 ↔ 1)
Δ
= − log2ρBc(0,1) (8.24)

Therefore, the defined Bhattacharyya divergence may take on any value from 0

to ∞. The Bhattacharyya divergence defined in Equation 8.24 does not always obey

the triangular inequality property, so it is not considered a distance [10]. However,

a variation of it called the Hellinger distance does obey all the properties of a metric.

See Definition 8.1.3.

8.2.4 Matsushita Divergence

Matsushita’s divergence [14] is really the same as I1 given by Jeffreys [9]. It may be

written on the real line with respect to the Lebesgue measure as follows,

DMs (0 ↔ 1)
Δ
=

∞̂

−∞

(√
p0(x)−

√
p1(x)

)2
dx (8.25)
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DMs (0 ↔ 1) does not necessarily obey the triangular inequality property of a met-

ric, but it is symmetric.

It is interesting to see that this distance could be viewed just as a variation on

possible Bhattacharyya divergences. Take the statement of Equation 8.25. If we

write all the terms of the square, we shall have,

DMs (0 ↔ 1) =

∞̂

−∞

(√
p0(x)−

√
p1(x)

)2
dx

=

∞̂

−∞

p0(x)−2
√

p0(x)p1(x)+ p1(x)dx

=

∞̂

−∞

p0(x)dx+

∞̂

−∞

p1(x)dx−2

∞̂

−∞

√
p0(x)p1(x)dx

= 2(1−ρBc(0,1)) (8.26)

We also see that

DMs (0 ↔ 1) = 2(1−ρBc(0,1))

= 2(dHe (0,1))2 (8.27)

where the k in dHe (0,1) (Equation 8.11) is chosen to be 1.

8.2.5 F-Divergence

As we saw in Section 7.3.2 Réyni [17] introduced a general class of entropy which

includes the Shannon entropy as one of its limiting cases (α → 1). Using this gen-

eralized entropy, [17] defined a general class of divergences as well, of which the

Kullback-Leibler divergence would be a special case, when (α → 1).

Also, Csiszár [6] and [1] introduced a more general class called f -divergence

which includes many different divergences. [12] provides a thorough treatment of

the f -divergence and speaks about the special cases. Of course these generalizations

are good for compact notation, but most of the, so called, special cases included in

these generalizations carry different properties which may or may not be desired in

the particular application of interest.

Definition 8.6 ( f -Divergence). Recall the similarity between the Bhattacharyya

measure, Equation 8.23, and the Kullback-Leibler directed divergence, Equation 8.13.

Comparing these two, it is easy to see that we can define a general divergence mea-

sure,
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D f (0 → 1) =

ˆ
X

p1(x) f

(
p0(x)

p1(x)

)
dλ (x) (8.28)

where { f : [0,∞) �→ �} is a measurable function of choice. D f (0 → 1) is called

the f directed divergence, or simply f -divergence [6, 8]. If the sample space is

taken to be the real line, then λ (x) will just be the Lebesgue measure and p0(x) and

p1(x) will be the probability density functions associated with hypotheses H0 and

H1, respectively. Equation 8.29 shows this special case which is of most interest,

D f (0 → 1) =

∞̂

−∞

p1(x) f

(
p0(x)

p1(x)

)
dx (8.29)

We have already shown that DKL (0 → 1) and ρBc(0,1) are special cases of the

f -divergence. Since we have also shown the relationships between DBc (0 ↔ 1),
DMs (0 ↔ 1), dHe (0,1) and ρBc(0,1), relations of these divergences to the f -

divergence are also shown.

8.2.6 δ -Divergence

Much in the same way as Jeffreys’ divergence is related to the Kullback-Leibler di-

rected divergence, we can think of generalizing Jeffreys’ divergence much in the

same way as we did in the definition of the f -divergence from the Kullback-Leibler

directed divergence.

Definition 8.7 (δ -Divergence). For a measurable function {g : [0,∞) �→�}, a gen-

eral divergence called the δ -divergence may be defined as follows,

Dδg
(0 ↔ 1) =

ˆ
X

[p0(x)− p1(x)]g

(
p0(x)

p1(x)

)
dλ (x) (8.30)

If the sample space is the real line, then a special case of the δ -divergence may be

written in terms of the Lebesgue measure and the probability density functions of

H0 and H1,

Dδg
(0 ↔ 1) =

∞̂

−∞

[p0(x)− p1(x)]g

(
p0(x)

p1(x)

)
dx (8.31)
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8.2.7 χα Directed Divergence

A special subclass of the f -divergence is the χα directed divergence or simply χα -

divergence [8]. It is defined such that,

f (u) =
∣∣∣u−1

∣∣∣α (8.32)

where, { f : [0,∞) �→�} and 1 ≤ α < ∞. Therefore,

Dχα (0 → 1) =

ˆ
X

p1(x)
∣∣∣ p0(x)

p1(x)
−1

∣∣∣αdλ (x) (8.33)

=

ˆ
X

(p1(x))
(1−α) |p0(x)− p1(x)|αdλ (x) (8.34)

Setting α = 2, Dχα (0 → 1) produces a widely used divergence called the Pearson

divergence or Pearson’s statistic which is used widely for testing statistical inde-

pendence.
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Chapter 9

Decision Theory

The door must either be shut or be open.

Oliver Goldsmith

The Citizens of the World, 1760

Decision theory is one of the most basic underlying theories which is crucial for

the creation, understanding and implementation of a successful speaker recognition

algorithm. To begin covering this topic, we need to understand the process of for-

malizing a hypothesis and testing it. Then, we will continue to talk about Bayesian

decision theory. We also talk about hypotheses in the development of information

theoretic concepts of Chapter 7.

9.1 Hypothesis Testing

Let us begin with the process of making a binary decision (one for which the out-

come will be either true or false). Speaker verification is just that kind of decision.

In speaker verification, the question is if the test speaker is the same as the target

speaker or not. In Section 1.2.1 we briefly described the meaning of a target speaker

and a test speaker. Shortly, we will present a formal definition for both.

In a binary decision, there are two hypotheses, a main hypothesis to which there

may be a true or false answer and an alternative hypothesis which is the opposite

of the main hypothesis. The main hypothesis (the first supposition) is called the null

hypothesis. The logic of hypothesis testing was first formalized by Fisher in 1935.[5]

Definition 9.1 (Null Hypothesis). A null hypothesis, H0, is a hypothesis (suppo-

sition) which is tested for correctness. If the test result negates the null hypothesis,

then it will be in favor of the alternative hypothesis. Null hypothesis is the hypothesis

which generally agrees with the normal trend of nature.

Definition 9.2 (Alternative Hypothesis). The alternative hypothesis, H1, is the hy-

pothesis which is complementary to the null hypothesis. If the null hypothesis is
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rejected, the alternative hypothesis is validated and vice versa. The alternative hy-

pothesis signifies an un-natural state and its truth generally signals an alarm.

In order to understand the logic of hypothesis testing, we would need to use

an example. The most appropriate example in the context of this book is speaker

verification. So, before we continue in pursuit of formalizing the logic of binary

hypothesis testing, we should define some key concepts in speaker verification.

Definition 9.3 (Target Speaker (Reference Model)). When a speaker is enrolled

into the speaker recognition database, the audio of that speaker is presented to the

system with a unique identifier (ID) associated with that speaker. This is the true

identifier of the enrolled speaker. At the time of testing of a speaker verification hy-

pothesis, a segment of audio is presented to the system in conjunction with a claimed

identity. The speaker in the database who has been previously enrolled using this

identity is called the target speaker or the reference model.

In case of an identification task, there are many target speakers (usually as many

as there are speakers in the database). The identification task hypothesizes the like-

lihood of the test speaker being any one of these target speakers and it is no longer a

binary hypothesis. For the verification task, there is only one target speaker, making

the decision binary.

Definition 9.4 (Test Speaker). In a verification hypothesis, a segment of audio is

presented to the recognition engine with a claimed identity. This claimed identity

may be correct or otherwise misrepresented. However, there is a true identity as-

sociated with the audio being used for the test hypothesis. That true identity is the

identity of the test speaker. Namely, it is the identity of the true owner of the test

audio being presented for verification.

For the identification task, the test speaker is defined in the same manner as done

for verification. Namely, it is the true identity of the speaker of the test audio.

Definition 9.5 (Impostor). In a verification task, an Impostor is the test speaker

when the test speaker is different from the target speaker.

There is some degree of freedom in testing a binary hypothesis, depending on

which aspect of the main question is deemed the null hypothesis and which the al-

ternative. Fisher [5] picked the null hypothesis to be that hypothesis which is due

to chance and not due to any systematic cause. In speaker verification, we normally

pose the main question as, “does the presented audio come from the target speaker?”

Another way to pose this question is, “whether the test speaker is the same as the

target speaker?” Therefore, we pick this question to be the “null hypothesis.” Then,

the alternative hypothesis becomes, “is the test speaker different from the target
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speaker?” or “Is the test speaker a non-target speaker?” Answering yes to the al-

ternative hypothesis (no to the null hypothesis) is equivalent to signaling an alarm

which states that something has not gone right with the natural state of the system

(the assumption that the audio being presented at the time of testing was produced

by the target speaker).

Figure 9.1 summarizes the logic of the hypothesis testing used in speaker verifi-

cation. There are two possible ground truths for each test; either the test speaker is

the same as the target speaker or not. These two ground truths are represented by

two boxes in the flow diagram of the test logic.

The null hypothesis may have two different ground truths or natures. The first

possible ground truth is that the test speaker is the same person as the target speaker,

(Test = Target). The second possibility is that they are different (Test �= Target). For

the case where the truth is (Test = Target), if the verification system returns a true

result (Verified), then it is in tune with the ground truth, therefore, the result is cor-

rect. If, however, it returns a false result (Not Verified), then its result is different

from the ground truth, which means that it has made an error. This type of error is

known by many different names, depending on the field of use. Traditionally, it is

called a Type I error or an α error.

On the other hand, if the ground truth is such that the test speaker is not the same

person as the target speaker, then the alternative hypothesis (H1) should be true.

However, if the speaker is verified, it means that the null hypothesis was deemed

true, which is an error. This is a Type II error or a β error.

Figure 9.1 shows all the alternate names for these two types of errors. There is

great confusion in this terminology and it is important to try to understand the logic

behind the terminology before using it. The figure also shows the two popular names

for the two types of error in the speaker verification community, false acceptance

and false rejection. Let us give a formal definition for these two errors.

Definition 9.6 (False Acceptance (Miss)).

The false acceptance rate (FAR) is the number of verified identities for which

the test speaker was different from the target speaker normalized against the total

number of acceptances. This ratio is also known as the miss probability.

Definition 9.7 (False Rejection (False Alarm)). The false rejection rate (FRR) is

the number of identities which were not verified for which the test speaker was the

same as the target speaker normalized against the total number of rejections. This

ratio is also known as the false alarm probability.
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Fig. 9.1: Hypothesis Testing Logic for Speaker Verification

9.2 Bayesian Decision Theory

In the previous section, we discussed the hypothesis testing process for a binary

decision. In mathematical terms, we denote the null hypothesis by H0 and the alter-

native hypothesis by H1. Since we are speaking of a binary decision and there are

only two possible hypotheses, then based on the Bayesian decision theory, we may

assign an a-priori probability [4] to the two possible states, for each of which one

of the hypotheses would be correct. The a-priori probabilities of the two states of

truth associated with the two hypotheses are denoted by P(H0) and P(H1). Note that

since there are only two possible states (binary decision), then

P(H0)+P(H1) = 1 (9.1)

P(H0) and P(H1) are the values of a Bernoulli distribution related to the nature

of the two hypotheses and are not related to any specific sample. However, if we

consider representing reality or nature of an experiment in the form of a random

variable, X , then there will exist two conditional probability densities, p(x|H0) and

p(x|H1). These densities represent the probability density function of sample x given

that the state of nature is such that either H0 or H1 is true respectively.

Another way of viewing these conditional densities is as likelihoods. Namely,

p(x|Hi), i ∈ {0,1} would be viewed as the likelihood of hypothesis Hi being true

given that random variable X has taken on the value, X = x. Therefore, using the

total probability theorem, Theorem 6.1, we may write the total probability density

function of X as,
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p(x) =
1

∑
j=0

p(x|Hj)P(Hj) (9.2)

As we saw in the development of Bayes theorem, Theorem 6.2, for each hypothe-

sis, we may write the a-posteriori probability of that hypothesis, almost everywhere,

with respect to sample, X = x, in terms of the likelihood and the a-priori probability

of that hypothesis, normalized with respect to the total probability of the sample,

p(x), where p(x) �= 0,

P(Hi|x) =
p(x|Hi)P(Hi)

p(x)
[x] ∀ i ∈ {0,1} (9.3)

Equation 9.3 describes the change in probability from the time before sample

X = x is observed to after its observation. Namely, it is the relationship between

the a-posteriori probability of hypothesis Hi and its a-priori probability, where the

reference is the observation of sample X = x. As we saw in Section 7.6, observing

X = x results in a gain in information about the state of nature – See Equation 7.78.

Note that for every value, X = x, the a-posteriori probabilities of all the possible

states would have to sum up to 1,

1

∑
j=0

P(Hj|x) = 1 (9.4)

Although we have been talking about the binary decision process, all the results

of this section are applicable to any Γ number of states related to Γ hypotheses.

These hypotheses may be viewed as functions of the subsets of the Borel field, X,

of the sample space, X , of the random variable X . Although we are free to choose

these hypotheses any way we wish, it makes sense to define them such that they do

not have any overlap and such that they cover all possible states of the system. In

fact, let us define a discrete random variable, {S : s ∈ S = {Hi, i ∈ {1,2, · · · ,Γ }},

which is indicative of the true state of nature in the problem of interest such that,

Γ

∑
j=1

P(S = Hj) = 1 (9.5)

For testing with Γ hypotheses,

P(S = Hi|x) =
p(x|S = Hi)P(S = Hi)

p(x)
[x] ∀ i ∈ {1,2, · · · ,Γ } (9.6)

where p(x) �= 0 and

p(x) =
Γ

∑
j=1

p(x|S = Hj)P(S = Hj) (9.7)
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subject to the constraint,

Γ

∑
j=1

P(S = Hj|x) = 1 (9.8)

For the identification problem, we would like to associate each hypothesis with the

likelihood of the target speaker being the person who has generated the test audio

sample. Here, for convenience, we have started the hypothesis index from 1. It is

customary to start with 1 when we speak of more than 2 hypotheses and to use 0

and 1 for binary hypotheses.

For every observation, X = x, using Equation 9.6, we can compute the a-

posteriori probability for the Γ hypotheses. It is intuitively apparent that the best

guess for the correct state of nature is the one which matches with the most likely

hypothesis. Therefore, for a given observation, X = x, the state associated with the

most likely hypothesis is S = Hi such that i = {i : P(S = Hi|x) ≥ P(S = Hj|x) ∀ j ∈
{1,2, · · · ,Γ }}. This is called the maximum a-posteriori solution and it is the mini-

mum error solution given by Bayesian decision theory.

Let us examine this intuitive decision in more detail. Refer to Figure 9.1. The fig-

ure shows the logic behind a binary hypothesis testing scenario. In this case, there

are two hypotheses which may constitute the two different possible ground truths

(states). In every one of these cases, the decision of picking the hypothesis associ-

ated with the ground truth is the correct decision and picking the hypothesis would

constitute an error. This logic may be extended to any Γ set of hypotheses.

We denote the discrete random variable associated with the decision to pick a

state from the set of all states, S , by {O : o ∈ S }. Therefore, O and S are differ-

ent random variables, defined in a common sample space, S . In order to assess the

quality of our choices for any decision method, we define a measure (see Defini-

tion 6.18) of the penalty (loss), conditioned on the state S = s, ϖ(o|s), such that it is

equal to 0 for correct choices and 1 for errors [4],

ϖ(O = Hi|S = Hj) =

{
1 ∀ i �= j

0 ∀ i = j
(9.9)

Then, using Equation 6.79, according to the Radon-Nikodým theorem (Theorem 6.3),

we may define a measure of the risk involved in making decision {O = o}, as,

R(o) =

ˆ
X
ϖ(o|x)dP(x) (9.10)

where R(o) is basically considered to be a measure which is written in terms of the

probability measure P(x) and the Radon-Nikodým derivative,
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ϖ(o|x) =
dR

dP
[P] (9.11)

Therefore, as seen in Definition 6.44, if the probability density p(x) exists, then

Equation 9.10 may be written as,

R(o) =

ˆ
X
ϖ(o|x)p(x)dx (9.12)

For a finite number of hypotheses, Γ , given an observation, X = x, we may use the

total probability theorem (Theorem 6.1), to write the conditional risk [4], ϖ(o|x),
as follows,

ϖ(o|x) =
Γ

∑
i=1

ϖ(o|S = Hi)P(S = Hi|x) (9.13)

R(o) may be viewed as the expected value of the penalty associated with the deci-

sion, O = o, or the risk associated with decision o(x) – See Equation 6.118.

The objective of Bayesian decision theory is to find O = oB such that

oB = argminR(o) (9.14)

R(oB) is known as Bayes risk [4].

Since p(x) is independent of decision o(x), R(o) will be minimized if,

ϖ(oB|x) = min
i
ϖ(O = Hi|x) (9.15)

where i ∈ {1,2, · · · ,Γ }.

Given the penalty (loss) function as defined by Equation 9.9, the conditional risk

for hypothesis Hi may then be written as,

ϖ(O = Hi|x) =
Γ

∑
j=1

ϖ(O = Hi|S = Hj)P(S = Hj|x) (9.16)

= 1−P(S = Hi|x) (9.17)

This means that for maximizing P(S = Hi|x), we would have to minimize ϖ(O =
Hi|x). This is the maximum a-posteriori (minimum error) solution that was stated

earlier.

Equation 9.16 may be written in matrix form as follows,

ϖϖϖ(o|x) =ΠΠΠ p(s|x) (9.18)

where the ΠΠΠ : RΓ �→ RΓ is the penalty matrix such that
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(ΠΠΠ)[i][ j]
Δ
= ϖ(O = Hi|S = Hj) (9.19)

and the vector p(s|x) : R1 �→ RΓ is the a-posteriori probability vector of the possi-

ble states of nature,

(p(s|x))[ j]
Δ
= P(S = Hj|x) (9.20)

It is conceivable for more than one hypothesis to have a maximum a-posteriori

probability among all possible hypotheses. In that case, any one of those hypotheses

with the maximum posterior probability may be chosen. This may be done either

randomly or through adding other criteria to the decision process.

9.2.1 Binary Hypothesis

If we consider the binary hypothesis problem (Γ = 2), the conditional risk, ϖ(o|x)
for the two possible hypotheses, H0 and H1, may be written in terms of the penalty,

ϖ(o|s), and the a-posteriori probabilities, P(s|x). Let us use the matrix element

representation of ϖ(o|x) from Equation 9.19 for brevity,

ϖ(O = H0|x) = (ΠΠΠ)[0][0] P(S = H0|x)+(ΠΠΠ)[0][1] P(S = H1|x) (9.21)

ϖ(O = H1|x) = (ΠΠΠ)[1][0] P(S = H0|x)+(ΠΠΠ)[1][1] P(S = H1|x) (9.22)

In order to make a decision in favor of the null hypothesis, H0, we saw that based

on Equation 9.17, ϖ(o = H0|x) had to be less than ϖ(O = H1|x). This means that

the right hand side of Equation 9.21 would have to be smaller than the right hand

side of Equation 9.22,

(ΠΠΠ)[0][0] P(S = H0|x) + (ΠΠΠ)[0][1] P(S = H1|x) <

(ΠΠΠ)[1][0] P(S = H0|x)+(ΠΠΠ)[1][1] P(S = H1|x) (9.23)

Rearranging the terms in Equation 9.23 such that factors of P(S = H0|x) are on one

side and factors of P(S = H1|x) are on the other side of the inequality, we have,

((ΠΠΠ)[1][0] − (ΠΠΠ)[0][0])P(S = H0|x) >

((ΠΠΠ)[0][1] − (ΠΠΠ)[1][1])P(S = H1|x) (9.24)

Using Bayes theorem (Theorem 6.2), we may write P(S = Hi|x) ∀ i ∈ {0,1} in

terms of the likelihoods, p(x|S = Hi), and the a-priori probabilities, P(S = Hi), such

that the inequality in Equation 9.24 would become,

((ΠΠΠ)[1][0] −(ΠΠΠ)[0][0])P(x|S = H0)P(S = H0) >

((ΠΠΠ)[0][1] − (ΠΠΠ)[1][1])P(x|S = H1)P(S = H1)
(9.25)
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Divide both sides of Equation 9.25 by ((ΠΠΠ)[1][0] − (ΠΠΠ)[0][0])p(x|S = H1)P(S =

H0),

p(x|S = H0)

p(x|S = H1)
>

(ΠΠΠ)[0][1] − (ΠΠΠ)[1][1]

(ΠΠΠ)[1][0] − (ΠΠΠ)[0][0]

P(S = H1)

P(S = H0)
[x] (9.26)

Equation 9.26 should hold, almost everywhere, and presents a lower bound on the

likelihood ratio for making the decision, O = H0. The right hand side of Equa-

tion 9.26 does not depend on x. It is a constant which is only dependent on the

associated penalties and the a-priori probability ratio of the two hypotheses H0 and

H1.

Let us define the threshold,

θH0

Δ
= logb

(
(ΠΠΠ)[0][1] − (ΠΠΠ)[1][1]

(ΠΠΠ)[1][0] − (ΠΠΠ)[0][0]

P(S = H1)

P(S = H0)

)
(9.27)

as the log-likelihood ratio threshold for deciding in favor of the null hypothesis, H0,

against the alternative hypothesis, H1. Deciding in favor of H0, if

logb

p(x|S = H0)

p(x|S = H1)
> θH0

[x] (9.28)

and choosing H1 otherwise, will give the minimum error solution or the, so called,

maximum a-posteriori solution for a binary hypothesis. This result is also known

as the Neyman-Pearson lemma [3]. As in before, any base may be picked for the

computation of the logarithm – see Section 7.3.1.

Note that if we use the penalty matrix defined in Equation 9.9, then Equation 9.26

would be simplified as,

p(x|S = H0)

p(x|S = H1)
>

P(S = H1)

P(S = H0)
[x] (9.29)

or in other words,

θH0
=

P(S = H1)

P(S = H0)
(9.30)

9.2.2 Relative Information and Log Likelihood Ratio

Referring to Section 7.6, recall the expression for the relative information gained

by observing X = x in favor of hypothesis H0 against H1. As we saw, this relative

information was given by Equation 7.78 as the difference between the logarithms
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of the generalized probability densities, g0(x) and g1(x) associated with H0 and H1

respectively. We also saw that if X is defined on the real line (X =�), the relative

information, I (0 : 1,x), would just be the log of the ratio of the probability den-

sity functions of X given hypotheses H0 and H1 evaluated at X = x (p0(x) and p1(x)).

In Section 7.6, we defined H0 and H1 to be the a-posteriori and a-priori states of

the system. Without any loss of generality, we can redefine H0 and H1 to stand for

any null and alternative hypotheses, for example, as defined in Section 9.1.

The probability density functions p0(x) and p1(x) are density functions condi-

tioned upon hypotheses H0 and H1 respectively. Therefore, we may think of them

as likelihoods of being in the states associated with hypotheses H0 and H1, given

the observation of X = x. In other words, we may write them as p(x|S = H0) and

p(x|S = H1). This makes the relative information in favor of state S = H0 against

S = H1, the logarithm of the ratio of their likelihoods, or the so called, log-likelihood

ratio (LLR) of H0 against H1,

I (S = H0 : S = H1,x) = logb

p(x|S = H0)

p(x|S = H1)
(9.31)

Based on Equation 7.78, Equation 9.31 may be written as follows,

I (S = H0 : S = H1,x) = logb

p(x|S = H0)

p(x|S = H1)

= logb P(x|S = H0)− logb P(x|S = H1) (9.32)

= logb

P(S = H0|x)
P(S = H1|x) − logb

P(H0)

P(H1)
[x] (9.33)

Equations 9.31- 9.33 give physical interpretations for the argument in Sec-

tion 9.2.1.

9.3 Bayesian Classifier

As we saw in Section 9.2, the maximum a-posteriori solution is also the minimum

error solution of Bayesian decision theory for the hypothesis testing problem. The

problem of classification may also be viewed as a hypothesis testing problem, where,

in the case of a Γ -class classification problem, there are Γ hypotheses associated

with the Γ classes, each asking whether an observation belongs to its associated

class.

To choose class i, associated with the Bayesian decision, the a-posteriori proba-

bility of the hypothesis associated with that class, Hi, would have to be greater than

that of every other class, Hj, where j �= i,
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oB = Hi

= argmax
j

P(O = Hj|x) (9.34)

where j ∈ {1,2, · · · ,Γ }.

Based on Equation 9.17, the minimum error equivalent of Equation 9.34 is,

oB = Hi

= argmin
j

ϖ(O = Hj|x) (9.35)

In order to change the minimization problem in Equation 9.35 to one of maximiza-

tion, we can write Equation 9.35 as,

oB = Hi

= argmax
j

(−ϖ(O = Hj|x)) (9.36)

The resulting classification would be the same regardless of whether Equation 9.34,

9.35, or 9.36 is used.

Therefore, g j(x) = P(O = Hj|x) or g j(x) = −ϖ(O = Hj|x) are known as dis-

criminant functions since in both cases,

oB = Hi

= argmax
j

g j(x) (9.37)

The argmax function, used in Equation 9.37, will give the same result with many

different choices of g j(x), j ∈ {1,2, · · · ,Γ }. If we expand the a-posteriori proba-

bility according to Equation 9.6, since the denominator, p(x), is the same across

the board for all hypothesis, then it may be eliminated and an incarnation of the

discriminant function, g j(x), may be defined in terms of the likelihood of the hy-

pothesis associated with the class of interest and its a-priori probability.

g j(x)
Δ
= p(x|O = Hj)P(O = Hj) (9.38)

In fact, we can also define g j(x) in logarithmic form,

g j(x)
Δ
= logb p(x|O = Hj)+ logb P(O = Hj) (9.39)

If we use any of the noted discriminant functions, g j(x), such as the one given by

Equation 9.39, the Γ -class classification problem simply becomes a maximization

problem, choosing the class which maximizes the discriminant function, g j(x).

In the special case of a two-category classification problem, since we would al-

ways try to decide whether g0(x) > g1(x), we may subtract g1(x) from both sides

and ask whether,
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g0(x)−g1(x) > 0 (9.40)

If Equation 9.40 is true, then we chose in favor of the null hypothesis and otherwise

choose the alternative. Therefore, we may define a new discriminant function for

the binary case, as a test of the binary hypothesis,

g(x) > 0 (9.41)

In the two-category case, if we use Equation 9.39 for the discriminant function, then

the null hypothesis combined discriminant function would be given by,

g(x) = logb p(x|O = H0)+ logb P(O = H0)

− logb p(x|O = H1)− logb P(O = H1)

= logb

p(x|O = H0)

p(x|O = H1)
+ logb

P(O = H0)

P(O = H1)
(9.42)

Equation 9.42 Using Equation 9.42 in the null hypothesis test of Equation 9.41, we

get the following test,

logb

p(x|O = H0)

p(x|O = H1)
> logb

P(O = H1)

P(O = H0)
(9.43)

which is the same as the criterion of Equation 9.29.

Consider a Γ -class classification problem where the likelihoods of the different

class hypotheses are distributed normally. Then, the likelihood for each class hy-

pothesis would be defined by its mean and standard deviation,

p(x|O = Hi) =
1√

2πσi

exp

(
−1

2

(x−μi)
2

σ2
i

)
(9.44)

Then, one set of discriminant functions, gi(x), may be written as,

gi(x) = ln p(x|O = Hi)+ lnP(O = Hi) (9.45)

Plugging in the value of the likelihood from Equation 9.44 into Equation 9.45,

the expression for the discriminant function with normal density likelihood would

become,

gi(x) = lnP(O = Hi)− ln
(√

2πσi

)
− 1

2

(x−μi)
2

σ2
i

(9.46)

Let us consider an example where there are 3 classes and their likelihoods are

normally distributed. Furthermore, let us assume that these classes have equal a-

priori probabilities (P(O = Hi) = 1
3 ). We saw that the discriminant function may

have different forms. To get a more intuitive graphic representation, assume the

following form for the discriminant functions,



9.3 Bayesian Classifier 325

gi(x) = p(x|O = Hi)P(O = Hi)

=
1

3

1√
2πσi

exp

(
−1

2

(x−μi)
2

σ2
i

)
(9.47)

Figure 9.2 shows a plot of these discriminant functions versus the samples, x, for

g1(x) =
1

3
N (−80,30)

g2(x) =
1

3
N (0,20) (9.48)

g3(x) =
1

3
N (40,25)

The figure shows classification results based on the discriminant functions of Equa-

tion 9.47. The classification results would of course be identical if we defined the

following discriminant functions,

g̃i(x) = lngi(x) (9.49)
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Fig. 9.2: Boundaries of three discriminant functions based on normal density likelihoods and
equal a-priori probability classes

In the next chapter we will have a detailed look into methods of estimating the

statistics for classes based on clustering algorithms which look for congregations

of samples and try to model them into clusters with given distributions. In speaker

recognition, for simplicity, mostly normal distributions are considered.
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9.3.1 Multi-Dimensional Normal Classification

In speaker recognition, as well as many other pattern recognition fields, the sample

space of choice is the multi-dimensional Euclidean space, containing representative

features of the physical phenomenon of interest. In speaker recognition, we are gen-

erally interested in using feature vectors described in Chapter 5. Generally, we are

interested in the random variable of features, X , defined in the probability measure

space, (X ,X,P), such that

X =

D�

i=1

Xi (9.50)

and

X =

D�

i=1

Xi (9.51)

Therefore, any sample of X would be {x : R1 �→ RD} where D is the dimension of

the feature vector x.

Referring to Section 6.10, assuming that the likelihoods of classes are normally

distributed, for the general Γ -class classification problem with D-dimensional sam-

ples, the discriminant functions, gi(x), may be written as follows,

gi(x) = ln p(x|O = Hi)+ lnP(O = Hi) (9.52)

The natural logarithm of the likelihood of the class i, associated with hypothesis

Hi is given by the natural logarithm of the expression of the multivariate normal

density function given by Equation 6.196. Namely,

P(x|O = Hi) = − ln
(
(2π)

D
2 |ΣΣΣ i|

1
2

)
︸ ︷︷ ︸

bias term

− 1

2
(x−μμμ i)

TΣΣΣ−1
i (x−μμμ i)︸ ︷︷ ︸

dM(x,μμμ i)

(9.53)

The first term in Equation 9.53 is called the bias term and the second term is just the

Mahalanobis distance between the sample, x, and the mean of class i (dM (x,μμμ i)),
given by Definition 8.4, where the normalization constant of Equation 8.9 is chosen

to be k = 1
2 .

The discriminant functions are then

gi(x) = −1

2
(x−μμμ i)

TΣΣΣ−1
i (x−μμμ i)− D

2
ln(2π)− 1

2
|ΣΣΣ i|+ lnP(O = Hi) (9.54)
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Since D
2 ln(2π) is common to all gi(x), it does not contribute to changing the dis-

crimination capabilities of gi(x). Therefore, it may be dropped, resulting in the fol-

lowing discriminant functions,

gi(x) = −1

2
(x−μμμ i)

TΣΣΣ−1
i (x−μμμ i)− 1

2
ln(|ΣΣΣ i|)+ lnP(O = Hi) (9.55)

Equation 9.55 is quadratic in x,

gi(x) =
1

2
xT Aix+bT

i x+ ci (9.56)

where,

Ai = −ΣΣΣ−1
i ←− Quadratic Term

bi = ΣΣΣ−1
i μμμ i ←− Linear Term

ci = − 1
2

(
μμμT

i ΣΣΣ
−1
i μμμ i + ln(|ΣΣΣ i|)

)
+ lnP(O = Hi) ←− Constant Term

(9.57)

In practice, since the mean and the covariance matrix have to be estimated from

training data (see Section 6.10), there is generally not enough data to be able to es-

timate a full covariance matrix. Most implementations resort to assuming that the

sample spaces, X j, j ∈ {1,2, · · · ,D}, defined in Equation 9.50 are statistically in-

dependent. This means that the variance matrices, ΣΣΣ i, i ∈ {1,2, · · · ,Γ } are diagonal

matrices,

(ΣΣΣ i)[ j][k] =

{
σi j ∀ j �= k

0 ∀ j = k
(9.58)

where j,k ∈ {1,2, · · · ,D}.

Recall the unbiased estimator of Section 6.10. Equation 6.202 shows the relation

between the biased estimate of the covariance matrix and the first and second order

sums, s|Ni
and S|Ni

, defined by Equations 6.204 and 6.206. Ni is the number of

samples used for estimating ΣΣΣ i. Making the assumption of diagonal covariances,

we may estimate the diagonal elements of the unbiased estimate of the covariance

matrices as follows,

(
Σ̃ΣΣ i|Ni

)
[ j][ j]

=
1

Ni −1

[
(Si|Ni

)[ j][ j] −
1

Ni

((si|Ni
) j)

2

]
(9.59)

where j ∈ {1,2, · · · ,D}.

Using the independence assumption, the discriminant functions of Equation 9.55

may be written in terms of the sample mean and sample variance,

gi(x) = −1

2
(x−xi|Ni

)T Σ̃ΣΣ
−1
i |Ni

(x−xi|Ni
)− 1

2
ln
(∣∣Σ̃ΣΣ i|Ni

∣∣)+ lnP(O = Hi) (9.60)
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and the following relations simplify the computations of the terms in Equation 9.60,

ln
(∣∣Σ̃ΣΣ i|Ni

∣∣)=
D

∑
j=1

ln
(
Σ̃ΣΣ i|Ni

)
[ j][ j]

(9.61)

(
Σ̃ΣΣ

−1
i |Ni

)
[ j][ j]

=
1(

Σ̃ΣΣ i|Ni

)
[ j][ j]

(9.62)

9.3.2 Classification of a Sequence

Up to now, we have been concerned with the classification of single samples (feature

vectors). However, it is quite important to be able to extent the results to a sequence

of feature vectors. This is specifically important in speaker recognition, since usu-

ally we are concerned with obtaining a single identity from a sequence of feature

vectors stemming from a person’s speech.

Consider a T -sample sequence (see Section 6.7.2) of random variables, {X}T−1
0 ,

where each Xt , t ∈ {0,1, · · · ,T −1} is considered to be an independent random vari-

able, itself consisting of a D-dimensional set of independent scalar random variables

making up each D-dimensional sample, xt . In essence, we will have a T -dimensional

Cartesian product space (Section 6.5.2) consisting of T independent D-dimensional

Cartesian product spaces, making the total number of random scalar random vari-

ables, T D.

If we assume independence, we may use Equation 6.92 to compute the joint prob-

ability density function conditioned upon each hypothesis (likelihood of hypothesis

Hi given a sequence of samples, {x}T−1
0 ). Equation 6.92 gives us an estimate for the

likelihood, assuming independence of the samples in the sequence.

p({x}T−1
0 |O = Hi) =

T−1

∏
t=0

p(xt |O = Hi) (9.63)

Therefore, the a-posteriori probability of the sequence, {x}T−1
0 , given each hy-

pothesis associated with class i, will be,

P(O = Hi|{x}T−1
0 ) =

T−1

∏
t=0

p(xt |O = Hi)P(O = Hi)

p({x}T−1
0 )

(9.64)

Furthermore, we may use Equation 6.92 once more on the denominator of Equa-

tion 9.64,
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P(O = Hi|{x}T−1
0 ) =

T−1

∏
t=0

p(xt |O = Hi)P(O = Hi)

T−1

∏
t=0

p(xt)

(9.65)

At this point, we may attempt to construct the expression for the discriminant

functions for classifying the sequence, {x}T−1
0 . Therefore a possible discriminant

function associated with the class hypothesis, Hj, would be,

g j({x}T−1
0 ) = P(O = Hi|{x}T−1

0 )

=

T−1

∏
t=0

p(xt |O = Hi)P(O = Hi)

T−1

∏
t=0

p(xt)

(9.66)

Recall the mean-value theorem (Theorem 24.10). Based on this theorem, there

will exist an expected value of the marginal probability density for each random

variable, in the sequence, {X}T−1
0 . If we denote this value by p̃(x), then we may

write Equation 9.66 in terms of this value, as follows,

g j({x}T−1
0 ) =

T−1

∏
t=0

p(xt |O = Hi)P(O = Hi)

(p̃(x))T
(9.67)

We mentioned that the discriminant functions are not unique. Also, in deciding

the class based on the highest a-posteriori probability of different class hypotheses,

we may ignore the joint probability density of the sequence since it is the same for

all hypotheses and same length sequences, giving us the following alternative set of

discriminant functions,

g j({x}T−1
0 ) =

T−1

∏
t=0

p(xt |O = Hi)P(O = Hi) (9.68)

If we look closely at the expression for the discriminant function in Equa-

tion 9.68, we see that it would generate numbers of different orders depending on

the length of the sequence, T . This causes two major problems. First, as the length

of the sequence, T , gets larger, the value of gi({x}T−1
0 ) has a smaller magnitude. Al-

though, we will be using logarithms to handle this reduction in the magnitude, still,

with sequences which are long enough, we do risk loss of significance. The second

problem is that if we have any other source of information such as context, we will

not be able to compare numbers associated with sequences of different lengths. Of

course, as long as we are only using the discriminant function to compute the likeli-

hood of a hypothesis among several hypotheses associated with the same sequence,

this will not be a problem.
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To help reduce the effects of the loss of numerical significance, we may compute

use log-likelihood function for the sequence, allowing us to construct the logarithmic

version of the discriminant function of Equation 9.68, where the product will change

to a summation.

g j({x}T−1
0 ) =

T−1

∑
t=0

ln(p(xt |O = Hi))+ ln(P(O = Hi)) (9.69)

In Equation 9.69, the second term is independent of the length of the sequence.

However, the first term depends on T . To remove this dependence, we may again

assume that based on the mean-value theorem, there exists an expected value of

the marginal likelihoods of the class hypotheses. Then, based on the argument of

Section 6.7.2 on the convergence of a sequence, we may write a new discriminant

function which is based on the expected value of the marginal likelihoods, p(x|O =
Hi), and is independent of the length of the sampled sequence,

g j(x) = ln p(x|O = Hi)+ lnP(O = Hi) (9.70)

However, since we do not know p(x|O = Hi), we will need to approximate it based

on the marginal likelihoods of the samples in a T -long sequence, using the sample-

mean approximation to p(x|O = Hi), given the T -long sequence of samples, {x}T−1
0 ,

as follows,

ln p̃(x|O = Hi) =
1

T

T−1

∑
t=0

ln(p(xt |O = Hi)) (9.71)

such that based on Khintchine’s theorem (Theorem 6.7), as T → ∞, ln p̃(x|O = Hi)
would converge to ln p(x|O = Hi) in probability, giving us the following approxi-

mation to the discriminant function of Equation 9.70 which is independent of the

length of the sequence, T ,

g j(x) =
1

T

T−1

∑
t=0

ln p(x|O = Hi)+ lnP(O = Hi) (9.72)

For the two-category classification case (see Equation 9.42), we would have the

following approximation for the log-likelihood, which is one possible discriminant

function for the null hypothesis,

g(x) =
1

T

T−1

∑
t=0

[ln(p(xt |O = H0))− ln(p(xt |O = H1))]

+ ln(P(O = H0))− ln(P(O = H1)) (9.73)

where g(x) > 0 would result in choosing class hypothesis H0 and otherwise, H1

would be chosen. We may interpret Equation 9.73 in terms of the comparison of the

log-likelihood ratio to a threshold,
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1

T

T−1

∑
t=0

[ln(p(xt |O = H0))− ln(p(xt |O = H1))] > θH0
(9.74)

where

θH0
= ln(P(O = H1))− ln(P(O = H0)) (9.75)

9.4 Decision Trees1

In speech and speaker recognition, many conditional models and conditional statis-

tics are used. This is the basis for using decision trees which ask questions at differ-

ent levels of a decision process and based on the condition, take a specific path or a

few possible paths with probabilities attached to them.

For example, if the speech is modeled using a hidden Markov model, then usu-

ally, different models and configurations are used for different phone contexts. An-

other example is the whole concept of a statistical language model which provides

a probability distribution for the next linguistic unit based on the current context. A

suboptimal search through different paths is another great example of decision trees.

A most important example is the hierarchical solution to the large-scale speaker

identification problem [1]. Basically, there is a need for a decision tree whenever

the number of hypotheses becomes large.

Definition 9.8 (Decision Tree). A decision tree is a function which has the objective

of establishing effective equivalence classes. In other words, it is a function that

maps a large number of conditions to a smaller number of equivalence classes.

An equivalence class is defined as the class (subset) of all the elements in a set

such that they are equivalent using some predefined equivalence relation. One way

to look at this is the act of clustering which has been used throughout this book. The

limit on the distance which is used to cluster the data into specific number of classes

is an equivalence relation and the clusters are equivalence classes. Another example

is that of an N-gram in which all the Nth words that follow a specific N −1 sequence

of words are an equivalence class with the N-gram being the equivalence relation.

Therefore, the job of a decision tree is to start with an array of conditions, group

them into a smaller number of equivalence classes and then take action only based

on conditions derived from those equivalence classes. Thus, the goal of constructing

a decision tree is to find the best possible equivalence classes, so it is really a search

1 Some of the information in this section is based on my notes on several lectures by Peter V.
DeSouza at IBM Research in the mid 1990s. No IBM-confidential information has been included.
Permission was requested from Dr. Peter V. DeSouza and IBM research and was granted on July
9, 2010. I am thankful for this generous offer.
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problem. For a decision tree to be effective in practical terms, it will be constructed

based on a suboptimal search technique [7].

Usually, we will have to limit our number of choices in the equivalence classes to

some number, N. This has mostly related to practical issues such as the amount of

available data and the time limitations. If the we try to create too many equivalence

classes with little data, the created decision tree will do very well with the given

training data, but it will not generalize well. On the other hand, if we use too few,

then we are effectively not reducing the complexity of the problem which is our goal

based on Definition 9.8.

One practical approach is to find those N classes that maximize the likelihood

of the training data (hence maximum likelihood estimation). When we are trying

to use conditional models, we will not only have to look for N classes, but also N

corresponding models that would maximize the class-dependent likelihood of the

training data. On the other hand, when we are working with conditional probabili-

ties, we should look for N classes and N corresponding probability distributions that

maximize the class-conditional probability of the training data.

An example of the conditional model case is the hierarchical clustering of speak-

ers in a speaker tree and the corresponding models at each node of the tree to maxi-

mize the likelihood of arriving at the leaves with the training data.[1] An example for

the conditional probability case is the construction of a language model [6] where

we are maximizing the conditional probability of the words in a sequence. In both

cases, our goal is to maximize the likelihood of some criterion.

9.4.1 Tree Construction

In general, while trying to construct a tree, we will have to take the following steps,

1. Establish the best question (the one that maximizes the likelihood of the crite-

rion of interest) for partitioning the data into two equivalence classes and keep

doing this on each of the emerging classes until the stopping criterion in the

next step is met.

2. Stop when there is either insufficient data with which to proceed or when the

best question is not sufficiently informative.

This kind of tree is called a binary decision tree since at any point in the process

it asks a single question with a yes or no answer (hence the division of the data

into two equivalence classes at every stage of the process). Therefore, we can define

the underlying fundamental operation of constructing a tree as the establishment of

the best question that would partition the data into a subset of 2 smaller equivalent
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classes.

Thus, constructing a tree is a greedy process. By this we mean that although

at any step of the process a split into smaller equivalence classes may be locally

optimal, the final product is not necessarily globally optimal. In other words, finding

a globally optimal tree is an NP-complete [8] problem.2

9.4.2 Types of Questions

There is always a question that must be asked for any non-terminal node of a de-

cision tree. The terminal nodes of the tree are called the leaves of the tree. There

are several possible types of questions that may be asked. The classes of questions

which will be discussed here are not necessarily disjoint classes. For example a

question may be discrete and be a fixed question. We will discuss different types of

questions below.

9.4.2.1 Discrete

Definition 9.9 (Discrete Question). A discrete question is a question that is asked

about a discrete random variable, X.

For example, if U is the set of possible outcomes of X and if X ⊂ U , then a

question of the form, “Is x ∈ X ?” is a discrete question.

9.4.2.2 Continuous

Definition 9.10 (Continuous Question). A continuous question is one that is asked

about a continuous random variable, X.

For example, if X ∈�, then a question of the form, “Is x < θ where θ ∈�?” is

a continuous question.

2 NP-complete means a problem that requires a nondeterministic polynomial time or in other words
it is combinatorially intractable (or it is not practical).
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9.4.2.3 Fixed

Definition 9.11 (Fixed Question). A fixed question refers to the selection of a ques-

tion from a collection of predefined questions that would optimize the objective func-

tion of choice for building the tree.

For example, sometimes it is conceivable that a complete list of possible classes

are constructed and their membership is used as valid questions. Then, in the build-

ing of a tree, all of the questions (possibly in a specific order) may be tried and the

one that maximizes the likelihood of the training data may be picked as the ques-

tion for the node of interest. In a phonetic context, an example of such classes for

handling stops in English are,

• Is the phone a stop (x ∈ {/p/,/t/,/k/,/b/,/d/,/g/})?

• Is the phone an unvoiced stop (x ∈ {/p/,/t/,/k/})?

• Is the phone a voiced stop (x ∈ {/b/,/d/,/g/})?

• Is the phone /p/?

• Is the phone /t/?

• Is the phone /k/?

• Is the phone /b/?

• Is the phone /d/?

• Is the phone /g/?

9.4.2.4 Dynamic

Definition 9.12 (Dynamic Question). A dynamic question refers to the generation

of a question dynamically as the tree nodes are traversed. A search problem is solved

to create the question that optimizes the equivalence classes given the training data.

Building decision trees with dynamic questions has two important downfalls.

First, the search problem could become quite complex and take up tremendous

amount of energy (for example in terms of CPU utilization). The second (more

important) problem is that there are usually too many possible classifications at any

level of the tree and the amount of freedom available to us could easily create an

over-trained tree3.

Therefore, generally, dynamic questions are not recommended. In practice, fixed

and discrete questions perform better. Of course, the choice is completely case-

dependent.

3 An overtrained decision tree is one that fits the training data very well, but does not generalize
well for unseen data.
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9.4.2.5 Binary

Definition 9.13 (Binary Question). A binary question is one that may be answered

in a Boolean (true or false) response.

Generally, any question may have two or more answers. For example, in build-

ing a phone level N-gram model [6], at any level of the decision tree (state of the

N-gram), we may ask, “What is the next phone?” The response to this question may

be any one of 49 English phones and none totaling 50 responses.

Any n-ary question (a question with n responses), may be converted to series of

binary questions. For instance, take the example of the phone-level N-gram model.

We may first ask, “is there a phone next?” The response to this will eliminate the

none equivalence class and will leave us with none on one side and all the 49 phones

on the other. Then we may ask “Is it a /t/?” and then split into two classes again, each

time eliminating one possibility. Therefore, any n-ary tree may be converted into a

binary tree.

One problem with n-ary trees of n > 2 is that they typically fragment the data

too quickly in the onset or earlier stage of the decision process and will have less

of a chance to achieve close to global optimality. In the example that we gave for

the conversion to a binary tree, we did not really choose the best questions. The

questions, as posed, would generate an unbalanced tree. It is better to have a bal-

anced tree, by asking questions that will split the data in a more uniform fashion.

This will, in general, reduce the number of layers of questions in the conversion.

The first, unbalanced technique, would basically use brute force to go through all

the possibilities. A more intelligent set of questions would be able to achieve results

much quicker.

Binary questions come in two forms, simple binary questions and complex binary

questions. A simple binary question is one that is made up of a single Boolean ques-

tion with no Boolean operators. For example, “x ∈ X1?” is a simple binary question,

where “(x ∈ X1 ∧ (x ∈ X2)?” is a complex binary question. Figure 9.3 shows the

possible outcomes of this example. Note that any complex binary question may only

have two outcomes. However, as it can seen in the figure, some of the outcomes are

tied. If the states with the same outcome are tied to each other to present a single

node and then continue from that node, the resulting system is called a decision net-

work or a decision graph.

There is no evidence that complex questions make the decision tree any more

effective than simple questions. An example of complex questions is a language

model, which asks questions regarding the different combinations of states.
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Fig. 9.3: Path of a sample complex binary question – it always has only two final outcomes.

9.4.3 Maximum Likelihood Estimation (MLE)

At the beginning of our discussion on decision trees, we said that we may maximize

the likelihood of the training data to be able to construct the best question to ask at

each node of the tree. Let us do a more formal treatment of the maximum likelihood

technique.

Let x1x2 · · ·xn be a sequence of a discrete random variable X . Then, we can define

the following variables,
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ai
Δ
= ithUnique outcome, i ∈ {1,2, · · · ,N}

ci
Δ
= ithFrequency of occurrence of ai

Pi
Δ
= ith p(X |ai)

Q
Δ
= A question that partitions the sample into two classes

nl
Δ
= Number of samples that fall into the class on the left

nr
Δ
= Number of samples that fall into the class on the right

lci
Δ
= Frequency of occurrence of the outcome ai in the left partition

rci
Δ
= Frequency of occurrence of the outcome ai in the right partition

lPi
Δ
= ithProbability of the outcome ai in the left partition

rPi
Δ
= ithProbability of the outcome ai in the right partition

xK
j

Δ
= The sample sequence, x jx j+1 · · ·xk−1xk

(9.76)

The most effective question, Q, which may be asked is that question which has

maximum likelihood conditioned upon the sample. If we assume that the members

of the n-long sequence of instances of X , {x}n
1, are independent and identically

distributed (i.i.d.), then the likelihood of the question Q given the observations of

the sequence is as follows,

L (Q|{x}n
1) = p({x}n

1|Q)

=
n

∏
j=1

p(X = x j|Q)

=
n

∏
j=1

L (Q|X = x j) (9.77)

Note that maximizing the log of L (Q|{x}n
1) produces the same results.

The likelihood of the Question Q, condition on {x}n
1, may then be written in

terms of the defined variables of Equation 9.76, in the following manner,

�(Q|{x}n
1) = log2 (L (Q|{x}n

1))

=
N

∑
i=1

lci log2(lPi)+
N

∑
i=1

rci log2(rPi) (9.78)

Note that we are using log2 for convenience since we are dealing with binary deci-

sion trees.

If we use the maximum likelihood estimate (Equation 6.173) for lPi and rPi, we

will have the maximum likelihood solution,
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�(Q|{x}n
1) =

N

∑
i=1

lci log2(
lci

nl

)+
N

∑
i=1

rci log2(
rci

nr

) (9.79)

=
N

∑
i=1

lci log2(lci)− log2(nl)
N

∑
i=1

lci +

N

∑
i=1

rci log2(rci)− log2(nr)
N

∑
i=1

rci (9.80)

=
N

∑
i=1

( lci log2(lci) + rci log2(rci))−nl log2(nl)−nr log2(nr) (9.81)

In Equation 9.81, since lci, rci, nl and nr are all non-negative integers, the compo-

nents may be precomputed and stored in a table so that they may be retrieved using

a table lookup, for the computation of the log-likelihood.

The joint log-likelihood of the whole sample is

L (Q|{x}n
1) =

N

∏
i=1

P
ci
i (9.82)

Using the maximum likelihood estimate for Pi, just like before, we may write the

joint log-likelihood for the whole sample as follows,

�(Q|{x}n
1) =

N

∑
i=1

ci log2 P̂i

=
N

∑
i=1

ci log2

ci

n
(9.83)

If we multiply �(Q|{x}n
1) by − 1

n
, we will have entropy,

−1

n
�(Q|§1n) = −

N

∑
i=1

ci

n
log2

ci

n
(9.84)

= −
N

∑
i=1

P̂i log2 P̂i (9.85)

= H
(
P̂
)

(9.86)

Since n, the number of samples, is a constant, maximizing the log-likelihood, would

be equivalent to minimizing the entropy. For more on the topic of decision trees,

see [2].
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Chapter 10

Parameter Estimation

With five free parameters, a theorist could fit the profile of an

elephant.

George Gamow (1904-1968)

Quoted in Nature, June 21, 1990

In Section 9.3, we discussed the definition of hypotheses which are designed to

classify data into different categories. The main idea is to be able to categorize data

into pieces, each of which would be represented by a statistical family of paramet-

ric models, using a parameter vector, ϕϕϕ . This is the problem of model selection in

general and parameter estimation in specific. We have already discussed several

techniques for estimating the mean, variance, and higher statistics in Chapter 6. We

needed to develop the concepts of entropy and information in order to be able to

continue the parameter estimation techniques of this chapter. For this reason, the

concepts covered here, had to be deferred until now, instead of being included with

the moment estimation concepts covered in Chapter 6. This chapter looks into the

parameter estimation problem in more detail, specifically in the realm of estimating

model parameters to represent observed samples.

At times, such as in Section 9.2.1, we have touched upon maximum likelihood es-

timation which is geared toward estimating such parameters in order to produce the

maximum likelihood solution to the modeling problem. There are also other similar

objectives, based on the problem at hand, such as maximum a-posteriori estimation

and maximum entropy estimation. We shall study these techniques in more detail in

this chapter.

The estimation techniques, presented here, are general overviews which do not

include much detail about the implementation issues. Also, here, we are not consid-

ering the constraints that may be present in the optimization problems. One such set

of constraints is the fact that all probabilities have to be positive and should sum up

to 1. Other constraints may exist which are generally related to the type of model

being used or the input parameters to the model. Most of the time, the constraints

are introduced into the optimization objective function, using Lagrange multipliers

(see Chapter 25).
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10.1 Maximum Likelihood Estimation

Consider the random variable {X : x ∈ X = RD}. Furthermore, assume that we

have a model which estimates the probability density function associated with X ,

p(x), by p̂(x|ϕϕϕ), where {Φ : ϕϕϕ ∈ φ = RM} is the parameter vector. The likelihood

of the model, given x, is then defined as,

L (ϕϕϕ|x) = p̂(x|ϕϕϕ) (10.1)

The maximum likelihood estimate is defined as the set of parameters, ϕ̂ϕϕ , such that,

ϕ̂ϕϕ
Δ
= argmax

ϕϕϕ
L (ϕϕϕ|x) (10.2)

= argmax
ϕϕϕ

p̂(x|ϕϕϕ) (10.3)

In most cases of interest, we are concerned with the exponential family of density

functions. Therefore, it is natural, due to the concave and monotone nature of the

logarithm (see Definition 24.25), to speak in terms of the log of the likelihood which

becomes maximum when the likelihood itself is at its maximum. Hence, we may

define the log-likelihood, �b(ϕϕϕ|x), of the model parameters as follows,

�b(ϕϕϕ|x)
Δ
= logb L (ϕϕϕ|x) (10.4)

= logb p̂(x|ϕϕϕ) (10.5)

and the maximum likelihood estimate may be written in terms of the log-likelihood

of the parameters,

ϕ̂ϕϕ = argmax
ϕϕϕ

L (ϕϕϕ|x) (10.6)

= argmax
ϕϕϕ

�(ϕϕϕ|x) (10.7)

(10.8)

Here, we are using b = e as the base of the logarithm for which we omit the writing

of the base all together, for simplicity.

Due to the concavity and monotonicity of the log-likelihood function (Defini-

tion 24.25), to maximize the log-likelihood, we may compute the gradient of the

log-likelihood, ∇ϕϕϕ�(ϕϕϕ|x) and set it equal to zero, solving for ϕ̂ϕϕ ,

ςςς(ϕ̂ϕϕ|x)
Δ
= ∇ϕϕϕ�(ϕϕϕ|x)

∣∣∣
ϕϕϕ=ϕ̂ϕϕ

(10.9)

=
1

L (ϕϕϕ|x)
∇ϕϕϕL (ϕϕϕ|x) (10.10)

= 0 (10.11)

where L (ϕϕϕ|x) may not be zero. Also, we agree to disregard any roots of Equa-

tion 10.11 of the form,ϕϕϕ = constant, and only keep those roots which are dependent
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on the sample, x.[7] ςςς(ϕϕϕ|x) is known as the score statistic of the parameter vector

(also known as the Fisher score [13]), ϕϕϕ , given the observation, x.

Recall the log-likelihood of a set of independent observations, {x}N
1 , of X , given

by Equation 9.71. In the notation of this section, we may write the log-likelihood of

the set of observed vectors as follows,

�(ϕϕϕ|{x}N
1 ) =

N

∑
i=1

�(ϕϕϕ|xi) (10.12)

The score statistic for the set of observations, {x}N
1 , is then,

ςςς(ϕ̂ϕϕ|{x}N
1 ) = ∇ϕϕϕ�(ϕϕϕ|{x}N

1 )
∣∣∣
ϕϕϕ=ϕ̂ϕϕ

(10.13)

=
N

∑
i=1

∇ϕϕϕ�(ϕϕϕ|xi)
∣∣∣
ϕϕϕ=ϕ̂ϕϕ

(10.14)

(10.15)

The variance-covariance matrix of the score statistic is a measure of the Fisher

information in the model parameters. When the parameter vector has dimension one,

it is a simple variance and is known as the Fisher information. When the parameters

are of dimension M > 1, then the matrix is known as the Fisher information matrix

(see Section 7.7),

III F = Cov(ςςς(ϕϕϕ|x)) (10.16)

= E
{
ςςς(ϕϕϕ|x)ςςςT (ϕϕϕ|x)

}
(10.17)

Under Dugué’s regularity conditions, discussed in Section 7.7, the Fisher in-

formation matrix may be written as the expected value of the Hessian matrix (see

Chapter 25) of the log-likelihood with respect to ϕϕϕ [20]. Namely,

III F = E
{

∇2
ϕϕϕ�(ϕϕϕ|x)

}
(10.18)

To simplify the notation, we may write the likelihood, log-likelihood, and score

statistic of {x}N
1 , by omitting the conditionality on {x}N

1 , as L (ϕϕϕ), �(ϕϕϕ), and ςςς(ϕϕϕ),
respectively. The conditionality notation is included when we speak about a single

sample vector, x.

Therefore, the Fisher information matrix for a set of independent observations,

{x}N
1 , may be written as,

III F = Cov(ςςς) (10.19)

= E
{
ςςςςςςT

}
(10.20)

= E
{

∇2
ϕϕϕ�
}

(10.21)

See Cramér [7] for a review of the asymptotic properties of maximum likelihood

estimation.
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Given the above set up of the problem of maximum likelihood estimation (MLE),

we may use any of the techniques, discussed in detail, in Chapter 25. The Quasi-

Newton techniques discussed in that chapter will be well suited, since the estimation

of the Hessian matrix provides a method for computing the Fisher information as

well (Equation 10.18). However, as we shall see in Section 11.3, the expectation

maximization (EM) algorithm is very well suited for solving the MLE problem.

10.2 Maximum A-Posteriori (MAP) Estimation

Let us recall the maximum likelihood objective function of Equation 10.3. This ob-

jective function was used under the basic premise that the model parameters, ϕϕϕ ,

are distributed uniformly, in the parameter space, φ . Namely, any ϕϕϕ would have the

same prior probability denoted by P(ϕ). However, we can imagine cases where an

approximation of the a-priori probability of parameter vector, ϕϕϕ , is available to us

through some information source. This prior distribution may also be made avail-

able by a mechanism such as an unsupervised clustering algorithm.

For example, as we shall see in Chapter 13, the sample data may be modeled by

an HMM or simply by a mixture model (mostly a Gaussian mixture model). In this

case, the actual model is a linear combination of several models, where the a-priori

probability of every model in the combination may be estimated based on the model

memberships of individual samples. These memberships may either be prescribed

by a hard membership function or a soft one. The important point is that we may

estimate the prior probabilities of individual models, P(ϕϕϕγ).

Another source of estimating such priors may be an external model such as a

language model. For instance, a language model may dictate the prior probability

of a parameter vector based on context. Whatever the source of the estimate for

the a-priori probability of parameters, ϕϕϕ , it is apparent that using this information

will help the ultimate goal of learning. The true goal of learning is to maximize the

a-posteriori probability of the parameters given an observation, x,

ϕ̂ϕϕ = argmax
ϕϕϕ

P(ϕϕϕ|{x}N
1 ) (10.22)

Using Bayes theorem (Equation 6.58),

P(ϕϕϕ|{x}N
1 ) =

p({x}N
1 |ϕϕϕ)P(ϕϕϕ)

P({x}N
1 )

(10.23)

Since the denominator of Equation 10.23 is the same for all the different parameter

vectors, we may drop it from the maximization objective functions. Namely,
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ϕ̂ϕϕ = argmax
ϕϕϕ

p({x}N
1 |ϕϕϕ)P(ϕϕϕ)

P({x}N
1 )

= argmax
ϕϕϕ

p({x}N
1 |ϕϕϕ)P(ϕϕϕ) (10.24)

It is easy to see that if the prior probabilities, P(ϕϕϕ), are unknown, then the principle

of maximum entropy (see Section 7.3.1) suggests that the best solution would be one

where the priors are set to have a uniform distribution. In that case, P(ϕϕϕ) may be

dropped and we will be left with the maximum likelihood estimate.

However, if the prior probabilities are known, or may be estimated from the train-

ing data, then it makes sense to use them. The solution to the problem of Equa-

tion 10.24 is the maximum a-posteriori estimate or the MAP estimate for short. At

different occasions in the book, we will cover the formulation of the MAP solution

to estimation and adaptation problems. Depending on the details of the problem, the

solution may be slightly different, but the main difference between MAP estimation

and MLE is in the estimation of the prior probabilities. This will be different for

Gaussian mixture models, Hidden Markov models, etc.

10.3 Maximum Entropy Estimation

In Section 7.3.1 we saw that in the absence of any information, the maximum entropy

solution is the proper solution. Given the available information, the least biased es-

timate is the maximum entropy estimate. According to Jaynes [15], the maximum

entropy estimate is maximally noncommittal with regard to missing information.

Basically the maximum entropy principle states that if we have a choice to pick a

parameter vector among all the possible vectors, {Φ :ϕϕϕ ∈ φ}, we should choose the

parameter vector which is the least biased, given the possible choices. This would

be,

ϕ̂ϕϕ = argmax
ϕϕϕ

H (P(ϕϕϕ|x)) (10.25)

Maximum entropy techniques have been used in statistical mechanics [15, 16] for

long and in fact even Laplace stated the principle of insufficient reason1, discov-

ering intuitively about the validity of using uniform priors in the absence of any

information. Maximum entropy estimation was introduced to the field of speech re-

lated research through the paper of Berger, et al. [5], in 1996 through an application

to statistical language translation of English to French.

1 Laplace’s principle of insufficient reason states that two events must be assigned equal probabil-

ities if there is no reason to think otherwise.[15]
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Of course we already knew the fact that entropy is maximized when there is uni-

form probability. However, in practice, what does that mean? Of course we are not

going to be happy with cases when no information is available. The attractive part

of the principle of maximum entropy in practice appears when there are constraints

present. Therefore, in the presence of constraints, we would have to find a solution

to Equation 10.25 subject to the constraints imposed on the parameter vector,ϕϕϕ [10].

As with the case of MLE and MAP in the last two sections, we will have different

techniques associated with the problems of interest, such as the HMM, GMM, lan-

guage modeling, etc.

Good [9] restated the principal of maximum entropy which was originally stated

by Jaynes [15] (applied to statistical mechanics) in different words, relating it to the

selection of null hypotheses which would be used in testing. Here is his statement,

Definition 10.1 (Maximum Entropy (Restatement According to Good)). See [9].

Let X be a random variable whose distribution is subject to some set of restraints.

Then entertain the null hypothesis that the distribution is one of maximum entropy,

subject to these conditions.

Noting that entropy is the expected value of information, Good [9] clarifies the

statement in Definition 10.1 as the following alternate statement, “entertain the null

hypothesis, H0 that maximizes the expected amount of selective information per ob-

servation.”

10.4 Minimum Relative Entropy Estimation2

The principle of minimum relative entropy is a generalization of the principle of

maximum entropy [9] and is quite intuitive in the sense that in the presence of

constraints, it would be best to choose a distribution which is least discriminable

from the best distribution. This would be the distribution which has the smallest

Kullback-Leibler directed divergence, DKL (p0 → p), with respect to the best pos-

sible hypothesis, when there is no constraint present. Starting with Good [9], many

publications [25, 17, 26, 8] have been referring to this technique as minimum cross

entropy, assuming the name, cross entropy for what we are calling relative entropy.

As we shall see later in this section, our concept of minimum cross entropy is indeed

2 Minimum relative entropy is also known as minimum cross-entropy by some researchers[9, 25, 8],
following the legacy of terminology which was introduced for the first time by Good in 1963 [9],
referring to the Kullback-Leibler directed divergence as cross entropy. However, recently, cross
entropy has been used to denote a different information theoretic entity, H (p → q) in the discrete
case and h̄(p → q) in the continuous case – see Section 7.6. Relative entropy is a more appropriate
term for the entity which is described by the Kullback-Leibler directed divergence and therefore,
it is what we use in this book. We will see, toward the end of this section, that although the two
concepts are different, the principle of minimum relative entropy will coincide with the principle

of minimum cross entropy for a different reason.
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the same as minimum relative entropy, although the actual quantities of the minima

differ, but they both give the same minimizing distributions.

Let us present a formal definition of the principle of minimum relative entropy,

also known as the principle of minimum discriminability [9].

Definition 10.2 (Principle of minimum relative entropy (minimum discrim-

inability)).

Consider a random variable, X, defined in the probability space, (X ,X,P0) where

the Radon-Nykodým derivative of the probability measure, P0, is given by p0(x).
Furthermore, assume that this measure may be related to an excellent hypothesis3.

Now, let us assume that we are interested in defining a null hypothesis restrained

by certain constraints on the Radon-Nykodým derivative where the new probabil-

ity measure space would be defined by a class of constrained density functions,

amounting to the probability space, (X ,X,P) with corresponding Radon-Nykodým

derivatives, p(x). Then the principle of minimum relative entropy states that the best

null hypothesis would be one such that, if true, it may be discriminated from the ex-

cellent hypothesis defined earlier, the least. This works out to the null hypothesis

that minimizes the relative entropy (Kullback-Leibler directed divergence),

p̂(x) = argmin
p

DKL (p0 → p)

= argmin
p

ˆ
X

ln
p0(x)

p(x)
dP0 (10.26)

For the case where the sample space is the Euclidean space, X = Rn, we may

write Equation 10.2 in terms of the Lebesgue measure, using the Radon-Nykodým

derivative of P0, given by p0(x), such that,

p̂(x) = argmin
p

DKL (p0 → p)

= argmin
p

ˆ
X

p0(x) ln
p0(x)

p(x)
dx (10.27)

= argmin
p

(h̄(p0 → p)− h̄(p)) (10.28)

where p(x) is subject to the constraints stated in Definition 10.2.

Note that based on the fact that we are seeking a density function, p(x), which

would be least discriminable from a fixed best hypothesis density function, p0(x),
the same p̂(x) will minimize the relative entropy and the cross entropy, since across

the different p(x), p0(x) is kept unchanged. Therefore, Equation 10.28 may be writ-

ten as follows,

3 Good [9] uses the German expression, ausgezeichnet hypothesis, which has been translated here
to mean excellent hypothesis.
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p̂(x) = argmin
p

DKL (p0 → p)

= argmin
p

(h̄(p0 → p)− h̄(p)) (10.29)

= argmin
p

h̄(p0 → p) (10.30)

Of course DKL (p0 → p̂) �= h̄(p0 → p̂), but the same value which minimizes, p(x) =
p̂(x), minimizes both DKL (p0 → p) and DKL (p0 → p). Good [9] and other re-

searchers referring to his paper, such as references [25, 17, 26, 8], are referring

to relative entropy when they say cross entropy.

Jaakkola, in Section 2.1.1 of [14], shows that support vector machines (Chap-

ter 15), for a two-class separable case, are a special case of the minimum relative

entropy technique. In addition, [14] shows that in the general case, the results are

also quite similar between the two methods. See the introduction of Chapter 15 for

more on this comparison.

10.5 Maximum Mutual Information Estimation (MMIE)

As we saw in Section 7.6.1, mutual information (Equation 7.104) is defined as a

special case of relative entropy where it is a measure of the amount of informa-

tion between two random variables such that it would become zero for two random

variables, X and Y which are statistically independent. In other words, the mutual

information I (X1;X2) may be viewed as a measure of the statistical dependence

between the two random variables.

Recall the discussion of the optimal choice of the model parameters, ϕϕϕ = ϕ̂ϕϕ for

constructing a parametric model that would estimate the true distribution of the out-

put of a system, p(x). We have examined different optimization criteria in the last

few sections, MLE, MAP, and maximum entropy. Another possible objective would

be the maximization of the mutual information between the observed output of the

system, X = x, and the output of the parametric estimate of the system based on

a class of parametric models, Y (ϕϕϕ) = y(ϕϕϕ). The output of this class of parametric

models would be dependent on the model parameters, {Φ : ϕϕϕ ∈ φ = RM}. There-

fore, the dependent variable of the output of the parametric model would be the

choice of ϕϕϕ .

The mutual information would then be written as,

I (X ;Y (ϕϕϕ)) =

ˆ
X

ˆ
Y (φ)

p(x,y(ϕϕϕ)) ln
p(x,y(ϕϕϕ))

p(x)p(y(ϕϕϕ))
dxdy(ϕϕϕ) (10.31)
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Note that since the output of the parametric model is dependent on the parameter

vector, ϕϕϕ , Equation 10.31 may be rewritten in terms of the parameter vector, ϕϕϕ .

So the objective would be to find that parameter vector, ϕϕϕ , which would maximize

the mutual information between the output of the model and the true output of the

system. Although, generally in parameter estimation problems, the integration may

not be done for the entire sample space, X , it may be approximated using the law of

large numbers (Section 6.9.2). The following is the formal expression for the MMIE

in the continuous domain,

ϕ̂ϕϕ = argmax
ϕϕϕ

I (X ;Y (ϕϕϕ))

= argmax
ϕϕϕ

ˆ
X

ˆ
Y (ϕϕϕ)

p(x,y(ϕϕϕ)) ln
p(x,y(ϕϕϕ))

p(x)p(y(ϕϕϕ))
dxdy(ϕϕϕ) (10.32)

y(ϕϕϕ) is generally dependent on parameter vector, ϕϕϕ , and it may be computed know-

ing the equations of the model. It may be dependent on other parameters as well,

such as the history of the output of the system, a language model, etc. Depending on

the form of the model, the maximization problem given by Equation 10.32 would

be solved differently and would yield different results. In addition, as we mentioned

in the beginning of the estimation section, in most cases, there will be constraints

which would have to be worked out into the main objective function. These may

be constraints on the probabilities to make sure they sum up to 1, or they may be

related to the form of the model or other inputs to the model.

Bahl, et al. [4, 3], followed by others [22], have used the maximum mutual in-

formation estimation technique in optimizing the parameters of a hidden Markov

model (HMM) in training speech recognition models. We will discuss this technique

in more detail in the chapter on hidden Markov models.

10.6 Model Selection

One of the important quests in statistical analysis is to decide on the complexity

of the model which is used to represent the data. An important indicator for the

complexity is the model dimension. Starting with the work of Akaike in 1972 [1], a

number of information theoretic techniques were developed to aid in the statistical

model selection process, by presenting minimum information criteria which are de-

pendent on the model dimension.

Akaike [2] defines the AIC4, which is an efficient statistic (see Definition 6.76),

as a criterion for model selection. Four years later, Schwarz [24] extended the work

4 In his paper [2], Akaike states that AIC stands for An Information Criterion and he forecasts
the future development of BIC, DIC, et cetera, as future versions of Information Criteria. His
forecast was at least correct in one case, since BIC Bayesian Information Criterion was presented
by Schwarz [24], only 4 years later.
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of Akaike by employing Bayesian concepts and introduced a consistent statistic (see

Definition 6.77) which he called the Bayesian information criterion (BIC). There

have been other information criteria dealing with specific classes of problems, such

as the residual information criterion (RIC) [21], which was designed for single-

index models [12], widely used in the financial industry.

Another method is the structural risk minimization technique [11], which is

premised on the tuning of the complexity of the model by adjusting a measure of

the capacity of the model. This measure is known by the Vapnik-Chervonenkis (VC)

dimension [27]. The VC dimension is a non-zero integer, generally related to the

amount of training data used for training the model of interest. In most practical

cases, its analytical derivation is not an easy task [11]. Therefore, it is generally

approximated to be the dimension of the free parameter vector being used in an

optimal parametric model associated with the given training data (Example 2 of

Section 4.11 in [27]). Of course, there are examples which are contrary to this as-

sumption. Examples 3 and 4 in Section 4.11 of [27] present models for which the

VC dimension is less and more than the number of free parameters of the model,

respectively. We defer the coverage of this topic to Chapter 15, while covering the

background material for the introduction of support vector machines (SVM).

In the next two sections we will cover AIC and BIC criteria in some detail. Both

AIC and BIC are criteria which verify the principle of parsimony5 in model selec-

tion. As we will see, both criteria will give preference to models which have similar

likelihood, but use a smaller number of parameters. BIC has specifically been used

as the basis of many audio segmentation algorithms – see Sections 16.5 and 17.4.

10.6.1 Akaike Information Criterion (AIC)

Akaike [2] made the argument that the null hypothesis, as described and used in

the Neyman-Pearson lemma (see Section 9.2.1), for a binary hypothesis testing sce-

nario leading to a log-likelihood ratio test, is only an approximate hypothesis when

it comes to practice. Furthermore, he noted that these hypotheses are almost always

different from reality, hence inadequate for usage in approximate identification pro-

cedures.

Consider the Kullback-Leibler directed divergence, DKL (p → p̂), which is a

measure of the expected value of information which is lost by modeling the true

probability density function, p(x), of a system using a model with parameter vector,

ϕϕϕ , represented by the probability density function of the model, p̂(x|ϕϕϕ).

5 The principle of parsimony is the principle of preferring the simplest model representation of a
system.
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DKL (p → p̂) = h̄(p → p̂) − h̄(p) (10.33)

In the discrete case, this would be written as,

DKL (p → p̂) = H (p → p̂) − H (p) (10.34)

It is apparent that our objective, in model selection, would have to be one that

would minimize DKL (p → p̂). If we would have to choose among models with

different parameter vectors, ϕϕϕ , then the best model would be the one that would

have minimum differential cross entropy, since h̄(p) (H (p)) is fixed and would not

change based on the choice of the model. Namely,

min DKL (p → p̂) = min h̄(p → p̂) (10.35)

Therefore, the parameter vector selection may be viewed as the following min-

imization problem in the Euclidean space X = RD, using a Lebesgue measure in

the integration,

min h̄(p → p̂) = −
ˆ

X
p(x) ln(p̂(x|ϕϕϕ))dx (10.36)

In solving the model identification problem, one is faced with deciding the best

model from a set of different models, p̂i(x|ϕϕϕ i), i = {1,2, · · · ,M}. Akaike maximizes

the negative of h̄(p → p̂i),

ϕ̂ϕϕ = argmax
ϕϕϕ i

−h̄(p → p̂i)

= argmax
ϕϕϕ i

ˆ
X

p(x) ln(p̂i(x|ϕϕϕ i))dx (10.37)

across different models with probability density functions, p̂i(x|ϕϕϕ i), to find the

model with the most optimal parameters, ϕ̂ϕϕ .

Note that p(x) (the true density of the system) in Equation 10.37 is fixed, regard-

less of the model which is used. Also, the integral in Equation 10.37 is really the ex-

pected value of the likelihood of the model parameters and may be estimated without

knowing p(x), when a large number of observations are available. The optimization

objective function of Equation 10.37 would also coincide with the maximum mean

likelihood estimate where the likelihood of the model parameters is given by p̂(x|ϕϕϕ).

In Section 7.7, we made the assumption that we can estimate the true probability

density, p(x), by a parametric version, p̂(x|ϕϕϕ). Let us assume the same thing here.

Therefore, we are assuming that the best we can do in estimating p(x) is to find the

closest parametric version of the density function, p̂(x|ϕϕϕ). This assumption in itself

introduces certain error which would not be correctable with the upcoming formula-

tion. Furthermore, we make the assumptions that we made in Section 7.7, regarding

the proximity to the optimal parameter vector and regularity conditions listed in that



352 10 Parameter Estimation

section.

Therefore, we may write the expression for the approximation to the Kullback-

Leibler directed divergence from a point in the parameter space to another point

near by, using Equation 7.136. As we stated, we are interested in minimizing

DKL (ϕϕϕ → ϕ̂ϕϕ), which is the directed divergence from a point, ϕϕϕ , in the vicinity of

the parameter vector associated with the model which produces the maximum mean

likelihood estimate, ϕ̂ϕϕ , to that point such that,

ϕ̂ϕϕ =ϕϕϕ +Δϕϕϕ (10.38)

ϕ̂ϕϕ is the parameter vector associated with the maximum mean likelihood estimate.

Let us rewrite Equations 7.136 and 7.135 here for simplicity.

DKL (ϕϕϕ → ϕ̂ϕϕ) =
1

2
(Δϕϕϕ)T III F (Δϕϕϕ) (10.39)

where

III F = E
{(

∇ϕϕϕ p̂(x|ϕϕϕ)
)(

∇ϕϕϕ p̂(x|ϕϕϕ)
)T
}

(10.40)

Akaike [2] goes through an exercise of restricting the parameter space, φ = RM ,

to a lower-dimensional space, where every model with parameters ϕϕϕγ of the total

Γ competing models, is defined in the parameter space, φγ = RMγ : Mγ < M. Then

he computes an approximation to the minimum DKL

(
ϕϕϕγ → ϕ̂ϕϕ

)
for different mod-

els (different values of ϕϕϕγ ∈ φγ ). As we saw earlier, this amounts to minimizing

the cross entropy. Equation 10.40 requires the computation of an expected value.

This may be done using a large sample size (say with N samples) without knowing

the actual probability density function, only by using the law of large numbers for

computing an approximation to the expected value, namely, the sample mean. Con-

sider the discussion in Section 6.5.2, for probability densities defined in a Cartesian

product space. With the effect of dimensionality in the definition of the probability

density function in mind, for a large sample size, N, this leads to minimizing the

following criterion [2],

AIC(ϕϕϕγ) = −2�(ϕ̂ϕϕγ)+2Mγ (10.41)

where

ϕ̂ϕϕγ = argmax
ϕϕϕγ

E
{

ln p̂(x|ϕϕϕγ)
}

(10.42)

and �(ϕ̂ϕϕγ) is the log-likelihood of ϕ̂ϕϕγ given the set of observations, {x}N
1 . Equa-

tion 10.41 is the AIC criterion per [2].

The model with parameters, ϕ̂ϕϕ , which minimizes AIC(ϕ̂ϕϕγ), is the model that ap-

proximates the maximum mean likelihood estimate the best, given the above restric-
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tions on the parameter space. This model is called the MAICE which stands for the

minimum Akaike information criterion estimate model and is given by the following

equation,

MAICE = min
ϕϕϕγ

AIC(ϕ̂ϕϕγ) (10.43)

Note that since the problem of Equation 10.43 is one of minimization, we may

factor out the constant, 2, from the definition of AIC and define a new AIC ↓ associ-

ated with this minimization problem as follows,

AIC ↓ (ϕϕϕγ)
Δ
= −�(ϕ̂ϕϕγ)+Mγ (10.44)

In another interpretation, we may also rewrite the AIC, to form a new criterion,

say AIC ↑, such that it may be maximized, as follows,

AIC ↑ (ϕϕϕγ)
Δ
= �(ϕ̂ϕϕγ)−Mγ (10.45)

Therefore, the MAICE may be written in terms of any of the above AIC criteria

as follows,

MAICE = min
ϕϕϕγ

AIC(ϕ̂ϕϕγ) (10.46)

= min
ϕϕϕγ

AIC ↓ (ϕ̂ϕϕγ) (10.47)

= max
ϕϕϕγ

AIC ↑ (ϕ̂ϕϕγ) (10.48)

The AIC may be seen as an efficient statistic (see Definition 6.76). This criterion

may also be viewed as a minimum cross-entropy. If the restriction on the dimen-

sionality of the parameters of model γ are removed, then all the models will have

the same number of parameters, Mgamma = M. In that case, the problem formulation

would just become one of maximum likelihood estimation.

10.6.2 Bayesian Information Criterion (BIC)

Schwarz [24] takes the Bayesian approach toward the representation of the models in

lower dimensional space to present a new criterion called the Bayesian information

criterion (BIC). Reference [24] makes several assumptions which are generally sat-

isfied in speaker recognition approaches using this criterion, such as many speaker

segmentation algorithms [6, 18, 19, 23]. The following is a list of these assumptions.

Assumptions made in the development of BIC:
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1. The observed samples are assumed to be generated by a parametric model be-

longing to the Darmois-Koopman-Pitman exponential family (Equation 6.194).

2. There are Γ competing models, each having a parameter vector, ϕϕϕγ ∈ φγ , such

that φγ ⊂ RMγ ,Mγ ≤ M.

3. The a-priori probability of ϕϕϕ has the following Bayesian form,

P(ϕϕϕ) =
Γ

∑
γ=1

p(ϕϕϕ|ϕϕϕγ)P(ϕϕϕγ)[ϕϕϕ] (10.49)

4. We may use the Bayesian approach, picking a model with the parameter vector

ϕϕϕγ such that the a-posteriori probability of the model is maximal.

Using the above assumptions, Schwarz [24] derives the following Bayesian in-

formation criterion (BIC) which is comparable to the definition of AIC ↑ and must

be at its maximum for the best model,

BIC(ϕϕϕγ)
Δ
= �(ϕ̂ϕϕγ)−Mγ(

1

2
lnN) (10.50)

Just as in the definition of AIC, �(ϕ̂ϕϕγ) is the log-likelihood of ϕ̂ϕϕγ (Equation 10.42)

given the set of observations, {x}N
1 . Therefore, we may define the maximum Bayesian

information criterion estimate (MBICE) model in the spirit of Akaike, as follows,

MBICE
Δ
= max

ϕϕϕγ
BIC(ϕ̂ϕϕγ) (10.51)

Note that

BIC(ϕϕϕγ) > AIC ↑ (ϕϕϕγ) ∀ N > 7 (10.52)

In practice, N is chosen to be quite large for any analysis to be statistically signifi-

cant. Therefore, practically, BIC and AIC produce very different results.
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Chapter 11

Unsupervised Clustering and Learning

All generalizations are dangerous, even this one!

Alexandre Dumas (1824–1895)

In Chapter 10 we discussed parameter estimation and model selection. In this chap-

ter, we will review different techniques for partitioning the total sample space, X ,

of a random variable, X , into different subsets as classes, Xγ , which are Γ sample

spaces associated with Γ random variables, Xγ . Therefore, based on the notation of

Definition 6.11, the partition, P may be written in several representations,

P = X /P (11.1)

= {Xγ} γ ∈ {1,2, · · · ,Γ } (11.2)

= {[ξγ ]P} γ ∈ {1,2, · · · ,Γ } (11.3)

In Equation 11.3, ξγ is the representative element for partition class γ which based

on equivalence relation P of the partitioning logic of choice will be equivalent to a

set of elements in the sample space, X .

This partitioning is called unsupervised clustering since it does not use any labels

associated with the samples in X and it is only conditioned upon the hypotheses

which are designed by the classification techniques, similar to those of Section 9.3.

If the clustering is done based on a-priori labels, the clustering is known as super-

vised clustering.

Generally, in most unsupervised clustering techniques, the number of classes, Γ ,

is assumed to be known. Of course, as we will see, there are techniques for starting

with an approximate Γ and then to use certain criteria to modify that number.

We start with unsupervised clustering techniques which concentrate on parti-

tioning a collection of samples into bins and estimating parameters that would best

represent the sufficient statistics for each of these bins. The clustering problem is

an NP-complete problem, similar to the decision tree generation problem discussed

in Section 9.4.1. Generally, the first set of techniques use the Euclidean distance as

a metric to evaluate their estimation performance and they rely on estimating first-

order statistics (means) in the process of clustering. We call these techniques, basic
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clustering techniques.

Once the clusters are completed, higher order statistics are generally computed.

They also use some kind of averaging technique to define the overall objective func-

tion associated with their performance. Depending on the metric, type of averaging

and the process of computing statistics and cluster assignments for each sample vec-

tor, different techniques have been developed.

The second set of techniques, covered in this chapter, work on optimizing more

advanced objective functions such as the likelihood function and entropy in order to

be able to estimate the cluster parameters and to assign samples to these clusters.

In general, these techniques work on estimating the parameters, that would repre-

sent the sufficient statistics, by using information from a set of observed random

samples. These observed samples are in a space which may not completely map the

original space of the sufficient statistics of the problem of interest. In other words,

the system may not be fully observable [16].1 Therefore, we refer to this approach

as estimation using incomplete data.

Algorithms of this set of techniques generally work by utilizing higher order

statistics about the clusters. Some modified versions of these algorithms even pro-

vide estimates for such higher order statistics, such as the covariance matrix in the

process of clustering.

The basic clustering techniques, which will be discussed in Section 11.2, gen-

erally possess a dual usage. They have been used to simply create codewords for

conducting vector quantization, as well as clustering data for further, more sophis-

ticated modeling, using higher order statistics. We will examine the idea behind

vector quantization. Later, we will discuss and develop the basic clustering tech-

niques which provide us with clusters and which will use the first order statistics of

the data in the corresponding clusters to optimize a global objective function. The

final results may be further refined to estimate higher order statistics about the deter-

mined clusters or to be used as initial conditions for more sophisticated techniques

which will follow in the rest of this chapter.

11.1 Vector Quantization (VQ)

Generally speaking, vector quantization stems from a clustering mind-set wherein

some label for each cluster called a codeword is used to signify the presence of

each of the feature vectors that fall in the neighborhood of (are classified as) that

1 The observability concept is one that has been used in many parameter estimation communi-
ties including control and signal processing. An example is the observability relations in system
theory [36] and control system theory [16].
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specific cluster. This codeword associated with each cluster, Xγ , is the ξγ which

was discussed in the beginning of this chapter, defining the equivalence classes of

the clustering (partitioning) scheme. The collection of these clusters (codewords),

which has been determined by a common distance or distortion measure or any fea-

ture dependent criterion, is called a codebook. The codebook may be viewed as the

partition defined by Definition 6.11. There may be multiple codebooks used in a

specific task and each codebook has a set of codewords associated with it.

Vector quantization is mostly used in cases where the small deviations from a

mean value are not very important in the decision process, but they will cause con-

fusion and error instead. It also tends to have an inherent noise retardation. In Sec-

tion 11.2, we will see an array of different unsupervised clustering techniques. Some

of these techniques such as k-means clustering may be used to come up with the

quanta, as shown by an example in the original paper of Lloyd [32] on finding opti-

mal quantization levels for PCM representation of an audio signal.

Once the overlap between clusters becomes pronounced, more sophisticated cat-

egorization is needed. In fact in a variety of cases, instead of discrete categorization,

as in the case of general vector quantization, a more distributed and smooth cluster-

ing may be desired. In the latter case, instead of quantizing a vector which would

associate it with a specific cluster (codeword), a membership level is assigned to

the vector based on how likely or how close it is to individual clusters (codewords).

An example of this type of assignment is the Gaussian Mixture Modeling (GMM),

discussed in detail in Section 13.7.

Usually, regardless of whether pure vector quantization is done or a smooth

multi-class membership, such as a GMM, the initial stage, computing the centroids,

is quite similar. Once the centroids are found, a distortion measure is used to com-

pute the relative memberships and to do the fine-tuning on the statistical estimates

(means and in some case variances and higher order statistics).

In the next section, we will discuss several different vector quantization algo-

rithms which are used in speech-related clustering. Also, in Chapter 8, we reviewed

an array of different metrics and distortion measures that would allow us to estimate

the centroids and eventually the variances associated with the data in addition to

membership functions.

11.2 Basic Clustering Techniques

The most popular basic technique which has been used successfully in many ap-

plications for decades, including speech-related ones, is the k-means unsupervised

clustering technique. Hundreds of refinements to the k-means clustering technique
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have been done in the more than 5 decades in which it has been used. It is still one

of the most simple-to-implement techniques with good practical results.

In the next few subsections, we will study this and related techniques. Of course,

it is impossible to go into the details of all the techniques of this sort. However, some

important references will be provided for the avid reader to continue examining the

different possibilities.

It is also important to have outliers in mind, while reading this chapter. Outliers

are samples which are not well suited to belong to any specific cluster in the tech-

nique of choice. They are usually the cause of many unwanted distortions in the

definition of the clusters. In other words, they tend to bias the value of the represen-

tative of the equivalence class in such a way that the correct underlying portioning

may be disrupted. It is generally important to have some mechanism in mind to de-

tect and handle outliers. In most cases, we would like to keep the outliers separate

from the well-behaved set of samples, which are those samples that conform to the

underlying model of interest. There are many methods available in the literature for

the detection and handling of outliers [25]. Later in the chapter (see Section 11.2.3)

we will speak about starting with a larger number of clusters (overpartitioning) to

ensure that outliers will not affect the main clusters of interest with many members.

In Section 11.2.4 we will discuss merging of clusters to some degree. A decision

may be made to throw away outliers or to merge them with the populated clusters.

11.2.1 Standard k-Means (Lloyd) Algorithm

Lloyd [32] presented a classification technique geared for vector quantization used

in determining the quantized signal levels so that the quantization error in the PCM

coding of audio signals for telephony applications would be optimized. The basic

premise behind this algorithm was to minimize the sum of squares of errors, com-

puted using the Euclidean distance between the signal and the quanta represented

by the means of the discovered clusters. According to the footnote in [32], the con-

tents of the paper were first presented in 1957 at a meeting organized by the Institute

of Mathematical Statistics. This work was, however, not published until 1982 [32].

In 1967, MacQueen [33] described the k-means algorithm and called it by that

name for the first time. [33] went further in presenting several applications of the

algorithm as well as extensions to general metric spaces (see Section 6.2.3).

Generally, the standard k-means algorithm, used today, is very similar to that de-

scribed by Lloyd [32] and for that reason it is sometimes called the Lloyd algorithm.

There have been a plethora of methods derived from the basic k-means algorithm,

some of which will be touched upon, in passing. However, the existence of an as-
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tonishing number of techniques, with only minor changes, prohibits the possibility

of their complete coverage in this book. Let us examine the standard k-means clus-

tering algorithm, by first defining the associated minimization objective function.

Consider a random variable, X : x :∈ X = RD. Therefore, x : R1 �→ RD. Let us

assume that we are interested in partitioning the sample space, X into Γ partitions.

The k-means clustering algorithm assumes prior knowledge of the number of clus-

ters, Γ , and it is concerned with finding the parameter matrix, ΦΦΦ : RΓ �→ RD, that

would minimize the objective function given by Equation 11.5. The γ th column of

ΦΦΦ is the parameter vector, ϕϕϕγ , associated with cluster γ .

E(X ,ΦΦΦ) = ∑
x∈X

min
γ

‖x−ϕϕϕγ‖2
E (11.4)

In practice, we do not have complete knowledge of the sufficient statistics of X .

However, we are able to approximate the partitioning by considering an observed

set of samples of X . Let us assume that we have a set of observed samples, {x}N
1 =

{xn,n ∈ {1,2, · · · ,N}}. Then the objective function of the minimization problem

quantified by the objective function of Equation 11.5 may be approximated by a

new objective function described in terms of the observed samples, xn, as follows,

E(X ,ΦΦΦ) ≈ EKM({x}N
1 ,ΦΦΦ)

=
N

∑
n=1

min
γ

‖xn −ϕϕϕγ‖2
E (11.5)

In k-means clustering, the parameter vector, ϕϕϕγ , is just the sample mean of the

members of cluster γ . We may define the matrix of means of the clusters, as

M : RΓ �→ RD whose γ th column is ϕϕϕγ . Therefore,

ϕϕϕγ = μ̂μμγ (11.6)

ΦΦΦ = Mγ (11.7)

The following steps describe the k-means algorithm.

The k-means algorithm:

1. Choose the number of clusters, Γ . Initialize the sample mean vectors, μ̂μμ(k)
γ ,k =

0, for the initial clusters, Xγ
(k),k = 0, using some randomization logic or based

on any a-priori information about the clusters. The parameters are then signified

by ϕϕϕγ
(k),k = 0, making up the parameter matrix, ΦΦΦ (k),k = 0.

2. Given the current cluster definitions, Xγ
(k), go through all the observed sam-

ples, xn,n ∈ {1,2, · · · ,N}, and assign each sample vector to one (and only one)

of the clusters, Xγ
(k), by using the following membership index function,



362 11 Unsupervised Clustering and Learning

γ̂nk
Δ
= �(xn,ΦΦΦ

(k))

= �(xn,M
(k))

= argmin
γ

dE

(
xn, μ̂μμ

(k)
γ

)
= argmin

γ
‖xn − μ̂μμ(k)

γ ‖
E

(11.8)

3. Compute the objective function of k-means based on the current clusters and

memberships,

EKM
(k) = EKM({X}N

1 ,M(k))

=
N

∑
n=1

‖xn − μ̂μμγ̂nk
‖2

E
(11.9)

4.

δ (k) Δ
= EKM

(k) −EKM
(k−1) (11.10)

If
(
(k > 0 ∧ δ (k) ≤ δmin) ∨ (k > 1∧ (δ (k) −δ (k−1)) ≤ ε)

)
then terminate.

In the above logic, δmin and ε are two small numbers.

5. Based on the new memberships, compute the means, M(k+1) of the new clus-

ters, Xγ
(k), using the maximum likelihood estimate (sample mean), given by

Equation 6.173.

6. Increment k and repeat the procedure, starting from step 2.

Bottou and Bengio [10] show that the k-means algorithm is really a gradient

descent algorithm (see Section 25.1.1) for the quantization error, Equation 11.5.

Therefore, every iteration will decrease this error, although when a local minimum

is reached, this convergence could be arbitrarily slow.

Once the k-means procedure has completed, generally, it is interesting to com-

pute higher order statistics on the clusters which have been computed by the algo-

rithm. In most cases, especially in speaker recognition and other pattern recognition

problems, we assume that the clusters will have Gaussian (normal) distributions.

For such problems, once the clustering algorithm has converged to a set of means,

μ̂μμγ , it associates each sample vector, xn with a corresponding cluster, γ̂n, through the

defined membership index function, γ̂n = �(xn,M), and provides the number of vec-

tors, Nγ , associated with each cluster, Xγ . Therefore, all the information necessary

for estimating the covariance matrix of the samples in cluster Xγ is available. Using

this information, Equation 6.203 may be used to compute the unbiased estimate of

the sample covariance matrix, Σ̃ΣΣγ ,

Σ̃ΣΣγ =
1

Nγ −1
∑

{n:γ̂n=γ}
(xn − μ̂μμγ)(xn − μ̂μμγ)

T (11.11)
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In the same manner, the maximum likelihood estimate of the covariance matrix,

Σ̂ΣΣγ may be computed for each of the clusters, using the following equation,

Σ̂ΣΣγ =
1

Nγ
∑

{n:γ̂n=γ}
(xn − μ̂μμγ)(xn − μ̂μμγ)

T (11.12)

In most practical applications, including speaker recognition, since the amount

of data is limited, it is assumed that the values of the D dimensions of the sample

data xn are uncorrelated to be able to assume a diagonal sample covariance matrix.

This is of course, certainly not true, however, the increased estimation accuracy, in

most cases, outweighs the side-effects of this independence assumption. If we as-

sume statistical independence of the coordinates of xn, then we may use Equation

6.207 to computed the diagonal sample covariance estimate, Σ̃ΣΣγ .

11.2.2 Generalized Clustering

As we shall see later, while reviewing the k-harmonic means algorithm, [43] in-

troduces a generalized form for all centroid-based clustering algorithms and gen-

eralizes the parameter vector computation for these clustering algorithms in one

compact form. The following is the generalized expression for the γ th cluster,

ϕϕϕγ
(k) =

N

∑
n=1

ϒ
Xγ

(k) (xn)w
(k)(xn)xn

N

∑
n=1

ϒ
Xγ

(k) (xn)w(k)(xn)

(11.13)

whereϒ
Xγ

(k) (xn) is the characteristic function (membership function) of sample vec-

tor against set (cluster) Xγ
(k). See Equations 6.6 and 6.10 for examples of hard

and soft characteristic (membership) functions, respectively. w(k)(xn) is a weighting

function which may weight different samples differently, or alternatively treat them

all the same if it is set to the constant, w(xn) = 1.

For the standard Lloyd algorithm,

ϒ
Xγ

(k) (xn)
Δ
=

{
1 ∀ γ = γ̂nk

0 ∀ γ �= γ̂nk
(11.14)

where γ̂nk is prescribed by Equation 11.8, and

w(k)(xn) = 1 ∀ n ∈ {1,2, · · · ,N} (11.15)
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Hamerly and Elkan [20] have used this generalization to compare several different

clustering algorithms.

11.2.3 Overpartitioning

One practical method for limiting the effect of outliers on the convergence of the

k-means algorithm is to start with a slightly larger number of clusters, Γo > Γ and

then to reduce the number of clusters to the final goal of Γ by merging clusters, two

at a time, based on the procedure described in Section 11.2.4. This will allow out-

liers to initially fall into dedicated clusters to stop them from presenting unwanted

influence on the convergence of the rest of the clusters. Once the algorithm has

somewhat converged, the extra clusters may be combined with their neighboring

clusters, reducing their effect on the rest of the clusters. Practically, this allows for

better global convergence.

As we mentioned earlier, a decision may have to be made to either throw away

extraneous partitions formed from the outliers or to merge them with neighboring

partitions. It is important to note that keeping partitions with few samples will create

an ill-conditioned representation of the cluster by defying the law of large numbers

(Section 6.9.2), which is necessary for many of the assumptions made in this book

regarding statistics.

11.2.4 Merging

Sometimes it becomes important to reduce the number of clusters from say Γ1 to

Γ2 where Γ2 < Γ1. To do this, usually, a metric is used to compare the distance be-

tween neighboring clusters. Then the two clusters with the smallest distance get

merged into one. One reason for doing such merging may be because the amount of

data which has been associated with each individual cluster is too small to produce

meaningful statistics. Of course this type of reduction should be done sparingly.

Such outliers usually change the statistics of a cluster, making it somewhat less

appropriate for modeling the majority of data points which are associated with it.

Therefore, it is important to be able to reject outliers as well.

In general, the merging may be done on more than two clusters at once, although

it is seldom done so in practice. Usually, we try to merge two clusters and then

re-evaluate cluster memberships and statistics. Let us assume that we have picked

out Γm clusters to be merged. Each of these clusters is identified by three statistics

which are the number of vectors in each cluster, Nγ , their sample means, μ̂μμγ , and
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their sample covariance matrices, Σ̂ΣΣγ , where γm ∈ {1,2, · · · ,Γm}.

The new cluster will have the following statistics after merging its component

clusters,

Nγ =
Γm

∑
γm=1

Nγm (11.16)

μ̂μμγ =

Γm

∑
γm=1

Nγmμ̂μμγm

Nγ
(11.17)

Σ̂ΣΣγ =

Γm

∑
γm=1

NγmΣ̂ΣΣγm

Nγ
(11.18)

Σ̃ΣΣγ =

Γm

∑
γm=1

(Nγm −1)Σ̃ΣΣγm

Nγ −1
(11.19)

11.2.5 Modifications to the k-Means Algorithm

Although the k-means algorithm is quite useful in many applications including vec-

tor quantization and cluster initialization for mixture models, it presents a few stum-

bling blocks which have been the focus of many research projects since the inception

of the algorithm. The two most important problems with the k-means algorithm are

its extremely slow convergence at times and more importantly its major dependence

on the initial guesses for the cluster parameters, ΦΦΦ (0).

Both of these problems have been tackled by many researchers in different ca-

pacities. In this section, we will examine some of the solutions for reducing the

effects of the initial parameters and convergence acceleration techniques. Some of

these techniques are discussed in the following subsections and some, which are

significantly different, are presented in their own sections later on.

11.2.5.1 Gaussian k-Means

As we noted, one of the problems with the k-means algorithm is the hard deci-

sion (binary membership) it makes regarding its membership function since it uses

the Euclidean distance. One way to somewhat address this problem is to change

the distance measure to the Mahalanobis distance, assuming a normal distribution

within each cluster. ThenΦΦΦ (k) will actually include the estimate of the mean vector,
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μ̂μμ(k)
γ , and the sample covariance matrix, Σ̂ΣΣ

(k)
γ . Therefore, the objective function of

Equation 11.5 will be modified to include the covariance information, as follows,

EGKM({x}N
1 ,ΦΦΦ) =

N

∑
n=1

min
γ

[(
xn − μ̂μμγ

)T (
Σ̂ΣΣγ

)−1(
xn − μ̂μμγ

)]
(11.20)

Similarly, the membership for the kth iteration is then given by the following,

γ̂nk
Δ
= �(xn,ΦΦΦ

(k))

= argmin
γ

dM

(
xn, μ̂μμ

(k)
γ

)
= argmin

γ

[(
xn − μ̂μμ(k)

γ

)T (
Σ̂ΣΣ

(k)
γ

)−1(
xn − μ̂μμ(k)

γ

)]
(11.21)

One of the major problems with this technique is that it increases the computa-

tional load of the algorithm, slowing down even more. Since the k-means algorithm

is already a very slow procedure, the increased complexity is usually not tolerable.

For this reason, in most practical cases, the regular Lloyd algorithm is used until

convergence is achieved. Then, a few steps of Gaussian k-means are performed.

In the Gaussian k-means algorithm, the characteristic function and weight, de-

fined in Section 11.2.2, may be written as follows,

ϒ
Xγ

(k) (xn)
Δ
=

{
1 ∀ γ = γ̂nk

0 ∀ γ �= γ̂nk
(11.22)

where γ̂nk is given by Equation 11.21, and

w(k)(xn) = 1 ∀ n ∈ {1,2, · · · ,N} (11.23)

Note that the only difference between the characteristic functions of the Gaussian

and standard k-means algorithms is the difference in the membership index func-

tions in Equation 11.21 and 11.8. Also, the weights are identical between the two

algorithms.

11.2.5.2 Modified k-Means

Many modifications have been made to the k-means algorithm, basically making

nominal changes, to be able to either increase the convergence speed of the algo-

rithm or to make it converge to a better local minimum. In 1990, Green, et. al [19]

reviewed the literature, up to that date, for several optimal weighting k-means pro-

cedures and showed that the performance of these techniques is also very much tied

to the initial partitioning of the space.
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Among these modifications to the k-means algorithm, there is one known, simply,

as modified k-means which has set out to achieve both of these improvements. This

modification was introduced by Lee [28] in 1997. One problem with the modified

k-means approach is that it lacks sound theoretical backing and it deviates from a

basic premise, the, so called, centroid condition, requiring that the centroids at each

iteration be computed according to step 5 given in the statement of the k-means al-

gorithm (Section 11.2.1).

This idea follows the opinion that perturbing the location of the centroids would

act toward the stabilization of the global convergence of statistical systems. This

idea has been inherited from material science in the, so called, annealing technique

used for growing stable crystals, especially in producing strong steel alloys. In tra-

ditional crystal optimization, instead of quickly cooling the material, while building

the crystal, gradual cooling is sometimes followed by a marginal amount of heating

to allow the crystals to be formed in a globally optimal structure rather than one

which is locally optimized. The same idea was introduced into global optimization

techniques used for training neural networks by Kirkpatrick in 1983 [26] (see Sec-

tions 25.4.1 and 25.6). These types of techniques are known as stochastic relaxation

methods [42].

Therefore, the modification introduced by [28] is a perturbation technique for the

means of the clusters. As we stated at the beginning of this section, it amounts to

modifying step 5 of the k-means algorithm as follows,

Modified step 5 for the k-means algorithm:

Compute the Γ mean vectors (columns of M(k+1)) as prescribed by step 5 of the

basic k-means algorithm. Since in the modified algorithm these will not be the actual

centers, let us call these vectors, μ̃μμ
(k+1)
γ instead of μ̂μμ(k+1)

γ . Then the new centroids

will be picked as

μ̂μμ(k+1)
γ = μ̂μμ(k)

γ +α
(
μ̃μμ

(k+1)
γ − μ̂μμ(k)

γ

)
(11.24)

where α is proposed by [28] to be 1 ≤ α < 2, based on empirical results. α = 1

coincides with the basic Lloyd algorithm. When α = 2, the new center will be the

reflection of the centroid at iteration k about the centroid at iteration k +1 given by

the Lloyd algorithm. When α = 2, the reflected centroid coincides with the proposal

of Jancey in 1966 while performing botanical clustering [23, 24].

Lee [28] empirically shows that when α approaches 2 (the Jancey algorithm), the

convergence begins to slow down and the objective function values become less op-

timal according to tests with pixel clustering applications on standard images. [28]

suggests that α = 1.8 produces optimal results for these pixel clustering applica-

tions and that up to this value, by increasing α , the rate of convergence increases

and better local minima are attained.
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11.2.6 k-Means Wrappers

k-Means wrappers [20] are techniques that try to improve unsupervised cluster-

ing by using some version of the k-means algorithm as a component of the overall

clustering scheme. Some, like the global k-means [29] approach, operate by prolif-

erating different initial conditions to find a global optimum. Here we will discuss a

few such techniques.

11.2.6.1 Efficient k-Means

The algorithm introduced by [45], is a wrapper which splits the sample data, {x}N
1

into M random sets, Am,m ∈ {1,2, · · · ,M} and conducts overpartitioned k-means

clustering (see Section 11.2.3) on each of these sets. Then it uses the M sets of Γo

clusters to evaluate the k-means objective function (Equation 11.5) against all the

data. The set of clusters that produces the smallest objective function is chosen as

the initial set of clusters for the overpartitioned k-means procedure applied on the

total sample set, {x}N
1 . The merging techniques of Section 11.2.4 are then used to

reduce the number of clusters to the target Γ clusters as described in Section 11.2.3.

Zhang, et al. [45] show that this technique helps improve convergence into a more

global optimum, in some occasions. Reference [27], also, shows some improvement

over the standard k-means algorithm in its study.

11.2.6.2 Global k-Means

Likas, et al. [29] introduced a k-means wrapper which they call global k-means to

combat convergence into a local minimum, when using the k-means algorithm. The

basic technique, introduced in [29], starts with one cluster and builds up the number

of clusters through a global search, starting with a prescribed initial location.

The following is the procedure for the global k-means clustering algorithm.

1. Set the first cluster center, μ̂μμ
(0)
γ=1 equal to the sample mean of the whole sample

data, {x}N
1 .

2. Choose the next Γ − 1 clusters, one-by-one, such that μ̂μμ
(0)
γ+1 is chosen from

the remaining pool of samples, Aγ = {x ∈ {{x}N
1 \

γ⋃
i=1

μ̂μμ
(0)
i }} by running one

full execution of the k-means algorithm and picking the sample point which

produces the smallest value of the objective function.
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Unfortunately, at every cluster evaluation, this technique ends up doing N execu-

tions of the k-means algorithm for a set of samples, {x}N
1 . This is quite impractical

for problems of interest in speaker recognition. The number of feature vectors, N,

which are used as data samples being clustered in D-dimensional space is usually

quite large and this prohibits the use of this technique. For this reason, [29] pro-

vides an acceleration method which avoids running the k-means algorithm so many

times, by making an assessment of the upper-bound of the error based on different

iterations. Also, a k-d tree2 is proposed in the paper to facilitate the initialization of

the clusters. The avid reader is referred to [29] for the details, as well as to [40] for

the description of a variant of this algorithm called the kernel-based global k-means

algorithm which uses kernel ideas discussed in the next section.

11.2.6.3 Kernel k-Means

Several kernel k-means techniques have been described in the literature. These tech-

niques use the, so called, kernel trick, discussed in detail in Chapter 15. In summary

the, so called, kernel trick was first described by Aizerman [1] in 194. Burges [11]

called it by that name. This kernel mapping technique (see Section 15.3) uses a func-

tion, ψψψ , to map the observation space (X ,X), to a complete inner product space of

higher dimensions, (H ,H),

ψψψ : (X ,X) �→ (H ,H) (11.25)

Most of the techniques in this chapter may be converted to their kernel alternatives

by replacing x in the objective function associated with the clustering technique

withψψψ(x). For the standard k-means (Lloyd) algorithm (Section 11.2.1), this would

mean the modification of Equation 11.5 in a manner that would lead to the kernel

k-means algorithm described by Dhillon, et al. [14]. As in the case of support vec-

tor machines (Chapter 15), the computation of the objective function and the mean

will result in terms which only contain the inner products (Definition 24.49) of the

mapping functions, ψψψ(x). For example, by defining a linear kernel,

(KKK )[i][ j]
Δ
= K (ψψψ i,ψψψ j) (11.26)

= K (i, j) (11.27)

=
〈
ψψψ i,ψψψ j

〉
(11.28)

the objective function may be represented in terms of the kernel function (Defini-

tion 24.56).

Let us formulate the above statement. The objective function for the standard

k-means clustering algorithm is given by plugging Equation 11.6 into Equation 11.5

2 A k-d tree, also known as a k-dimensional tree, is a multidimensional binary tree structure which
is used for conducting search. It was introduced in 1975 by Bentley [6].
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and replacing xn with ψψψ(xn), to produce the following,

E(X ,ΦΦΦ) =
N

∑
n=1

min
γ

‖ψψψ(xn)− μ̂μμγ‖2

E
(11.29)

where the mean vector is now computed in the feature space (see Chapter 15),

ψψψ ∈ H .

The sample mean vector, μ̂μμγ , for every cluster, γ , may be written in terms of the

new mapping, ψψψ as follows,

μ̂μμγ =
1

Nγ
∑

{n:γ̂n=γ}
ψψψ(xn) (11.30)

For simplicity, let us define the following shorthand notation,

ψψψn
Δ
=ψψψ(xn) (11.31)

Using this shorthand notation and the expression for the sample mean vector given

by Equation 11.30, we may write the square of the norm in Equation 11.29, only in

terms of dot products, as follows,

‖ψψψ(xn)− μ̂μμγ‖2

E
= 〈ψψψn,ψψψn〉

− 2

Nγ
∑

{m:γ̂m=γ}
〈ψψψn,ψψψm〉

+
1

N2
γ

∑
{l:γ̂l=γ}

∑
{m:γ̂m=γ}

〈ψψψ l ,ψψψm〉 (11.32)

Using the definition of Equation 11.27, we may rewrite Equation 11.29 in terms of

the Kernel function as follows,

E(X ,ΦΦΦ) =
N

∑
n=1

min
γ

K (n,n)

− 2

Nγ
∑

{m:γ̂m=γ}
K (n,m)

+
1

N2
γ

∑
{l:γ̂l=γ}

∑
{m:γ̂m=γ}

K (l,m) (11.33)

Equation 11.33 may be used to perform the k-means steps as we did before. By

choosing a higher dimensional space, we may be able to achieve linear separability

in the feature space, H , where the sample space, X , may be nonlinearly separable.

A lot more will be said about this concept in Chapter 15.
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As we mentioned before, kernel extensions may be applied to most other cluster-

ing techniques. An example is the kernel global k-means technique [40].

11.2.6.4 k-Means++

In 2006, [2] introduced a new initialization technique for the clusters of the k-means

algorithm. This algorithm basically replaces step 1 of the standard Lloyd algorithm.

Reference [2] presents an elaborate review of the technique and provides details of

the theory behind this selection. Here, we have reproduced the step-by-step proce-

dure for the k-means++ algorithm using the nomenclature of this textbook.

1. Set the first cluster center, μ̂μμ
(0)
γ=1 equal to a sample chosen in random from the

sample data, {x}N
1 .

2. Choose the next Γ −1 clusters, one-by-one, such that μ̂μμ
(0)
γ+1 is chosen from the

remaining pool of samples, Aγ = {x ∈ {{X}N
1 \

γ⋃
i=1

μ̂μμ
(0)
i }} using the following

probability distribution,

p(xn) =

(
dKM

(
xn,X

γ
1

(0)
))2

∑
N
i=1

(
dKM

(
xi,X

γ
1

(0)
))2

∀ x (11.34)

where X γ
1

(0)
is the set of clusters, {X j

(0) : j ∈ {1,2, · · · ,γ}} and,

dKM

(
xn,X

γ
1

(0)
)

Δ
= min

1≤ j≤γ
‖xn − μ̂μμ

(0)
j ‖

E
(11.35)

Note that based on Equation 11.34,

p(x) = 0 ∀ x = μ̂μμ
(0)
i , i ∈ {1,2, · · · ,γ}. (11.36)

Therefore, any data point will never be picked as a center more than once.

3. Perform the standard Lloyd algorithm of Section 11.2.1, starting from Step 2

onward.

Note that this technique is somewhat similar to the global k-means algorithm dis-

cussed in Section 11.2.6.2, with the exception that instead of running the k-means

procedure N times, a probability distribution is used. This probability distribution

which is based on the Euclidean distance, reduces the computation load. The differ-

ence in the computational load is significant.

Kumar and Wasan [27] have shown that the k-means++ algorithm has superior

accuracy on their selected data, when compared to Lloyd (Section 11.2.1), global k-

means (Section 11.2.6.2), efficient k-means (Section 11.2.6.1), and x-means (Section
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11.2.6.6) algorithms. k-means++ is basically an initialization modification wrap-

per. As we will see, there are techniques which make fundamental changes to the

k-means algorithm, by changing the objective function and adding adaptive weight-

ing techniques, such as the general k-harmonic means algorithm which will be dis-

cussed in Section 11.2.9.

11.2.6.5 Linde-Buzo-Gray (LBG) Algorithm

The Linde-Buzo-Gray (LBG) algorithm was introduced in 1980 [30]. It was intended

as a wrapper around the Lloyd algorithm. However, it may be used to wrap any un-

supervised clustering algorithm. It is a hierarchical partitioning technique which due

to its binary partitioning, will always create clusters which are based on powers of

two, in number. Therefore, the input to the algorithm would have to be a sample data

set, {x}N
1 , as in any other clustering algorithm, but the number of target clusters, Γ ,

would have to be perfect powers of two.

Here is how the LBG algorithm works:

1. Starting with a sample data set, {x}N
1 , create one main cluster with its mean

being the sample mean of the whole set and set the iteration k = 0.

2. Given the current number of clusters, Γk = 2k, split each cluster into two new

clusters, the mean of each new cluster being given by,

μμμγk

(k+1) = μμμγk

(k) +εεε (11.37)

μμμ(γk+Γk)
(k+1) = μμμγk

(k) −εεε (11.38)

where εεε is any small perturbation vector.

3. Increment k.

4. Use the new Γk cluster centers as initial conditions for the k-means algorithm

and run k-means until convergence.

5. If Γk ≥ Γ , terminate.

The LBG algorithm has similar performance to that of the standard Lloyd algorithm,

both in terms of accuracy and speed, as it relates to clustering features in the speaker

recognition problem.

11.2.6.6 x-Means

In 2000, Pelleg and Moore [38] introduced a clustering technique in order to ad-

dress some of the problems associated with k-means clustering. The claim was that

the new method, called the x-means algorithm, would possess better computational

scalability, would not require the prescription of the number of clusters, Γ , and
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would have better global convergence.

Since one of the claims of x-means clustering is to estimate the number of clus-

ters, Γ , from the data set, a lower bound, Γmin and an upper bound, Γmax are provided

to the algorithm. It starts with Γmin clusters and keeps increasing the number of clus-

ters, keeping track of its performance for each Γk : Γmin ≤ Γk ≤ Γmax. Once it reaches

Γmax clusters, it chooses that Γk which had produced the best results.

Therefore, beginning with Γ(k=0) = Γmin, the basic steps are as follows,

1. Improve parameters – Run the k-means clustering algorithm on the data, using

Γk until convergence.

2. Improve structure – Split some of the clusters to obtain a new set of Γ(k+1)

clusters.

3. If Γk < Γmax, increment k and repeat from step 1. Otherwise, terminate.

Steps 1 and 3 are quite well-defined. Reference [38] gives the following proposal

for the step which is used to improve the structure.

1. Split every cluster into two.

2. Move out the centers of the two children to the means of the two split spaces.

3. Run a local k-means clustering procedure for each two-cluster set until con-

verged.

4. For each new two cluster group, compute a Bayesian information criterion

(BIC) score for the two child clusters and the original parent cluster and drop the

proposition with the worse score. Therefore, for each cluster, either the parent

or the pair of children is kept.

Pelleg [38] makes several assumptions regarding the x-means formulation. The first

assumption is that all clusters will have an identical variance which is given by the

following maximum likelihood estimate,

σ̃2 =
1

N −Γk

N

∑
n=1

(
xn −μγ̂nk

)
(11.39)

where γ̂nk is defined by Equation 11.21. This is a simple-minded view of the variance

of the points, where it is assumed that every dimension of the data has an identical

spherical distribution and that all the dimensions are statistically independent from

one-another. Namely,

(
Σ̃ΣΣγ

)
[i][ j]

=

⎧⎨⎩
0 ∀ i �= j

σ̃2 ∀ i = j

(11.40)

The BIC score (see Section 10.6.2) is given by Equation 10.50, which is repeated

here for convenience,

BIC(ΦΦΦ (k))
Δ
= �(ϕ̂ϕϕΓk

)−M(k)(
1

2
lnN) (11.41)



374 11 Unsupervised Clustering and Learning

Using the assumptions made by [38], the number of free model parameters would

be given as follows,

M(k) = (Γk −1)+DΓk +1 (11.42)

The first term of Equation 11.42 is related to the class probabilities (priors). Since

there is a constraint such that the sum of these probabilities would be 1, only Γk −
1 of them are considered to be free parameters. The second term corresponds to

the Γk D-dimensional mean vectors which would have to be estimated. The last

term is a single parameter related to the estimation of the shared variance given by

Equation 11.39. If we allow for a more realistic variance computation in contrast to

the one proposed by [38], we should change this number from 1 to whatever number

of variance parameters that would be estimated. Alternatives could be

1. estimation of D shared variance parameters associated with the different dimen-

sions of the data, but shared across all clusters

2. estimation of ΓkD variance parameters associated with the diagonal elements of

the γk clusters, each being D-dimensional

3. estimation of ΓkD2 variance parameters associated with full covariance matrices

for every one of the Γk clusters

At this point, to compute the BIC for parametric model, we need to compute the

maximum likelihood estimate of the data associated with each model. Note that we

are working with discrete random variables. Therefore, assuming a normal distribu-

tion, we may compute the, so called, point probability for each of the data points

given the parametric model of choice. This is done by dividing the continuous nor-

mal probability density function of Equation 6.196 by the total number of points in

the cluster,

P̂(xn|ϕϕϕγ̂nk
) =

1

Nγ̂nk

p̂(xn|ϕϕϕγ̂nk
) (11.43)

=
1

Nγ̂nk

1

(2π)
D
2

∣∣ΣΣΣ γ̂nk

∣∣ 1
2

exp

(
−1

2
(xn −μμμγ̂nk

)TΣΣΣ−1
γ̂nk

(xn −μμμγ̂nk
)

)
(11.44)

Therefore, the total likelihood of the data would be given by the following

L (ΦΦΦ (k)|{x}N
1 ) =

N

∏
n=1

P̂(xn|ϕϕϕγ̂nk
) (11.45)

The log-likelihood of the data with respect to the parametric model k may then be

written as follows,
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�(ΦΦΦ (k)|{x}N
1 ) =

N

∑
n=1

�(ϕϕϕγ̂nk
|xn) (11.46)

= −
(

ln(Nγ̂nk
)+

d

2
ln(2π)+

1

2
ln
∣∣ΣΣΣ γ̂nk

∣∣+
1

2
(xn −μμμγ̂nk

)TΣΣΣ−1
γ̂nk

(xn −μμμγ̂nk
)

)
(11.47)

which makes the BIC associated with each model selection given by the following,

BIC(ΦΦΦ (k)) = �(ΦΦΦ (k)|{x}N
1 )− 1

2
M(k) ln(N) (11.48)

where �(ΦΦΦ (k)|{x}N
1 ) is given by Equation 11.47, M(k) is given by Equation 11.42 in

the simplest case and is modified by the pertaining case following right after Equa-

tion 11.42.

Equation 11.48 was derived for the whole data depending on which parametric

model is selected. It is, however, easily modified to relate to any one or more chosen

clusters when it comes to the splitting step of the algorithm.

Note that [38] has suggested the simple symmetrically, independently and iden-

tically distributed case. Here, we have extended the method to include the more

general cases including any normally distributed clusters.

Similar to global k-means, [38] also proposes the use of k-d trees (see Sec-

tion 11.2.6.2) to accelerate the x-means algorithm.

11.2.7 Rough k-Means

One other problem which indirectly helps the slow convergence and sensitivity to

initial parameters in k-means clustering is the inherent tendency to create a strong

bond between the cluster centers and their member samples, not allowing samples to

change their cluster membership that easily. Solving this issue will, indirectly, help

alleviate the major problems listed in Section 11.2.5. [31] introduced a k-means

algorithm where the clusters were modified to be fuzzy and rough sets instead of

traditional sets with crisp boundaries. In Section 6.1.2, we introduced the concept

of a rough set.

According to [31], since the subsets of X may, theoretically, not be completely

represented by the sampled data, not all of Pawlak’s rough set properties [37, 39]

may be verifiable. However, [31] proposes that the following three basic properties
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must be met. Let us define the equivalence relation, P, associated with the partition-

ing of the sample space, X , due to this approach. Then,

1. xn may be a member of no more than one lower approximation,

xn ∈ P(Xγ̂
n
) (11.49)

with the following lower approximation membership,

γ̂n
Δ
= �(xn,ΦΦΦ) (11.50)

where �(xn,M) will be defined later.

2. xn ∈ P(Xγ̂
n
) =⇒ xn ∈ P(Xγ̂

n
)

3. if � γ̂
n

: xn ∈ P(Xγ̂
n
) then xn ∈ {P(Xγζ )} ∀ ζ = {1, · · · ,Z} : Z ≥ 2

Assuming Γ clusters, the objective of rough k-means clustering is to determine

the lower and upper approximations of the Γ clusters given the partitioning scheme

at hand, P. These rough set approximations, representing the Γ clusters are denoted

by,
(
P(Xγ),P(Xγ)

)
where γ = {1,2, · · · ,Γ }.

Then Lingras [31] proposes the following expression for computing the parame-

ter vector, ϕϕϕγ
(k), for each of the Γ clusters,

ϕϕϕγ
(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω ∑
x∈P(Xγ

(k))

x

|P(Xγ
(k))| +

∀ γ : BP(Xγ
(k)) �= {∅}

ω ∑
x∈BP(Xγ

(k))

x

|BP(Xγ
(k))|

ω ∑
x∈P(Xγ

(k))

x

|P(Xγ
(k))| ∀ γ : BP(Xγ

(k)) = {∅}

(11.51)

where BP(Xγ
(k)) is the boundary of P(Xγ

(k)) with P(Xγ
(k)), as defined by Equa-

tion 6.9. In Equation 11.51, ω and ω are weighting parameters which specify the

relative importance of the lower and upper approximations of the sets. In this equa-

tion, if the boundary, BP(Xγ
(k)), is empty, it means that the lower and upper ap-

proximations of every cluster are identical, reducing the clustering technique to the

conventional k-means clustering algorithm.

Since the rough k-means algorithm has devised a method for computing the clus-

ter parameters at every iteration,ΦΦΦ (k), it also needs to devise a membership function

for the lower and upper approximations. Let us define the following two index sets

for each sample, xn. First we should define the following set for each sample, xn at

iteration k,
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Gnk
Δ
= {γ : ‖x−ϕϕϕγ‖2

E −‖x−ϕϕϕγ̂‖2
E

≤ θ ∀ γ, γ̂ = {1,2, · · · ,Γ } : γ �= γ̂} (11.52)

where θ is a similarity threshold which is provided to the rough k-means algorithm

as an input parameter. Based on Equation 11.52, the membership of xn into lower

and upper approximations of the clusters may be computed. Note that the number

of members in the set of indices for lower approximations may never be more than

one. Also, to meet the third basic property listed at the beginning of this section,

when Gnk �= {∅}, then xn may not belong to any lower approximations, and it will

belong to two or more upper approximations. Namely,

Gnk
Δ
=

{ {γ̂nk} ∀ Gnk = {∅}
{∅} ∀ Gnk �= {∅} (11.53)

Also,

Gnk
Δ
=

{ {γ̂nk} ∀ Gnk = {∅}
Gnk ∀ Gnk �= {∅} (11.54)

where γ̂nk is given by the k-means membership index function, Equation 11.8.

Therefore, the three parameters, ω , ω , and θ are design parameters which must

be chosen for the application and the data of interest. Using these parameters, for

each iteration, the parameter vectors (centroids) of the clusters may be computed us-

ing Equation 11.51. Then, the membership of each sample vector, xn, is determined

by using Equations 11.52, 11.53, and 11.54.

Lingras [31] uses rough k-means clustering to cluster the users of websites into

different overlapping categories. It is easy to see that this non-empty boundary of

the lower approximation with its complement could easily take place in many in-

carnations of clustering used for speaker recognition as well as any other pattern

recognition technique.

11.2.8 Fuzzy k-Means

Much in the same spirit as the rough k-means algorithm, several fuzzy k-means al-

gorithms have been proposed. [20] cites one by Bezdek [7] which provides expres-

sions for the fuzzy membership function and the parameter vector evaluation for the

clusters. The objective function of the fuzzy k-means algorithm proposed by [7], in

contrast with Equation 11.5 for the k-means algorithm, may be written as follows,

EFKM(X ,ΦΦΦ) =
N

∑
n=1

ur
nγ‖xn −ϕϕϕγ‖2

E (11.55)
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where unγ : ∑
Γ
γ=1 unγ = 1,unγ ≥ 0 ∀ n,γ and r : r ≥ 1 is the fuzzification parameter

such that a larger r would make the membership more fuzzy.

In Section 6.1.3, we saw how to transform a problem from the rough set for-

mulation to a fuzzy set formulation. The formulation of the rough k-means which

was discussed in Section 11.2.7 may also be reformulated using the methodology of

Section 6.1.3 to produce a fuzzy k-means algorithm.

Based on the generalization of Section 11.2.2, we may write the characteristic

function for the fuzzy k-means algorithm as follows [20],

ϒ
Xγ

(k) (xn)
Δ
=

‖xn −ϕϕϕγ
(k)‖

−2
(r−1)

E
Γ

∑
γ=1

‖xn −ϕϕϕγ
(k)‖

−2
(r−1)

E

(11.56)

Although the fuzzy k-means algorithm uses soft memberships, the weight, w(k)(xn)
is still 1. In the next section, we will discuss a different technique which seeks to

use different weighting for the sample vectors as well as using a soft membership.

11.2.9 k-Harmonic Means Algorithm

The k-harmonic means algorithm was introduced by Zhang et al. [44] in 1999 and

later, in [43] a generalized version was introduced, replacing the Euclidean dis-

tance with a more general Lp distance. This algorithm is influenced by the k-means

algorithm, based upon two main distinguishing characteristics. First, as the name

suggests, it replaces the min function in the objective function of the k-means algo-

rithm (Equation 11.5), with the harmonic mean of the Euclidean distances between

the samples and all the cluster centers.

As we noted in Definition 6.80, the harmonic mean does have a somewhat

minimum-like characteristic in the sense that it tends to become small when there is

an exceptionally small member within its samples. This is designed to handle one

of the inherent problems in k-means clustering, which is tendency to create a strong

bond between the cluster centers and their member samples, not allowing samples

to change their cluster membership that easily. Zhang [43] refers to this feature as a

winner-takes-all strategy. There have been other approaches toward alleviating this

problem, such as the use of fuzzy sets theory to soften the cluster membership of

samples – see Section 11.2.8.

The objective function for the basic k-harmonic means algorithm may be written

as follows,
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EKHM({x}N
1 ,ΦΦΦ) =

N

∑
n=1

Γ
Γ

∑
γ=1

1

‖xn−ϕϕϕγ‖2
E

(11.57)

In the generalized version of the algorithm, introduced in [43], the power of

the norm3 in Equation 11.58 was changed from 2 to a prescribed parameter, p. To

avoid confusion of notation, since we generally use p for probabilities, in this book,

we shall use ρ to denote this parameter. Therefore, the objective function for the

generalized k-harmonic means algorithm may be written as,

EKHMρ({x}N
1 ,ΦΦΦ) =

N

∑
n=1

Γ
Γ

∑
γ=1

1

‖xn−ϕϕϕγ‖ρE

(11.58)

To obtain the optimal parameter vectors for the clusters of the k-harmonic means

algorithm, [43] takes the gradient of Equation 11.58 with respect to the parameter

vectors and sets it to zero,

∇ϕϕϕγ EKHMρ({x}N
1 ,ΦΦΦ) = −Γ

N

∑
n=1

ρ(xn −ϕϕϕγ)

d
(ρ+2)
γn

(
Γ

∑
γ̃=1

1

d
ρ
γ̃n

)2
(11.59)

= 0 ∀ γ ∈ {1,2, · · · ,Γ } (11.60)

where,

dγn
Δ
= ‖xn −ϕϕϕγ‖E (11.61)

Solving the set of equations stemming from Equation 11.60 for the parameter

vectors produces results which fit into the form of Equation 11.13. To make sure that

the properties of the characteristic equations given by Equations 6.7 and 6.8 hold,

the characteristic Equation and weight are given by the following two relations.

ϒ
Xγ

(k) (xn) =

1

d
(ρ+2)
γn

Γ

∑
γ̃=1

1

d
(ρ+2)
γ̃n

(11.62)

and

3 [43] states that there is a possibility of using an Lp-norm (see Definition 23.8), however, doing so
will not provide us with centroids. Use of the Euclidean norm will preserve the centroid properties
of the parameter vectors for the clusters.
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w(k)(xn) =

Γ

∑
γ̃=1

1

d
(ρ+2)
γ̃n(

Γ

∑
γ̃=1

1

d
(ρ)
γ̃n

)2
(11.63)

Zhang [43] compares the performance of the general k-harmonic means algo-

rithm with that of k-means and the expectation maximization (see Section 11.3.1)

algorithms, using different values for ρ . Based on these results, 3.0 ≤ ρ ≤ 3.5 gener-

ally outperforms other algorithms and its convergence shows much less dependence

on the choice of the initial conditions. [43] attributes some of the success of the re-

sults to the fact that the weighting function (Equation 11.63) becomes much smaller

for samples which are close to one of the centroids, when ρ > 2. This behavior acts

as a boosting function used in supervised learning techniques [17]. It amplifies the

effects of points that are not close to centers in determining the clusters in the next

iterations. This will reduce the chance of multiple clusters becoming stagnant in the

presence of a local data cluster.

11.2.10 Hybrid Clustering Algorithms

[20] uses a combination of features from the k-means and k-harmonic means al-

gorithms to create hard membership and soft membership hybrid clustering algo-

rithms. This is done by creating the two other possible combinations of mixing the

characteristic equation and weight from the k-means algorithm given by Equations

11.14 and 11.15 with those of the k-harmonic means algorithm in Equations 11.62

and 11.63.

Therefore, the hard membership hybrid algorithm is the one using Equation

11.14 for its characteristic equation and Equation 11.63 for its weight. Similarly, the

soft membership hybrid algorithm uses Equation 11.62 for its characteristic equa-

tion and Equation 11.15 for its weight.

It is easy to imagine that a prolific array of different clustering algorithms may be

generated by mixing the characteristic equations and weights of the different algo-

rithms discussed in this chapter. However, it is important to try and understand the

physical interpretations of these different combinations and not to be carried away

with all the different possibilities at hand.
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11.3 Estimation using Incomplete Data

The techniques in this section are designed to estimate higher order statistics as well

as the means of the clusters being identified. They generally use similar objectives

as in the previous section, with somewhat more refined requirements and assump-

tions about the distribution of the data in the clusters they identify.

For example, the techniques in Section 11.2 estimated the means of the clus-

ters using some maximum likelihood criteria (for example by computing the sample

mean which was seen to be the maximum likelihood solution). However, they gen-

erally did not make any assumption about the distributions of the data within each

cluster. Of course, after the centroids are computed, most practical implementations

compute higher order statistics for the found clusters.

In the methods of this section, more assumptions are made about the distribu-

tion of the data within each cluster as well as across the different clusters. This is

generally in the form of assuming a distribution of the exponential family such as a

Gaussian (normal) distribution. The most popular technique is the expectation max-

imization (EM), which will be discussed here in detail.

11.3.1 Expectation Maximization (EM)

Expectation maximization (EM)4 is an iterative methodology for the maximum like-

lihood estimation of the parameters that best represent the sufficient statistics of a

random variable based on the observation of incomplete data. By incomplete data,

we mean that the true data samples leading to the computation of the sufficient statis-

tics of the data are not completely observed. The unseen data is also known as hidden

data or missing data. This concept is used in formulating Gaussian mixture models

and hidden Markov models and will be examined, in detail, later.

The EM algorithm was first properly introduced by Hartley in 1958 [21] and

later formalized by Dempster, et al. in 1977 [13]. Although there was earlier work

(1956) [22] presenting special cases of the EM algorithm and many intermediate

works between 1958 and 1977 [34], still [13] presented the most complete treat-

ment of EM. In the interim, in 1966 [3] and then later in 1970 [4] Baum, et al.

presented the same algorithm for the special case of estimating the parameters of

Markov chains in an efficient manner. The name, expectation maximization, stems

from the two main steps of expectation computation and maximization (maximum

4 By some accounts, EM is not an algorithm. It is simply a methodology which may be used
to produce many different algorithms [34]. However, in accordance with popular references, we
occasionally refer to it as an algorithm.
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likelihood estimation) in the structure of each of its iterations.

Expectation maximization (EM) is an iterative process which is highly depen-

dent on the initial selection of the cluster statistics. In addition, per iteration, it is

more costly than any of the other unsupervised clustering techniques presented here.

However, it is quite attractive since it uses the Mahalanobis distance in its objective

function and since it may use incomplete data. Given these facts, the EM algorithm

is generally used as a fine tuning step, after the means of the clusters have somewhat

converged, using any one of k-means, LBG, k-harmonic means, or other standard al-

gorithms. Since it uses the Mahalanobis distance, a few steps at the end of another

clustering regimen, using the EM algorithm, will result in a better estimate of the

means and variances of the clusters.

The original EM algorithm, as described by Dempster, et al. [13], did not pre-

scribe any estimate for the covariance matrix of the maximum likelihood estimate

(MLE), but later modifications added such an estimate to the algorithm.[34] Here,

we will also examine the use of this estimate. Since EM, in its raw form, is con-

cerned with maximizing the likelihood, it applies to both the frequentist [35] and the

Bayesian [15] communities. However, in the approach taken by most of the speaker

recognition community, the Bayesian concept of a-posteriori probability needs to

be maximized in order to be able to make a recognition decision. This leads to a

slight addition to the original EM algorithm to maximize the a-posteriori probabil-

ity instead of just the likelihood. We have also seen that in some cases, such as the

binary hypothesis theory, we are simply interested in the likelihood estimates.

Although the EM algorithm may be used for any random variable X , for simplic-

ity, [13] considers the regular exponential family (Section 6.10). Later, Dempster,

et al. [13] generalize the algorithm for the more general curved exponential family

and, eventually, with further generalization the handling of any likelihood function

becomes possible. In speaker recognition, we are mostly interested in a special case

of the regular exponential family, namely the normal density family. We will for-

mulate the problem for the whole Darmois-Koopman-Pitman exponential family

discussed in Section 6.10, and then look at the generalized version of the algorithm.

Later, we will consider the Bayesian maximum a-posteriori (MAP) formulation

by introducing the prior probability density of the parameter vector. In Section 13.7,

we shall study the normal density case in more detail.

Let us examine the EM algorithm in a light which would be in tune with our

concerns within the field of speaker recognition.
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11.3.1.1 Formulation

As we noted in Section 10.1, we are interested in learning the parameters of a para-

metric model which models the behavior of a random variable, {X : x ∈ X = RD},

in a maximum likelihood sense. Namely, we would like to solve the following prob-

lem,

ϕ̂ϕϕ = argmax
ϕϕϕ

�(ϕϕϕ|{x}N
1 ) (11.64)

where {x}N
1 is a set of underlying (complete) data for the problem of interest. How-

ever, often we are not able to observe the true sample vectors, {x}N
1 . Instead, we

may have to base our decision on the observed vectors which may be defined by a

transformation (Section 6.5.5) of the complete data, also known as the incomplete

data [13]. Let us consider the following transformation, T , from the complete data,

x to the observed (incomplete data), y, where {Y : y ∈ Y = RD}. Here, for the sake

of simplicity, we are assuming that sample spaces X and Y are defined within the

same Cartesian product space (see Section 6.2.2). However, this assumption is by

no means necessary. We can describe transformation T as follows,

y = T (x) ∀ x ∈ X (11.65)

where T : (X ,X) �→ (Y ,Y) is a measurable transformation which is not neces-

sarily one-to-one and invertible – see Definition 6.52. That is to say that having

observed the samples of Y may not provide us with all the information necessary to

be able to deduce X . In this case, the system is said not to be fully observable – see

[16].

Note that in Section 10.1, the observation was coincident with the complete data

and there was no distinction made between the two. One of the strengths of the EM

algorithm is its use of an observation which may not be the same as X or the true

state of the system.

Since the observed data, y, and the complete data, x, generally occupy different

parts of their corresponding spaces, we may write the parametric approximation to

the probability density of y, denoted by pY (y|ϕϕϕ), in terms of the parametric approx-

imation to the probability density of x, denoted by pX (x|ϕϕϕ) as follows,

pY (y|ϕϕϕ) =

ˆ
T (y)

pX (x|ϕϕϕ)dx (11.66)

Using the expression for the regular exponential family given by Equation 6.194,

we may write the parametric form of pX (x|ϕϕϕ) as follows,

pX (x|ϕϕϕ) = a(x)exp
(
ϕϕϕT v(x)−b(ϕϕϕ)

)
(11.67)
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Our objective is to maximize the likelihood of the set of underlying vectors,

{x}N
1 , based on the observation of the corresponding incomplete data, {y}N

1 . We

may write the objective of Equation 11.64 as follows,

ϕ̂ϕϕ = argmax
ϕϕϕ

�X (ϕϕϕ|{x}N
1 ) (11.68)

=
N

∑
n=1

ln(pX (xn|ϕϕϕ)) (11.69)

For the moment, let us consider the maximum log likelihood for an individual

vector, xn and the regular exponential family of Equation 11.67,

argmax
ϕϕϕ

�X (ϕϕϕ|xn) = argmax
ϕϕϕ

ln(pX (xn|ϕϕϕ)) (11.70)

= argmax
ϕϕϕ

ln(a(xn))+ϕϕϕT v(x)−b(ϕϕϕ) (11.71)

In Equation 11.71, we are seeking a parameter vector which maximizes �X (ϕϕϕ|xn),
for a specific complete data vector, xn. Therefore, since the first term is only de-

pendent on xn and has no ϕϕϕ dependency, it may be eliminated. Therefore, Equa-

tion 11.71 may be written as

argmax
ϕϕϕ

�X (ϕϕϕ|xn) = argmax
ϕϕϕ

ϕϕϕT v(x)−b(ϕϕϕ) (11.72)

We see that the terms in Equation 11.72 only depend on xn, independently

through the sufficient statistics term, v(xn). Therefore, if we have a decent estimate

of the sufficient statistics, v(x), whether through the explicit knowledge of x or any

other way, we may be able to solve the maximization problem of Equation 11.72.

Now let us go back to the true problem which is the maximum mean likelihood

estimation discussed in Section 10.6.1 and estimated by maximizing the likelihood

of a set of vectors, {x}N
1 , formed by Equation 11.69. In this case, due to the fact that

the logarithm function is strictly concave and the use of Jensen’s inequality (sim-

ilar to the arguments made in Section 7.6), the maximization problem reduces to

maximizing the terms in Equation 11.72 using the expected value of the sufficient

statistics. This provides the grounds for the expectation step in EM.

The expectation step is the computation of an estimate of the expected value

of the sufficient statistics of the complete data from the conditional expectation of

its sufficient statistics given the observed data and the current estimates of the pa-

rameter vector for the parametric representation of the underlying density function.

Therefore, the expectations step of EM may be written as follows,

Expectation Step:

v(k) = E
{

v(x)|y,ϕϕϕ(k)
}

(11.73)
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Note that in Equation 11.73, the expectation is conditioned upon the observation

vector, y, since we do not know the values of the complete data, x – see Defini-

tion 6.58.

Furthermore, assume that we pick the new parameters at the next iteration,

ϕϕϕ(k+1), to be such that the expected value of the complete data sufficient statistics,

E {v(x)|ϕϕϕ} (not conditioned upon the observation vector, y) is equal to that given

by the expectation step (Equation 11.73). Therefore, the maximization step would be

Maximization Step:

Pick ϕϕϕ(k+1) such that,

E {v(x)|ϕϕϕ} = v(k) (11.74)

Let us hold on to this thought and examine the log of likelihood of the density func-

tion due to the observation, ln(pY (x|ϕϕϕ)).

Note that we may write the conditional log likelihood of the complete data, x

given the observed data, y, and the parameter vector of the parametric model as

follows,

ln
(

p(X |Y )(x|y,ϕϕϕ)
)

= ln(pX (x|ϕϕϕ))− ln(pY (y|ϕϕϕ)) (11.75)

For the regular exponential family,

ln
(

p(X |Y )(x|y,ϕϕϕ)
)

= ln(a(x))+ϕϕϕT v(x)−b(ϕϕϕ|y) (11.76)

where b(ϕϕϕ|y) is given by Equation 6.195 as follows,

b(ϕϕϕ|y) = ln

(ˆ
T (y)

exp
(
ϕϕϕT v(x)a(x)

))
(11.77)

If we compare Equations 11.71 and 11.76, we see that the density function for

the complete data as well as that of the complete data conditioned upon the observed

data, are described by the same parameter vector, ϕϕϕ , and sufficient statistics, v(x).
However, the first is defined over the sample space, X , and the second one, over

the sample space formed by the transformation, T (Y ). Therefore, we may write

the expression for the log likelihood with respect to the observed data in terms of

the log likelihoods given the complete data and the conditional log likelihood using

Equation 11.75 as follows,

ln(pY (y|ϕϕϕ)) = ln(pX (x|ϕϕϕ))− ln
(

p(X |Y )(x|y,ϕϕϕ)
)

= b(ϕϕϕ|y)−b(ϕϕϕ) (11.78)

where,
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b(ϕϕϕ) = ln

(ˆ
x∈X

exp
(
ϕϕϕT v(x)a(x)

))
(11.79)

Since we would like to maximize the expression in Equation 11.78, we would

have to compute the stationary point, ∇ϕϕϕ ln(pY (y|ϕϕϕ)) = 0. Note that,

∇ϕϕϕb(ϕϕϕ) = E {v(x)|ϕϕϕ} (11.80)

and

∇ϕϕϕb(ϕϕϕ|y) = E {v(x)|y,ϕϕϕ} (11.81)

Taking the gradient of Equation 11.78 by using Equations 11.80 and 11.81, we

have the following expression,

∇ϕϕϕ ln(pY (y|ϕϕϕ)) = ∇ϕϕϕb(ϕϕϕ|y)−∇ϕϕϕb(ϕϕϕ)

= E {v(x)|y,ϕϕϕ}−E {v(x)|ϕϕϕ} (11.82)

Therefore, if we take the two iterative steps prescribed by Equations 11.73 and

11.74 while assuming that the algorithm converges to ϕ̂ϕϕ = ϕϕϕ(k+1) = ϕϕϕ(k), then the

combination of these two steps provides equal estimates of the expected value of the

sufficient statistics of x and its conditional expected value given the observation y.

Therefore, the derivative in Equation 11.82 approaches 0 in the limit, maximizing

the log likelihood in Equation 11.78. As we have noted before, due to the strictly

concave nature of the log function, this means that the likelihood itself is maximized.

We will see during the application of the EM algorithm to estimating the pa-

rameters of Gaussian mixture models, the EM algorithm may actually be viewed as

a variable metric (Chapter 25) optimization technique with no line-search, akin to

those techniques discussed in Section 25.1.3.8. In fact Xu and Jordan [41] present

the expressions for the positive definite matrix H which is used for the weighting of

the gradients in each ascent iteration toward the maximum likelihood.

We should note that it is possible for the EM algorithm not to converge to a point

where the expectation and the conditional expectation are equal. This would be the

case, for example, if the observation, y, and the complete data, x, do not span the

same space. In that case, the maximum likelihood solution is still found.

At a later stage, [13] expands the scope of the EM by removing the reference to

any exponential family. In this case, a new function is defined based on the condi-

tional expected value of the log likelihood of the parameter vector given the com-

plete data conditioned upon the observed data. Namely,

Q(ϕϕϕ1|ϕϕϕ2)
Δ
= E {ln(p(x|ϕϕϕ1)) |y,ϕϕϕ2} (11.83)

which should exist for all pairs of vectors, (ϕϕϕ1,ϕϕϕ2) :ϕϕϕ1,ϕϕϕ2 ∈ φ . Also, it is assumed

that the likelihood p(x|ϕϕϕ1) is positive almost everywhere (Definition 6.43). Namely,
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p(x|ϕϕϕ1) > 0 [x] (11.84)

Therefore, the two steps of EM become, Expectation Step:

Q(ϕϕϕ|ϕϕϕ(k)) = E
{

ln(p(x|ϕϕϕ)) |y,ϕϕϕ(k)
}

(11.85)

and Maximization Step:

ϕϕϕ(k+1) = argmax
ϕϕϕ∈φ

Q(ϕϕϕ|ϕϕϕ(k))) (11.86)

Similar to the idea of the computation of the expected value of the sufficient

statistics discussed previously, Equations 11.85 and 11.86 attempt to maximize

�(ϕϕϕ|x) with the limited knowledge available from the observation of y.

11.3.1.2 Generalized Expectation Maximization (GEM)

In Section 25.3 we spoke about the fact that in modern optimization techniques,

the requirements for the optimization are often relaxed to a level that would only

guarantee an improvement in the value of the objective function instead of setting

out to optimize it right away. A similar idea has been used in special formulations

of the EM algorithm which only ask for an improvement to the likelihood and not

necessarily the greatest increase in the likelihood to achieve maximum likelihood in

one shot. These techniques go by the name of generalized expectation maximization

(GEM) and are preferred for complex problems for which a quick convergence is

not practical. Dempster, et al. [13] define this guaranteed improvement as the only

requirement of the GEM.

11.3.1.3 Maximum A-Posteriori (MAP) Estimation

In Section 11.3.1.1 we formulated the EM algorithm for solving the maximum log

likelihood problem using the observed data. While introducing the EM algorithm,

we stated that it is not too hard to modify it to handle the maximum a-posteriori

(MAP) estimation problem. In fact [13] goes through this exercise briefly. Here, we

will formulate the MAP problem which is for example used in the Gaussian mixture

modeling of speaker recognition.

Let us denote the prior probability density of the parameter vector in the maxi-

mum a-posteriori formulation by p(ϕϕϕ). Therefore, the posterior probability densi-

ties of the parameter vector with respect to the observed (incomplete) data, Y , and

the complete data, X , may be denoted by p(ϕϕϕ|y) and p(ϕϕϕ|x) respectively.
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Therefore, the two steps of EM would be modified for the MAP problem in the

following manner: Expectation Step:

QMAP(ϕϕϕ|ϕϕϕ(k)) = Q(ϕϕϕ|ϕϕϕ(k))+ ln(p(ϕϕϕ)) (11.87)

and Maximization Step:

ϕϕϕ(k+1) = argmax
ϕϕϕ∈φ

QMAP(ϕϕϕ|ϕϕϕ(k))) (11.88)

McLachlan and Krishnan [34] argue that the introduction of the log of the prior

density will make the objective function of the maximization problem of the MAP

almost always more concave (Definition 24.25), when compared to the objective

function of the MLE. In Section 13.7, we will formulate the EM algorithm as ap-

plied to the MAP problem in the Gaussian mixture modeling (GMM) of speaker

models. That formulation will clearly expose the relevance of the EM algorithm to

unsupervised clustering.

In addition to the original papers [21, 13], references [34, 8, 46, 12, 9] provide

good overviews and tutorials of the EM algorithm. [34] is a recent book entirely

devoted to the EM algorithm. References [8] and [46] specifically address its appli-

cation to Gaussian mixture models as well as hidden Markov models.

11.4 Hierarchical Clustering

In this chapter, we have examined many different unsupervised clustering tech-

niques. Most of the techniques were based on the k-means clustering algorithm,

which by itself provides the tools for one level of bottom-up clustering. Although,

some of the clustering algorithms based on k-means, actually use the results of the

k-means clustering to create a top-down (divisive) set of clusters. An example of a

divisive algorithm is LBG – see Section 11.2.6.5.

In hierarchical clustering, one retains the intermediate results of the algorithm

such that there is a hierarchical structure developed in the course of clustering. This

structure may be used for many different purposes including the definition of the

logic of a decision tree (Section 9.4). Hierarchical structures need not be based on a

tree structure. They may very well have more complicated structures and may go as

far as a fully connected graph in which case, the direction of the hierarchy may not

be so well defined. However, in most cases, the structures resemble trees.

One important use of hierarchical clustering algorithms is the organization of

speakers in a speaker tree [5] for the purpose of reducing the computation load

of large-scale speaker identification systems. Another useful application, which is
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often used in speech recognition, is the hierarchical clustering of the elements of

hidden Markov models which resemble phonemes at a lower level of the modeling,

namely at the HMM state levels (Chapter 13). These states, transitions, or mixture

models may be clustered using a hierarchical technique to allow for better tying or

combination of these parameters in a hierarchy. Normally, such hierarchical clus-

tering techniques are used to create decision trees for such combinations and tied

parameters.

11.4.1 Agglomerative (Bottom-Up) Clustering (AHC)

Agglomerative clustering, also known as bottom-up clustering, deals with the merg-

ing of alike clusters into common clusters which make up the clusters for a level

higher in a tree structure. This is done level-by-level, merging close clusters into

one and moving up the tree until a single node is reached. The merging may be done

at a binary pace or based on some threshold or other criteria. An example of such

merging was discussed in Section 11.2.4.

To be able to achieve an agglomerative cluster, a distance measure is required

for comparing different clusters at each level to be able to decide whether to merge

them or not. Also, a merging method is needed such as that of Section 11.2.4.

Beigi, et al. [5] have used such agglomeerative clustering techniques for cluster-

ing speaker models in a hierarchical structure. The resulting tree provides the basis

for a decision tree to be able to reduce the amount of computation for a large-scale

speaker identification system from linear to logarithmic times with respect to the

number of speaker models in the database.

11.4.2 Divisive (Top-Down) Clustering (DHC)

Divisive or top-down clustering techniques work much in the same way as agglom-

erative clustering, but in the opposite direction. They generally start with one or a

handful of clusters and divide them either in a binary fashion or based on a certain

threshold or other metric criteria into a variable number of clusters of other fixed

numbers at each level of the hierarchy. Divisive techniques require a splitting al-

gorithm or method in contrast to the merging methods needed for agglomerative

techniques.

An example of a divisive clustering algorithm is the LBG algorithm (Sec-

tion 11.2.6.5) which used a binary splitting approach in conjunction with the k-
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means clustering algorithm to create an even larger number of smaller clusters. If

the history of these divisions is retained, the LBG will create a hierarchical cluster,

much in the same shape as those created by agglomerative techniques of the previ-

ous sections.

11.5 Semi-Supervised Learning

In this chapter we discussed methods of unsupervised clustering. We will treat the

supervised learning problem throughout the rest of this book, in conjunction with

unsupervised clustering used for the underlying structure. However, in a supervised

learning system, the data points are often tied to labels which have been assigned

to data through a laborious process. In supervised learning, data is clearly labeled

and the learning process happens with the usage of these labels. There is, however,

some middle ground in which some of the data is labeled, but, generally, the ma-

jority of the data is unlabeled. This case is known as the semi-supervised learning

process [47].

In most cases, the semi-supervised learning problem is approached by using an

iterative process in which the unlabeled data is first labeled through the use of the

outcome of a supervised learning scheme. Once labels are assigned to the unlabeled

data, the learning process is repeated until convergence. More detail about semi-

supervised learning may be found in [47] and [18].
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Chapter 12

Transformation

What is hell? Hell is oneself, Hell is alone, the other figures in it

Merely projections. There is nothing to escape from and nothing

to escape to. One is always alone.

T.S. Eliot

The Cocktail Party (Act I, Scene 3), 1950

In Chapter 10, we discussed techniques for clustering and the estimation of model

parameters. We have also discussed the concept of sufficient statistics. In this chap-

ter, we examine techniques for finding transformations (see Section 6.5.5) which

would operate on the parameter space, φ , or the sample space, X . Both are related

to the concept of model selection and sufficient statistics which were discussed in

earlier chapters. In both cases, we have noted that the principle of parsimony (see

the footnote in Section 10.6) applies. Therefore, the objective is to find the smallest

space which would convey the most information. This may be in the form of rota-

tion and scaling of the parameters, but it is often accompanied by some method of

projection or other transformation which reduces the dimensionality of the model

parameters to achieve the desired increased concentration of information.

The objective is to be able to extract as much information out of the parameters

which are found by the methods of Chapter 10 while reducing the number of model

parameters. The desired reduction in the number of parameters is associated with

two different practical issues.

First, in statistical parameter estimation and modeling, we are always faced with

shortage of data. In fact, statistically, we can have complete information about a

process, only if we have seen all possible data samples. Seeing all possible samples

is of course impossible, so reducing the number of parameters being estimated en-

sures that, per estimated parameter, an ample amount of data has been observed.

The second practical issue is a matter of computation. As the number of param-

eters are increased, generally more memory, computation time, and computational

effort is required. This is especially important for a problem such as speaker recog-

nition which deals with speech (a high capacity signal containing much redundancy

– see Section 1.5.14).
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12.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is quite a simple idea and has been used

in many different fields. It is a linear orthogonal transformation that transforms

the space of interest into one that has its basis along the principal components

of the space. Here, we are interested in a special transformation called the linear

Karhunen-Loève Transformation (KLT) which operates on the covariance of a sta-

tistical distribution instead of any general matrix – consult [13] for the general PCA

problem.

At this point we will call this special case by its general name, simply, PCA.

The basic idea is that if we start with a set of features which are somehow cor-

related to each other, then we should be able to reduce the dimensionality of the

feature vector without losing much information. It is an immediate consequence of

an Eigensystem decomposition. PCA generates a linear orthogonal transformation

matrix which will transform the original feature vector to a lower-dimensional space

through a built in rotation and projection. It works by transforming the features to

a new space such that in the new space, the coordinates are ordered in terms of the

variance of the data in their corresponding dimensions. Namely, the first coordinate

will have the largest variance, then the second coordinate and so on.

The last few coordinates will have the least variance, which means that they carry

the least amount of information (much in the way that Fisher [9] defined informa-

tion – see Section 7.7).

12.1.1 Formulation

Let us assume that we have a set of N feature vectors, {x̆}N
1 . For the PCA procedure,

the first requirement would be the translation of the sample space to one where the

mean of the sample distribution of x̆n would be 0. This can be easily achieved by

computing the sample mean, μ̆μμ , of the data, {x̆}N
1 , and subtracting it from all the

samples,

xn = x̆n − μ̆μμ ∀ n ∈ {1,2, · · · ,N} (12.1)

From here on, we will assume that the data samples are the translated samples, {x}N
1 ,

which have a mean that is approximately zero1.

The coordinates in the transformed Cartesian product space (Section 6.2.2) to be

incident with the Eigenvectors of the covariance matrix and the magnitudes of their

1 The sample mean of the translated data is identically zero, but since the sample mean is an
approximation of the true mean, we cannot say that the data is from a zero-mean sample space.
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corresponding variances are related to the Eigenvalues of the covariance matrix.

Therefore, the problem of PCA reduces to the following Eigenvalue problem,

ΣΣΣv = λ◦v (12.2)

where v : R1 �→RD is an Eigenvector associated with the feature vectors of interest,

x : R1 �→ RD, andΣΣΣ : RD �→ RD is the associated variance-covariance (covariance)

matrix (see Section 6.10). λ◦ is known as an Eigenvalue associated with Eigenvector,

v and the matrix, ΣΣΣ .

We may rearrange Equation 12.2 in the following form,

(λ◦I−ΣΣΣ)v = 0 ∀ v (12.3)

For any general matrix, ΣΣΣ , Equation 12.3 may only be true if the determinant of

λ◦I−ΣΣΣ is zero. There will generally be D values of λ◦ (the Eigenvalues) for which

the determinant can become zero, given any general matrix. λ◦ i, i ∈ {1,2, · · · ,D} are

said to be the solutions to the characteristic equation,

|λ◦I−ΣΣΣ | =
D

∏
i=1

(λ◦ −λ◦ i)

= 0 (12.4)

where |λ◦I−ΣΣΣ | denotes the determinant of λ◦I−ΣΣΣ . Note that in general λ◦ i ∈�.

for every Eigenvalue, λ◦ i, Equation 12.2 must be true. There is a single Eigenvec-

tor, vi, associated with every λ◦ i which makes Equation 12.2 valid, namely,

ΣΣΣvi = λ◦ ivi ∀ i ∈ {1,2, · · · ,D} (12.5)

Solving Equation 12.2 for all i will produce a set of D Eigenvectors associated

with the D Eigenvalues, λ◦ i. Let us construct a matrix, V : RD �→ RD whose columns

are the Eigenvectors, vi, such that the first Eigenvector is associated with the largest

Eigenvalue and the last one is associated with the smallest Eigenvalue. Also, note

that Equation 12.5 may be multiplied by any constant from both sides. Therefore,

the magnitude of the Eigenvectors, vi is arbitrary. However, in here, we assume that

all vi have been normalized to have unit magnitude,

‖vi‖E = 1 ∀ i ∈ {1,2, · · · ,D} (12.6)

This may be simply achieved by dividing the computed Eigenvectors by their cor-

responding Euclidean norms. After applying the normalization, we will have the

following relation, based on Equation 12.2,

ΣΣΣV =ΛΛΛV (12.7)
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where ΛΛΛ : RD �→ RD is a diagonal matrix whose diagonal elements are the λ◦ i,

arranged in the manner such that λ◦1 is the largest Eigenvalue and λ◦D is the smallest,

λ◦1 ≥ λ◦2 ≥ ... ≥ λ◦D (12.8)

Due to the fact that the Eigenvectors produce a linearly independent2 basis [13],

V has an inverse and therefore, Equation 12.7 may be written in the following form,

V−1ΣΣΣV =ΛΛΛ (12.9)

According to Equation 12.9, the matrix of Eigenvectors, V, is said to diagonalize

ΣΣΣ . Also, because of the normalization that was done to the Eigenvectors earlier,

matrix V is unitary (see Definition 23.11), namely,

VT V = I (12.10)

Therefore,

V−1ΣΣΣV = VTΣΣΣV

= ΛΛΛ (12.11)

The Karhunen-Loève Transformation (KLT) of any feature vector,

xn,n ∈ {0,1, · · · ,N} is then given by,

yn = TKL(xn)

= VT xn (12.12)

The new vectors, yn, are represented in the space which is defined by the or-

thonormal basis of the Eigenvectors. Considering the fact that the transformed space

is such that all its constituents have the highest variance in the first dimension (asso-

ciated with the first Eigenvalue and the first Eigenvector), and the lowest variance in

the Dth dimension (associated with the Dth Eigenvalue and the Dth Eigenvector), we

may be selective about which dimensions we consider as informative. This allows

us to reduce the dimensionality of the space.

To do this reduction, first we would have to have a criterion by which we can

prune the space. One important assumption is that the importance of the feature

dimensions has a one-to-one relationship with their corresponding variances. We

saw evidence of the truth behind this assumption in Sections 10.1 and 7.7, in the

way Fisher information matrix, III F , was defined and computed. Using this as-

sumption, we may define a criterion based on the minimum tolerated ratio between

any one Eigenvalue and some norm of ΛΛΛ . This norm may be, for instance, any

of {‖ΛΛΛ‖1,‖ΛΛΛ‖F , · · · ,‖ΛΛΛ‖∞}. Also, since the Eigenvalues are ordered by magni-

tude, we will basically be removing the last (D − M) dimensions associated with

2 We are assuming that we have distinct Eigenvalues. If λ◦ i repeats, then there will be a gener-

alized Eigenvector vr
i associated with the rth repeated Eigenvalue, where ΛΛΛ will have a Jordan

block form [10]. A repeated Eigenvalue is also known as a multiple Eigenvalue or a degenerate

Eigenvalue [6].
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the smallest Eigenvalues. Then, we will modify V so that only the first M columns

are kept, leaving us with a new Eigenvector matrix, U : RM �→ RD and the corre-

sponding reduced Eigenvalue Matrix,

(L)[i][ j] =

{
λ◦ i ∀ i = j

0 ∀ i �= j
(12.13)

where i, j ∈ {1,2, · · · ,M}.

The projection, causing this space reduction, is then given by the following rela-

tion,

y = UT x (12.14)

where y : R1 �→ RM is the new, reduced length, feature vector. In practice, the com-

putation of ΛΛΛ and V may be done using a singular value decomposition [2, 14] –

see Definition 23.15.

The Karhunen Loève transformation (KLT) has been successfully used in a va-

riety of fields such as online handwriting recognition [22], image recognition (so

called EigenFaces [17], and of course speaker recognition [3, 5, 21, 4]. However,

extreme care should be taken to make sure the nonlinear effects of the features are

not taken too lightly. If there is an unbalanced importance level in a perceptual

sense between the higher variance and lower variance feature dimensions, the PCA

can hurt. It is important to make sure that proper inter-dimension normalization is

performed, based on physiological data before performing KLT.

12.2 Generalized Eigenvalue Problem

The Eigenvalue problem, described by Equation 12.2 may be generalized as follows,

λ◦αΣΣΣαv = λ◦βΣΣΣβv (12.15)

Equation 12.15 describes a new problem called the generalized Eigenvalue problem.

The simple Eigenvalue problem of Equation 12.2 may be viewed as the special case

of the generalized Eigenvalue problem, where ΣΣΣα = ΣΣΣ and ΣΣΣβ = I. Therefore, in

the same way that we wrote Equation 12.3, Equation 12.15 may be rearranged as

follows,(
λ◦βΣΣΣβ −λ◦αΣΣΣα

)
v = 0 (12.16)

Much in the same way as in the simple Eigenvalue problem, we may write the

following relations,
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ΛΛΛαΣΣΣαV =ΛΛΛβΣΣΣβV (12.17)

λ◦αnΣΣΣαvn = λ◦βn
ΣΣΣβvn (12.18)

with similar definitions as in Section 12.1.

IfΛΛΛα has full rank, then we may define a new Eigenvalue matrix,

ΛΛΛ
Δ
=ΛΛΛ−1

α ΛΛΛβ (12.19)

translating to the following definition for each of the general Eigenvalues,

λ◦n
Δ
=

λ◦βn

λ◦αn

(12.20)

In this special case, we may rewrite equations 12.17 and 12.18 in terms ofΛΛΛ and λ◦n

as follows,

ΣΣΣαV =ΛΛΛΣΣΣβV (12.21)

ΣΣΣαvn = λ◦nΣΣΣβvn (12.22)

λ◦n and vn are known as the generalized Eigenvalues and the right generalized Eigen-

vectors of Equation 12.22.3

Furthermore, in the special case when ΣΣΣβ has full rank, the generalized Eigen-

value problem reduces to the simple Eigenvalue problem where,

ΣΣΣ−1
β ΣΣΣαV =ΛΛΛV (12.23)

ΣΣΣ−1
β ΣΣΣαvn = λ◦nvn (12.24)

On the other hand, if
∣∣ΣΣΣβ

∣∣ = 0, then there are p Eigenvectors associated with

p Eigenvalues such that p is the rank of ΣΣΣβ .4 The rest of the Eigenvalues will be

infinite. In that case, if
∣∣ΣΣΣβ

∣∣ �= 0, then we may rewrite the Eigenvalue problem by

defining a different Eigenvalue such that,

Λ̂ΛΛ
Δ
=ΛΛΛ−1

β ΛΛΛα (12.25)

translating to the following definition for each of the generalized Eigenvalues,

λ̂◦n
Δ
=

λ◦αn

λ◦βn

(12.26)

3 The Left generalized Eigenvalue problem is also possible which gives rise to left generalized

Eigenvectors. The problem statement for the left Eigenvector problem is written in the following
general form, λ◦αvHΣΣΣα = λ◦βvHΣΣΣβ .
4
∣∣ΣΣΣβ

∣∣= 0 means that ΣΣΣβv = 0 ∀v.
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in which case, the new Eigenvalues corresponding to the infinite Eigenvalues in the

previous variation are 0.

If there are repeated Eigenvalues, the directions are the generalized Eigenvectors

and the Eigenvalue matrix,ΛΛΛ , will have a Jordan block form [10, 14]. As an exam-

ple, a Jordan block associated with a repeated eigenvalue, λ◦ i, which is repeated r

times would have r rows and r columns and is written as,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ◦ i 1 0 · · · 0

0 λ◦ i 1 · · · 0
...

...
... · · · ...

· · · · · · · · · . . .
...

0 0 0 λ◦ i 1

0 0 0 0 λ◦ i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12.27)

Let us assume that under normal circumstances we would have N non-repeating

Eigenvalues. In the special case when r of them would be repetitions of λ◦ i, then the

block of Equation 12.27 would take the place of the r × r block that would have

had 0s on the off diagonal and r different Eigenvalues on the diagonal for the non-

repeating case.

Due to the limited space, we will not go through the details of the case with

repeated Eigenvalues. Fortmann [10] presents a complete treatment of this in the

appendix of his book, as well as the body, while treating the theory of linear control

systems.

12.3 Nonlinear Component Analysis

In the formulation of the PCA (Section 12.1.1), we briefly touch upon the danger

of treating the different dimensions of the feature vector (x) the same. A suggestion

was made to make sure that some normalization is done to account for possible per-

ceptual variations across dimensions of the feature vector. Also, it is possible for the

feature vector to be created from a combination of different sources which may not

have much in common in terms of their behavior. Therefore, there is no single recipe

which may be applied to treat the different dimensions in a feature vector in order

to make them behave similarly and to have similar effects in our pattern recognition

analyses.

The normalization which was advised in Section 12.1.1, would normally be a

linear normalization attempt. However, as we know, for example in the case of per-

ceptual mapping discussed in Section 5.1, there are logarithmic effects present in
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human perception, both in the frequency domain and the amplitude domain. Since

speech includes such inherent nonlinearities, a nonlinear normalization of the fea-

ture space may be needed, before or while we reduce the space through a projec-

tion. This may be viewed in two different lights. The first option is to do a nonlinear

transformation to the feature vectors and then do a linear PCA for achieving a reduc-

tion in the dimensionality of the problem. A second option is to perform a nonlinear

transformation which includes a reduction in the dimensionality of the original fea-

ture vector.

Jolliffe [13] discusses several different applications, presented by different re-

searchers, which utilize the nonlinear transformation followed by a linear PCA.

There have also been other alternatives, such as that proposed by Gnanadesikan [11].

[11] augments the original feature vector with elements which are nonlinear func-

tions of the original elements in the vector. Then, a linear PCA is done on the aug-

mented feature vector and the dimensionality is reduced. Although any nonlinear

function of the elements may be augmented, [11] uses quadratic functions as ex-

amples. This, in essence is similar to the previous proposal of using a nonlinear

transformation, followed by a linear PCA. The difference lies in the fact that the

method of [11] combines a linear PCA on the original feature vector, with one that

operates on a nonlinear transformation of the original vector, through augmentation.

It is easy to see that the two are basically identical and one may devise a nonlinear

transformation that would include the original nonlinear mapping followed by the

space reducing linear projection.

12.3.1 Kernel Principal Component Analysis (Kernel PCA)

Schölkopf [23, 24] proposes a computationally intensive kernel-based PCA which

operates in a dot-product space. The dot product is computed over all the N obser-

vations, producing a dot product matrix which is N by N. A nonlinear kernel of

this operation may be chosen, possibly producing more than D non-zero Eigenval-

ues and Eigenvectors, even up to N such values! Kwok [19] has used this kernel

PCA technique for speaker adaptation and named it Eigenvoice speaker adapta-

tion, which is based on the standard Eigenvoice speaker adaptation technique [18].

Kernel PCA is also used by [25] in helping visualize the data separation in an SVM

formulation (see Chapter 15).

The concept of kernel PCA is basically similar to the support vector ma-

chines discussed in detail in Chapter 15, where a nonlinear Mercer Kernel (Defi-

nition 24.61) is used to transform the, so called, input space to the feature space,

using a nonlinear function. In the new feature space, a regular PCA is carried out.

This process will become more clear as we cover this concept while discussing sup-

port vector machines in Chapter 15. Since we need to review some basic topics
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related to support vector machines, in order to be able to describe the kernel PCA

in more detail, this topic has been deferred to Section 15.7.

12.4 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a statistical pattern classification technique

which makes the following basic assumptions [8, 12],

1. Samples vectors which are considered to belong to the same class, are con-

sidered to be identically distributed about their own class mean according to a

covariance matrix, ΣΣΣW , known as the within class covariance matrix.

2. Mean values of all classes are themselves distributed according to a probability

density function of the same family as the within class distributions, but with

different sufficient statistics. Means of these classes, therefore, have a central

mean and their own covariance matrix, known as the between class covariance

matrix, ΣΣΣB.

As we shall see, LDA is somewhat related to PCA, in the sense that it generally

includes similar techniques for reducing the dimensionality of the samples. Most

applications of LDA [1, 26] are designed to initially take on many different sources

of information at the initial cost of increasing the dimensionality of the features

(samples) and then using LDA to reduce the number of dimensions down to a more

manageable set, but aligned in the direction of higher information. This is the essen-

tial similarity between PCA and LDA.

Given the assumptions at the beginning of this section, LDA amounts to esti-

mating ΣΣΣW for the different classes based on the high-dimensional samples, doing

linear transformation in the form of a rotation followed by scaling of the spaces

in these classes, so that they point along principal directions. Then, a global linear

transformation based on the matrix of Eigenvectors of ΣΣΣB or ΣΣΣT (total covariance

matrix) may be done. In practice, the final transformation will be a projection which

is designed to reduce the dimensionality of the space, as was done in the PCA im-

plementation of Section 12.1.

In order to estimate the means and covariance matrices, we may use different

techniques which were discussed in Section 6.9. Here, we choose the maximum

likelihood estimate for estimating these statistics. Other methods such as the unbi-

ased estimate of the variance may also be chosen.

Let us assume that we have observed N samples, xn : R1 �→RD, n ∈{1,2, · · · ,N}.

Furthermore, suppose that we have used a classification technique as discussed in

Section 9.3 to determine Γ classes and to associate each observed sample with one

of these Γ classes. Nγ denotes the number of samples associated with each class,
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Xγ . Then, the maximum likelihood estimate (MLE) of the mean of each class, Xγ ,

would be given by,

μμμγ =
1

Nγ
∑

x∈Xγ

x (12.28)

Also, the MLE of the covariance of class Xγ may be written as follows,

ΣΣΣγ =
1

Nγ
∑

x∈Xγ

(
x−μμμγ

)(
x−μμμγ

)T
(12.29)

Equations 12.28 and 12.29 are estimates of the class statistics for class Xγ .

Let us define a scatter matrix which is related to the maximum likelihood esti-

mate of the covariance matrix in the following way,

S
Δ
= NΣΣΣ (12.30)

It is somewhat simpler to maintain the statistics using the scatter matrix in lieu

of the covariance matrix and we can always convert from one to the other using

the relation in Equation 12.31. The scatter matrix for each class, Xγ , may then be

written as follows,

Sγ = ∑
x∈Xγ

(
x−μμμγ

)(
x−μμμγ

)T
(12.31)

Based on the first assumption of this section, the within class scatter matrix would

be,

SW =
Γ

∑
γ=1

Sγ (12.32)

=
Γ

∑
γ=1

∑
x∈Xγ

(
x−μμμγ

)(
x−μμμγ

)T
(12.33)

The total mean can be computed either from the individual observations, or from

the class means of Equation 12.28 as follows,

μμμ =
1

N

N

∑
n=1

xn (12.34)

=
1

N

Γ

∑
γ=1

Nγμμμγ (12.35)

and in the same manner[8], the total scatter matrix would be,
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ST =
N

∑
n=1

(xn −μμμ)(xn −μμμ)T (12.36)

=
Γ

∑
γ

∑
x∈Xγ

(
x−μμμγ +μμμγ −μμμ

)(
x−μμμγ +μμμγ −μμμ

)T
(12.37)

=
Γ

∑
γ

∑
x∈Xγ

(
x−μμμγ

)(
x−μμμγ

)T
+

Γ

∑
γ

Nγ

(
μμμγ −μμμ

)(
μμμγ −μμμ

)T
(12.38)

The first term in Equation 12.38 is identical to SW of Equations 12.33. The second

term seems to have the properties stated at the beginning of this section. In fact, we

can call that the between class scatter matrix, giving us the following definition of

SB [8],

SB
Δ
=

Γ

∑
γ

Nγ

(
μμμγ −μμμ

)(
μμμγ −μμμ

)T
(12.39)

Therefore, based on Equations 12.38, 12.33, and 12.39, the total scatter matrix

may be written in terms of the within class and between class scatter matrices as

follows,

ST = SW +SB (12.40)

At this point, we have the between and within scatter matrices (hence covari-

ances) of random variable, X , estimated based on the observation of N samples of

X . The objective of linear discriminant analysis 5 is to maximize discriminability

by performing a transformation (T : R(Γ−1) �→ RD) on X such that the transformed

random variable, Y : y ∈ R(Γ−1) would have maximal ratio of the determinant of the

between class scatter matrix to the determinant of the within class scatter matrix.

The determinant is used since it is equal to the product of the Eigenvalues of the ma-

trix and an indication of the geometric mean (Definition 6.79), of the Eigenvalues.

Let us define the following linear transformation for discriminant analysis of X ,

yn = T (xn) (12.41)

Δ
= UT xn (12.42)

where U : R(Γ−1) �→ RD is a rectangular matrix and (Γ − 1) < D. Therefore, the

between class and within class scatter matrices of Y may be written in terms of those

of X and the transformation matrix U, as follows,

SB(Y ) = UT SB(X)U (12.43)

SW (Y ) = UT SW (X)U (12.44)

5 Called multiple discriminant analysis[8] when there are more than two classes involved – Γ > 2.
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Therefore, the maximization problem of interest would be,

Û = argmax
U

E(U) (12.45)

= argmax
U

|SB(Y )|
|SW (Y )| (12.46)

= argmax
U

∣∣UT SB(X)U
∣∣

|UT |SW (X)|U| (12.47)

The solution to Equation 12.47 is given by a special case of the generalized

Eigenvalue problem (see the assumptions made for Equation 12.21 in Section 12.2),

SBU =ΛΛΛSW U (12.48)

12.4.1 Integrated Mel Linear Discriminant Analysis (IMELDA)

When LDA is used on the output of a Mel-scale filterbank, some have called the

combined system IMELDA [12] which stands for Integrated Mel Linear Discrim-

inant Analysis. Hunt [12] describes two systems based on static spectral analysis

(IMELDA-1) and dynamic spectral analysis (IMELDA-2).

As an example in speech recognition, [26] has used IMELDA in reducing a 44

dimensional feature vector to 24 dimensions. The original 44 features were a com-

bination of 8 spectral features, the first 12 cepstral coefficients, the first 12 delta

cepstral features, and the first 12 delta-delta cepstral features. The between and

within covariance matrices are then computed [12] and the top transformed 24 fea-

tures are used as the features for each frame of speech.

12.5 Factor Analysis

So far, we have discussed principal component analysis (PCA) and linear discrim-

inant analysis (LDA) which provided transformations to rotate and project the ran-

dom variable of interest to one that would generally have a smaller number of com-

ponents and would yet retain most of the information in the original variable. Factor

analysis (FA) is yet another such technique with basically the same objectives. As

Jolliffe [13] puts it, “for most practical purposes PCA differs from factor analysis

in having no explicit model.” The explicit model, of which [13] speaks, will be dis-

cussed in more detail, shortly.
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As with any other transformation in this chapter, the objective of FA is to model

the observed samples, {x}N
1 , as a transformation of a simpler underlying model with

a lower dimensionality compared to the observed vectors.

yn = T (xn) ∀ n ∈ {1,2, · · · ,N} (12.49)

where yn : R1 �→ RD is an observed sample and xn is the underlying random sample

which is not necessarily observable. The explicit model of FA is a linear transforma-

tion model which makes an assumption by which it differentiates itself from PCA

and LDA techniques. In fact in some perspective, as we will see, it may be seen as

a more general version of PCA. FA assumes that the underlying random variable is

composed of two different components.

The first component is a random variable, containing the, so called, common fac-

tors. It has a lower dimensionality compared to the combined random state, X , and

the observation, Y . It is called the vector of common factors since the same vector,

Θ : θθθ : R1 �→ RM,M <= D, is a component of all the samples of yn.

The second component is known as the vector of specific factors, or sometimes

called the error or the residual vector. It is denoted by E : e : R1 �→ RD. Therefore,

this linear FA model for a specific random variable, Ỹ : ỹ : R1 �→ RD, related to the

observed random variable Y may be written as follows,

ỹn = Vθθθ n + en (12.50)

where V : RM �→ RD is known as the factor loading matrix and its elements,

(V)[d][m], are known as the factor loadings. Samples of random variable Θ : (θθθ n)[m] ,n ∈
{1,2, · · · ,N} are known as the vectors of common factors, since due to the linear

combination nature of the factor loading matrix, each element, (θθθ)[m], has a hand

in shaping the value of (generally) all (ỹn)[d] ,d ∈ {1,2, · · · ,D}. Samples of random

variable E : en,n ∈ {1,2, · · · ,N} are known as vectors of specific factors, since each

element, (en)[d] is specifically related to a corresponding, (ỹn)[d].

In Equation 12.50, the sufficient statistics of the elements of the Equation are

assumed to have the following forms [13],

E
{

Ỹ
}

= 0 (12.51)

E {Θ} = 0 (12.52)

E {E} = 0 (12.53)

E {ΘE} = 0 (12.54)

E {ΘΘ} = IM (12.55)

E {EE} = ΛΛΛ 2 (12.56)
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In Equation 12.50, the FA model was written for Ỹ and not Y . The reason behind this

notation is the assumption of Equation 12.51, which assumes that the observation

random variable has standard mean (zero mean). Also, the random variables of the

common and specific factors are also assumed to have a standard (zero) mean.

The assumption of Equation 12.54, basically states that the common factors and

the specific factors are uncorrelated. This is one of the basic assumptions of the

model, which is the ground for separating the two terms in the first place. Equa-

tion 12.55 states that the common factors have standard covariance. Finally, In

Equation 12.56,ΛΛΛ is defined as the following diagonal matrix,

(
ΛΛΛ 2
)
[i][ j]

Δ
=

{
λ◦2

i ∀ i = j

0 ∀ i �= j
(12.57)

and it states what we said in words earlier. Namely, the fact that each element of

(en)[m] is only responsible for affecting the element, (ỹn)[m], making the covariance

matrix of E diagonal. λ◦2
i are known as the uniquenesses of the factor analysis for-

mulation [7].

Of course our observations usually do not have standard (zero) mean. Also, it

may make sense to redefine the residual term so that the actual residual vectors

would have a standard variance of 1. These two requirements will modify Equa-

tion 12.50 to the following form,

yn = μμμ +Vθθθ n +ΛΛΛrn (12.58)

In Equation 12.58, we have introduced the mean vector, μμμ , such that the observation

samples, yn, would have the mean vector μμμ as their sample mean. Also, we have

rewritten the specific factor term with the following identity,

en ≡ΛΛΛrn (12.59)

where,

(ΛΛΛ)[i][ j]
Δ
=

{
λ◦ i ∀ i = j

0 ∀ i �= j
(12.60)

and

E {RR} = ID (12.61)

R : r : R1 �→ RD is the new residual random variable with standard variance. Equa-

tion 12.58 is the general form of the Factor Analysis model which will be used here.

We stated earlier that FA may be viewed as a generalized PCA. To see this point,

consider a case whereΛΛΛ = 0 and the equations will reduce to that of principal com-

ponent analysis. Of course, this is only in the form and the underlying assumptions
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are not the same.

Note that based on all the assumptions that have been made in formulating the

FA model, the following important result follows,

ΣΣΣY = VVT +ΛΛΛ 2 (12.62)

where ΣΣΣY is the covariance of the observation random variable, Y . Since we do

not know the true covariance of Y , we may substitute it with the value of one of

the estimates discussed in Section 6.9.4, namely the biased sample covariance, Σ̂ΣΣ ,

or the biased sample covariance, Σ̃ΣΣ . Assuming that we use the biased estimator

(Definition 6.82), we will have the following approximation,

Σ̂ΣΣY ≈ VVT +ΛΛΛ 2 (12.63)

For the sake of simplicity of notation, we will replace the approximation sign with

an equal sign and understand that we are using an approximation,

Σ̂ΣΣY = VVT +ΛΛΛ 2 (12.64)

At this point, the objective of factor analysis becomes the estimation of the pa-

rameters of the FA model, namely,

ΦΦΦ = [V ΛΛΛ ] (12.65)

whereΦΦΦ : RM+D �→ RD. It is also possible to arrange the elements ofΦΦΦ in a vector,

ϕϕϕ : R1 �→ RD(M+1), which is a column vector composed of the M columns of V

followed by the D diagonal elements ofΛΛΛ .

As a first step in estimating ϕϕϕ , we may make the assumption that we pick ϕϕϕ such

that Equation 12.64 is satisfied. The left hand side of Equation 12.64 may easily be

computed, using a training data set, {y}N
1 .

Almost all the estimation techniques discussed in Chapter 10 may be used in

estimating the parameter vector, ϕϕϕ , including maximum likelihood estimation and

maximum a-posteriori estimation which are the two most popular techniques used

in the literature. In fact, Dempster, et al., in their original paper on expectation max-

imization [7], present the estimation problem of factor analysis as one of the ex-

amples of this algorithm. In Section 11.3.1 we presented a detailed treatment of the

use of the EM for maximum likelihood and maximum a-posteriori estimation. The

maximum likelihood estimate of the parameter vector sometimes takes a long time

to converge [20].

Most of the above approaches employ iterative techniques which require an ini-

tial estimate of the parameter vector. As we saw in Section 11, the initial estimate is

quite important in ensuring a speedy convergence. An example is the EM approach.
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We noted that if ΛΛΛ = 0, then the problem of FA will be similar to the PCA prob-

lem. Therefore, a good initial estimate of the factor loading matrix, V, would be the

reduced Eigenvector matrix (Equation 12.14), used in the formulation of the PCA

problem.

A detailed maximum likelihood treatment of ϕϕϕ for factor analysis may be found

in [20]. Kenny [15] works out the maximum likelihood and MAP estimation of the

parameters of the FA problem as applied to speaker recognition. As we will see in

Section 16.4.2, the treatment in [15] is known by the name of joint factor analysis,

since it splits the models into speaker and channel models, each of which is treated

as a factor analysis problem, hence the qualifier, “joint”. Other techniques have also

been used for the estimation of the parameters,ϕϕϕ [15]. [16] uses Baum-Welch which

is a special case of the generalized expectation maximization (GEM) algorithm (Sec-

tion 11.3.1.2), as we will see in Section 13.6.4.

It is important to note that, given Equation 12.64, the choice of ϕϕϕ is not

unique.[13] To see this, let us assume that we make a choice, V, for the estimate

of the factor loadings. Furthermore, let us assume that we may choose any other

matrix, Ṽ, which has the following relation with our original choice,

Ṽ = VU (12.66)

where U : RM �→ RM is any arbitrary unitary matrix (see Definition 23.16). Then it

follows that,

ṼṼT = VUUT VT (12.67)

Since U is a unitary matrix, UUT = IM , resulting in the following identity,

ṼṼT = VVT (12.68)

Therefore V is not unique. For this reason, in estimating the parameter vector, cer-

tain criteria and restrictions may be placed on the transformation of V, through the

different possible unitary transformations, U, to be able to narrow down the number

of choices. Many such approaches are referenced in [13].

One such choice is the variance maximization criterion (varimax) [13] given by

the following,

V̂ = argmax
Ṽ

M

∑
m=1

⎛⎝ D

∑
d=1

ν4
dm − 1

D

(
D

∑
d=1

ν2
dm

)2
⎞⎠ (12.69)

where each νdm is
(
Ṽ
)
[d][m]

, normalized about the Euclidean norm of the dth column

of Ṽ, namely,
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νdm
Δ
=

(
Ṽ
)
[d][m]√

M

∑
m=1

((
Ṽ
)
[d][m]

)2
(12.70)

The varimax criterion (the maximization objective function of Equation 12.70) is

proportional to the variance of ṼṼ T .

As with PCA and LDA, a sufficient number of observed samples need to be col-

lected in order to be able to estimate the parameter vector. This may be a problem,

when small amounts of training data are collected and models with a large number

of free parameters have been chosen.

In experiments, it has been shown that for small amounts of data, the specific

factors do not provide much advantage. This is mostly due to the fact that they are

modelled in a diagonal variance matrix, whereas the number of parameters to be es-

timated in V are far more than those inΛΛΛ . In fact, [16] states that the specific factor

term only starts becoming useful for speaker data larger than 15 minutes, which is

far more than the average of 1 minute required for a practical enrollment session.

Therefore, it is arguably alright to remove that term and only estimate the term re-

lated to the common factors.
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Chapter 13

Hidden Markov Modeling (HMM)

It’s often better to be in chains than to be free.

Franz Kafka

The Trial (Chapter 2), 1925

In speaker recognition, as well as other related topics such as speech recognition,

speech synthesis, language modeling, language recognition, language understand-

ing, language translation and so on, we often look for sequences of objects. Some

examples are sequences of feature vectors, words, phonemes, phones, acoustic la-

bels, et cetera. In most of these cases, there is also a need for modeling the duration

of the output sequence as well as the content.

Hidden Markov models (HMM) are basically first-order discrete time series with

some hidden information. Namely, the states of the time series are not the observed

information, but they are related through an abstraction to the observation. This ab-

straction was described in somewhat detail in the formulation of the expectation

maximization (EM) in Section 11.3.1. The existence of this indirect abstraction is

what gives HMM the hidden qualifier. Take away the hidden aspect and we are left

with basic Markov chains (Section 13.2). In modeling, the abstraction is designed

to be able to reduce the number of parameters needed for describing that informa-

tion – see Equation 11.65. In fact, any hidden Markov model may be expanded to

generally create a larger transparent Markov model, which would be the equivalent

of an inverse transformation in the sense of Equation 6.52.

Usage of Hidden Markov models peaked with the tremendous attention given to

them from researchers in the field of speech recognition. Two major players in the

development of the practical theories and architecture of HMM were AT&T Bell

Laboratories [23] and IBM T.J. Watson Research Center [4]. In fact, I have used

some of the examples from my notes of a variety of lectures I attended while work-

ing at IBM Research, in the 1990s.1

1 My notes, while attending the lectures by Lalit Bahl at IBM Research in the mid 1990s were
used for some of the examples in this chapter. No IBM-confidential information has been included.
Permission was requested from Dr. Lalit Bahl and IBM research and granted on July 9, 2010. I am
thankful for this generous offer.

, H. Beigi Fundamentals of Speaker Recognition, 
DOI 10.1007/978-0-387-77592-0_13, © Springer Science+Business Media, LLC 2011
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Although the process is a discrete time series, the observations, which are the

interesting part of the information, may be in the form of discrete as well as contin-

uous random variables. In other words, an HMM is a Markov chain with the capacity

to contain extra information, either associated with its states or its transitions.

In speaker recognition, we have limited use for HMM in the conventional sense.

They are generally used for text-dependent and text-prompted modalities of speaker

verification, where a whole phrase is matched. For speaker identification and text-

independent speaker verification, we are not interested in modeling the phone se-

quence as much, so we tend to use a special case of HMM, which is really a finite

mixture model. In fact, in most cases, since we assume a normally distributed under-

lying probability density, the finite mixture model of choice would be a Gaussian

mixture model (GMM). As we shall see in Section 13.7, the GMM may be consid-

ered as a single state degenerate HMM. The treatment of the GMM is much simpler

than the general HMM, since the duration aspect of the model has been suppressed.

In this chapter, we start by defining zero-memory (memoryless) models. Then,

we shall continue with the introduction of single memory models, namely Markov

chains (Markov models). We will follow with the introduction of the hiding mech-

anism used in HMM to be able to simplify the model. We will also see that mixture

models may be represented as single state degenerate HMM. It was mentioned ear-

lier that HMM are cases of first-order time-series expansions. In fact, there is a direct

analogy between HMM and linear systems, where the hidden concept is related to

the observability criteria [11]. Finally, we shall talk about different types models,

their training, and their evaluation scenarios.

There are generally two different evolutionary paths to the conception of an

HMM. Both approaches start on a clean slate with a memoryless model. Figure 13.1

shows the block diagram of these two evolution schemes.

Fig. 13.1: Alternative Evolutionary Paths of the Hidden Markov Model
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The first path [22, 23] adds an abstraction in the form of states which are re-

ally different from the actual observations. The observations are the points of in-

terest, not the hidden states. At this point, the model at hand may be used to con-

vey information in a probability mixture model such as a Gaussian Mixture Model.

Poritz [22] gives an example of taking a Bernoulli random process (see Defini-

tion 6.63) and associating its output to such a model. Next, memory is added to

create a hidden Markov model.

A second approach [4, 2], similarly, starts with a memoryless model. But it con-

tinues, by first adding a single memory to the model, creating a transparent Markov

model or a Markov chain. Next, it adds the abstraction of hiding information and

ends up with an HMM.

As we define the concepts used in these two evolutionary paths, we will see that

it will be possible to associate observable outputs with the states or the transitions

alike. Advocates of the two different methods happen to use one of these two tech-

niques in practice. Most advocates of the first path [22, 23] associate the outputs

with states whereas advocates of the second path [4, 2] associate them with tran-

sitions. This is just a small design variation and creates slightly different looking

models. Most of the approaches in this chapter follow the second path.2

13.1 Memoryless Models

A very useful parallel is the information theoretic aspect of HMM. The states or

transitions of an HMM may be thought of, as information channels with inputs and

outputs – see Figure 7.1.

Consider this information theoretic analogy. Then, a memoryless model may be

represented by a memoryless source with inputs, X , and outputs, Y . It was noted that

the distributions may be discrete or continuous in which case we would be left with

a discrete or continuous memory channel respectively. Figure 7.4 shows a diagram

of a generic memoryless channel which may be associated with discrete or continu-

ous random variables.

A memoryless model is basically a memoryless source (see Definition 7.2) whose

parameters are learned to mimic a certain output distribution. Let us take the follow-

ing example where the process being modeled is a Bernoulli random process.

2 There is no specific reason for this other than the author’s background going back to the IBM T.J.
Watson Research Center which was the main advocate of this path [2, 23]. In fact it seems from the
survey of the literature that although there is a definite balance, more of the references may even
go back to the first evolutionary path.
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Example 13.1 (Memoryless model of a fair coin toss).

Let us assume that we have a fair coin, capable of generating heads (1) or tails

(0). This is a binary alphabet, making the process a Bernoulli random process – see

Definition 6.63. Let us call the output random variable, Y : y ∈ Y = {0,1}. Fur-

thermore, let us assume that the probability that this model produces heads (1) is

p. Then the probability of outputting a head (0) would be 1− p. Recall the defini-

tion of a discrete memoryless source (Definition 7.2). Then, using Equation 7.1, the

probability of the output sequence {y}N
1 is given by

P({y}N
1 ) =

N

∏
n=1

P(yn) (13.1)

However, the probability mass function, p(Y) is only dependent on the the length of

the sequence, N, and the number of heads, N1 or tails, N0. Knowing either N1 or N0,

the other number may be found by subtracting it from N, the length of the sequence

since N1 +N0 = N. Therefore, order of the output does not matter at all.

We stated that a discrete memoryless model is actually a discrete memoryless

source whose parameters would have to be learned. In this case, there is really just

one parameter to learn, p. We would like to estimate p from possible experiments.

Let us write the probability of a N-long sequence.

P({y}N
1 ) = pN1(1− p)N0

= pN1(1− p)(N−N1) (13.2)

Since p ≤ 1, for long sequences, P({y}N
1 ) could become very small, with possi-

ble underflows, in practice. We have seen that maximizing the log of the likelihood

is equivalent to maximizing the likelihood – see Section 10.1. Let us write the log

likelihood of the sequence {y}N
1 as a function of p and maximize it through set-

ting its partial derivative with respect to p equal to 0. Following the notation of

Section 10.1, the log likelihood will be �(p|{y}N
1 ), then,

�(p|{y}N
1 ) = ln(pN1(1− p)(N−N1))

= N1 ln(p)+(N −N1) ln(1− p) (13.3)

Now, we take the partial derivative of �, evaluated at the optimal parameter, p = p∗,

and set it to zero, solving for p∗,

∂�

∂ p

∣∣∣
p∗ =

N1

p∗ − N −N1

1− p∗
= 0 (13.4)

Based on Equation 13.4,

N1

p∗ =
N −N1

1− p∗ (13.5)

Therefore,
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N1(1− p∗) = p∗(N −N1) (13.6)

Solving for p∗,

p∗ =
N1

N
(13.7)

As we see, the maximum likelihood estimate is the relative frequency estimate for p.

Example 13.1 shows that for any f requency of occurrence, N1 for outcome 1 and

N0 = N − N1 for outcome 0, the maximum likelihood would be achieved with the

relative frequency estimate of p given by Equation 13.7. If we use this estimate, we

can write the likelihood of an N-long sequence in terms of N1 and N only,

P({y}N
1 ) =

(
N1

N

)N1
(

1− N1

N

)(N−N1)

(13.8)

and the log likelihood of the sequence would be written as,

�(p|{y}N
1 )

Δ
= ln(P({y}N

1 |p))

= N1 ln(N1)+(N −N1) ln(N −N1)−N ln(N) (13.9)

13.2 Discrete Markov Chains

In Section 13.1, we discussed memoryless models as memoryless sources. In this

Section, we will examine the effect of introducing memory into a random process.

The discrete Markov source and the Markov process were defined in Section 7.1.

Here, we will examine an example which helps motivate the study of models based

on the Markov process, namely the discrete Markov chain.

In 1913, in a lecture at the physical-mathematical faculty of the Royal Academy

of Sciences in Saint Petersburg, Russia, Markov presented a study of the charac-

ter sequence in a selected part of the text of Eugene Onegin by Russian novelist,

Alexander Pushkin. He picked the first 20,000 characters3 of this novel, consisting

of the first chapter and sixteen stanzas of the second chapter. Then he studied the se-

quences of letters in the larger sequence, referring to them as chains, in accordance

to definitions from his two papers in 1907 [17] and 1911 [18] – Markov chains. The

modeling of the character sequence may be referred to, as a Markov model.

Let us define the underlying structure of a Markov model, namely the Markov

chain [19, 14, 21].

3 In [19], Markov excluded the two letters in Russian which make no specific sound and which are
associated with the stress on the previous letter.
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Definition 13.1 (Discrete Markov Chain). A discrete Markov chain or a discrete-

time Markov chain is a discrete Markov process (see Definition 7.3) with a countable

number of states.

The major difference between the output of a Markov chain and that of a memo-

ryless source (Section 13.1) is the introduction of memory or the dependence of the

current output of the model on the previous output. This is known as a single mem-

ory Markov chain. In general, it would be possible to have an m-memory Markov

chain, in which case Equation 7.2 would be changed to rely on the m previous ob-

servations and not just the last observation,

P(xn|{x}n−1
1 ) = P(xn|{x}n−1

n−m) ∀ n > m (13.10)

where n is the index of the sample in time and m is amount of memory in the Markov

chain.

In most acoustic models of speaker recognition (as with speech recognition), we

generally assume a single memory Markov process. However, in language model-

ing, an multiple memory Markov model may be used. An example of such a model

is the N-gram [16] which uses an (N − 1)-memory Markov model to predict the

probability of the Nth word given the last N −1 words.

13.3 Markov Models

At the beginning of this chapter we spoke about two possible paths of arriving at

the structure of a hidden Markov model (Figure 13.1), mentioning that we will be

mostly entertaining the second path. The fist evolutionary step in the second path is

the introduction of memory, resulting in a, so called, unifilar Markov source [1, 25].

As we noted in its definition (Definition 7.4), the state sequence of a unifilar Markov

source is completely determined by knowing the initial state and the observation se-

quence.

The following example is a related to Example 13.1, where we no longer have

fair coins and that the usage of each coin is completely determined on the previous

outcome. It provides some insight into the single-memory unifilar Markov source.

Example 13.2 (Single-memory model for two unfair coins).

Let us consider two unfair coins with with probability characteristics listed in Fig-

ure 13.2. In this problem, we assume that the state is {X : x ∈ X = {X1,X2}}, where

x = X1 corresponds to coin 1 and x = X2 to coin 2. Furthermore, the output of the

system is the result of a coin toss, so it is Y : y ∈ Y = {Y1 = H,Y2 = T}}, where

y = Y1 = H stands for the output being head and y = Y2 = T would mean a tail.
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Fig. 13.2: Two Coins, Unifilar Single Memory Markov Model

Figure 13.2 is a finite state representation of the Markov model being used. As

we saw with the definition of a unifilar source (Definition 7.4), we need to know

the initial state of the source in order to be able to determine its state sequence (in

addition to the observed output sequence). Let us choose the following initial state,

x1 = X |n=1 = X1, where x1 denotes the state at time sample, n = 1 (initial state),

which in this case is coin 1 (x = X1). Up to this point, we know that we shall be

flipping coin 1 at the first trial, due to the dictated initial state of x1 = X1.

As we already know, for a single memory Markov chain, the Markov property

(Definition 7.3) must be upheld. Therefore, any output is only dependent on the last

output. Based on the conditional probability densities of the figure, we may assess

the probability of a specific output (observation) sequence. Before trying to compute

the probability of any specific output sequence, let us write the expressions for the

state transition and output transition probabilities.

The state transition may be written in terms of the conditional state/output and

output/state probabilities as follows,

p(xn+1|xn) = ∑
y∈Y

p(xn+1|y)p(y|xn) (13.11)

In the same spirit, the output transition probabilities may be written as follows,

p(yn+1|yn) = ∑
x∈X

p(yn+1|x)p(x|yn) (13.12)

Let us compute the probability of the sequence, {y}4
1 = {HHT T} = {Y1Y1Y2Y2},

as an example, having in mind that the initial state is x1 = X1.
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p({y}4
1 = {Y1Y1Y2Y2}) = p(y = Y1|x = X1)p(y2 = Y1|y1 = Y1)

p(y3 = Y2|y2 = Y1)p(y4 = Y2|y3 = Y2)

= 0.9×0.9×0.1×0.9

= 0.0729 (13.13)

For comparison, let us compute the probability of a slightly different sequence where

y2 and y3 are transposed, namely,

p({y}4
1 = {Y1Y2Y1Y2}) = p(y = Y1|x = X1)p(y2 = Y2|y1 = Y1)

p(y3 = Y1|y2 = Y2)p(y4 = Y2|y3 = Y1)

= 0.9×0.1×0.1×0.1

= 0.0009 (13.14)

Notice that although there are the same number of heads and tails in the two

tested output sequences, the first sequence (Equation 13.13) is 81 times more prob-

able than the second sequence (Equation 13.14). Therefore, due to the built-in mem-

ory, the order of the sequence becomes quite important. It shows the tendency of the

system to produce more like outputs. Therefore, the initial conditions will also be

quite important in the progression of the sequence.

Since the conditional probabilities of the state at sample n + 1 given the output

at sample n, p(xn+1|yn), are deterministic (i.e., p(xn+1|yn) ∈ {0,1}), then the model

in Figure 13.2 is considered to be a unifilar Markov source. If this condition did

not hold, the model would have become nonunifilar and the state sequence would

no longer be uniquely determinable from the observed output sequence – see Sec-

tion 13.4.

13.4 Hidden Markov Models

Following the second evolutionary path in Figure 13.1, we started with a memory-

less model, based on a memoryless source. A fair coin toss example was given for

this type of model. Then, in Section 13.3, a single memory was added to create a

Markov model based on a unifilar Markov source. The example for that case was a

pair of coins which would be tossed one at a time and whose choice was related to

the last output sample.

In this section, we go further and introduce the hidden state aspect. Therefore,

the source is no longer unifilar. We gave a brief description of a non-unifilar Markov

source in Definition 7.5. In essence, it is a discrete Markov source whose states are

not uniquely determined from the observation of the output sequence. Because of

this feature, the model which is created, using this type of source is called a hidden
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Fig. 13.3: Two Coins, Non-Unifilar Single Memory Markov Model (HMM)

Markov model (HMM).

There are two different ways we can tie the observed output of an HMM to its

components. The first case would be if an output were to be generated at an instance

when a state is reached. This would mean that the model would emit an observable

output at each state, hence associating that output with the current state.

A second method (Figure 13.3), which is the method of choice in this book is to

emit an output when a transition is taken from one state to the next. In this case,

while going from one state to the next state, the model emits an output. Therefore,

the observed output is associated with the transition from the current state to the

next, and not with the current state itself.

At the first glance, the two options are similar in their capacities. However, the

introduction of another concept (null transitions) will make the second choice a bit

more compact. Null transitions are transitions which result in a time-lapse without

any output being generated. Namely, they will change the state without emitting an

output – see Figure 13.4. Soon we will discuss the different types of transitions in

more detail.

Based on the assumption that the output is associated with the transition out of a

state, we may produce the following restatements of Definitions 7.4 and 7.5.

Definition 13.2 (Unifilar Markov Source). A necessary and sufficient condition

for a Markov source to be unifilar is that every transition leaving a state would

produce a distinct output which is not produced by any other transition leaving the
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Fig. 13.4: Basic HMM Element

same state.

The above definition may be verified by examining Figure 13.2 and noting the

fact that each transition may only produce a distinct output.

Definition 13.3 (Non-Unifilar Markov Source). A necessary and sufficient condi-

tion for a Markov source to be non-unifilar is that two or more transition leaving a

state would be capable of producing the same output.

So through evolutionary path 2 of Figure 13.1, we have arrived at the hidden

Markov model. HMM have two main components [22],

1. A Markov chain for synthesizing the state sequence or path.

2. A finite set of output probability distributions which may be discrete or contin-

uous. These output distributions translate the state sequence in the first compo-

nent to an output sequence, acting as a time series.

For clarification, let us revisit the problem of Example 13.2. This time, we will

use an HMM to model the same problem. Therefore, based on our choice, the out-

puts will be associated with the transitions and not the states.

Example 13.3 (Hidden Markov model for two unfair coins).

Figure 13.3 shows the architecture for the HMM representing the same process as

in Example 13.2. Note that in this implementation, X1 and X2 are no longer directly

associated with coin 1 and coin 2. In fact, although they may end up having some

intrinsic physical meaning, the values are no longer uniquely tied to the output se-

quence. Therefore, to compute the probability of any specific output sequence, {y}N
1 ,

we would need to consider many different state sequences which may give rise to

the same output sequence and then combine the results of these probabilities.
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In this HMM representation, each transition is capable of producing both out-

puts, y ∈ {H,T}. Therefore, based on Definition 13.3, the model is a non-unifilar

Markov source, producing a hidden Markov model. In close examination, it is ap-

parent that there are four transitions and that two of the transitions may be viewed

as having coin 1 as the output production mechanism and the other two transitions

are associated with coin 2.

As we have seen, the multiple association of the output probability distributions

to the different parts of the state sequence (transition sequence) create a hiding

mechanism which makes the states unobservable. Since the different output se-

quences may be generated from a combination of state sequences, in general, hidden

Markov models tend to be much smaller than their transparent Markov model coun-

terparts. This means that a smaller number of parameters will need to be estimated.

These hidden states sometimes have underlying physical characteristics. For exam-

ple, they may be related to the positions of the articulators (see Section 4.1.3) which

in turn produce different sounds through the vocal tract. Therefore, the output se-

quence is still very much dependent upon the state sequence, but not in a direct,

observable way.

In the next section, we will study the different aspects of hidden Markov model

design and the arrangement of the states for modeling speech. In the following sec-

tions the training and decoding of HMM in conjunction with different popular algo-

rithms are examined in detail with some simple examples.

13.5 Model Design and States

In Section 7.1, we defined the basic concept of ergodicity. Definition 7.6 described

an ergodic source as a special case of a discrete Markov sources. Most of the models

in the literature of speaker and speech recognition [4, 23], including those for mod-

els of languages [10] assume the HMM of choice to be ergodic (see Definition 7.6).

This simplifies the design and implementation of these models.

Let us start by making the following assumptions:

1. States do not produce any output; instead, some transitions produce outputs

based on output probability distributions associated with them. The output prob-

ability distribution may be either discrete or continuous.

2. There are a finite number of states. This assumption follows a bound on the

definition of Markov chain (Definition 13.1), which originally calls for a count-

able number of states. Here, for practicality, we have restricted the number to

be finite, since countable may theoretically refer to countably infinite as well.

3. Final states are states which have no outgoing transitions.
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4. Null transitions may exist between two states. These transitions do not produce

any output. They only allow the progression of their origination state to their

destination state with no output. The introduction of null transitions allows for

much more simplified model architectures.

5. No null transition is allowed from any state to itself.

6. By the simple serial concatenation of the basic architectural unit in Figure 13.4,

most output sequences are made possible. Note that for simplification, we only

allow a null transition from any state to the next state, as seen in Figure 13.4.

There is no need to handle the more complex case where a transition would

be possible from any state to any other state. The reason is that by reassigning

transition probabilities, such transitions are also possible using the basic archi-

tecture made from the concatenation of the simple units of Figure 13.4. This

will, however, simplify the practical implementation of the model.

The fourth assumption for the basic structure of the HMM suggested that the

HMM be made up of a concatenation of elements of the form listed in Figure 13.4.

Any forward HMM model with the restriction of having no self null transitions may

be created from a series of basic elements as shown in Figure 13.4. With this in

mind, the model design is simplified. Figure 13.5 shows how a model may be sim-

plified by using a null transition to reduce the number of transitions. The complex

design problem, therefore, reduces to one of simply choosing the number of states.

In that regard also, it is simple to make certain assumption on the average number of

states which are necessary to model basic elements of the acoustic sample sequence.

Fig. 13.5: Simplification using a Null Transition

As we see from Figure 13.4, the basic element includes three possible transi-

tions: a self transition, a forward transition and a null transition. If we assume that

the basic sound component may be modeled by a GMM, then a single state would

be adequate for the average length in the simplest unit of sound.

By the simplest unit we do not necessarily mean a phone (Definition 4.2). Al-

though the phone is the simplest unit of sound that occurs in a language, but phones

themselves may be broken into different segments, by being modeled using a few

states. Most speech recognition implementations use three states to model an aver-

age phone – see Figure 13.6. Other elongated phones, for example diphthongs and
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Fig. 13.6: HMM of an Average Phone

triphthongs (see Section 4.1.3) may be composed of more states, say 5 and 7 respec-

tively.

The fact that there is a self transition, allows for accounting for elongated pho-

netic symbols and the null transition allows for the having shorter occurrences of

the same symbol. The basic idea behind this variation is that there are natural varia-

tions in the length of a phone being uttered by different individuals and even within

different enunciations used by the same individual.

Therefore, the number of states would generally be in the same order of magni-

tude as the length of the phonetic sequence the model is supposed to represent. Of

course, this is not an exact prescription, however, it does allow for an approximate

design criterion on the number of states to use.

A perturbation of the number of states around the above nominal length would

allow for the optimization of the lengths of the sequences. In fact, this may be done

by using held-out data at the training stage. Namely, a portion of the training data

may be held out to test the different length models. The rest of the training data may

be used to train the models based on some assumption of the length. Then the held

out data may be used to optimize the length of the models. This is quite similar to

the other optimization processes used throughout this chapter.

13.6 Training and Decoding

We have arrived at the basic structure of an HMM. At this point, we need to examine

the parameter estimation and decoding techniques for the devised models. In gen-

eral, there are three different problems which interest us in the event of observing a

random output sequence, w, as a sample of possible output sequences modeled by

the random variable, W : w ∈ W = {W1,W2, · · · ,WΩ}. Notice, that every sample, w,

of W is itself a sequence of observations emitted by the HMM. Therefore, we will

write the generic sequence, w = {y}N
1 and for a every distinct output sequence we

qualify the sequence as follows, w = Wω = {yω}Nω
1 where, ω ∈ {1,2, · · · ,Ω}. Any
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instance of a sequence may be written as wk, where k is the kth sample of W.

The three said problems may then be stated as follows,

1. Training: Estimate parameters of the Markov source with highest likelihood of

producing output sequences, {w}K
1 .

2. State sequence: Find the most probable state sequence that would produce the

output sequence, Wω = {yω}Nω
1 as its output for Markov source with param-

eter vector, ϕϕϕ . This problem may be solved using a special case of dynamic

programming [6] called the Viterbi algorithm [26].

3. Decoding: Compute the probability of an output sequence for the Markov

source with parameter vector, ϕϕϕ ,

P(Wω |ϕϕϕ) = P({yω}Nω
1 |ϕϕϕ) (13.15)

In the second and third problems, the model parameters ϕϕϕ (transition and output

probabilities) are known, however in the training stage (problem 1), the objective is

to compute the parameters that would best fit a number of output sequences, {w}K
1 .

Let us consider the third problem, which is the decoding of the probability of

the output sequence, P(Wω = {yω}Nω
1 |ϕϕϕ). Since we are interested in a non-unifilar

Markov source, the output sequence may be produced through many different state

sequences (transition sequences). Therefore, the probability of the output sequence

would be given by the sum of the joint probabilities of the output sequence and the

different possible state sequences. In notation,

P(Wω |ϕϕϕ) = ∑
{xω}Nω

1 :{yω}Nω
1

P({yω}Nω
1 ,{xω}Nω

1 |ϕϕϕ) (13.16)

where the notation, {xω}Nω
1 : {yω}Nω

1 , refers to all the state sequences that can pro-

duce {yω}Nω
1 .

The simplest way to compute P({yω}Nω
1 |ϕϕϕ) is to enumerate all the possible state

sequences that can produce {yω}Nω
1 , computing each corresponding joint probabil-

ity and then adding them all, according to Equation 13.16. The problem is that this

computation will grow exponentially with the length of each output sequence!

To illustrate this exponential growth, let us take the following example. In the

example, we have dropped the index, ω , since we are only concerned with demon-

strating the decoding of a single output sequence, w = {y}N
1 to find the related state

sequence, {x}N
1 . The same procedure may be applied to any other output sequence,

Wω = {yω}Nω
1 , with its corresponding state sequence, {xω}Nω

1 .

Example 13.4 (Decoding the Output Sequence).

Let us consider the HMM described in the finite state diagram of Figure 13.7 and
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Fig. 13.7: HMM of Example 13.4

compute the output probability of the sequence, {y}4
1 = {aabb} where Y : y ∈ {a,b}.

First, consider all the different possible transitions which may output the first output

in the sequence, y1 = a. Figure 13.8 shows the different paths for generating y1 = a,

by the model in Figure 13.7.

Fig. 13.8: Possible Paths for generating y1 = a in Example 13.4

The probability of y1 = a is therefore the sum of all the joint probabilities with

the corresponding paths,

P(y1 = a|ϕϕϕ) = 0.40+0.21+0.04+0.03

= 0.68 (13.17)
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If we continue for one more time instance, namely if we enumerate the paths that

output {y}2
1 = {aa}, we see that the possible paths grow exponentially. Figure 13.9

shows all the paths that would lead to outputting this sequence. Note that the prob-

ability of the output sequence will then be computed by summing the joint probabil-

ities of all the possible paths which output this sequence, as follows,

P({y}2
1 = {aa}|ϕϕϕ) = 0.16+0.084+0.016+0.012+

0.042+0.0315+0.008+0.006

= 0.3595 (13.18)

In Figure 13.9, note the second and third main paths from the initial state. They

Fig. 13.9: Possible Paths for generating {y}2
1 = aa in Example 13.4
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have been marked on the figure with an oval marker, suggesting a merger. Since

their continuation into the output, y2 = a, take an identical set of paths, according

to Markov property (Equation 7.2), they may be merged, since once we are in that

state, it is not important how we have arrived at that junction. Figure 13.10 shows

this merger. Note that merging these two paths does not affect the total output prob-

ability for the sequence, nor will it alter the possible extensions of the live paths for

further output. The same procedure may be continued to arrive at the total proba-

Fig. 13.10: Merged paths for generating {y}2
1 = aa in Example 13.4

bility of the whole sequence, {y}4
1 = {aabb}.

As we saw from Example 13.4, it is not very efficient to compute all the possible

paths, only to find out that certain paths may be merged. In the next section, we will

introduce a trellis diagram which helps manage the different paths and outputs. It

will also give insight into methods for reducing the computation load from expo-

nential to linear.
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13.6.1 Trellis Diagram Representation

The trellis diagram is a powerful representation of a finite state diagram. It is used

to relate the state and output sequences together. The number of samples is drawn

along the horizontal axis from left to right and the states are marked on the vertical

axis from top to bottom. There is a one-to-one relationship between the type of tran-

sition and the direction of motion along the trellis. The following three notes relate

the different kinds of transition to the direction of motion.

1. A pure vertical descent in the diagram is equivalent to a null transition, since

the state is changed, but no output is generated, hence no time has elapsed.

2. A pure horizontal motion corresponds to a self-transition since the state does

not change, but an output is generated, elapsing one sample.

3. A diagonal motion is akin to moving along a forward transition from any state

to the next state, while generating an output sample.

Figure 13.11 shows the trellis diagram and the corresponding products of the transi-

tion probabilities and conditional output probabilities for the corresponding outputs.

An important feature of the trellis diagram is that every transition sequence is only

Fig. 13.11: Trellis diagram for the output sequence, {y}4
1 = {aabb} being generated by the

HMM of Figure 13.7

present exactly one time, hence the repeated transition sequences such as in Fig-

ure 13.9 are automatically merged. Although in the diagram of Figure 13.11, we

only have the three types of transitions listed in the previous section (self, forward
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and null), the trellis diagram is also capable of representing backward transition,

say from X2 to X1. These would just show up as diagonal connections from lower

left to upper right. However, it is not suitable for handling backward and self null

transitions. As we mentioned earlier, we are only concerned with left-right forward

architectures [22], in this book. Specifically, we will be concentrating on architec-

tures which are made up of the basic elements of the kind shown in Figure 13.4.

In the next three sections, we will review efficient algorithms for solving the

three problems of interest, listed in Section 13.6. Although these problems were

listed in the order of being used in the natural implementation of any system, the

order of covering them in the next few sections has been reversed. The reason for

this reversed order of discussion is that the concepts for the decoding problem (third

problem) will be needed for describing the Viterbi algorithm [26], used for finding

the most likely path through the model for a given sequence (second problem) and

the Baum-Welch algorithm [5] used for estimating the parameters (training) of the

HMM (first problem).

Fig. 13.12: α computation for the HMM of Example 13.4
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13.6.2 Forward Pass Algorithm

The forward pass algorithm, match algorithm, or commonly referred to as the for-

ward algorithm is an efficient technique for computing the probability of an output

sequence, w = {y}N
1 , given an HMM. The term forward pass stems from the fact

that it computes the probability of the observed sequence by doing forward (and

top-down) sweep through the trellis diagram associated with the HMM and the out-

put sequence of interest.

Let us examine the sample trellis diagram of Figure 13.11, associated with the

HMM of Figure 13.7 and the desired output, {y}N
1 = {aabb}. The idea behind the

forward algorithm is that if we compute all the probabilities at the different lattice

points of the trellis, moving from the top left to the bottom right, by the time we

arrive at the most extreme point of the lower right of the trellis, we have the proba-

bility of the sequence, {y}N
1 , as generated by the corresponding HMM, P({y}N

1 |ϕϕϕ),
where ϕϕϕ is the parameter vector associated with the HMM.

The probabilities which are computed at each lattice point (node) are usually

denoted by αn(Xm) and are defined as follows,

αn(Xm|ϕϕϕ)
Δ
= P(Xm,{y}n

1|ϕϕϕ) ∀ Xm ∈ X , 1 ≤ n ≤ N (13.19)

Since it is well understood that all the probabilities, computed for the forward pass,

are based on the knowledge of the model parameter vector,ϕϕϕ , the conditionality has

been suppressed from the notation in this and next section. For example, it should be

understood that by P(Xm,{y}n
1|ϕϕϕ) we really mean P(Xm,{y}n

1) and that αn(Xm|ϕϕϕ) is

written as αn(Xm).

Before writing the expression for αn(Xm), let us define a notation for designat-

ing the transitions. Refer to Figure 13.4 which shows the simplest unit used in our

design structure. The output producing transitions are denoted by τm(m+1), which

signifies the transition from state Xm to Xm+1. The null (non-output-producing) tran-

sitions are denoted by τ̂m(m+1). Since the null transitions, in our restricted left-right

architecture, may only go from a state to the next state, sometimes we may use

the shorthand which only includes the index associated with the originating state,

namely, τ̂m ≡ τ̂m(m+1).

Using this notation, the expression for αn(Xm), as defined by Equation 13.19,

may be written as follows,
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αn(Xm) = P(Xm,{y}n
1)

= ∑
m′:m′τm′m�−→m

P(Xm′ ,{y}n−1
1 )P(yn,τm′m)+

∑
m′:m′ τ̂m′m�−→m

P(Xm′ ,{y}n
1)P(τ̂m′m) (13.20)

= ∑
m′:m′τm′m�−→m

αn−1(Xm′)P(yn|τm′m)P(τm′m)+

∑
m′:m′ τ̂m′m�−→m

αn(Xm′)P(τ̂m′m) (13.21)

If we denote the node on the trellis, associated with the state Xm and the output

sequence, {y}n
1, by the pair, (Xm,{y}n

1), then the summation over m′ : m′ τm′m�−→ m de-

notes the summation over all the output producing transitions which arrive at state

Xm, while being involved in the production of the sequence, {y}n
1. The Xm′ are the

states that originate these transitions. Similarly, the summation over m′ : m′ τ̂m′m�−→ m is

the summation over all null transitions arriving at the state Xm, while being involved

in the path to generating the output sequence, {y}n
1, although not directly generating

any output themselves.

Equation 13.21 is computed iteratively, with the initial probability equal to 1,

namely,

α0(X1) = 1.0 (13.22)

For a better grasp of the forward algorithm based on the recursion of Equa-

tion 13.21 subject to the initial condition of Equation 13.22, we have computed

the path probabilities and their summation at every node of the trellis, the αn(Xm).
Figure 13.12 shows this table for the problem of Example 13.4. For notational con-

venience, the conditionality onϕϕϕ as been suppressed in the figure, namely, P(y,τ|ϕϕϕ)
has been written as P(y,τ).

The forward algorithm is used for the decoding of a speech sequence using an

HMM. The amount of computation for the forward algorithm is linearly propor-

tional to the number of outputs in the observation sequence. This is in contrast with

the exponential relation for the case where all the possible paths are computed in-

dependently. As we mentioned in the Section 13.6, sometimes we are interested in

knowing the maximum likelihood path for the sequence and not the total path. In

the next section we will examine an algorithm which is quite similar to the forward

algorithm, with the difference that it uses the maximum function instead of summa-

tion, to find the most likely path.
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Fig. 13.13: Viterbi maximum probability path computation for the HMM of Example 13.4

13.6.3 Viterbi Algorithm

In Section 13.6.2 we reviewed the forward pass algorithm which computes the total

probability of a sequence given an HMM, using the trellis diagram. Sometimes it is

necessary to compute the most likely path through an HMM, for generating a se-

quence. In 1967 Viterbi [26] proposed a nonsequential decoding algorithm applied

to the transmission of optimal convolutional codes over a memoryless channel (Def-

inition 7.14). This turns out to be a dynamic programming style algorithm, related to

Bellman’s work [6] of a decade earlier. It is quite similar to the forward algorithm,

described in Section 13.6.2, with the difference that at every lattice point, instead of

using the total path probability up to that point, αn(Xm), only the maximum proba-

bility path is kept alive and every other path is discarded. The maximum probability

path at any node is denoted by α̂n(Xm). As with the argument of Section 13.6.2,

α̂n(Xm) is really a short-hand notation for α̂n(Xm|ϕϕϕ). The same contraction applies

to other probabilities in this section. Therefore, α̂n(Xm) may be written as follows,

α̂n(Xm)
Δ
= Pmax(Xm,{y}n

1) (13.23)

= max

⎛⎝ max

m′:m′ τ̂m′m�−→m

(α̂n−1(Xm′)P(yn|τm′m)P(τm′m)) ,

max

m′:m′ τ̂m′m�−→m

(α̂n(Xm′)P(τ̂m′m))

⎞⎠ (13.24)
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Figure 13.13 shows the table of α̂n(Xm) computations for the problem of Exam-

ple 13.4. The maxima listed in the last row of the table are the maximum path prob-

abilities for the different partial output strings and the entry in the last row and last

column is the maximum probability path for the full output, {aabb}. In the imple-

mentation of this algorithm, one needs to only save the maximum path information

and the rest of the paths may be discarded, reducing the computational load from

exponential to linear in relation to the length of the output sequence.

13.6.4 Baum-Welch (Forward-Backward) Algorithm

The forward-backward algorithm is essentially the maximum likelihood estimation

algorithm for a hidden Markov model, maximizing the likelihood of observing the

training data through a given HMM structure. Extensions [12] have also been made

to solve the Bayesian maximum a-posteriori (MAP) problem. As we noted in Sec-

tion 13.6.2, the trellis diagram and the α computations of that section will be used as

a part of the training as well. In this section, we will review the, generically called,

forward-backward algorithm, also known as the Baum [5] or Baum-Welch. It is an

application of expectation maximization (EM) (Section 11.3.1) to the computation

of the HMM parameters and in that regard it is sometimes referred to as the EM

algorithm.

The basic premise for this and other such algorithms (Section 7.1) is to take ad-

vantage of the fact that all the memory of the process, to the point of interest, is

summarized in the recent history. In the HMM, we use the Markov property, which

makes that summary contained only in the last time step. In other similar time series

algorithms, such as ARMA [15] and Kalman filtering [13], the length of the memory

is decided based on the dynamic system being modeled and a forgetting factor [15]

is used to reduce the effect of the prior history in the formation of new states.

As we saw in the introduction of the trellis diagram (Section 13.6.1), the enumer-

ative method of evaluating different paths of the HMM would lead to exponentially

large number of calculations, with respect to the length of the output sequence. The

same problem plagues the training of HMM parameters to an even larger extent,

since for training, a large amount of data will be required and for each training

sequence the same exponential behavior will be present. The most apparent way

of reducing this computation is to revisit the trellis diagram representation of the

HMM. The forward-backward algorithm is an iterative algorithm which utilizes the

trellis diagram to reduce the parameter estimation problem to a linear level relative

to the output sequence.

To understand this algorithm, let us revisit the trellis diagram of Figure 13.11.

For any desired output sequence, Wω = {yω}Nω
1 , if we take any node of the trellis,
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denoted by its history, arriving at a state Xm while generating the output sequence,

{yω}n
1, by the pair, (Xm,{yω}n

1), then there are two different possibilities to continue

to the end of the sequence, (XM,{yω}Nω
1 ). The first choice is to take any of the pos-

sible output generating transitions and the second is to take a null transition, when

available.

Based on the Markov property (Definition 7.3), we saw in the α computations

(Equation 13.21) that the path to the end of any transition may be broken into the

two multiplicative components of the α up to that transition and the effect of the

transition itself. Based on the same Markov property, what happens after any transi-

tion, only depends on the input of the transition which would be the α leading up to

the transition and the transition itself. Therefore, the effect of transition, in the total

path of generating the sequence of choice, may be broken up into three parts, what

happens up to the transition, the transition itself and what happens after the transi-

tion. To account for what happens after the transition is taken, we may start at the

end of the sequence and work our way back toward the destination of the transition

and in the process compute all the path probabilities, denoted by βn(Xm), associated

with the path, (Xm,Wω) in the trellis. Note that for the βn(Xm) designation, we are

using the path from that output node, yωn, to the end of the sequence, yωN .

The following Equation gives the expression for βn(Xm) based upon the above

argument while dropping the ω index for notational convenience,

βn(Xm) = P({y}N
n+1|Xm)

= ∑
m′:m

τ
mm′�−→m′

βn+1(Xm′)P(yn+1|τmm′)P(τmm′)+

∑
m′:m

τ̂
mm′�−→m′

βn(Xm′)P(τ̂mm′) (13.25)

with the understanding that when it not specifically stated, w = {y}N
1 is assumed to

be a sample of W where the total number of samples used for the purpose of esti-

mating the parameters is {w}K
1 , where wk ∈ {Wω} = {yω}Nω

1 .

Then for any output generating transition-output combination in the trellis,

P(yn,τmm′ | w = {y}N
1 ) =

αn−1(Xm′)︸ ︷︷ ︸
up to the transition

P(yn|τmm′)P(τmm′)︸ ︷︷ ︸
the transition

βn(Xm)︸ ︷︷ ︸
to the end of output

(13.26)

and for any null transition,

P(τ̂mm′ , t = n|w = {y}N
1 ) = αn(Xm′)︸ ︷︷ ︸

up to the transition

P(τmm′)︸ ︷︷ ︸
the transition

βn(Xm)︸ ︷︷ ︸
to the end of output

(13.27)

In Equation 13.26, the joint conditional probability, P(yn,τmm′ |w = {y}N
1 ), signifies

the probability of transiting from a node in the trellis to a neighboring node while
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outputting the nth output of the HMM. However, since null transitions do not output

anything, in Equation 13.27, a variable, t, has been introduced which signifies the

time step associated with the output. Therefore, t = n means that a transition from a

node in the trellis prior to outputting the nth output is of interest. Since it is impor-

tant to note which instance of the traversal of the null transition is being considered

in the computation of probability, P(τ̂mm′ , t = n|w = {y}N
1 ), this variable (t) com-

plements the the present knowledge that the transition is emanating from state Xm,

based on the transition notation.

From Equations 13.26 and 13.27, one may re-estimated a-posteriori transition

probabilities for output generating transitions and null transition using the following

two expressions, respectively.

P(τmm′ | w) =
N

∑
n=1

P(yn,τmm′ |w)

∑

m′:m
τ
mm′�−→m′

N

∑
n=1

P(yn,τmm′ |w)+ ∑

m′:m
τ̂
mm′�−→m′

P(τ̂mm′ , t = n|w)

(13.28)

P(τ̂m′m | w) =
N

∑
n=1

P(τ̂mm′ , t = n|w)

∑

m′:m
τ
mm′�−→m′

N

∑
n=1

P(yn,τmm′ |w)+ ∑

m′:m
τ̂
mm′�−→m′

P(τ̂mm′ , t = n|w)

(13.29)

In practice, each of the summations in the numerators and denominators of Equa-

tions 13.28 and 13.29 are accumulated into variables, as the trellis is swept from left

to right, to compute the conditional probabilities of all the transitions at the end of

the sweep.

So far, we have developed the expressions for recomputing the transition prob-

abilities given an output sequence, which is part of the parameter vector for the

HMM. The missing part is now the computation of the output distributions at the

output generating transitions. Again, let us consider the case of a discrete output

distribution. If the possible output values for Y are given as, y ∈ {Y1,Y2, · · · ,YQ},

then the joint probability in Equation 13.28 may be written for a specific output, Yq,

as follows,

P(yn = Yq,τmm′ | w) =

αn−1(Xm′)︸ ︷︷ ︸
up to the transition

P(yn = Yq|τmm′)P(τmm′)︸ ︷︷ ︸
the transition

βn(Xm)︸ ︷︷ ︸
to the end of output

(13.30)

Therefore, the conditional probability distribution for the outputting generating tran-

sition τmm′ , producing the output y =Yq would be given by the following expression,
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which is a summation of all the instances of this output having been produced by

this specific transition for the given sequence, w.

P(y = Yq|τmm′ ,w) =

N

∑
n=1

P(yn = Yq,τmm′ |w)

N

∑
n=1

P(yn,τmm′ |w)

(13.31)

Equations 13.28, 13.29, and 13.31 provide us with the re-estimation of the el-

ements of the parameter vector ϕϕϕ based on a single output sequence, w. Since we

need to train the HMM to be able to model a large set of training data, say Q se-

quences, the total probabilities need to be computed across all observed sequences

(training data). The following two equations express these relations for the transition

probabilities.

P(τmm′) =
Ω

∑
ω=1

P(τmm′ ,w = Wω)

=
Ω

∑
ω=1

P(τmm′ |w = Wω)P(w = Wω)

≈ 1

K

K

∑
k=1

P(τmm′ |wk)

(13.32)

P(τ̂mm′) =
Ω

∑
ω=1

P(τ̂mm′ ,w = Wω)

=
Ω

∑
ω=1

P(τ̂mm′ |w = Wω)P(w = Wω)

≈ 1

K

K

∑
k=1

P(τ̂mm′ |wk) (13.33)

In Equations 13.32 and 13.33, we have used the law of large numbers (Section 6.9.2)

to estimate the total probabilities of the transitions based on the assumptions that K

is large and that the training sample distribution is representative of the real-world

distribution of W .

Much in the same way as with the approximation of the transition probabilities,

we may approximate the output distributions conditioned on their corresponding

transitions as follows, by making use of Equation 13.31.

P(y = Yq|τmm′) =
Ω

∑
ω=1

P(y = Yq|τmm′ ,w = Wω)P(w = Wω)

≈ 1

K

K

∑
k=1

P(y = Yq|τmm′ ,wk) (13.34)
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For a better understanding of this algorithm, let us take the following simple

example with discrete output distributions.

Example 13.5 (Simple Training).

To make the computations more manageable, let us start with a simplified version

of the model in Example 13.4 which was used for the illustration of the decoding

process. This time, we will remove the null transition from the second state to the

third. Since we are still left with one null transition from the first state to the sec-

ond state, we will not be impairing our coverage; we will only be simplifying the

number of calculations that have to be done for the illustration of the Baum-Welch

algorithm.

Fig. 13.14: HMM of Example 13.5 with maximum entropy initial distributions

Figure 13.14 shows the model used for this example. In this case, we are seek-

ing the maximum likelihood estimation of the model parameters, given a single se-

quence, {y}4
1 = {abaa}. Notice that the model and the sequence are both slightly

different from those of Example 13.4. In the figure, for a lack of any information,

we choose the maximum entropy solution of equally probable initial choices for the

output distributions and transition probabilities of the model – see Section 10.3.

Figure 13.15 shows the trellis diagram for the initial parameters of Figure 13.14.

For each node on the trellis, the α and β values have been computed using Equa-

tions 13.21 and 13.25 respectively. Using these values in Equations 13.26, 13.27,

and 13.30 we may compute the so called, counts, related to the computation of the

transition probabilities and associated output distributions. These values are used

in Equations 13.28, 13.29, and 13.31 to compute the output generating and null

transition probabilities as well as the output probability distributions conditioned

on the output producing transitions, respectively. These recomputed values for the



438 13 Hidden Markov Modeling (HMM)

Fig. 13.15: Trellis of Example 13.5 with maximum entropy initial distributions

Fig. 13.16: HMM of Example 13.5 with recomputed distributions and transition probabilities
after one iteration of Baum-Welch
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first iteration are shown in Figure 13.16.

Fig. 13.17: Trellis of Example 13.5 with recomputed a-posteriori output-transition probabil-
ities

Figure 13.17 shows the trellis diagram with its values computed based on the new

parameters. The likelihood of the new model parameters given the output string,

{abaa} is increased as expected by the expectation maximization, of which the

Baum-Welch algorithm is a special case Equation 13.35 shows this increase.

P(1)({y}4
1 = {abaa}) = 0.02438

> P(0)({y}4
1 = {abaa})

= 0.008632 (13.35)

Figure 13.18 shows a plot of the likelihood as a function of the iteration number

(in log scale). Given the initial conditions from which we started, a local maximum

is reached where only one path has a non-zero probability, giving rise to the config-

uration of Figure 13.19 with a likelihood of P(∗)({abaa}|ϕϕϕ) = 0.037037.

To examine the dependence of the solution to the initial conditions, let us per-

turb the initial distribution of the first output generating transition just slightly from

the maximum entropy distribution of Figure 13.14. Figure 13.20 shows this slightly

modified initial set of parameters. Let us repeat the execution of the Baum-Welch

algorithm with this new model. Figure 13.21 shows the model parameters for the
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Fig. 13.18: Convergence of the likelihood of the HMM given the sequence, {abaa}, to a
local maximum, as related to Example 13.5

Fig. 13.19: Configuration of the locally converged HMM model for sequence {abaa} in
Example 13.5
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converged model.

Fig. 13.20: A slight deviation from max-
imum entropy in the initial distribution
of the HMM of Example 13.5

Fig. 13.21: Configuration of the globally
converged HMM model for sequence
{abaa} in Example 13.5

This time, the algorithm has converged to a globally maximal likelihood. Fig-

ure 13.22 shows the convergence of the algorithm with the new initial conditions

against plotted relative to the number of iterations of the Baum-Welch. The plot also

shows the likelihood values of the previous attempt for comparison. The new maxi-

mum for the likelihood is P({abaa}|ϕϕϕ) = 0.0625 which is considerably larger than

the previously found local maximum of 0.037037, although it only took 16 iterations

to converge to this global maximum versus the 600+ iterations it took for the previ-

ous attempt.

Therefore, we see that the convergence of the forward-backward (Baum-Welch)

algorithm is quite dependent on the initial conditions and that there are many local

maxima which can trap the algorithm. This was expected based on the discussion of

the general EM approach discussed in Section 11.3.1.

For an extension to handle the MAP (Section 10.2) estimation of the parame-

ters of an HMM with continuous output densities see [12]. The algorithms shown

here, may be easily extended to tied and shared mixture HMM where the transitions

and output densities may be tied and shared across different units. In Section 9.4

we discussed decision trees in some detail. Also, in Section 11.4, while discussing

hierarchical clustering, we noted the usage of such clustering techniques in typing

and combination of parameters in a hierarchy. In reducing the computational load

and handling the tractability problem (see Section 13.7.2), most practical architec-

tures using HMM, create hierarchical structures which utilize decision trees where

the questions are in the form of likelihood comparisons of state sequences. For ex-

ample, due to small amounts of data available for training HMM, one solution is to

share substructural units (partial HMM) and to train these substructures using the

global data. Decision trees are used to create the sharing logic, where the leaves

are the substructures and the hierarchy of the tree shows the combination of these
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Fig. 13.22: Convergence of the likelihood of the HMM given the sequence, {abaa}, for two
different initial conditions: 1. maximum entropy and 2. slight perturbation from maximum
entropy

substructures into larger units.

13.7 Gaussian Mixture Models (GMM)

The Gaussian mixture model (GMM) is a model that expresses the probability den-

sity function of a random variable in terms of a weighted sum of its components,

each of which is described by a Gaussian (normal) density function. In other words,

p(x|ϕϕϕ) =
Γ

∑
γ=1

p(x|θθθγ)P(θθθγ) (13.36)

where the supervector of parameters, ϕϕϕ , is defined as an augmented set of Γ vec-

tors constituting the free parameters associated with the Γ mixture components,

θθθγ ,γ ∈ {1,2, · · · ,Γ } and the Γ − 1 , and the mixture weights, P(θ = θθθγ),γ =
{1,2, · · · ,Γ − 1}, which are the prior probabilities of each of these mixture mod-

els known as the mixing distribution [20].

The parameter vectors associated with each mixture component, in the case of

the Gaussian mixture model, is the parameters of the normal density function,
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θθθγ =
[
μμμT
γ uT (ΣΣΣγ)

]T
(13.37)

where the unique parameters vector is an invertible transformation that stacks all the

free parameters of a matrix into vector form. For example, if ΣΣΣγ is a full covariance

matrix, then u(ΣΣΣγ) is the vector of the elements in the upper triangle ofΣΣΣγ including

the diagonal elements. On the other hand, if ΣΣΣγ is a diagonal matrix, then,(
u(ΣΣΣγ)

)
[d]

Δ
=
(
ΣΣΣγ

)
[d][d]

∀ d ∈ {1,2, · · · ,D} (13.38)

Therefore, we may always reconstruct ΣΣΣγ from uγ using the inverse transformation,

ΣΣΣγ = uγ
−1 (13.39)

The parameter vector for the mixture model may be constructed as follows,

ϕϕϕ
Δ
=
[
μμμT

1 · · · μμμT
Γ uT

1 · · · uT
Γ p(θθθ 1) · · · p(θθθΓ−1)

]T
(13.40)

where only (Γ −1) mixture coefficients (prior probabilities), p(θθθγ), are included in

ϕϕϕ , due to the constraint that

Γ

∑
γ=1

p(ϕϕϕγ) = 1 (13.41)

Thus the number of free parameters in the prior probabilities is only Γ −1.

For a sequence of independent and identically distributed (i.i.d.) observations,

{x}N
1 , the log of likelihood of the sequence may be written as follows,

�(ϕϕϕ|{x}N
1 ) = ln

(
N

∏
n=1

p(xn|ϕϕϕ)

)

=
N

∑
n=1

ln p(xn|ϕϕϕ) (13.42)

Assuming the mixture model, defined by Equation 13.36, the likelihood of may be

written in terms of the mixture components,

�(ϕϕϕ|{x}N
1 ) =

N

∑
n=1

ln

(
Γ

∑
γ=1

p(xn|θθθγ)P(θθθγ)

)
(13.43)

Since maximizing Equation 13.43 requires the maximization of the logarithm of

a sum, we can utilize the incomplete data approach that was used in the develop-

ment of the EM algorithm in Section 11.3.1.1 to simplify the solution. In the next

section, we will derive the incomplete data equivalent of the maximization of Equa-

tion 13.43 using the EM algorithm.
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13.7.1 Training

To be able to maximize the likelihood of a sequence, {x}N
1 , given by Equation 13.43,

we will define the expectation and maximization steps associated with the incom-

plete data approach to this problem. The unobserved data, in this case, is the mem-

bership of each data point to the corresponding Gaussian, that data point helps de-

fine, in the training step. For more detailed coverage, see [8, 27].

The expectation step may be formulated based on the a-posteriori probability of

each component of the mixture, given the observed data,

p(θθθγ |xn) =
p(θθθγ ,xn)

p(xn)
(13.44)

=
p(xn|θθθγ)p(θθθγ)

Γ

∑
γ ′=1

p(xn|θθθγ ′)p(θθθγ ′)

(13.45)

For the maximization step, we would like to maximize the expected log-likelihood

of the joint event of the observations, {x}N
1 , and the parameter vector, ϕϕϕ . Therefore,

the maximization function becomes,

Q(ϕϕϕ) = E

{
ln

(
N

∏
n=1

p(xn,ϕϕϕ)

)
|x
}

= E

{
N

∑
n=1

ln(p(xn,ϕϕϕ)) |x
}

=
N

∑
n=1

E {ln(p(xn,ϕϕϕ)) |x}

=
N

∑
n=1

Γ

∑
γ=1

p(θθθγ
(k)|xn) ln

(
p(θθθγ ,xn)

)
=

N

∑
n=1

Γ

∑
γ=1

p(θθθγ
(k)|xn) ln

(
p(xn|θθθγ)p(θθθγ)

)
(13.46)

In order to solve the constrained optimization problem with the constraint on

the summation of the prior probabilities, we may redefine ϕϕϕ to include all Γ prior

probabilities instead of the compact form which was defined in Equation 13.40. Let

us call the new parameter vector, ϕ̃ϕϕ , to avoid any confusion. Then

ϕ̃ϕϕ
Δ
=
[
μμμT

1 · · · μμμT
Γ uT

1 · · · uT
Γ p(θθθ 1) · · · p(θθθΓ )

]T
(13.47)

Therefore, we would like to solve the following iterative maximization problem,

ϕ̃ϕϕ(k+1) = argmax
ϕ̃ϕϕ

Q(ϕ̃ϕϕ|ϕ̃ϕϕ(k)) (13.48)
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subject to the following constraints,

Γ

∑
γ=1

p(γk) = 1 (13.49)

In solving the constrained maximization problem of Equations 13.48 and 13.49,

we assume a multi-dimensional normal density for p(x|θθθ) of the form of Equa-

tion 6.196. We may use the method of Lagrange multipliers discussed in detail in

Section 25.5. Let us define the Lagrangian, L (ϕ̃ϕϕ, λ̄ ),

L (ϕ̃ϕϕ, λ̄ ) =
N

∑
n=1

Γ

∑
γ=1

p(θθθγ
(k)|xn)(−D

2 ln(2π)− 1
2 ln

∣∣ΣΣΣγ

∣∣
− 1

2 (xn −μμμγ)
TΣΣΣ−1

γ (xn −μμμγ)+ ln
(

p(θθθγ)
))

−λ̄ (∑
γ

p(θθθγ)−1)

(13.50)

To solve for ϕ̃ϕϕ(k+1), we should set the gradient of the Lagrangian equal to zero

and solve for ϕ̃ϕϕ ,

∇ϕ̃ϕϕL (ϕ̃ϕϕ, λ̄ ) = 0 (13.51)

However, since ϕ̃ϕϕ is made up of different partitions, with common characteristics,

we may break up the problem in Equation 13.51 into three different problems, each

having Γ subproblems as follows,

∇μμμγL (ϕ̃ϕϕ, λ̄ ) = 0 (13.52)

∂L (ϕ̃ϕϕ, λ̄ )

∂ΣΣΣγ
= 0 (13.53)

∂L (ϕ̃ϕϕ, λ̄ )

p(θθθγ)
= 0 (13.54)

Equations 13.52, 13.53, and 13.54 should be met for all γ ∈ {1,2, · · · ,Γ }. Also, the

partial derivative of L (ϕ̃ϕϕ, λ̄ ) with respect to the covariance matrix is defined to be

a matrix of the same size as the covariance matrix, where each element is given by,(
∂L (ϕ̃ϕϕ, λ̄ )

∂ΣΣΣγ

)
[i][ j]

Δ
=

∂L (ϕ̃ϕϕ, λ̄ )

∂
(
ΣΣΣγ

)
[i][ j]

∀ i, j ∈ {1,2, · · · ,D} (13.55)

It would have been possible to solve Equation 13.51 as a whole in one attempt,

since there are formulations of the problem which have consolidated the compo-

nents of ϕ̃ϕϕ to be handled as one variable – see [27]. However, solving these three

sets of subproblems separately gives us another advantage. The estimates from solv-

ing Equation 13.52 for μμμγ
(k+1), may be used in Equation 13.53 of iteration k to speed

up the convergence process.
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Let us start with the gradient of Equation 13.52,

∇μμμγL (ϕ̃ϕϕ, λ̄ ) =
N

∑
n=1

p(θθθγ
(k)|xn)

(
− ∂

∂μμμγ

(
1

2
(xn −μμμγ)

TΣΣΣ−1
γ (xn −μμμγ)

))
(13.56)

=
N

∑
n=1

p(θθθγ
(k)|xn)

(
ΣΣΣ−1
γ (xn −μμμγ)

)
(13.57)

= 0 (13.58)

Assuming that the covariance matrix has full rank, then it may be factored out

of Equation 13.58. Also, since μμμγ is not directly dependent on the summation index

in the equation, it may be factored out of one part of the summation, producing the

following result,

μμμγ

N

∑
n=1

p(θθθγ
(k)|xn) =

N

∑
n=1

p(θθθγ
(k)|xn)xn (13.59)

Therefore, we may solve for μμμγ
(k+1) from Equation 13.59, giving the following

intuitive solution to the value of the mean vector at iteration k +1,

μμμγ
(k+1) =

N

∑
n=1

p(θθθγ
(k)|xn)xn

N

∑
n=1

p(θθθγ
(k)|xn)

(13.60)

Likewise, let us evaluate the update for the covariance matrix by solving 13.53,

∂

∂ΣΣΣγ
L (ϕ̃ϕϕ, λ̄ ) =

N

∑
n=1

p(θθθγ
(k)|xn)(

− ∂

∂ΣΣΣγ

(
1

2
ln(
∣∣ΣΣΣγ

∣∣))
− ∂

∂ΣΣΣγ

(
1

2
(xn −μμμγ)

TΣΣΣ−1
γ (xn −μμμγ)

))
(13.61)

=
N

∑
n=1

p(θθθγ
(k)|xn)(

−1

2
ΣΣΣ−1
γ +

1

2
ΣΣΣ−1
γ (xn −μμμγ)(xn −μμμγ)

TΣΣΣ−1
γ

)
(13.62)

= 0 (13.63)

Again, assuming that Σγ has full rank, we may factor one instance of it out of Equa-

tion 13.63, leaving us with the following equality,

N

∑
n=1

p(θθθγ
(k)|xn) =

N

∑
n=1

p(θθθγ
(k)|xn)ΣΣΣ

−1
γ (xn −μμμγ)(xn −μμμγ)

T (13.64)
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From Equation 13.64 we may solve for the covariance matrix in iteration k +1,

ΣΣΣγ
(k+1) =

N

∑
n=1

p(θθθγ
(k)|xn)(xn −μμμγ)(xn −μμμγ)

T

N

∑
n=1

p(θθθγ
(k)|xn)

(13.65)

which again seems pretty intuitive, especially when compared to the updated ex-

pression for μμμγ
(k+1), given by Equation 13.60.

As we mentioned earlier, since we already have the expression for μμμγ
(k+1), in-

stead of using the value of μμμγ
(k), we can actually use the value of μμμγ

(k+1) in Equa-

tion 13.65 to increase the speed of convergence. Therefore,

ΣΣΣγ
(k+1) =

N

∑
n=1

p(θθθγ
(k)|xn)(xn −μμμγ

(k+1))(xn −μμμγ
(k+1))T

N

∑
n=1

p(θθθγ
(k)|xn)

(13.66)

Let us move on to the computation of the new estimates for the a-priori probabil-

ities of the mixture components, p(θθθγ
(k+1)).

∂L (ϕ̃ϕϕ, λ̄ )

∂ p(θθθγ)
=

(
N

∑
n=1

p(θθθγ
(k)|xn)

∂ ln(p(θθθγ))

∂ p(θθθγ)

)
−

λ̄

(
∂ p(θθθγ)

∂ p(θθθγ)

)
(13.67)

=

(
N

∑
n=1

p(θθθγ
(k)|xn)

1

p(θθθγ)

)
− λ̄ (13.68)

= 0 (13.69)

Using Equation 13.69, we may solve for p(θθθγ) in terms of the Lagrange multi-

plier, λ̄ and the sum of the posterior probabilities,

p(θθθγ) =
1

λ̄

N

∑
n=1

p(θθθγ
(k)|xn) (13.70)

To solve for the Lagrange multiplier, we may use the constraint of Equa-

tion 13.49 in conjunction with Equation 13.70,

Γ

∑
γ=1

p(γk) = 1

=
Γ

∑
γ=1

1

λ̄

N

∑
n=1

p(θθθγ
(k)|xn) (13.71)
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Since λ̄ is not a function of the summation index, γ , it may be factored out and

solved for, in terms of the sum of the posterior probabilities over the total output

sequence and all mixture components,

λ̄ =
Γ

∑
γ=1

N

∑
n=1

p(θθθγ
(k)|xn) (13.72)

We may plug for λ̄ from Equation 13.72 into Equation 13.70, to solve for the

prior probabilities (mixture coefficients) at iteration k +1,

p(θθθγ
(k+1)) =

N

∑
n=1

p(θθθγ
(k)|xn)

Γ

∑
γ ′=1

N

∑
n=1

p(θθθγ ′
(k)|xn)

=
1

N

N

∑
n=1

p(θθθγ
(k)|xn) (13.73)

Here, we will repeat the expectation step of Equation 13.45 and Equations 13.60,

13.66, and 13.73, which are the steps needed for forming an iterative expectation

maximization process of computing the elements of the parameter vector, ϕϕϕ , as

defined by Equation 13.47.

Expectation step:

p(θθθγ |xn) =
p(xn|θθθγ)p(θθθγ)

Γ

∑
γ ′=1

p(xn|θθθγ ′)p(θθθγ ′)

(13.74)

Maximization step:

μμμγ
(k+1) =

N

∑
n=1

p(θθθγ
(k)|xn)xn

N

∑
n=1

p(θθθγ
(k)|xn)

(13.75)

ΣΣΣγ
(k+1) =

N

∑
n=1

p(θθθγ
(k)|xn)(xn −μμμγ

(k+1))(xn −μμμγ
(k+1))T

N

∑
n=1

p(θθθγ
(k)|xn)

(13.76)

p(θθθγ
(k+1)) =

1

N

N

∑
n=1

p(θθθγ
(k)|xn) (13.77)
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See Section 13.8.3 for an alternative perspective of the computation of the mixture

coefficients of a GMM.

Xu and Jordan [27] among others have studied the convergence of the EM al-

gorithm for estimating the parameters of the GMM in quite detail, arriving at the

conclusions stated in Section 11.3.1 that the algorithm increases the likelihood with

every iteration. However, they also show the slow convergence of the EM algorithm

which was stated earlier. In addition, we showed in a numerical example (Exam-

ple 13.5) that the EM algorithm can sometimes converge very slowly and end up in

a local maximum and in times it can be quite fast. Generally, though, it is known

to be a slowly converging algorithm. For this reason, mostly, it is used in combina-

tion with other algorithms which would first provide it with good initial guesses of

the parameter vector such as the k-means and similar algorithms discussed in Chap-

ter 11.

13.7.2 Tractability of Models

One of the main problems with computing ϕϕϕ is the problem of intractability.

Namely, the number of parameters is

dim(ϕϕϕ) = Γ

⎛⎜⎜⎜⎝ D︸︷︷︸
μμμγ

+
D(D+1)

2︸ ︷︷ ︸
ΣΣΣγ

+ 1︸︷︷︸
p(θθθγ )

⎞⎟⎟⎟⎠ −1︸︷︷︸
∑γ p(θθθγ )=1

=
Γ

2

(
D2 +3D+2

)−1 (13.78)

which for large D would require large amounts of data in order to be able to get a

reliable estimate of the parameters. Let us assume the speaker recognition problem

where D is generally computed by taking somewhere in the order of about 15 Mel

frequency Cepstral coefficients (Section 5.3.6), delta Cepstra and delta-delta Cep-

stra (Section 5.3.7). If the same number of delta and delta-delta Cepstra are chosen

to be included in the feature vector, then D = 45. If we decide to use Γ = 256 Gaus-

sians in the mixture model, then the number of parameter which need to be estimated

would be,

dim(ϕϕϕ) =
Γ

2

(
D2 +3D+2

)−1

=
256

2

(
452 +3×45+2

)−1

= 276,735 (13.79)

For tractability, if we take the rule of thumb which says that we should have at least

10 points per parameter being estimated, then we would need at least 2,767,350
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frames of speech. Considering that each frame spans about 10ms, then, this would

be equivalent to having 27,673.5s or 561.2 minutes!

Of course it is quite difficult to come up with 561 minutes of speech for training.

There are different remedies to this problem. One is to do away with the diagonal

elements of the covariance matrix and only consider the variances. This will reduce

the number of required parameters to

dim(ϕϕϕ) =
Γ

2
(2D+1)−1

=
256

2
(2×45+1)−1

= 11,647 (13.80)

which is 95.8% less than the number of parameters needed in a full covariance

model. The number of minutes of audio for estimating these parameters would then

only be 1.94 minutes which is much more practical.

However, we usually do not use the data from only one speaker to estimate the

parameters of the whole set of parameters in a model. Generally, a large training set

is used, which consists of hundreds and maybe even thousands of speakers to com-

pute the basic model parameters. This is sometimes called the speaker independent

model and in some circumstances it is referred to as the universal model, universal

background model, or simply background model. As we will see in chapter 21, the

individual target speaker’s enrollment audio is generally used to adapt new model

parameters from this speaker independent model.

Another approach is to reduce the dimensionality of the data. This would mean

the reduction of D which greatly affects the total number of free parameters. In

Chapter 12 we discussed a few techniques designed to optimize the amount of in-

formation which is preserved by reducing the dimensionality of the free parameters

in the system. Some such techniques are PCA, LDA, and FA. We shall see more

about such dimensionality reduction as applied specifically to the speaker recogni-

tion problems, such as joint factor analysis (Section 16.4.2) and nuisance attribute

projection (Section 15.8).

In Chapter 16, we will speak more about the speaker model and how it is devised.

In the chapters following Chapter 16, more detail will be given regarding different

aspects of model and parameter optimization.
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13.8 Practical Issues

In this section, we will examine a few practical issues involved in the successful

training of HMM and GMM. The first and one of the foremost problems with train-

ing a statistical system, regardless of whether it is an HMM or a GMM is the short-

age of training data. Most of the theory that has been developed in this book re-

volves around different definitions of the law of large numbers (Section 6.9.2). We

have repeatedly spoken about sufficient statistics. However, in practice, it is quite

impossible to have accounted for all the different possible observations which may

be encountered. In this section, we will examine possible preemptive methods for

avoiding gross failures (events leading to 0 output probabilities). Also, we will de-

vise ways of making our limited training data go as far as possible.

An inherent problem with using HMM is related to the discrepancies in the com-

ponents of the terms for computing the likelihood of an output sequence given an

HMM. There are two major components, one of which is related on logs of transi-

tion probabilities and the other is based on the output distribution or density given

a state. Unfortunately, these two components have different inherent statistics. The

transition probabilities have a large mean value among them and a small variance

compared to the output distributions or densities which have a much smaller mean,

but relatively larger variance. The addition of the logs of these two components

is highly biased toward the output distributions/densities for their larger variances,

hence downplaying the role of the transitions (dynamics) of the sequence – see p.

215 of [9], p. 48 of [28], and [7].

13.8.1 Smoothing

Let us assume that we have two sets of data, one of which we call the training data

and is used for training ({y}N1
1 ) and a second set which we call test data that is in-

tended to be used for validation ({ηηη}N2
1 ). As we saw in both the HMM and GMM

training procedures with the EM algorithm, we estimateϕϕϕ from {y}N1
1 to try to max-

imize the likelihood, p({y}N1
1 |ϕϕϕ).

As we mentioned in the beginning of this discussion, in practice we are faced

with data shortage. This problem was also discussed in reviewing the tractability

the GMM, in Section 13.7.2. When the training data is small, the parameters will be

overtrained such that it will be quite possible for the likelihood of the model given

the test data, p({y}N1
1 |ϕϕϕ) to be almost or even identically 0. One way to preemp-

tively adjust the model parameters in order to avoid such situations is to smooth

them with parameters which would allow for any output to be produced, such as the

maximum entropy solution we used as the initial conditions of the parameters of the
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HMM in Section 13.6.4 – see Figure 13.14.

Example 13.6 (Smoothing).

For the sake of simplicity, let us take the example of a memoryless model (as dis-

cussed in Section 13.1). Let us take the following die toss problem. As we know,

the possible outputs are Y = {1,2,3,4,5,6}. If we assume the training sequence,

{y}8
1 = {5,6,5,3,6,5,6,1}, and the test sequence, {η}4

1 = {1,5,6,2}, then the max-

imum likelihood solution to the parameter estimation based on the observed training

data is given by the relative frequency provided from the training data (see Exam-

ple 13.1),

ϕ̂ϕϕ = {P(1) =
1

8
,P(2) = 0,P(3) =

1

8
,P(4) = 0,P(5) =

3

8
,P(6) =

3

8
} (13.81)

Therefore, the likelihood of the training data would be given by,

p({y}N1
1 |ϕ̂ϕϕ) = (

3

8
)6 × (

1

8
)2

= 4.35×10−5 (13.82)

But the likelihood of the test data would be 0, since the test data contains a 2, which

has not been seen in the training data and has a 0 probability of occurrence as far as

the model parameters are concerned. The maximum entropy solution is the uniform

distribution,

ϕϕϕme = {P(1) =
1

6
,P(2) =

1

6
,P(3) =

1

6
,P(4) =

1

6
,P(5) =

1

6
,P(6) =

1

6
} (13.83)

Therefore, we may smooth ϕ̂ϕϕ with ϕϕϕme using a linear combination with weighting

parameter, α ,

ϕϕϕs = αϕ̂ϕϕ +(1−α)ϕϕϕme (13.84)

Therefore, the problem of smoothing reduces to choosing the smoothing parameter,

α . An intuitive choice would be one that would be dependent on the size of the

training data, N1, such that for very large N1, the effect of the smoothing distribution

would fade away and the maximum likelihood estimate would dominate. Therefore,

one solution would be if we pick α as follows,

α = 1− ε

N1
(13.85)

where ε is a small number in comparison with N1. For example, if we pick ε to be

ε = 1, then for the above example,

α = 1− ε

N1

=
7

8
(13.86)
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The new smoothed parameters would be,

ϕϕϕs =
7

8
ϕ̂ϕϕ +(1− 1

8
)ϕϕϕme

= {0.13,0.02,0.13,0.02,0.35,0.35} (13.87)

Using ϕϕϕs to compute the likelihoods for the model given the training and test data,

we have,

p({y}6
1|ϕ̂ϕϕ) = 0.356 ×0.132

= 3.1×10−5 (13.88)

and

p({ηηη}4
1|ϕ̂ϕϕ) = 0.13×0.352 ×0.02

= 3.2×10−4 (13.89)

Therefore, although the likelihood of the model given the training data has been

reduced with this smoothing, the model has become more versatile and produces a

viable likelihood for an unseen sequence. Of course, just picking the value of α or ε
may not be so optimal. In Section 13.8.3, we will talk about the method of held-out

estimation, which may be used to optimize the value of α according to some held-

out data.

13.8.2 Model Comparison

Notice from the results at the end of Section 13.8.2, that we cannot really compare

the two likelihoods in order to assess the performance of the model, since the likeli-

hoods are dependent on the length of the observed sequence. We will encounter this

in performing speaker recognition as well. Sometimes, we would like to compare

the likelihood of two sequences. For example, as we will see, for the verification

problem, we would like to compare the performance (likelihoods) of two different

models, one of which is trained on a speaker-independent set, sometimes called a

background model, and the other on a model based on the speaker-dependent ob-

servations. In this case, it would make sense to speak of the unit likelihood or the

normalized likelihood which is the likelihood of the model given a sequence, but

normalized over the number of observations.

In the case of speaker recognition, each observation is generally a frame of

speech (see Chapter 5), for which a feature vector has been computed. To find the

normalized likelihood, we would have to take the Nth root of the likelihood where

N is the length of the observed sequence. However, as we have discussed in the

past and will do so in future references, for many reasons, we will be using the log

of the likelihood, including significance (underflow) problems as well as handling

normalizations like this. If we use the log likelihood instead, then the Nth root will
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translate into dividing the log by N which is a much simpler operation. This com-

putation will act as the computation of the expected value of the log of likelihood,

sometimes called the expected log likelihood. Therefore, let us take the two like-

lihoods, presented in Equations 13.88 and 13.89 and compute them in log form,

while normalizing them against the length of the corresponding observed sequence

that produced those likelihoods (finding the their expected values).

For the training data,

�(ϕ̂ϕϕ|{y}8
1) = ln

(
p({y}8

1|ϕ̂ϕϕ)
)

= 6ln(0.35)+2ln(0.13)

= −10.38 (13.90)

with the expected log likelihood of,

�̃(ϕ̂ϕϕ|{y}8
1) =

1

8
�(ϕ̂ϕϕ|{y}8

1)

=
1

8
−10.38

= −1.30 (13.91)

For the test data,

�(ϕ̂ϕϕ|{ηηη}4
1) = ln

(
p({ηηη}4

1|ϕ̂ϕϕ)
)

= ln(0.13)+2ln(0.35)+ ln(0.02)

= −8.05 (13.92)

with the expected log likelihood of,

�̃(ϕ̂ϕϕ|{ηηη}4
1) =

1

4
�(ϕ̂ϕϕ|{ηηη}4

1)

=
1

4
−8.05

= −2.01 (13.93)

As expected, the normalized likelihood of the model given training data is larger

than that given the test data.

In fact, if we are interested in comparing the performance of a model against two

different observed data sets or similarly comparing the performance of two different

models given the same observed data, we may use a likelihood ratio. We discussed

the likelihood ratio in some detail in the context of decision theory in Chapter 9.

Here, we will define it one more time, in the context of the aspects encountered by

the above example.

Definition 13.4 (Likelihood Ratio). Likelihood ratio is a measure of the compari-

son of the performances of two models which may have produced a sequence, or the

comparison of the performances two sequences of the same model which may have

been used to produce the same sequence.
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r
Δ
=

N1

√
L (ϕϕϕ|{y}N1

1 )

N2

√
L (ϕϕϕ|{η}N2

1 )
(13.94)

or

r
Δ
=

N1

√
L (ϕϕϕ1|{y}N1

1 )

N1

√
L (ϕϕϕ2|{y}N1

1 )
(13.95)

In the case where the comparison is being made between two different mod-

els for producing the same observation sequence, normalization against the length

of the sequence may not matter as much, since the same length sequence is being

used to do the comparison. However, if the same model is being used for compare

its performances of producing different sequences, then the likelihood needs to be

normalized against the length of the sequences. As a rule, it is better to do the nor-

malization at all times, to reduce confusion.

As we mentioned, we generally use the log of the likelihood for many reasons

which have been discussed. Therefore, another measure, the log likelihood ratio

(LLR) is used for this comparison. It was rigorously defined in the context of the

gain in relative information between the prior states of two hypotheses to one after

observing the data (Equation 7.78 and Sections 9.2.1 and 9.2.2). Here, we reiterate

its definition, in relation to the problem described here, to assess the performance of

a model.

rl = ln(r)

Δ
=

�(ϕϕϕ|{y}N1
1 )

N1
− �(ϕϕϕ|{η}N2

1 )

N2
(13.96)

or

rl = ln(r)

Δ
=

�(ϕϕϕ1|{y}N1
1 )

N1
− �(ϕϕϕ2|{y}N1

1 )

N1
(13.97)

The LLR will be used in speaker verification, when we compare the speaker de-

pendent model against a competing model to see which one is more likely to have

generated the test data. Generally, a more positive LLR would be in favor of the first

model and one in the negative direction would advocate the second model. For ex-

ample, the LLR of the test data against the training data in the above example would

be,

rl = −2.01− (−1.30)

= −0.71 (13.98)

which means that the model fits the training data better than the test data. Comparing

the performance of our model which was generated using the training data against
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the same training data would produce an LLR of 0, which may be used as baseline.

In Section 9.2.1, however, we saw the need for defining a threshold to be used in

making this decision.

13.8.3 Held-Out Estimation

Toward the end of Section 13.8.2, we manually picked a smoothing factor, α , by

choosing ε which was used to compute α in relation with the training sample size.

The value of α may, of course, not be optimal, since it was chosen based, mostly,

on intuition and not any data-driven information. In this section, we will use some

held-out data to compute the optimal value of α based on a maximum likelihood

technique.

Let us take the training data of Example 13.6, {y}8
1 = {5,6,5,3,6,5,6,1}, and

split it into two parts, {y}4
1 = {5,6,5,3} and {y}8

5 = {6,5,6,1}. In a more general

form, the training data, {y}N
1 is split into {y}Nt

1 and {y}N
Nt+1. We may then go ahead

with estimating the parameter vector, ϕ̂ϕϕ , from the first part of the training data,

{y}Nt
1 , in the same way as we did in Example 13.6. The only difference, here, is that

only part of the training data is used for this computation. Then, we can look for a

smooth model given by Equation 13.84, repeated here for convenience.

ϕϕϕs = αϕ̂ϕϕ +(1−α)ϕϕϕme (13.99)

This time, instead of guessing the value of α , we compute it such that the new

smooth parameters, ϕϕϕs, would maximize the likelihood of the second part of the

training data, L (ϕϕϕs|{y}N
Nt+1).

The parameter vector (probability) estimate using the first half of the data would

be,

ϕ̂ϕϕ = {0,0,
1

4
,0,

1

2
,

1

4
} (13.100)

Using ϕ̂ϕϕ , we may compute the likelihood of the smooth parameters, ϕϕϕs, given the

second sequence, {y}N
Nt+1, in terms of α . Equation 13.99 is used to compute the

likelihood of the smoothed parameter vector given each output observation in the

{y}N
Nt+1.
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P({6,5,6,1}|ϕϕϕs) =
8

∏
n=5

P(yn|ϕϕϕs)

=

(
α

4
+

1−α

6

)
︸ ︷︷ ︸

P(y=6|ϕϕϕs)

×
(
α

2
+

1−α

6

)
︸ ︷︷ ︸

P(y=5|ϕϕϕs)

×

(
α

4
+

1−α

6

)
︸ ︷︷ ︸

P(y=6|ϕϕϕs)

×
(

0+
1−α

6

)
︸ ︷︷ ︸

P(y=1|ϕϕϕs)

(13.101)

= − 1

5184

(
2α4 +7α3 +3α2 −8α−4

)
(13.102)
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Fig. 13.23: Plot of the polynomial of Equation 13.102

Figure 13.23 shows a plot of the likelihood as a polynomial in α , given by Equa-

tion 13.102. Since α is restricted to exist between 0 and 1, it has only been plotted

in that domain. Of course the polynomial may exist everywhere else. We can see

that this likelihood has only one maximum in the closed interval, [0,1], and it lies at

Pmax({6,5,6,1}|ϕϕϕs) = 1.2×10−3, for α = 0.461.
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Fig. 13.24: State diagram of the smoothing model of Equation 13.99

Equation 13.99 may be expressed in a Markov chain, represented in a finite

state diagram, shown in Figure 13.24. Therefore, one approach to finding the α
which provides the maximum likelihood solution for the smooth model is to use the

forward-backward algorithm discussed in Section 13.6.4. Figure 13.25 shows the

trellis diagram associated with the model in Figure 13.24 and the output sequence,

{y}8
5 = {6,5,6,1}.

Fig. 13.25: Trellis diagram of the smoothing model of Equation 13.99

This trellis has a very interesting structure. After every output, yn is produced, all

the possible paths converge on a single lattice associated with state X1 of the model

in Figure 13.24. Such a state is called a confluent state in the finite state machinery

terminology. It has the property that allows us to break up the trellis diagram into
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repeating individual sections associated with each output, yn.

Fig. 13.26: Repetitive trellis component ending in a confluent state

Figure 13.26 shows the diagram for each of these trellis components. In the fig-

ure, the two null transitions associated with al pha and (1 −α) are named transi-

tions, τ1 and τ2, respectively. Also, the simplified notation of p1n
Δ
= P(yn|ϕ̂ϕϕ) and

p2n
Δ
= P(yn|ϕϕϕme) has been used in the figure, for convenience.

Due to the property of the confluent state, we may write the following sim-

ple closed form expression for P(τ1, t = n|{y}N
Nt+1), in terms of α , P(yn|ϕ̂ϕϕ) and

P(yn|ϕϕϕme),

P(τ1, t = n|{y}N
Nt+1) =

αP(yn|ϕ̂ϕϕ)

αP(yn|ϕ̂ϕϕ)+(1−α)P(yn|ϕϕϕme)
(13.103)

and at any time t = n, P(τ2, t = n|{y}N
Nt+1) may be computed as follows,

P(τ2, t = n|{y}N
Nt

) = 1−P(τ1, t = n|{y}N
Nt

) (13.104)

Therefore, the estimate of α at iteration k + 1 may be computed using Equa-

tion 13.29, which may be written by the following expression,

α(k+1) =

N

∑
n=Nt+1

P(τ1
(k), t = n|{y}N

Nt+1)

N

∑
n=Nt+1

P(τ1
(k), t = n|{y}N

Nt+1)+
N

∑
n=Nt+1

P(τ2
(k), t = n|{y}N

Nt+1)

(13.105)
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Fig. 13.27: Convergence of the forward-backward estimate of α to the value found earlier in
Figure 13.23

If we start with an initial guess for α , say α(0) = 0.7, by applying Equa-

tion 13.105, the new estimate,α(1), would be α(1) = 0.608. The likelihood for the

models based on α(1) increases from that based on α(0), given the training sequence,

as follows,

P({6,5,6,1}|ϕϕϕ(1)) = 1.14×10−3

> 1.01×10−3

= P({6,5,6,1}|ϕϕϕ(0)) (13.106)

Figure 13.27 shows the convergence of the forward-backward algorithm, to

α = 0.46 with the likelihood of the smooth model being 1.21 × 10−3, which was

found earlier from the graphical inspection of the polynomial form of the likelihood

in terms of α derived in Equation 13.102.

The approach of optimizing the mixture of two distributions using the forward-

backward algorithm may be generalized to linear combinations of more than two

probability distributions. In fact, the results may be used to optimize the mixture

coefficients of a GMM, much in the same way. Figure 13.28 shows such a model.

The smooth parameters for Γ distributions would then be given by,

ϕϕϕs = α1ϕϕϕ1 +α2ϕϕϕ2 + · · ·+αΓϕϕϕΓ (13.107)

where
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Fig. 13.28: State diagram of the mixture coefficients for more than two distributions

Γ

∑
γ=1

= 1 (13.108)

and 0 ≤ αγ ≤ 1.

Bahl, et al. [3] present a fast algorithm based on binary search which may be used

for mixtures of two distributions, as presented in the above example. It will produce

the optimal solution much faster than the convergence of the forward-backward al-

gorithm. The basis of this approach was demonstrated earlier in the polynomial

approach.

13.8.4 Deleted Estimation

In the previous section, we arrived at a technique for performing held-out estima-

tion. If we use deleted estimation, we may reuse the same data for both purposes

of computing the parameter vector for the model and estimating the smoothing pa-

rameter, α . Delete estimation is sometimes referred to as deleted interpolation or

k-fold4 cross-validation [24]. The idea is to partition the training data into many

equal sets. Then we may follow these steps for deleted estimation,

4 Although it is generally known as k-fold cross-validation, here, we use the variable L instead of
k in the identifier, k-fold.
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1. Remove set l from the total L partitions and compute the parameter vector, ϕϕϕ l

using the data in the L partitions, not containing the data in the lth partition.

2. Once all the ϕϕϕ l , l ∈ {1,2, · · · ,L} have been computed, for each data segment, l,

write the following linear combination, αϕϕϕ l +(1−α)ϕϕϕme.

3. Use the forward-backward or binary search technique to find α which optimizes

all L smoothing mixtures.

4. Once the optimal α is computed, use all the data to compute the parameter

vector for the model, ϕ̂ϕϕ .

5. Use the optimal value of α computed over all partitions as prescribed earlier to

find the new parameter vector using Equation 13.99.

Using the above algorithm, all the data has been used for both purposes of parameter

vector estimation and the estimation of the smoothing parameter, α .

The limiting case of the above estimation is the case where L = N. This case is

called the leave-one-out cross-validation or deleted estimation, sometimes written

as LOO. Of course in most cases, since N (number of training samples) is quite

large, the computation would be too much to be practical, unless in certain cases

where short-cuts may be available.
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Chapter 14

Neural Networks

The Brain is wider than the Sky

For put them side by side

The one the other will contain

With ease and You beside

Emilly Dickinson

The Brain [14] (No. 632), 1862

Neural network (NN) models have been studied for many years with the hope that

the superior learning and recognition capability of the human brain could be emu-

lated by man-made machines. Similar massive networks, in the human brain, make

the complex pattern and speech recognition of humans possible. In contrast to the

Von Neumann computers which compute sequentially, neural nets employ huge par-

allel networks of many densely interconnected computational elements called neu-

rons. Neural networks have been used in many different applications such as adap-

tive and learning control, pattern recognition, image processing, signature recogni-

tion, signal processing and speech recognition, finance, etc.

A neuron is the most elementary computational unit in a neural network which

sums a number of weighted inputs and passes the result through (generally) a non-

linear activation function. Multi-layer neural networks (Figure 14.2) consist of a

large number of neurons. Before a neural network can be used for any purpose, the

weights connecting inputs to neurons and the parameters of the activation functions

of neurons should be adjusted so that outputs of the network will match desired

values for specific sets of inputs. The methods used for adjusting these weights and

parameters are usually referred to as learning algorithms.

The architectures of different neural networks being used for solving problems

greatly vary. The design of the architecture is quite important and it depends on the

nature of the problem. Several different types of neural networks have been tested

for conducting Speaker Recognition [8, 40, 9, 11]. Different architectures and neu-

ron types have been used such as the time-delay neural network (TDNN) architecture

which captures the inherent dynamics of speech as a time-varying signal. TDNNs

have successfully been combined with hidden Markov models (HMM) in speech

recognition [35, 15]. TDNNs have also been applied to speaker identification with

some success.

Most of the speaker identification trials have been done on extremely small sets

with clean data and small populations of speakers [8]. Theoretically, the temporal
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features used in the TDNNs should possess some useful information compared to

Gaussian mixture model (GMM) based systems, however, they have shown to be

quite practical. Aside from architectural variations such as TDNNs [8] and hierar-

chical mixtures of experts (HMEs) [9], different neuron types such as the probabilis-

tic random access memory (pRAM) have been used, again with small populations,

so not much conclusive results are seen [12, 11].

Fig. 14.1: A Perceptron

14.1 Perceptron

The concept of a perceptron was first introduced by Rosenblatt [30]. A perceptron is

a linear neuron with an activation function, φ which depends on the input weights,

ωm, the input samples, ipm and a threshold, θ , where p is the index of the presenta-

tion and m is the input number.

The activation function for a perceptron is given by the following relation,

φ(ωωω, ip,θ) =

{
1 ∀ ωωωT ip +θ > 0

0 ∀ ωωωT ip +θ ≤ 0
(14.1)

14.2 Feedforward Networks

In 1986, Rumelhart et al. [31] introduced a generalized learning theory for multi-

layer neural nets and to some extent demonstrated that a general learning algorithm
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Fig. 14.2: Generic L-Layer Feedforward Neural Network

for multilayer Neural Networks with the task of learning arbitrary patterns is pos-

sible. This was contradictory to earlier remarks in 1969 by Minsky and Papert [25]

that such generalization was not possible. This started a flood of publications by the

end of the 1980s, in re-addressing the learning problem.

Rumelhart et al [31], in their learning algorithm called the back-propagation

technique, used the so called generalized delta rule to calculate an approximate gra-

dient vector which is then used by a steepest descent search to minimize the differ-
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ence between the NN output and the desired output. However, as they demonstrated

by simulations, low rates of convergence were seen in practically every problem.

Lippman [24] states, “One difficulty noted by the Back-Propagation algorithm is

that in many cases the number of presentations of training data required for conver-

gence has been large (more than 100 passes through all the training data.)”

In Speaker, Speech and Handwriting recognition, the one percent error mar-

gin of the Back-Propagation learning [31] is not always acceptable; a better con-

vergence is desirable. In the literature, several methods [24, 27] have been pro-

posed to increase the rate of convergence of learning by making strong assumptions

such as linearity for multilayer networks. In addition, other more practical methods

have recently been proposed for speeding the convergence of the Back-Propagation

technique.[16, 38, 34, 26]

The Back-Propagation technique is a special case of the steepest descent tech-

nique with some additional assumptions. In general, steepest descent techniques

perform well while away from local minima and require many iterations to converge

when close to the minima. On the other hand, Newton’s method usually converges

fast in the vicinity of the minima. In addition, Newton’s minimization technique

handles functions with ill-conditioned Hessian matrices elegantly.[18] It would be

desirable to take advantage of the properties of steepest descent when the state is far

from minimal and then to use Newton’s method in the vicinity of the minimum.

To use Newton’s method, the first gradient and the matrix of second partial

derivatives (Hessian) matrix should be evaluated. The moment one talks about eval-

uating the Hessian matrix, it becomes clear that a layer by layer adjustment of the

weights is not possible because there are elements of the Hessian which are related

to neurons in different layers. In general, two difficulties have prohibited the use of

Newton’s method for neural network learning: 1) the complexity of the evaluation of

the Hessian, and 2) the inversion of the Hessian. One way to alleviate these difficul-

ties is to use a momentum method which would approximate the diagonal elements

of the Hessian matrix and would stay ignorant of the off-diagonal elements.[1]

On the other hand, Quasi-Newton methods provide another solution to the prob-

lem [6, 3, 5], by providing an iterative estimate for the inverse of the Hessian matrix.

If one selects the initial estimate to be an identity matrix, initially, the method co-

incides with the steepest descent technique and gradually changes into Newton’s

method as the estimate approaches the inverse of the Hessian.

In addition, it is also possible to achieve quadratic convergence without any di-

rect use of gradients[4]. These techniques are ideal for cases when the evaluation of

forward pass is much less expensive than computing gradients. This would be the

case when a hardware version of the feedforward network is available to compute

the forward passes, but extra computation would have to be carried out to compute
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or estimate gradients.

In another approach, to simplify the training procedure and to be able to analyze

it more rigorously, certain restrictions were placed on the architecture such as limit-

ing the number of hidden layers to one. This analysis is what led to the development

of a kernel method called support vector machines [37] which will be discussed in

detail in Chapter 15.

14.2.1 Auto Associative Neural Networks (AANN)

Auto associative neural networks (AANN) are a special branch of feedforward neural

networks which try to learn the nonlinear principal components of a feature vector.

the way this is accomplished is that the network consists of three layers, an input

layer, an output layer of the same size and a hidden layer with a smaller number

of neurons. The input and output neurons generally have linear activation functions

and the hidden (middle) layer has nonlinear functions.

In the training phase, the input and target output vectors are identical. This is

done to allow for the system to learn the principal components that built the pat-

terns which most likely have built-in redundancies. One such a network is trained,

a feature vector undergoes a dimensional reduction and is then mapped back to

the same dimensional space as the input space. If the training procedure is able to

achieve a good reduction in the output error over the training samples and if the

training samples are representative of the reality and span the operating conditions

of the true system, the network can achieve learning the essential information in

the input signal. Autoassociative networks have successfully been used in speaker

verification.[23]

14.2.2 Radial Basis Function Neural Networks (RBFNN)

Radial basis function neural networks1 are feedforward networks that utilize any

class of radial basis functions (RBF) as their activation functions. In general, the

output of a neuron would then be given by the following,

φ(ωωω, ip,θ) =ωωωTϕϕϕ +θ (14.2)

where ϕϕϕ : ϕ : R1 �→ RM is a vector of radial function values such that

1 Sometimes these networks are simply called radial basis function networks (RBFN), leaving out
the neural identifier.
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(ϕϕϕ)[m] = Φm(ξpm) ∀ m ∈ {1,2, · · · ,M} (14.3)

and

ξpm
Δ
= ‖ip −μμμm‖ (14.4)

where the μμμm turn out to be means of the domains of radial basis functions,

Φm(ξpm) ∀ m ∈ {1,2, · · · ,M},p = {1,2, · · · ,P}. Although any norm may be used

in Equation 14.4, most applications of the theory use the Euclidean norm. Radial

basis functions are functions which have been used for performing multivariate in-

terpolation [28] and are designed so that they would fit all the points in the training

data. In most pattern recognition applications, the Gaussian radial basis function,

give by the following equation is used.

Φ(ξm) = exp

{
− ξ 2

m

2∗σ2
m

}
(14.5)

where, σm is the standard deviation of the data, associated with the training data.

Although, there are many other types of RBFs which may be utilized[33]. Kiernan et

al. [21] show that if a Gaussian radial basis function (GRBF) is used, then the initial

means and variances of the data may be estimated using an unsupervised clustering

technique such as k-means (see Section 11.2.1). Using these initial parameters will

also help reduce the number of neurons necessary to achieve the same results [32].

14.2.3 Training (Learning) Formulation2

The objective of learning, in the problem of learning in neural networks, is to min-

imize the output error of the top (output) layer (layer L in Figure 14.2) of a neural

network over a set of P input-output patterns.

Let us define the following variables,

l ∈ [1,L] (Layer number in the network)

nl ∈ [1,Nl ] (Neuron number in layer l)

p ∈ [1,P] (Pattern number)

ω l
nm (Weighting factor between the mth input and neuron n in layer l)

ol
pn (Output of neuron n of layer l for input pattern p)

tpn (Desired output of neuron n in layer L)

ipm (Input m of pattern p to the network)

Then, the objective of learning becomes,

2 The learning formulation discussed in this section is drawn from an earlier publication by the
author [7].



14.2 Feedforward Networks 471

minimizeE =
P

∑
p=1

NL

∑
nL=1

(
oL

pnL
− tpnL

)2
(14.6)

Define,

Ep

Δ
=

NL

∑
nL=1

(
oL

pnL
− tpnL

)2
(14.7)

so that,

E =
P

∑
p=1

Ep (14.8)

Next, we will define a few variables and eventually a state vector which would

include all the variables to be optimized for minimum E:

φφφ l =
[
φ l

1,φ
l
2, · · · ,φ l

Nl

]T

(Activation function parameter vec-

tor for level l)

ωωω l
nl

=
[
ω l

nl1
,ω l

nl2
, · · · ,ω l

nlNl−1

]T

(Vector of intercellular weights to

neuron nl at layer l)

ωωω l =
[
ωωω l

1

T
,ωωω l

2

T
, · · · ,ωωω l

Nl

T
]T

(Supervector of intercellular

weights of level l)

xl =
[
φφφ lT

,ωωω lT
]T

(State vector for level l)

x =
[
x1T

,x2T
, · · · ,xLT

]T

(Super state vector)

Let (x)[ j] denote any element of the state vector, x. Then,

∂E

∂ (x)[ j]

=
P

∑
p=1

∂Ep

∂ (x)[ j]

(14.9)

and by applying the chain rule,

∂Ep

∂ (x)[ j]

= 2
NL

∑
nL=1

(
oL

pnl
− tpnL

) ∂oL
pnL

∂ (x)[ j]

(14.10)

where,

∂oL
pnL

∂φ l
nl

=
∂oL

pnL

ol
pnl

ol
pnl

∂φ l
nl

(14.11)

∂oL
pnL

∂ω l
nlnl−1

=
∂oL

pnL

ol
pnl

ol
pnl

∂ω l
nlnl−1

(14.12)

and
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∂oL
pnL

ol
pnl

=
L

∏
k=l+1

∂o
(L+l−k+1)
pn(L+l−k+1)

∂o
(L+l−k)
pn(L+l−k)

(Using index notation) (14.13)

In Equation 14.13, the index notation [36], which is customary in tensor algebra,

has been employed. The following Equation shows the expansion of an statement in

index notation once written in the traditional notation,

∂ol+1
pn(l+1)

∂ol
pnl

∂ol
pnl

∂ol−1
pn(l−1)︸ ︷︷ ︸

Index Notation

=
Nl

∑
nl=1

∂ol+1
pn(l+1)

∂ol
pnl

∂ol
pnl

∂ol−1
pn(l−1)︸ ︷︷ ︸

Traditional Notation

(14.14)

Take, for example, the logistic function,

ol
pnl

=
1

1+ e
−sl

pnl

(14.15)

where,

sl
pnl

Δ
=

N(l−1)

∑
n(l−1)=1

(
o

(l−1)
pn(l−1)

ω l
nln(l−1)

)
+φ l

nl
(14.16)

We may compute the elements of the gradient of the output at layer l about the state

vector and the output of the previous layer by the following three equations,

∂ol
pnl

∂φ l
nl

= dl
pnl

(14.17)

∂ol
pnl

∂ω l
nln(l−1)

= dl
pnl

o
(l−1)
pn(l−1)

(14.18)

∂ol
pnl

∂o
(l−1)
pn(l−1)

= dl
pnl

ω l
nln(l−1)

(14.19)

where,

dl
pnl

Δ
=

e
−sl

pnl(
1+ e

−sl
pnl

)2
(14.20)

However,

ol
pnl

=
1

1+ e
−sl

pnl

(14.21)

Therefore, we may rearrange Equation 14.21 as follows,
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e
−sl

pnl =
1

ol
pnl

−1 (14.22)

Using the identity in Equation 14.22, we may rewrite Equation 14.20 in terms of the

output of the corresponding unit as follows,

dl
pnl

= ol
pnl

(1−ol
pnl

) (14.23)

Using Equation 14.23, we may rewrite Equations 14.17, 14.18, and 14.19 in terms

of opnl
,

∂ol
pnl

∂φ l
nl

= ol
pnl

(1−ol
pnl

) (14.24)

∂ol
pnl

∂ω l
nln(l−1)

= o
(l−1)
pn(l−1)

ol
pnl

(1−ol
pnl

) (14.25)

∂ol
pnl

∂o
(l−1)
pn(l−1)

= ω l
nln(l−1)

ol
pnl

(1−ol
pnl

) (14.26)

Equations 14.24- 14.26 and 14.9-14.13 may be used to evaluate the elements of

the gradient of E with respect to supervector x, denoted by ∇xE. If we defined the

gradient and the Hessian of E with respect to x as follows,

g
Δ
= ∇xE =

P

∑
p=1

∇xEp (Gradient Vector) (14.27)

G
Δ
= ∇2

xE =
P

∑
p=1

∇2
xEp (Hessian Matrix) (14.28)

then we may use any of the optimization techniques discusses in Chapter 25 to

learn the elements in x that would minimize Equation 14.8. See Problem 14.1 for

an example regarding the computation of the gradient of the minimization objective

function of a feedforward neural network.

14.2.4 Optimization Problem

In Section 14.2.3, we formulated the learning problem of a generic feedforward

network as a minimization problem. The expressions for the gradient vector and the

Hessian matrix of the minimization objective function were derived for any feedfor-

ward network. Quadratically convergent optimization techniques have been applied

to the problem of learning in neural networks to create learning techniques with su-

perior speeds and precision compared to previously used first order methods such

as the backpropagation technique. These methods have shown many orders of mag-
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nitude faster convergences and higher final accuracies [6, 3, 5, 4].

At their core, most of these methods basically use some kind of conjugate gra-

dient or quasi Newton technique (see Chapter 25). To ensure convergence, most

quadratic learning techniques discussed in the literature require some sort of exact

or inexact line search to be conducted. For each step in a line search, usually a set of

patterns should be presented to the network. One measure of the speed of learning

is the number of pattern presentations to the network to attain proper learning state.

Learning algorithms based on conjugate gradient techniques and quasi New-

ton Techniques such as Broyden, Davidon-Fletcher-Powell (DFP) and projected

Newton-Raphson (Chapter 25) require exact line searches to be done in order to

satisfy theoretical convergence criteria and also to practically converge in many

cases. [6]

Broyden-Fletcher-Goldfarb-Shanno (BFGS) update, Pearson’s two Exact line

searches are very costly and slow down the learning process. Some quasi Newton

techniques get away with inexact line searches. Among these methods we could

name quasi Newton techniques based on the updates, Greenstadt’s two updates and

self-scaling variable metric (SSVM) updates [6, 3, 5] – also see Chapter 25. Some

of these techniques such as SSVM and BFGS meet their promise of inexact line

searches better than others. However, none of the above methods produce learning

algorithms which do not require line searches.

Hoshino presented a variable metric (quasi Newton) method which theoretically

requires only inexact line searches to be done [20]. Davidon on the other hand in-

troduced a quasi Newton method which does not require any line search to be done

most of the time [13]. Davidon’s algorithm only needs a very crude line search to

be done in some special cases. The theory behind these two methods is discussed,

including some practical information, in Chapter 25.

Neural network related objective functions normally possess many local minima

by nature and getting trapped in these local minima usually makes the job of learning

much more difficult. In Section 14.2.5, we will describe a technique for providing

a better chance of arriving at a global minimum rather than being trapped in local

minima, through restructuring the network. In addition to this technique, there are

other methods such as simulated annealing which are discussed in Chapter 25.

14.2.5 Global Solution

Local convergence has always been a major problem in neural network learning

algorithms. In most cases, to avoid this, in practical applications, different initial
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conditions are used until one case would converge to the desirable global minimum.

This is, however, not very practical and some supervision is necessary. Also, due

to the high degrees of nonlinearity of neural network objective functions, picking

optimal initial conditions is next to impossible.

Classically, when training a neural network, the architecture of the network is

fixed to some intuitively sound architecture with certain number of hidden units.

Then, a learning algorithm is used with different initial conditions until convergence

to a near global minimum is achieved. Some researchers have also used global opti-

mization techniques such as the statistical method of simulated annealing [22] (see

Section 25.6). Simulated annealing, however, is known, due to its statistical nature,

to be very costly in terms of number of presentations needed for convergence.

In line search free learning (LSFL) algorithm [2], a method of restructuring the

network in an adaptive fashion is used to achieve better global convergence. In this

method the network starts out with one hidden neuron. Then, the LSFL algorithm is

applied to the network until a local minimum is obtained. Once a local minimum is

reached, another neuron is added to the hidden layer and the weights of correspond-

ing to this new neuron are initialized to some random values. However, weights and

activation function parameters corresponding to the original hidden neuron are not

changed. Therefore, for the original hidden unit, the final state of the previous run

is the new initial condition.

The idea behind this theory is that a new sets of dimensions are introduced by

the introduction of this new neuron and the algorithm can once again start moving.

Here, the assumption is made that the weights of the original neuron do not need to

be changed much. Philosophically, in this way, the problem is being broken up into

subproblems and each hidden neuron handles a part of the problem.

This methodology is then applied each time a new local minimum is reached un-

til there is no longer any improvement with the addition of new hidden neurons. At

this point, it is assumed that either the algorithm has reached a global minimum, or

with the given set of initial conditions, there is no further improvement possible. In

their examples, [6, 3, 5] have noted many of cases when the global minimum was

not reached given a fixed set of hidden units. Most of the cases discussed in those

references have reached a global minimum by applying this new neuron addition

technique [2]. In addition, this method of finding the minimum reduces the amount

of overall computation, since at the beginning, a smaller network is used to do part

of the learning.



476 14 Neural Networks

14.3 Recurrent Neural Networks (RNN)

In trying to model a dynamic system, recurrent neural networks (RNN) use a feed-

back look which uses the output of a neuron or a collection of neurons as input to

the same neuron(s). The feedback allows for better modeling of dynamic systems

with feedback inherently present in their nature. Take control system for example.

Recurrent neural networks do a much better modeling of these systems. The neurons

try to model the system while the feedback is used to model the inherent feedback

in such systems. One can imagine that as stability is an issue a control system, intro-

ducing feedback could cause stability issues in the networks. In general, a recurrent

network is much smaller than a feedforward network since the complexity is mod-

eled by the feedback.

Fig. 14.3: Generic Recurrent Neuron

If the recurrent network is built using a physical system such as a circuit, there

will be inherent delay involved when the output is fed back to act as the input to the

system. Stability requirements sometimes dictate the introduction of an additional

delay between the output of the network and the input signal.

RNNs bring something to the table which is missing in most other learning tech-

niques introduced in this book. They include a continuous internal state. hidden

Markov models (Chapter 13) have internal states, and they may be modeled by con-

tinuous parameters, however, the states themselves are not continuous. Feedforward

neural networks (Section 14.2) and support vector machines (Chapter 15) do not

even possess any internal states. Early versions of RNNs only looked into the past

for a limited time and therefore were not able to handle patterns which extended for

a long time, especially in the presence of noise; also, they had displayed some short-
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comings in modeling complex periodic trajectories, for example, required in speech

processing [29]. This is due to the fact that traditional RNNs are cursed with the

problem of vanishing gradient which means that they are not able to keep long-term

information. In the next section, we will briefly look at a more recent design that has

provisions that would allow it to handle short-term as well as long-term information.

The long short-term memory (LSTM) [19] RNN changed that and allowed for

handling these shortcomings. Other research followed which used the LSTM in

problems such as language modeling [17].

14.4 Time-Delay Neural Networks (TDNNs)

Time-delay neural networks (TDNN) have been used as the predominant form of

neural network architecture for the purpose of speech [35] and speaker recogni-

tion [41, 9, 10]. They were introduced by Waibel et al. [39] in 1989 and were de-

signed to handle the frame-based analysis of speech, which was discussed in detail

in Chapter 5. Figure 14.4 shows a TDNN architecture.

The TDNN borrows some ideas from recurrent neural networks. In fact, it is

similar to the unfolding snapshots of a recurrent network through its state transitions

in time. It is usually similar to a feedforward network in each instance. The basic

difference between a unit of TDNN and a unit of a feedforward neural network

(FFNN)is as follows. In the FFNN, each input is multiplied by a weight, then the

weighted inputs are summed up before they enter the nonlinearity of the neuron

whose output is the output of the unit. In a TDNN unit, each input goes through

N +1 delays, {d0,d1, · · · ,dN}. d0 = 0, which means that the 0 index uses the input

as it is. For a constant delay, this may be written as,

dn = nd (14.29)

where d is the increment in delay and n is the index. d is usually translates into the

delay of one frame of audio, which is 10ms in most implementations. Each delayed

input is treated just like a separate input in a feedforward unit. Namely, each delayed

input is multiplied by a weight, the results from the N +1 delayed versions of an in-

put are added, together with other delayed inputs coming from other inputs, totaling

M(N + 1), where M is the number of actual inputs to the unit (for the first layer, it

is equal to the dimension of the cepstral feature vector, D – see Section 5.3.6). The

M(N +1) weighted inputs are then summed and passed through the nonlinearity to

produce the output of the TDNN unit. In out analogy with the recurrent NN, we can

see that it is similar in design to the old versions of recurrent network when certain

number of delays were used to unfold the RNN.
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Fig. 14.4: Generic Time-Delay Neural Network

The implementation described by [39] tries to discriminate among the three

phones, /b/, /d/ and /g/. It uses a 16 dimensional MFCC vector as the raw features

for each frame. These 16 features are passed through the delay structure with N = 2.

This means that there will be 16×3 = 48 inputs to the neuron associated with each

frame of the first layer. 16 of them are the MFCC features of the frame itself and

the rest (2×16 = 32 features) are MFCC features associated with the two previous

frames. Essentially, this process is replicating the overlapping frame process dis-

cussed in Chapter 5. This means that each unit processes a frame of 30ms worth of

data and that there is one unite for each 10ms interval.
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The outputs of the units at the first layer are fed to the middle layer for which

M = 8 and N = 5. This means that in the first hidden layer, there is a wider perspec-

tive looking at more temporal data. There is a second hidden layer which feeds on

the output of the this layer and uses M = 3 and N = 2 which then outputs its results

into a final layer which has three possible outputs.

One may use this TDNN classifier to conduct speaker and speech recognition

somewhat in the same manner as other standard techniques. In practice, most sys-

tems for speech recognition, combine the TDNN with a basic HMM model [15].

14.5 Hierarchical Mixtures of Experts (HME)

[9] (also see errata [10]) uses an HME architecture and trains the parameters of

the network by using the expectation maximization (EM) (Section 11.3.1) algorithm

for doing text-independent speaker identification. This suggests that the statistical

model is treated as a maximum likelihood (ml) problem. The application of this tech-

nique is only presented for a small problem dealing with 10 male speakers and only

isolated digits. This is in tune with the fact that the complexity of neural network

systems increases exponentially and the training becomes impractical, at times. Sec-

tion 14.4 discusses a technique which uses the dynamics of speech hence increasing

the complexity even more.

14.6 Practical Issues

Neural networks usually work pretty well in learning most complex and nonlinear

training data. However, they have a great tendency to overtrain3. The overtraining

issue is also seen in the discussion of the construction of decision trees in Section 9.4

and the derivation and formulation of support vector machines (SVM) in Chapter 15.

In general, with most learning mechanisms that have a flexible mapping, capable of

learning great detail, the problem of overtraining exists and is a serious problem. It

is up to the designer to make sure the great ability of these systems to learn complex

functions is not misused. This problem is especially true when the training sample

is small. Normally, the training method is quite instrumental in the generalization

capability of such systems. Neural networks, in general, do not determine crisp class

boundaries.

3 Sometimes it is referred to as overfitting.
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In contrast, there are other techniques that do, such as support vector machines

(SVM) which are the topic of discussion of chapter 15. Neural networks provide

smooth functions that change along the state-space. This is basically an attributing

factor related to the overtraining issue.

Of courses these are general statements and there are certainly countless methods

that have been used to increase the generalization capabilities of neural networks and

to reduce their overtraining effects. Examples of these methods are systems which

combination neural networks with other classifiers such as hidden Markov models

(Chapter 13) as they have been done in many time delay neural network (TDNN)

implementations for speech-related problems [39].
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Problems

For solutions to the following problems, see the Solutions section at the end of the

book.

Problem 14.1 (Exclusive OR).

Figure 14.5 shows the architecture of a feedforward neural network used to pro-

duce an exclusive OR logic. Table 14.1 shows the input/output relationship for a

two-input exclusive OR unit for the four possible combinations of patterns. Write

the expression for the objective function in terms of true output and the expected

output of the system. Also, write the expressions for the state vector and the gradi-

ent of the objective function with respect to the state vector.

Fig. 14.5: Feedforward neural network architecture used for the exclusive OR (XOR) logic
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Chapter 15

Support Vector Machines

Nature has neither kernel, Nor shell

She is everything, All at once!

Johann Wolfgang von Goethe

Morphologie, 1820

In Section 24.4 we defined a kernel function, K (s, t) – see Definition 24.56. Re-

cently, quite a lot of attention has been given to kernel methods for their inherent

discriminative abilities and the capability of handling nonlinear decision boundaries

with good discrimination scalability, in relation with increasing dimensions of ob-

servations vectors. Of course using kernel techniques is nothing new. Integral trans-

forms, for example, are some of the oldest techniques which use kernels to be able

to transform a problem from one space to another space which would be more suit-

able for a solution. Eventually, the solution is transformed back to the original space.

Chapter 24 is devoted to the details of such techniques and we have already used dif-

ferent transforms in other parts of the book, especially in doing feature extraction. It

is highly recommended to the reader to review Chapter 24 entirely. However, if that

is not possible, at least Sections 24.4 and 24.5 should be read prior to continuing

with this chapter.

Among kernel methods used for pattern recognition, some of the best scalability

has been demonstrated by support vector machines (SVM). Although, other kernel

techniques [1, 29] have also been used along the same mind-set. In this chapter, we

will discuss SVM because of their usage, in the past decade, by the speaker recogni-

tion community.

The claim-to-fame of support vector machines is that they determine the bound-

aries of classes based on the training data, and they have the capability of maximiz-

ing the margin of class separability in the, so called, feature space (see Section 15.1).

Boser et al. [7] state that the number of parameters used in an SVM is automatically

computed (see VC-Dimension below) to present a solution in terms of a linear com-

bination of a subset of observed (training) vectors, which are located closest to the

decision boundary. These vectors are called support vectors, hence the model is

known as a support vector machine.

This idea follows the basic premise that if a learning machine includes a large

number of parameters, then it would, most likely, be able to learn a small number of
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patterns without error. However, it would suffer from overtraining (Section 14.6),

which will reduce its capability to generalize to new and unseen patterns, seen after

the training has been completed. On the other hand, reducing the number of param-

eters in the model will provide a smoother model, but it will possess a higher error

rate for the training data. Balancing between these two goals is an important objec-

tive of learning algorithms. There have been different techniques used to reach this

balance. For example, Beigi [5] starts with a small number of hidden neurons in a

neural network classifier and increases this number to achieve such a goal.

Vapnik [45] pioneered the statistical learning theory of SVM to minimize the

classification error of both the training data and some unknown (held-out) data.

Such a classifier would, while being capable of learning new arbitrary training data,

still retain good performance on the main training data based on which it was con-

structed [8]. The capability of learning new unseen training data may be thought of

as a form of learning capacity for the classifier of choice. As we will see later, this

learning capacity has been quantified by a non-negative integer and is dubbed the

Vapnik-Chervonenkis (VC) dimension [46, 8]. More will be said about this dimen-

sion, as we delve into the formulation of SVM.

Of course, as we pointed out earlier, the core of support vector machines and

other kernel techniques stems from much earlier work on setting up and solving in-

tegral equations. Hilbert [26] was one of the main developers of the formulation of

integral equations. In Chapter 24, we categorize integral equations into three differ-

ent kinds. Support vector machines are concerned with the linear integral equation

of the second kind. In his 1904 book [26], David Hilbert used the German word kern

for K (s, t) (see Definition 24.54), when defining a linear integral equation of the

second kind.1 This word has been translated into the English word, kernel, which is

where kernel methods get their name.

SVM techniques have been used for the past two decades on many different pat-

tern recognition applications including handwriting recognition [25, 2], signature

verification [24], fault detection in analog electronics [31], anomaly detection [49],

(Penicillin) fermentation process modeling [23], digital libraries [47], image recog-

nition (e.g. cloud detection in satellite images [30]), speech recognition [22, 21],

speaker recognition [19, 9], and so on.

The group at Bell Laboratories under the management of Larry Jackel, in the

early 1990s, including Vladimir Vapnik, Isabelle Guyon, and others did most of the

initial practical development and implementation of SVM, in the context of hand-

writing recognition. Their main focus was the use of neural networks (NN) in this

arena. However, due to the complexity of NN structures and to be able to analyze

such networks mathematically, they looked at simple structures possessing single

1 See the bottom of page IX in the original 1904 print version of the book.
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hidden layers.

In general, SVM are formulated as two-class classifiers. Γ -class classification

problems are usually reduced to Γ two-class problems [46], where the γ th two-class

problem compares the γ th class with the rest of the classes combined. There are

also other generalizations of the SVM formulation which are geared toward han-

dling Γ -class problems directly. Vapnik has proposed such formulations in Section

10.10 of his book [46]. He also credits M. Jaakkola and C. Watkins, et al. for hav-

ing proposed similar generalizations independently. For such generalizations, the

constrained optimization problem becomes much more complex. For this reason,

the approximation using a set of Γ two-class problems has been preferred in the

literature. It has the characteristic that if a data point is accepted by the decision

function of more than one class, then it is deemed as not classified. Furthermore,

it is not classified if no decision function claims that data point to be in its class.

This characteristic has both positive and negative connotations. It allows for better

rejection of outliers, but then it may also be viewed as giving up on handling outliers.

One of the major problems with SVM is their intensive need for memory and

computation power at the training stage. Training of SVM for speaker recognition

also suffers from these limitations. This is due to the fact that often the training

problem is a quadratic programming problem, with the number of unknown vari-

ables equaling the number of training samples. Chapter 25 provides insight into

high speed methods for solving this optimization problem. To address this issue,

new techniques have been developed to split the problem into smaller subproblems

which would then be solved in parallel, as a network of problems. One such tech-

nique is known as cascade SVM [44] for which certain improvements have also been

proposed in the literature [51].

Similar to the case of neural networks, some of the shortcomings of SVM have

been addressed by combining them with other learning techniques such as fuzzy

logic and decision trees. Also, to speed up the training process, several techniques

based on the decomposition of the problem and selective use of the training data

have been proposed. More on these techniques will be discussed, later in the chap-

ter. There have also been developments of semi-supervised learning (Section 11.5)

to create semi-supervised support vector machines [35].

In application to speaker recognition, experimental results have shown that SVM

implementations of speaker recognition are slightly inferior to GMM approaches.

However, it has also been noted that systems which combine GMM and SVM ap-

proaches often enjoy a higher accuracy, suggesting that part of the information re-

vealed by the two approaches may be complementary [40]. We will study this in

more detail in Chapter 22.

We noted toward the end of Section 10.4 of this book that Section 2.1.1 of

Jaakkola [28] shows the relation between SVM and the principal of minimum rela-
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tive entropy. [28] shows that for the separable case, the two methods coincide where

the parameter for the potential term in [28] approaches infinity. Also, it is shown in

that paper that even for the general case, the difference between the two techniques

is summarized in a potential term related to the different penalties for misclassifica-

tion. This term does not contribute much to the objective function being optimized,

making the two techniques very similar in essence.

15.1 Risk Minimization

In Section 9.2, we discussed the concept of risk as defined by Equation 9.14. Bayes

risk was denoted by R(oB), signifying the risk associated with decision oB, which

minimizes the risk or the expected value of a penalty function, ϖ(o|x), given by

Equation 9.13.

Consider the risk given by Equation 9.10. Let us define differential probability

measure dP in the Cartesian product space of the observations {X : x ∈ X } and the

true state of nature {S : s ∈ S }, represented by the following probability measure

space, (X ×S ,X×S,P) – see Definitions 6.24, 6.22 and 6.46. Furthermore, let

us define a transformation Ω (see Definition 6.51) from the space of observations to

the space of states, Ω : (X ,X) �→ (S ,S). Ω is chosen to coincide with the trans-

formation which maps the observations to a decision in the space associated with

the state of the system. Therefore, it may also be written as, Ω : x ∈ X �→ o(x) ∈ S .

If we rewrite Equation 9.10 to include the dependence on the true state of nature,

as well as the observations which are represented by random variable {X : x ∈ X },

we will have the following functional [15] for the risk associated with decision

function o(x),

R(o) =

ˆ

X ×S

ϖ(o|x)dP (15.1)

=

ˆ

S

ˆ

X

ϖ(o|x)p(x,s)dxds (15.2)

In the transition from Equation 15.1 to Equation 15.2, we have used the concepts dis-

cussed in Section 6.5.2, with the common existence assumption for the joint proba-

bility density, p(x,s). Of course, as mentioned in Section 6.5.1, Equation 15.1 may

still be evaluated, even if p(x,s) does not exist.

Let us consider a parametric deterministic machine which makes a decision,

o, based on the observation vector, x, as well a parameter vector, ϕϕϕ . Then, the

transformation from the observation space to the state space would be based on the

parametric function o(x,ϕϕϕ). Namely, this transformation is defined as Ω : x ∈ X �→
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o(x,ϕϕϕ) ∈ S . Therefore, the evaluation of the risk functional becomes much easier

and allows us to write the risk as a function of the parameter vector ϕϕϕ , for this class

of parametric functions as follows,

R(ϕϕϕ) =

ˆ

S

ˆ

X

ϖ(o|x,ϕϕϕ)p(x,s)dxds (15.3)

In Section 14.6, we discussed the important overtraining (overfitting) problem,

associated with neural networks. Indeed, this problem plagues many learning tech-

niques, and it has been one of the driving factors for the development of support

vector machines. In the process of developing the concept of capacity and even-

tually SVM, Vapnik considered the generalization capacity of learning machines,

especially neural networks. The main goal of support vector machines is to max-

imize the generalization capability of the learning algorithm, while keeping good

performance on the training patterns. As we will see later, this is the basis for the

Vapnik-Chervonenkis theory (CV theory) [46], which computes bounds on the risk,

R(o), according to the definition of the VC dimension (Section 15.1.2) and the em-

pirical risk (Section 15.1.1).

We may use any number of decision functions, o(x,ϕϕϕ), in SVM. Regardless of

the decision function, let us consider a penalty function which is based on the error

between the true state of the system, s(x), and the decision, o(x,ϕϕϕ). There are many

ways such a penalty may be devised.

As we saw in Section 14.1, a perceptron is designed to fit a hyperplane which

would separate linearly separable observations. Recall Equation 14.1, in which the

decision function for a perceptron was given by a binary function – taking on the

value of 0 or 1. The values of this decision function were dependent on the value of

ωωωT ip +θ , which is a linear relationship based on the weight vector,ωωω , the threshold

(bias), θ , and the input vector, ip for pattern (sample) index p. Let us consider a sim-

ilar decision function with some minor modifications. First, we change the variable

indicating the pattern (sample) index, from p to nc, where nc ∈ Nc = {1,2, · · · ,Nc}.

The choice of index nc becomes clear later in the chapter and is related to the con-

straint index described in Section 25.5. Also, we change the definition of the weight

vector (ωωω) and the threshold (θ ) such that the following relation would hold,

o(inc) =

⎧⎨⎩1 ∀ ωωωT inc +θ > 0

0 ∀ ωωωT inc +θ = 0

−1 ∀ ωωωT inc +θ < 0

(15.4)

= sgn(ωωωT inc +θ) (15.5)

Furthermore, let us assume that sample inc is a function of some observation

sample xnc , through the following function,

inc =ψψψ(xnc) (15.6)
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Fig. 15.1: A two-class problem which is linearly separable in the space of ψψψ(x). (ψψψ(x))[1]

and (ψψψ(x))[2] are the two components (dimensions) of ψψψ(x). A simple case could be the

linear case where ψψψ(x) = x.

A special case of ψψψ(xnc) would be ψψψ(xnc) = xnc , which results in a linear de-

cision function, with respect to the observation pattern (sample), xnc . The general

case would provide a decision function which, although linear in ψψψ(xnc), may be

nonlinear with respect to the observation, xnc .

In addition, for the general case, as we shall see, the mapping, ψψψ(x) is defined

in the complete inner product space, H (see Definition 6.31) which may have in-

finite dimension. The infinite dimensional case would be a Hilbert space (Defi-

nition 6.33), however, in general H may be of finite dimensionality. Therefore,

ψψψ : (X ,X) �→ (H ,H). Based on the discussions of Chapter 6 and Chapter 24, H
is a complete space, with an inner product defined over the entire space. The com-

plete inner product space, H , is known as the feature space.

An example of the nonlinearity, discussed earlier, is the case where inc is the out-

put of a neuron in a previous layer. xnc is the input to the neuron and inc =ψψψ(xnc)
is the output of such neuron, in the previous layer, feeding into the perceptron of

interest, as input pattern inc .
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Therefore, Equation 15.5 may be written in terms of the, so called, observation

vectors, xnc , using the feature space representation, as follows,

o(xnc ,ϕϕϕ) = o(xnc ,ωωω,θ)

= sgn(ωωωTψψψ(xnc)+θ) (15.7)

= sgn(ζ (xnc ,ωωω,θ)) (15.8)

where,

ζ (xnc ,ωωω,θ)
Δ
=ωωωTψψψ(xnc)+θ (15.9)

For simplicity, we may define the following shorthand notation,

ψψψnc

Δ
=ψψψ(xnc) (15.10)

Equation 15.7 is a valid decision function for a linearly separable two-class prob-

lem, where an infinite number of hyperplanes may separate the data points into the

two corresponding classes – see Figure 15.1.

Note that it is possible to eliminate the threshold (bias) from Equation 15.9, by

merging the information into the weights. This is done by increasing the dimension-

ality of ωωω , ψψψ , and xnc by one, defining the first element of these vectors such that

(ψψψnc)[1] = 1. Therefore, (ωωω)[1] = θ and the θ term may be eliminated [25]. This is

just a convenience for making inner products somewhat simpler, but it increases the

complexity of the observation pattern and the nonlinear function, ψψψ(x).

In general, the state of nature is given by the random variable, {S : s ∈ S =
{Hi, i ∈ {1,2, · · · ,Γ }}}. Therefore, S encompasses Γ possible hypotheses. For a

two-class problem, Γ = 2. In the following section, we discuss a technique for ar-

riving at an estimate of the minimum risk. This minimization problem may be stated

by the following equation,

ϕϕϕ∗ = argmin
ϕϕϕ

R(ϕϕϕ)

= argmin

ˆ

S

ˆ

X

ϖ(o|x,ϕϕϕ)p(x,s)dxds (15.11)

where,

ϕϕϕ
Δ
=
[
ωωωT ,θ

]T
(15.12)
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15.1.1 Empirical Risk Minimization

If the decision portrayed in Equation 9.17 is learned from a limited training sam-

ple, {X : x ∈ Xtrain ⊂ X }, then the minimization discussed earlier is called an

empirical risk minimization [25, 46], since it is decided based on some empirical

data given by the training sample Xtrain. This may be viewed as the sample mean

(Equation 6.173) of the penalty function instead of its true mean (Definition 6.56).

The risk or expected penalty which is estimated in this fashion may be denoted by

Remp(o).

Consider the separable two-class problem where the possible hypotheses for the

two classes are Hi = {1,−1}, i ∈ {1,2}. Therefore, snc and o(xnc ,ϕϕϕ) may take on the

values of 1 or −1 for each observed sample, xnc . In the computation of the empir-

ical risk, Remp(ϕϕϕ), we are presented with Nc such training samples, each of which

corresponds to a pair of observations, xnc , and labels, snc .

The parametric decision function, o(xnc ,ϕϕϕ), provides the label of 1 or −1 which

should be compared to the true label, snc , for a correctness assessment. One possible

penalty function may then be defined as,

ϖ(o|xnc)
Δ
=

1

2
|snc −o(xnc ,ϕϕϕ)| (15.13)

The weight of 1
2 in Equation 15.13 ensures that a penalty of 1 is assigned to an

incorrect classification and that a 0 penalty is assigned to a correct classification.

This stems from the fact that we have chosen class labels, Hi = {1,−1} instead of

Hi = {0,1}.

The integral in Equation 15.3 may then be written as follows, using the penalty

function of Equation 15.13 and assuming that the joint probability distribution,

p(x,s), exists.

R(ϕϕϕ) =

ˆ

S

ˆ

X

1

2
|s−o(x,ϕϕϕ)| p(x,s)dxds (15.14)

Furthermore, Equation 15.14 may be estimated by its sample mean approxima-

tion, for a set of Nc observed samples, leading to the empirical risk,

Remp(ϕϕϕ) =
1

Nc

Nc

∑
nc=1

1

2
|snc −o(xnc ,ϕϕϕ)| (15.15)

=
1

2Nc

Nc

∑
nc=1

|snc −o(xnc ,ϕϕϕ)| (15.16)

The training sample is a subset of all possible observations (Xtrain ⊂ X ), so the

true risk cannot be readily computed, yet it may be cross-validated by using some



15.1 Risk Minimization 493

held-out data (a test set). In Sections 13.8.3 and 13.8.4, we discussed held-out and

deleted estimation (k-fold cross-validation) techniques which allow for using all the

data to get a better estimate of the risk. Vapnik [45] uses the limiting case, leave-

one-out estimation, for this task – see end of Section 13.8.4.

15.1.2 Capacity and Bounds on Risk

In Section 10.6, we briefly touched upon the learning capacity of a model and the

Vapnik-Chervonenkis dimension, also known as the VC dimension [46, 25]. The

following is a formal definition which has been adapted from one of Vapnik’s defi-

nitions [46].

Definition 15.1 (Vapnik-Chervonenkis Dimension – VC Dimension). The VC di-

mension, h, of a set of parametric decision functions, o(x,ϕϕϕ), ϕϕϕ ∈ φ , is the largest

number of vectors, {xn},{n = 1,2, · · · ,h}, which these functions may classify into

two different classes in all 2h possible ways.

In other words, h is the maximum number of vectors which may be shattered by

the set of decision functions, o(x,ϕϕϕ). A simple example of the VC dimension, pre-

sented by [37], is the number of points which may be shattered by any hyperplane

in two-dimensional Euclidean space (R2). In this case, h = 3, since a hyperplane

in two dimensions can shatter all possible combinations of three points. However,

once the number of points is increased to 4, then a hyperplane in R2 is no longer

capable of classifying all the possible combinations without error.

15.1.3 Structural Risk Minimization

In Section 10.6, structural risk minimization was viewed in the context of model

selection, in the way it adjusts the capacity of a model in relation with the the VC

dimension. Here, we take a closer look at structural risk minimization which uses

the bounds set on the capacity of a model in order to create a hierarchy in the risk

assessment of the model.
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15.2 The Two-Class Problem

In Section 15.1 (Equation 15.9), we introduced the function, ζ (x,ωωω,θ), which is

linear with respect to ψψψ(x), but not necessarily with respect to x itself. Sometimes,

for brevity, we will write ζ (x,ωωω,θ) as ζ (x,ϕϕϕ), based on Equation 15.12. Also, note

that ζ (x,ϕϕϕ) may be thought of as a functional in terms ofψψψ , namely ζ (ψψψ,ϕϕϕ), since

it really depends on the mapping, ψψψ . Therefore, depending on the intention, it may

also be written in its functional form, ζ (ψψψ,ϕϕϕ). Figure 15.1 shows a case where the

transformation of the patterns, xnc , is linearly separable in the feature space, or the

space of the transformation,ψψψ(xnc). If the patterns are still linearly separable for the

special case where ψψψ(xnc) = xnc , then they are known as linearly separable. How-

ever, we only consider the general case, where the patterns are linearly separable in

the transformed space of the mapping, ψψψ(x).

Figure 15.1 shows that for any given mapping, ψψψ , there are an infinite number

of hyperplanes given by Equation 15.17 such that they separate the input patterns

(transformed observations) in the feature (ψψψ) space.

Ψh(ϕϕϕ)
Δ
= {ψψψ : ζ (x,ϕϕϕ) = ζ (ψψψ,ϕϕϕ) = 0} (15.17)

where the parameter vector, ϕϕϕ , is defined by Equation 15.12.

The shortest vector from hyperplane, Ψh(ϕϕϕ), to any transformed pattern, ψψψ(x),
in the transformed space of ψψψ(x) may be written as follows,

Ψh(ϕϕϕ) →ψψψ(x) =
ζ (x,ϕϕϕ)

‖ωωω‖E

û (15.18)

where û is the unit vector pointing from the separating hyperplane toward the side

with a {+1} label – see Figure 15.1.

Therefore, the Euclidean distance (magnitude of the vector) between a trans-

formed pattern, ψψψ(x), and hyperplane Ψh(ϕϕϕ) would be the magnitude of Equa-

tion 15.18, given by the following relation,

dE (ψψψ(x),Ψh(ϕϕϕ)) =
|ζ (x,ϕϕϕ)|
‖ωωω‖E

(15.19)

By the same token, the distance between the hyperplane and the origin of the

transformed space is given by

dE (0,Ψh(ϕϕϕ)) =
|θ |

‖ωωω‖E

(15.20)

If the data is linearly separable in the feature space, H , for all xnc , then
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snnζ (xnn ,ϕϕϕ)

‖ωωω‖E

≥ M (15.21)

where M is the margin, as illustrated in Figure 15.1, and snc is the true state of nature

associated with observation pattern xnc , snc ∈ {+1,−1}.

We would like to find the hyperplane Ψh(ϕϕϕ) that maximizes the margin, M. As

stated earlier, there will generally be an infinite number of solutions to the following

problem,

M∗ = max
ϕϕϕ

M(ϕϕϕ) (15.22)

Initially, let us confine ourselves to those direct parameters,ϕϕϕ , such that the weights,

ωωω , have unit length. Then, the optimization problem will reduce to

M∗ = max
ϕϕϕ

M(ϕϕϕ) (15.23)

subject to

‖ωωω‖E = 1 (15.24)

and

snc ζ (xnc ,ϕϕϕ) ≥ M ∀ nc ∈ Nc (15.25)

where the maximization is taking place for some labeled training set with Nc obser-

vation patterns, xnc ,n ∈Nc = {1,2, · · · ,Nc}, associated with Nc true states of nature,

snc ,nc ∈ Nc.

Those patterns which lie exactly at a distance of M∗ away from the optimal sep-

arating hyperplaneΨh(ϕϕϕ) are called the support vectors with indices given by,

Ss.v.
Δ
= Na(ϕϕϕ

∗) (15.26)

= N ∗
a (15.27)

= argmin
nc

sncζ (xnc ,ϕϕϕ
∗) (15.28)

where ϕϕϕ∗ is the solution to Equation 15.23, subject to Equations 15.24 and 15.25,

and is known as the optimal direct parameter vector ({ωωω∗T ,θ ∗}T ). Note that Ss.v.

is the set of active constraints (N ∗
a ) associated with the constrained optimization

problem of SVM, defined in Section 25.5.1.2. See Equations 25.216 and 25.217.

As it may be seen from Equations 15.23 and 15.28, the optimization problem is

only dependent on the support vectors, and not all the other vectors in the sample

space. Theoretically, this reduces the problem to the following,

ϕϕϕ = argmax
ϕϕϕ

min snaζ (xna ,ϕϕϕ) (15.29)
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where na ∈ Ss.v. = N ∗
a . Equation 15.29 describes a saddle point – see the beginning

of Chapter 25.

In Equation 15.29, since only the support vectors are needed, practical techniques

may be employed to reduce the sample space to those that have a higher probability

of meeting the minimization condition. Of course, in practice, finding the support

vectors may not be so straight forward.

To further simplify the optimization problem, Boser, et al. [7] considered a dif-

ferent normalization for the direct parameters, ϕϕϕ , by requiring that,

M‖ωωω‖E = 1 (15.30)

instead of ‖ωωω‖E = 1 which was considered earlier. With this new normalization,

since

M =
1

‖ωωω‖E

(15.31)

then the maximization of M would be equivalent to minimizing ‖ωωω‖E , which allows

us to rewrite the optimization problem as follows,

ωωω∗ = argmin
ωωω

‖ωωω‖E (15.32)

= argmin
ωωω

1

2
‖ωωω‖2

E (15.33)

= argmin
ωωω

1

2
ωωωTωωω (15.34)

subject to

snaζ (xna ,ϕϕϕ) ≥ 1 ∀ na ∈ Ss.v. = N ∗
a (15.35)

after which, M∗ may be computed by,

M∗ =
1

‖ωωω∗‖E

(15.36)

Note that in the above optimization problem, the bias term, θ , only shows up in

the constraints and does not appear in the objective function. Therefore, as we will

see, the bias will affect the Lagrangian which will be constructed, to represent the

optimization problem.

Due to legacy and for aesthetics of the mathematics while computing gradients,

in the optimization procedure, the minimization problem was transformed from its

basic form of Equation 15.32 to an alternative quadratic form of Equation 15.34.

From here onward, the quadratic form will be used in most discussions.
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The optimization problem described by Equations 15.34, 15.35, and 15.36 is

known as the optimal margin classification problem and is discussed in detail in the

seminal paper by Boser, et al. [7]. It is one of the important formulations in the topic

of support vector machines.

Of course the above formulation assumes that the training data is linearly sep-

arable. If that is not the case, then the margin with a maximal magnitude may be

negative in which case Equation 15.30 would be rewritten as follows,

M‖ωωω‖E = −1 (15.37)

from which the optimization problem of Equation 15.34 becomes,

ωωω∗ = argmax
ωωω

1

2
‖ωωω‖2

E (15.38)

= argmax
ωωω

1

2
ωωωTωωω (15.39)

In the next section, we will set up the problem of Equation 15.34 in its Wolfe dual

form – see Section 25.5.

15.2.1 Dual Representation

Chapter 25 presents a detailed discussion of optimization theory, with Section 25.5

concentrating on constrained optimization. The concept of duality has also been dis-

cussed in detail in Section 25.5.2. It is recommended that the reader would start by

reading Section 25.5 and then follow the rest of the discussion in this section.

As we state in Section 25.5.2, the dual representation often allows for a sim-

pler computational effort. There are many different types of duality. Here, we are

interested in the Wolfe dual [48] representation which is especially formulated to

handle convex objective functions. The primal problem is recapped here from the

last section,

ϕϕϕ∗ = argmin
ωωω

1

2
ωωωTωωω (15.40)

subject to

sncζ (xnc ,ϕϕϕ) ≥ 1 ∀ nc ∈ Nc (15.41)

where the optimal margin, M∗ is computed by,

M∗ =
1

‖ωωω∗‖E

(15.42)
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Of course, the constraints may have also been written such that they would only

include the support vectors (active constraints), na ∈ N ∗
a = S s.v..

The Lagrangian function of the above problem may be written as follows,

L (ϕϕϕ,λλλ̄ ) =
1

2
ωωωTωωω−

Nc

∑
nc=1

(λλλ̄ )[nc]
(sncζ (xnc ,ϕϕϕ)−1) (15.43)

=
1

2
ωωωTωωω−

Nc

∑
nc=1

(λλλ̄ )[nc]

(
snc(ωωω

Tψψψnc +θ)−1
)

(15.44)

As we discussed earlier in this chapter and in Section 25.5.1.2, the only con-

straints that are important in determining the solution of the optimization problem

are the active constraints or those constraints associated with the support vectors

with indices, na = {nc : nc ∈ Ss.v. = N ∗
a }. This is because of the fact that

(λλλ̄ )[nc]
= 0 ∀ nc ∈ S �

s.v. (15.45)

Therefore, Equation 15.44 may be written with the sole inclusion of the active con-

straints,

L (ϕϕϕ,λλλ̄
(a)) =

1

2
ωωωTωωω− ∑

na∈Ss.v.

(λλλ̄ )[na]

(
sna(ωωω

Tψψψna +θ)−1
)

(15.46)

The formulation of the dual problem begins with the following maximization,

ϕϕϕ∗,λλλ̄ ∗ = argmax
ϕϕϕ,λλλ̄∈Ω̄

L (ϕϕϕ,λλλ̄ ) (15.47)

where

Ω̄ = {ϕϕϕ,λλλ̄ :
(
∇ϕϕϕL (ϕϕϕ,λλλ̄ ) = 0 ∧ λλλ̄  0

)} (15.48)

In Section 25.5.2.1 we go through the derivation of the Wolfe dual problem in

terms of the Lagrange multipliers, λλλ̄ , for a quadratic primal objective function. Let

us write the expression for the Lagrangian in vector form,

L (ϕϕϕ,λλλ̄ ) = L (ωωω,θ ,λλλ̄ )

=
1

2
ωωωTωωω− (ωωωT Jωωω +θ jT

θ − ēT
Na

)
λλλ̄ (15.49)

The Jacobian matrix associated with the active constraints relative toωωω , Jωωω : RNa �→
RN , is such that,

(Jωωω)[na] = snaψψψna (15.50)

In Equation 15.50, the notation (Jωωω)[na] denotes column na of Jωωω . Furthermore, the

Jacobian vector associate with the bias term, jθ : R1 �→ RNa , is such that,
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(jθ )[na] = sna (15.51)

Also, the all-ones vector, ēNa : R1 �→ RNa , is defined as follows,

(ēNa)[na] = 1 ∀ na ∈ Na (15.52)

The dual feasibility condition, ∇ϕϕϕL = 0, may then be split into its two components

relating to ωωω and θ ,

∇ωωωL = ωωω−Jωωωλλλ̄ (15.53)

= 0 (15.54)

and

∇θL = jT
θλλλ̄ (15.55)

= 0 (15.56)

We may use the dual feasibility relation of Equation 15.54 to solve for the primal

variable ωωω in terms of the dual variable λλλ̄ ,

ωωω = Jωωωλλλ̄ (15.57)

If we substitute for ωωω from Equation 15.57 and for jT
θλλλ̄ from Equation 15.56 into

Equation 15.49, we will have the following expression for the Lagrangian, solely in

terms of the dual variables, λλλ̄ by eliminating the primal variables, ϕϕϕ ,

L (λλλ̄ ) =
1

2
λλλ̄

T JT
ωωωJωωωλλλ̄ −λλλ̄

T JT
ωωωJωωωλλλ̄ −0+ ēT

Naλλλ̄ (15.58)

= −1

2
λλλ̄

T JT
ωωωJωωωλλλ̄ + ēT

Naλλλ̄ (15.59)

Therefore, we may write the simplified Wolfe dual problem as the following quadratic

maximization problem in terms of λλλ̄ ,

λλλ̄
∗ = argmax

λλλ̄0

jT
θλλλ̄=0

−1

2
λλλ̄

T JT
ωωωJωωωλλλ̄ + ēT

Naλλλ̄ (15.60)

Once λλλ̄ ∗ has been computed by performing the constrained maximization problem

of Equation 15.60, it may be used to compute the corresponding primal variables.

Using Equation 15.57, the optimal weight vector, ωωω∗ is computed as follows,

ωωω∗ = Jωωωλλλ̄
∗ (15.61)

Also, by using the complementarity condition of Equation 25.232 which is recapped

here,

λλλ̄
T c(ϕϕϕ) = 0 (15.62)

we will have
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ωωω∗T Jωωω +θ ∗ jT

θ − ēT
Na

)
λλλ̄

∗ = 0 (15.63)

We may solve for θ ∗ in Equation 15.63,

θ ∗ =
ωωω∗T Jωωωλλλ̄

∗ − ēT
Na
λλλ̄ ∗

jT
θλλλ̄

∗ (15.64)

=
λλλ̄ ∗T JT

ωωωJωωωλλλ̄
∗ − ēT

Na
λλλ̄ ∗

jT
θλλλ̄

∗ (15.65)

If we plug in for ωωω and θ from Equations 15.61 and 15.65 into Equation 15.7, the

decision function, o(x,ϕϕϕ,θ) would be given by the following expression,

o(x,ϕϕϕ∗) = o(x,ωωω∗,θ ∗)
= sgn(ωωω∗Tψψψ(x)+θ ∗) (15.66)

= sgn(λλλ̄
∗T JT

ωωωψψψ(x)+
λλλ̄ ∗T JT

ωωωJωωωλλλ̄
∗ − ēT

Na
λλλ̄ ∗

jT
θλλλ̄

∗ ) (15.67)

15.2.2 Soft Margin Classification

The formulation discussed up to now assumed that the data is completely separable,

at least in the feature space, if not in the observation space. This type of classifica-

tion is hence called hard margin classification. But what happens if the data is not

completely separable by a linear hyperplane, even in the feature space? The prob-

lem with the hard margin formulation is that this would be result in no solution. In

fact, hard margin classification is not at all forgiving when it comes to outliers. The

algorithm actually calls for dropping such points.

To make a more practical two-class classifier, we need to allow some flexibility.

This may be done by using, so called, slack variables, which have been used exten-

sively in the optimization literature [34, 20, 33], in order to solve simple constraints.

These variables generally increase the dimensionality of the optimization problem,

much in the same way as Lagrange multipliers do. This added dimensionality allows

for more flexibility on the optimal solution such that certain constraints are met.

If we call the slack variable vector ξξξ , defines such that, ξξξ : R1 �→ RNa , we may

write the new primal optimization problem akin to Equation 15.40 and its constraints

of Equation 15.41, as follows,

{ϕϕϕ∗,ξξξ ∗} = argmin
ωωω,ξξξ

1

2
ωωωTωωω +C‖ξξξ‖p (15.68)

subject to
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sncζ (xnc ,ϕϕϕ) = snc(ωωω
Tψψψ(xnc)+θ)

≥ 1− (ξξξ )[nc]
∀ nc ∈ Nc (15.69)

and

ξξξ  0 (15.70)

where p specifies that the Lp norm (see Definition 23.8) of the slack variable vec-

tor should be used in the optimization functions. C is the margin parameter and it

provides a trade-off between maximizing the margin, M and minimizing the classi-

fication error [1]. The two most popular norms used in the literature are the L1 and

the L2 norms. In the next two sections, we will examine special features of each of

these classifiers.

15.2.2.1 L1 classifier

Let us set p = 1 in Equation 15.68. To be able to write the Lagrangian function, we

would have to define two after defining two sets of Lagrange multipliers. The first

is λλλ̄ which is associated with the original parameters, ϕϕϕ , and λλλ̄ξξξ which is associated

with the slack variables, ξξξ . Therefore, the soft margin version of the dual optimiza-

tion problem involving the Lagrangian function, given by Equation 15.47 may be

written as follows,

{ϕϕϕ∗,λλλ̄ ∗,ξξξ ∗,λλλ̄ ∗
ξξξ} = argmax

ϕϕϕ,λλλ̄ ,

ξξξ ,λλλ̄ξξξ
∈Ω̄

L (ϕϕϕ,λλλ̄ ,ξξξ ,λλλ̄ξξξ ) (15.71)

where

Ω̄ = {ϕϕϕ,λλλ̄ ,ξξξ ,λλλ̄ξξξ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ϕϕϕL = 0

∇ξξξL = 0

λλλ̄  0

λλλ̄ξξξ  0

ξξξ  0(
ωωωT Jωωω +θ jT

θ − (ēNa −ξξξ )
T
)
λλλ̄ = 0

ξξξ Tλλλ̄ξξξ = 0

(15.72)

where the last two statements in Equation 15.72 are due to the complementarity

condition which was discussed in Section 15.2.1. The Lagrangian function for the

above maximization problem is given by,

L (ϕϕϕ,λλλ̄ ,ξξξ ,λλλ̄ξξξ ) =
1

2
ωωωTωωω−

(
ωωωT Jωωω +θ jT

θ − (ēNa −ξξξ )
T
)
λλλ̄

+ CēT
Na
ξξξ −ξξξ T

λλλ̄ξξξ (15.73)

Just like the case of the hard margin classification,
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∇ωωωL = 0 =⇒ ωωω = Jωωωλλλ̄ (15.74)

and

∇θL = jT
θλλλ̄ (15.75)

= 0 (15.76)

Also, the dual feasibility condition for the slack variables gives us,

∇ξξξL = 0 =⇒ λλλ̄
∗ +λλλ̄

∗
ξξξ = CēNa (15.77)

If we use these relations to reduce the Lagrangian of Equation 15.73 to the Wolfe

dual form, we have,

λλλ̄
∗ = argmax

0λλλ̄CēNa

jT
θλλλ̄=0

L (λλλ̄ )− 1

2
λλλ̄

T JT
ωωωJωωωλλλ̄ + ēT

Naλλλ̄ (15.78)

Note that the only difference between Equation 15.78 for the L1 soft margin clas-

sifier and Equation 15.60 for the hard margin classifier is the first constraint on λ̄ ,

requiring that each Lagrange multiplier associated with the primal variable, ϕϕϕ , must

be positive and less than C, where as the upper limit of C does not exist for the hard

margin classifier. The decision function, o(x,ϕϕϕ,θ) also stays the same as that of the

hard margin case.

15.2.2.2 L2 classifier

As we did in the beginning of Section 15.2, for legacy and aesthetics of the math-

ematics, we add a factor of 1
2 to the term involving the slack variables, for the L2

norm version. Also, we do not take the square root as prescribed by Definition 23.8.

Instead, we will use the inner product of the slack variable vectors. Also, we do

not need to have any Lagrange multipliers associated with the slack variables [1].

Therefore, soft margin version of the Lagrangian function, given by Equation 15.73

may be written as follows,

L (ϕϕϕ,λλλ̄ ,ξξξ ,λλλ̄ξξξ ) =
1

2
ωωωTωωω−

(
ωωωT Jωωω +θ jT

θ − (ēNa −ξξξ )
T
)
λλλ̄

+
C

2
ξξξ Tξξξ (15.79)

In fact, it is easy to show that with a simple change of variables, the soft margin L2

classifier reduces to the same problem as the hard margin classifier. Abe [1] derives

the following change of variables,

ω̂ωω =

[
ωωω√
Cξξξ

]
(15.80)
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θ̂
Δ
= θ (15.81)

ψ̂ψψxna

Δ
=

[
ψψψ(xna)√

Cêna

]
(15.82)

Note that in Equation 15.82, êm : RNa �→� is the unit vector defined in the nomen-

clature, namely,

(êna)[m] =

{
1 ∀ m = na

0 ∀ m �= na
(15.83)

Using the above variables, the problem reduces to that of the hard margin case where

the variables, ω̂ωω , θ̂ , ψ̂ψψ replace ωωω , θ , ψψψ respectively, in the hard margin formulation.

Once the problem is solved, the original L2 variables may be recomputed.

15.3 Kernel Mapping

Definition 24.56 defines a kernel function, K (s, t). Also, per Hilbert’s expansion

theorem 24.21 and its extensions by Schmidt (Theorem 24.22) and Mercer (The-

orem 24.23), a positive definite kernel, K (s, t), may be expressed in term of an

infinite series based on its Eigenfunctions and Eigenvalues. The kernel provides the

means for mapping the infinite set of possible values of t and another set of infinite

values of s, in different spaces. It is elaborated in that definition that this mapping is

a projection from a point by an infinite set of orthogonal basis functions (producing

the kernel).

First, let us recall that the forms of the optimization problems and the decision

functions for both hard margin and soft margin classification were shown to be the

same, in the last section. Therefore, we will concentrate on the derivations from

Section 15.2.1 which apply to both cases.

Let us re-examine the results of Section 15.2.1. Take the Jacobian matrix, Jωωω , de-

fined by Equation 15.50. If we plug in from this equation into the results obtained in

Section 15.2.1, we will get some interesting results. For example, take the statement

of the Lagrangian given by Equation 15.59 and used in setting up the dual problem

of optimization. We may write it in terms of summation on the number of active

constraints (support vectors) as follows,

L (λλλ̄ ) = −1

2
λλλ̄

T JT
ωωωJωωωλλλ̄ + ēT

Naλλλ̄

= −1

2

Na

∑
l=1

Na

∑
m=1

(λλλ̄ )[l] (λλλ̄ )[m] slsm 〈ψψψ l ,ψψψm〉+ ēT
Naλλλ̄ (15.84)
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Notice that Equation 15.84 only includes inner products ofψψψ and does not have any

term in terms of any standalone ψψψ .

Let us continue by writing the expanded form of the optimum bias term of Equa-

tion 15.65,

θ ∗ =
λλλ̄ ∗T JT

ωωωJωωωλλλ̄
∗ − ēT

Na
λλλ̄ ∗

jT
θλλλ̄

∗

=

(
Na

∑
l=1

(λλλ̄ ∗)[l] slψψψ l

)T ( Na

∑
m=1

(λλλ̄ ∗)[m] smψψψm

)
− ēT

Na
λλλ̄ ∗

jT
θλλλ̄

∗ (15.85)

=

(
Na

∑
l=1

Na

∑
m=1

(λλλ̄ ∗)[l] (λλλ̄
∗)[m] slsm 〈ψψψ l ,ψψψm〉

)
− ēT

Na
λλλ̄ ∗

jT
θλλλ̄

∗ (15.86)

Again, we see that Equation 15.87 only involves inner products of ψψψ .

Lastly, let us write the expanded expression for the optimal decision function,

o(x,ϕϕϕ∗),

o(x,ϕϕϕ∗) = sgn

(
λλλ̄

∗T JT
ωωωψψψ(x)+

λλλ̄ ∗T JT
ωωωJωωωλλλ̄

∗ − ēT
Na
λλλ̄ ∗

jT
θλλλ̄

∗

)

= sgn

⎛⎜⎜⎜⎝
Na

∑
na

(λλλ̄ ∗)[na] sna 〈ψψψna ,ψψψ(x)〉

+

(
Na
∑

l=1

Na
∑

m=1
(λλλ̄

∗)[l](λλλ̄
∗)[m]

sl sm〈ψψψ l ,ψψψm〉
)
−ēT

Naλλλ̄
∗

jT
θλλλ̄

∗

⎞⎟⎟⎟⎠ (15.87)

Once again, only inner products of ψψψ show up in the expression of the optimal de-

cision function.

15.3.1 The Kernel Trick

There is a very useful direct consequence of Hilbert’s expansion theorem (The-

orem 24.21) and its extensions by Schmidt (Theorem 24.22) and Mercer (Theo-

rem 24.23). We saw from Mercer’s version of the theorem (Theorem 24.23) that

if we have a positive semi-definite kernel, or even one that has a finite number of

negative Eigenvalues with an infinite set of positive ones, we may expand it in terms

of the inner product of a set of functions which happen to be the Eigenfunctions of

that kernel. In fact, we also saw from the definition of a degenerate kernel (Defini-

tion 24.62) that we may indeed write a degenerate kernel in terms of a finite sum of

inner products of functions. Therefore, by choosing the set of orthogonal functions
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that are used to describe a kernel of choice, we may write any kernel as an inner

product in some other space. Namely,

K (s, t) = 〈ψ(s),ψ(t)〉 (15.88)

This is a very powerful result, called the kernel trick, which was first exploited by

Aizerman [3] in 1964.2 Let us go back to the case where the training data is linearly

separable. In fact, we can increase the dimensionality ofψψψ(x) to the point that this is

indeed the case. As we stated before, the observation vectors, x, need not be linearly

separable for this to take place.

This, so called, kernel trick can help in two ways. The fist is that we may now

include any, preferably, positive definite kernel in the place of the inner products

seen in Equations 15.84, 15.87, 15.87, and similar occurrences. Secondly, we may

use different kernels in different situations, using the nonlinearity in the kernel to

help with special scenarios. As a bonus, the amount of computation is also reduced.

For example, the kernel values for the different training data may be tabulated and

used without having to perform the expensive inner products.

In foreseeing the capability of mapping to a different space, we have been treating

the problem in its general form in the feature space (H ). A simplification, by setting

ψψψ(x) = x, would suffice for problems which are linearly separable in the observa-

tion space. However, as we saw in Section 15.2.2, we may also use a soft margin

formulation with the introduction of some slack variables [34], where although a

feature space representation of the observation vectors is chosen, still slight over-

laps are allowed through the introduction of these slack variables.

Here are Equations 15.84, 15.87, 15.87, where we have replaced the inner prod-

ucts with kernels,

L (λλλ̄ ) = −1

2

Na

∑
l=1

Na

∑
m=1

(λλλ̄ )[l] (λλλ̄ )[m] slsmK (xl ,xm)+ ēT
Naλλλ̄ (15.89)

θ ∗ =

(
Na

∑
l=1

Na

∑
m=1

(λλλ̄ ∗)[l] (λλλ̄
∗)[m] slsmK (xl ,xm)

)
− ēT

Na
λλλ̄ ∗

jT
θλλλ̄

∗ (15.90)

o(x,ϕϕϕ∗) = sgn

⎛⎜⎜⎜⎝
Na

∑
na

(λλλ̄ ∗)[na] snaK (xna ,x)

+

(
Na
∑

l=1

Na
∑

m=1
(λλλ̄

∗)[l](λλλ̄
∗)[m]

sl smK (xl ,xm)

)
−ēT

Naλλλ̄
∗

jT
θλλλ̄

∗

⎞⎟⎟⎟⎠ (15.91)

2 Burges [8] has called this the kernel trick.
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15.4 Positive Semi-Definite Kernels

We spoke about positive semi-definite kernels in detail in Section 24.5. These ker-

nels are also known in the literature as Mercer kernels – see Section 24.5.1. Of

course, as Mercer shows in his version of the expansion theorem (Theorem 24.23,

it is not necessary for the kernel to be positive definite in order for Hilbert’s expan-

sion (Equation 24.243) to converge uniformly and absolutely. However, the positive

definiteness becomes essential when the number of Eigenfunctions used for the ex-

pansion are finite, which is the case with most of the applications discussed here,

including support vector machines. In the same spirit, some have called the positive

definiteness of the kernel, the Mercer condition (Equation 24.240).

In general, most kernels of interest are Mercer kernels (i.e., they are positive

semi-definite). However, there are cases when non-positive semi-definite kernels

are used. In Section 15.5 we will discuss some such kernels. For now, let us look at

some popular Mercer kernels.

15.4.1 Linear Kernel

As we have discussed earlier, the simplest kernel is the linear kernel, which is simply

the inner product of the vectors in the observation space. The linear kernel may be

used for cases where the data is linearly separable.

KLin(xl ,xm)
Δ
= 〈xl ,xm〉 (15.92)

= xT
l xm (15.93)

This amounts to setting ψ(x) = x.

Dehak, et al. [17] have used the linear kernel for speaker verification, using

speaker factor coefficients (Section 16.4.3) as the observed vector, x. They have

compared its performance to that of the GRBF kernel (Section 15.4.3) and the Co-

sine kernel (Section 15.4.4). As we shall see, the Cosine kernel is just the linear

kernel which has been normalized by the product of the norms of the two indepen-

dent variables, xl and xm.

15.4.2 Polynomial Kernel

There are two different definitions of the polynomial kernel. The simplest definition

is as follows,
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KPoly(xl ,xm)
Δ
=
(
xT

l xm

)d
(15.94)

Since the kernel given by Equation 15.94 will have a many to one mapping for even

degrees (d = 2n,n ∈{1,2, · · ·}), the following formulation is generally preferred [1],

KPoly(xl ,xm)
Δ
=
(
xT

l xm +1
)d

(15.95)

When d = 1, the form in Equation 15.95 will result in the linear kernel (Equa-

tion 15.93) plus a deviation of 1. This deviation may be corrected for, by adjusting

the bias term, θ [1].

As an example, if we take N = 2 as the dimension of x and use a second degree

(d = 2) polynomial kernel according to the definition of Equation 15.95, then we

see the following,

K (xl ,xm) = 〈ψψψ(xl),ψψψ(xm)〉 (15.96)

=
(
xT

l xm +1
)2

(15.97)

Therefore, the higher dimensional transformation function may be computed by the

above equation [1],

ψψψ(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

1√
2(x)[1]√
2(x)[2]√

2(x)[1] (x)[2](
(x)[1] (x)[2]

)2

⎤⎥⎥⎥⎥⎥⎥⎦ (15.98)

Bocklet, et al. [6] show their best results using MAP estimation (Section 11.3.1.3)

in conjunction with polynomial kernels. They compare it to other kernels such as the

pure Jeffreys kernel (Section 15.5.1), and the GRBF kernel (Section 15.4.3).

15.4.3 Gaussian Radial Basis Function (GRBF) Kernel

The Gaussian radial basis function (GRBF) is given by the following definition,

KGRBF(xl ,xm)
Δ
= exp

(
− 1

2σ2
‖xl −xm‖2

)
(15.99)

Because of its relevance to probability modeling, it has been successfully used in

many applications such as age and gender speaker classification [6], online hand-

writing recognition [2], and speaker verification [17].
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15.4.4 Cosine Kernel

The cosine kernel of two vectors is a basically the linear kernel of the two which is

normalized by the product of the norms of both vectors. Namely,

KCos(xl ,xm)
Δ
=

〈xl ,xm〉
‖xl‖‖xm‖ (15.100)

Dehak, et al. [16, 17] have used the cosing kernel for speaker verification. [16]

uses what it calls the total variability vectors as the the observation vectors, x. As

we will see in Section 16.4.3, these are really factors which are related to Principal

component analysis and not factor analysis since they combine the common factor

and the residual space, reverting to PCA – also see the discussion in Section 12.5 on

this issue.

On the other hand, [17] uses the speaker factor coefficients (Section 16.4.3) for

observation vectors. This kernel’s performance has been compared by [17] to that

of the linear kernel (Section 15.4.1) and the GRBF kernel. The results show that it

slightly outperforms the linear kernel for that task, but it is slightly inferior to the

GRBF kernel.

15.4.5 Fisher Kernel

The Fisher kernel [27], named after Fisher information which was discussed and

derived in detail in Section 7.7. Equation 7.135 gives the expression for the Fisher

information matrix, III F . We also showed the relation between the Kullback-Leibler

directed divergence and the Fisher information matrix in Equation 7.136. Also, in

Equation 7.140, we showed that the Jeffreys divergence may also be approximated

with respect to the Fisher information matrix. Also, at the end of Section 7.7 we

showed that the Fisher information matrix will always be positive definite. [27] uses

the above information to arrive at a kernel based on the Fisher information matrix

which is give as follows,

K (xl ,xm)
Δ
= ∇ϕϕϕ p̂(xl |ϕϕϕ)TIII −1

F ∇ϕϕϕ p̂(xl |ϕϕϕ) (15.101)

where

ςςς(ϕϕϕ|x)
Δ
= ∇ϕϕϕ p̂(xl |ϕϕϕ) (15.102)

is known as the Fisher score or the score statistic of the parameter vector. The

Fisher score has an important role in maximum likelihood estimation, as shown in

Section 10.1.
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Later in their original paper [27] on this kernel, Jaakkola and Haussler proposed

that the III F , in the context of logistic regression models of their interest, becomes

less significant and that a simpler kernel may be used as follows,

K (xl ,xm)
Δ
= ∇ϕϕϕ p̂(xl |ϕϕϕ)T ∇ϕϕϕ p̂(xl |ϕϕϕ) (15.103)

The simple form shows that using the Fisher kernel is similar to finding a separat-

ing linear hyperplane in the Fisher score space [27]. This attests to the use of kernel

mapping in order to linearize an otherwise nonlinear classification boundary, dis-

cussed at the beginning of this chapter. In Section 7.7 and Chapter 10 we discussed

the invariability of the Fisher information matrix to invertible transformations. This

gives the Fisher kernel a very important invariance property [27].

The Fisher kernel has been successfully used by many researchers. Reference [19]

uses it in building a hybrid GMM/SVM system for conducting speaker identification

(see Section 15.9). Also, [36] has used the Fisher kernel to do audio classification

on audio files on the world wide web. The application spiders through audio files

on the Internet and classifies them into three categories of speech, music, and other.

These two papers seem to be among some of the earliest papers that have used sup-

port vector machines for speaker recognition.

15.4.6 GLDS Kernel

The generalized linear discriminant sequence (GLDS) Kernel was proposed by

Campbell [12]. As we will see momentarily, it seems to be very similar to the Fisher

kernel discussed in Section 15.4.5. In fact it almost seems like an implementation

of the Fisher kernel to the speaker recognition domain. It uses generalized linear

discriminant function of the form,

o(x) =ωωωTψψψ(x) (15.104)

where ωωω is the vector of classifier parameters, much in the same way as we had

defined it in Equation 15.7, with the bias term set to 0. [12] then defines the GLDS

kernel as follows,

K (xl ,xm) =ψψψ(xl)
T
(

1

Nimp

ΨΨΨTΨΨΨ

)−1

ψψψ(xm) (15.105)

where Nimp is the number of impostors, ψψψ(x specifies the mean value of ψψψ over all

the speakers andΨΨΨ is a matrix whose rows are the transpose of ψψψ for all speakers

including target and impostor speakers.
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As we mentioned at the beginning of this section, the GLDS kernel seems to be

quite related to the Fisher kernel. In fact it seems to be an estimate of that kernel,

using the speaker data.

The GLDS kernel has also been used by [42] in conjunction with NAP (Sec-

tion 15.8) in speaker verification across different channels and compared to a GMM

technique (Section 13.7) using FA (Section 16.4.2). The results of the GMM set up

were slightly more favorable.

15.4.7 GMM-UBM Mean Interval (GUMI) Kernel

Recall the expression for the Jeffreys divergence between two normal density func-

tions. The last term in that expression carries most of the information. It also shows

up in the Bhattacharyya divergence (Section 8.2.3). Reference [50] takes that por-

tion and uses it as the basis for building the, so called, GUMI kernel. This partial

divergence is given by

DG (0 ↔ 1)
1

2ln(2)
(μμμ1 −μμμ0)

T (ΣΣΣ−1
1 +ΣΣΣ−1

0 )(μμμ1 −μμμ0) (15.106)

where we have included the ln(2) term to have the result in bits versus nats (see

Section 7.3.1).

Therefore, dropping the constant ln(2) term, the GUMI kernel for two GMMs

would be given by the following expression for the two random variables, Xl and

Xm, where the number of mixtures is Γ ,

K (Xl ,Xm) =
Γ

∑
γ=1

⎛⎜⎝
⎡⎣(ΣΣΣ

(l)
γ +ΣΣΣ

(u)
γ

2

)− 1
2

(μμμ l −μμμ(u))

⎤⎦T

⎡⎣(ΣΣΣ
(m)
γ +ΣΣΣ

(u)
γ

2

)− 1
2

(μμμm −μμμ(u))

⎤⎦⎞⎠ (15.107)

where μμμ(u) andΣΣΣ (u) are the mean and covariance of the universal background model

(Section 16.2).
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15.5 Non Positive Semi-Definite Kernels

In the treatment of support vector machines, we are mostly concerned with Mercer

kernels, although other kernels are also sometimes used. Examples of kernels which

do not satisfy the Mercer condition are those which are based on the Kullback-

Leibler divergence [32, 10] and the three-layer neural network kernel [1]. We will

introduce these Kernels in the next two subsections.

15.5.1 Jeffreys Divergence Kernel

In Chapters 7 and 8, we discussed the Jeffreys divergence and Kullback-Leibler

directed divergence in quite a bit of detail. Moreno, et al. [32] refer to the kernel

discussed in this section as the symmetric Kullback-Leibler divergence, which is

actually the Jeffreys divergence. They start by using a GMM model to transform

the observation vectors from the observation space to the probability densities given

the parameters, θθθ , where θθθ includes the statistics of the GMM, such as the means,

variances, and priors. Therefore, using the kernel trick (Section 15.3.1), the kernel

would be computed in the new space of probability densities as follows

K (p(x|θθθ l), p(x|θθθm)) = e{−aDJ(l↔m)+b} (15.108)

where DJ (l ↔ m) (Equation 8.18) is the Jeffreys divergence and a and b are arbi-

trary constants. In Section 8.2.2 we presented the expression for the Jeffreys diver-

gence between two normal density functions (Equation 8.19).

Moreno, et al. [32] exponentiate the divergence to force the kernel to be positive

semi-definite, since they state that Jeffreys divergence does not meet the Mercer con-

dition (Equation 24.240). They state that this kernel is appropriate for variable length

sequential data and that it works well in conjunction with established probabilistic

models such as GMM. Experiments are presented on speaker and image recognition

data. The speaker data used in [32] is the KING database (Section 22.6.2.3).

However, [17] and [6] use the Jeffreys divergence directly, without doing the

exponentiation. [17] uses it in doing speaker verification. [6] applies this kernel as

well as other kernels such as the polynomial kernel (Section 15.4.2) and the GRBF

kernel (Section 15.4.3) on the problem of gender and age speaker classification

(Section 17.5.1).

Reference [50] proposes a kernel for SVM which is based on the Bhattacharyya

divergence (Section 8.2.3) and works out the expression using a GMM, much in the

same manner as the Jeffreys divergence kernel was produced, above. The reader is
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referred to [50] for more.

15.5.2 Fuzzy Hyperbolic Tangent (tanh) Kernel

Camps-Valls, et al. [13] uses a fuzzy activation (sigmoid) function, adopted from [41],

as the kernel for support vector machine classification. The following Equation sum-

marizes this kernel,

KFT (xl ,xm)
Δ
=

⎧⎨⎩−1 when xT
l xm is low

1 when xT
l xm is high

mxT
l xm when xT

l xm is medium

(15.109)

where m is a constant, representing the smoothness of the sigmoid function. To

produce a continuous kernel function, [13] expresses the kernel in terms of two

numbers, r and a, where the location of the threshold is given by,

γ = − r

a
(15.110)

and hence the membership limits are given by γ± 1
a
.

The new smooth kernel function may then be written in terms of r and a as

follows,

KFT (xl ,xm) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 ∀ xT

l xm ≤ γ− 1
a

1 ∀ xT
l xm ≥ γ + 1

a

2(xT
l xm − γ)−a2(xT

l xm − γ)
∣∣xT

l xm − γ
∣∣ Otherwise

(15.111)

The fuzzy tanh kernel, given by Equation 15.111, is not positive semi-definite. The

paper claims that this kernel provides more positive eigenvalues in the Gram matrix

(Definition 24.59) and a lower computation cost compared to a regular tanh kernel.

Also it demonstrates the relation between support vector machines and neural net-

works to a certain extent. We discussed this relation at the beginning of this chapter,

in some detail.
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15.5.3 Neural Network Kernel

At the beginning of this chapter, we touch upon the relation between neural network

theory and support vector machines. A neural network kernel is basically designed

after the logistic activation function of Equation 14.15. Namely,

KNN(xl ,xm) =
1

1+ exp
(
axT

l xm −b
) (15.112)

where a and b are constant parameters, defining the kernel. In general, KNN is not

a Mercer kernel. However, by choosing the proper combination of a and b, it may

be made positive semi-definite [1]. This kernel simulates a neural network with one

hidden layer. [43] presents another neural network kernel based on the hyperbolic

tangent (tanh).

15.6 Kernel Normalization

As a practical note, depending on the size of the problem and the number of vari-

ables involved, the value of the Kernel may become either too small or too large for

the precision at hand. With kernels as with any other function, proper normalization

may make a significant difference in the practical results, although it may not make

much of a difference in the theoretical sense. We have already seen an example of

such normalization. As we saw in Section 15.4.4, the cosine kernel is basically a

normalized linear kernel. We saw that for example, [17] has obtained better verifi-

cation results with the cosine kernel in contrast with the linear kernel.

The main idea with most normalization techniques is to divide the variable entity

either by its maximum value (if it is always positive) or some scale which is related

to the difference between its maximum and minimum operating values. We will see

many examples of this in Chapter 18. In this spirit, for example, Abe [1] suggests

using the maximum values for the polynomial and GRBF kernel to normalize them.

These work out to the following two normalized equations respectively,

KPoly(xl ,xm) =

(
xT

l xm +1
)d

(N +1)d
(15.113)

and

KGauss(xl ,xm)
Δ
= exp

(
− 1

2σ2N
‖xl −xm‖2

)
(15.114)

where N is the dimension of the observation vector, x. Similar ideas may be applied

to other kernels in order to ensure that they would have values within the precision
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of our computations.

15.7 Kernel Principal Component Analysis (Kernel PCA)

In Section 12.3.1 we briefly touch upon the idea behind kernel PCA which was in-

troduced by [38]. It uses ideas from support vector machines to transform the obser-

vation into a feature space which may possibly become infinite and form a Hilbert

space. Recall the Eigenvalue problem associated with the original PCA formulation,

given by Equation 12.2, which we are rewriting here for convenience.

ΣΣΣv = λ◦v (15.115)

Let us assume that we will be using a maximum likelihood estimate for the co-

variance matrix given by Equation 11.12. In fact, we have simplified that Equation

to one with standard (0) mean and having a single density (Γ = 1). Then Equa-

tion 11.12 may be written as,

Σ̂ΣΣ =
1

N

N

∑
n=1

xnxT
n (15.116)

Now let us refer to Section 15.1 and recall the definition of ψψψ(x) such that ψψψ :

(X ,X) �→ (H ,H). In addition, let us assume that the data in the H space also has

the standard mean of 0. Therefore,

N

∑
n=1

ψψψ(xn) = 0 (15.117)

Therefore, the covariance of the transformed data in the feature space is given by,

Σ̄ΣΣ =
1

N

N

∑
n=1

ψψψ(xn)ψψψ(xn)
T (15.118)

Therefore, the Eigenvalue problem of for the transformed covariance matrix be-

comes,

Σ̄ΣΣv = λ◦v (15.119)

Since all the Eigenvectors of ψψψ(x) are spanned in the same space as ψψψ , we may

write the above equation by applying an inner product of ψψψ to both sides of Equa-

tion 15.119,〈
ψψψ(xn),Σ̄ΣΣv

〉
= λ◦ 〈ψψψ(xn),v〉 ∀ n ∈ {1,2, · · · ,N} (15.120)
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Therefore, we may expand the Eigenvectors with respect to the transformations,

ψψψ(xn) as follows,

v =
N

∑
n=1

cnψψψ(xn) (15.121)

Therefore, we may define a kernel as

K (xl ,m) = 〈ψψψ(xl),ψψψ(xm)〉 (15.122)

If we call the Gram matrix (Definition 24.59) associated with the above kernel, KKK ,

then it produces the following new Eigenvector problem,

Nλ◦KKK c = KKK 2c (15.123)

where c : R1 �→ RN is such that

(c)[n] = cn (15.124)

associated with Equation 15.122.

[38] argues that we may only concern ourselves with the subset of solutions that

would satisfy the following Equation,

Nλ◦c = KKK c (15.125)

Note that Equation 15.125 is an Eigenvalue problem which may be solved by

the methods discussed in Chapter 12. Also note that for PCA, we only need the

projection of the feature vectors (ψψψ(xn) onto the principal axes, so we only need the

Karhunen-Loève Transformation (KLT) given by Equation 12.12,

yn = VTψψψ(xn) (15.126)

Therefore, we may write this transformation as

〈v,ψψψ(x)〉 =
N

∑
n=1

cn 〈ψψψ(xn),ψψψ(x)〉 (15.127)

=
N

∑
n=1

cnK (xn,x) (15.128)

As we see, Equation 15.128 only involves the kernel and as we have seen before,

we may replace this kernel with any other kernel. This is the basis for kernel PCA

which allows similar properties as we have seen with support vector machines to be

applied to the projection task.
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15.8 Nuisance Attribute Projection (NAP)

The name Nuisance attribute projection has been attributed to a method which is

related to the kernel PCA technique discuss in Section 15.7, with some supervision

involved, relating to moving certain data points away from each other and moving

some closer, depending on some predefined attribute. It was first introduced by [40]

and since then it has become somewhat of a standard technique to use on the speaker

verification problem, when modeling the system with support vector machines.

As the reader would have probably guessed by now, the data attributes which

need to be made closer in the feature space are the microphone and channel at-

tributes. This would basically take away the variation of the data based on micro-

phone and channel types. On the other hand, the aspects of the data relating to the

identity of speakers should be separated by as much as possible. This will reduce

channel variability effects while providing better speaker separability. It is some-

what in the same train of thought as discriminant analysis.

The way [40] approaches this problem is to first assume that there will a rank-

one removal of some attributes from the identity matrix. This is somewhat similar to

the rank one update techniques discussed in detail in Chapter 25, with the exception

that a positive definite matrix is subtracted from the identity matrix to create the new

projection matrix. This is possibly the basis for the name suggesting the removal of

nuisance information. This amounts to the following, projection matrix,

P
Δ
= I−wwT (15.129)

where the norm of w should be bounded by 1,

‖w‖E = 1 (15.130)

Using this projection matrix, the feature vectors, ψψψ(x), may be transformed as

follows,

ψ̂ψψ(x) = Pψψψ(x) (15.131)

where ψ̂ψψ(x is the projected feature vector.

Now let us consider the matrix,ΨΨΨ , such that,

(ΨΨΨ)[na] =ψψψ(xna) ∀ na ∈ Na (15.132)

Then, we may write the Gram matrix (Definition 24.59) for the kernel associated

with the feature vectors, ψψψ(xna) as

KKK =ΨΨΨTΨΨΨ (15.133)
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Therefore, the transformed Gram matrix (associated with ψψψ(xna)) may be written

as follows,

K̂KK = (PΨΨΨ)T (PΨΨΨ) (15.134)

= KKK − (KKK v)(KKK v)T (15.135)

where v satisfies the following relation,

w =ΨΨΨv (15.136)

The relation of Equation 15.136 will ensure that the vectors v are normalized with

respect to Gram matrix KKK , since if we start with Equation 15.130, we will have the

following relation,

wT w = 1

= (ΨΨΨv)T (ΨΨΨv) (15.137)

= vT (ΨΨΨTΨΨΨ)v (15.138)

= vTKKK v (15.139)

As a first objective, [40] assumes that there are only two types of channels, one

which is associated with electret microphones and one associated with carbon but-

ton microphones (Section 22.3). Therefore, if we call these two sets, Me and Mc

respectively, the objective is to find w in the following optimization problem,

w∗ = argmin
l∈Me
m∈Mc

‖P(ψψψ(xl)−ψψψ(xl))‖2
E (15.140)

[40] shows that the solution of the above optimization problem is coincident with

the solution to the following Eigenvalue problem,

KKK ZKKK v = λ◦KKK v (15.141)

where Z is a contrast matrix which is defined as follows,

Z
Δ
= diag(WēT )−W (15.142)

such that

(W)[l][m] =

{
1 i f xl and xm had the different channels

0 i f xl and xm had the same channel
(15.143)

Much in the same way as it was done in Section 15.7, a somewhat similar Eigen-

value problem may be solved in lieu of Equation 15.144, as long as we ensure that

Equation 15.140 holds.

Once the Eigenvalue problem is solved for the Eigenvectors, v, the w may be

computed using Equation 15.136. This will then provide the projection matrix by

Equation 15.129. At this point, provisions have been made to reduce the effect of
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channel variability. However, this may make matters worse by reducing the speaker

separation information since there was no provision made to avoid such change.

For this reason, [40] proposes a new Eigenvalue problem where there is a contrast

matrix, Z, associated with each action. Namely, Zs is the contrast matrix which

ensures the separation of speakers and Zc is one that ensures the closeness of the

channel identities. The new Eigenvalue problems becomes,

KKK (αZc −βZs)KKK v = λ◦KKK v (15.144)

where α and β are two positive weighting parameters which should be empirically

determined. Zc is defined using Wc which is defined by Equation 15.145. In the

same manner, Zs is defined using the same relation as in Equation 15.142 with Ws

given by the following,

(Ws)[l][m] =

{
1 i f xl and xm are from different speakers

0 i f xl and xm are from the same speaker
(15.145)

As a modification, [40] suggests increasing the rank of the update. This is a

natural extension, as we saw in Chapter 25. Therefore, Equation 15.129 may be

modified as follows,

P
Δ
= I−

Q

∑
q=1

wwT (15.146)

where Q denotes the rank of the update.

This technique has been used in many systems. [11] uses NAP with the GUMI

kernel. [14] covers a variety of kernels on the speaker verification problem in con-

junction with gender-dependent NAP. [4] and [39] use NAP on a two-wire commu-

nication3.

15.9 The multiclass (Γ -Class) Problem

The multiclass classification problem is quite important, since it is the basis for the

speaker identification problem. In Section 10.10 of his book, Vapnik [46] proposes

a simple approach where one class is compared to all other classes and then this is

done for each class. This will convert a Γ -class problem to Γ two-class problems.

Abe [1] refers to this as the one-against-all multiclass SVM. This method may be

3 Two-wire communication means that the conversation from the two ends of a telephone call have
been multiplexed into one common channel, in contrast with a 4-wire communication in which the
two speakers at the different ends may be separated – see Section 16.5.
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efficiently implemented using a decision tree.

Of course there are other ways of keeping track of such comparisons. One such

method is due to [18], which provides a technique based on error correcting codes

for creating a multi-class classifier out of binary classifiers. Since the basic SVM

classifier is a binary classifier, this method may be used to keep track of the differ-

ent comparisons. Fine [19] uses the Fisher kernel and builds a hybrid GMM/SVM

system for speaker identification and discusses the multiclass classification problem

which is needed for speaker identification, using an N-bit error correcting code after

the work of [18].

One of the important problems that arises from the, so called, one-against-all

method is the existence of regions in the space which may not be classifiable. As we

have seen, this is a problem with two-class linearly inseparable problems as well.

However, the extent of the problem grows as the number of classes increase. This

is a direct problem being addressed by many applications of speaker identification

which use support vector machines.
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Part II

Advanced Theory



Chapter 16

Speaker Modeling

The basic objective of speaker modeling is to be able to be able to associate an

identifier to the speech of an individual speaker which is different from all other

unique speakers, if not in the world, at least in the database of interest. Once this

is achieved, all the different branches of speaker recognition, discussed in Chap-

ter 1, may come to fruition. In other words, speaker modeling lies at the heart of the

speaker recognition task. This may not necessarily be true with many other seem-

ingly similar fields. For example, speech recognition which is very closely related

to speaker recognition requires many different stages, many of which are of similar

importance. For instance, in speech recognition, the phonetic modeling, language

modeling, and search are almost of similar importance. In speaker recognition, on

the other hand, if a good model of the speaker is built, the rest of the work becomes

extremely easy.

Of course, with different branches of speaker recognition, we may use differ-

ent modeling techniques, just because we may want to take advantage of special

shortcuts in the said branch. An example is the contrast between speaker verifica-

tion speaker identification. Of course if we had a good model of each speaker, then

speaker verification would just be solvable exactly the same way as we do speaker

identification. Consider that you know the identity of an individual as soon as you

hear that person, meaning that you can immediately assign a unique ID to the in-

dividual. By definition, this is the description of a speaker identification problem.

However, if we are sure of the ID, then we may use the information, as it stands,

for doing speaker verification, by just seeing if the ID we ascertained is the same as

the ID being produced by the speaker or not. Of course since we do not have such

great models and since it is quite more expensive to absolutely identify a person, we

resort to a simpler problem of deciding if the audio we are hearing is closer to the

audio we have heard from the target speaker or if it is closer to some complementary

model of the speaker space.

Much in the same way, consider the task of speaker segmentation, say in a 2-

wire telephone communication (see Section 16.5), where the speech of the parties
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at both end of the telephone channel have been multiplexed. Again, if we had a way

of identifying each piece of audio specifically, then the identification task would be

sufficient to allow us to separate the two speakers in the conversation. Again, since

we do not have this ability, we resort to special modeling techniques that would only

allow us to tell two voices apart in a small window, giving rise to the specific branch

of audio segmentation.

In summary, we may think of speaker identification as the most difficult task and

one that if it were to be solved, it would cover all the different branches of speaker

recognition. However, as we mentioned, we are no where close to that stage in this

technology. So, we would have to look at different modeling techniques. I have

personally believed in the past, and still do, that we should work toward the goal

of attaining the best speaker identification. [5] shows an approach for establishing

such models and to be able to cluster speakers in a hierarchical fashion, so that we

may simply conduct other branches of speaker recognition through identification.

And the search goes on!

Up to now, we have been dealing with a lot of mathematical modeling and we

have tried to set the mathematical foundation needed for being able to deal with all

aspects of speaker recognition. From this point on, we will not see much in the way

of mathematical models. Most of these models have already been covered in the first

15 chapters of the book or in the extensive background material in Part IV, at the

end of the book. Most of what will come, is in the way of reference to content from

previous chapters and the chapters of Part IV.

16.1 Individual Speaker Modeling

The speaker recognition community is not very big. Although there are many mod-

els which have been proposed for modeling an individual speaker, most of them

are somewhat similar and are somehow related to features that stem from speech

recognition. At the beginning of Chapter 5, we presented an extensive discussion

about the theoretical dichotomy between speech and speaker recognition features.

Assuming that we are content with why we should use speech recognition features,

we continue to use these features for building models which would carry informa-

tion about a specific individual.

When we speak of speaker models, it is important, first, to see if we are inter-

ested in a text-dependent model, a text-independent model, or a hybrid. In Chapter 1

we spoke about the difference between these different modalities, which are most

applicable to speaker verification.
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Initially assuming that we are interested in a purely text-independent model, the

most common and successful model, and possibly one of the oldest, is the Gaussian

mixture model which was discussed in detail in Section 13.7. A text-independent

model may of course be used for all branches of speaker recognition. In Chap-

ter 13, we discussed how the GMM is actually a degenerate HMM model. There

is definitely no shortage of papers which use a GMM model for modeling speakers

[41, 5, 38, 12, 46, 46, 6, 2, 51, 32, 34, 52, 25, 22, 58, 8, 36, 59, 11, 56, 48, 35, 31,

20, 3, 37, 43].

It is interesting to note that the above references are just a fraction of all the

papers which report on using GMM for speaker modeling. Besides, I have tried

very hard to make sure I do not include more than one paper from each group of

researchers. Of course, each and every one of these papers is talking about some

different combination of techniques with GMM as its base. Therefore, it is not even

possible to address each and every flavor or the usage of GMM for modeling speak-

ers.

One way to quantify a speaker’s model is to establish the parameters associated

with the GMM which best models the speakers speech. In Section 13.7, we called

this supervector, ϕϕϕ , given by Equation 13.40. Therefore, assuming that we have N

speakers in general, we may specify the model associated with speaker n as ϕϕϕn.

Usually, we do not have much data from a single speaker. In most practical cases

related to text-independent scenarios, the enrollment data is at best in the order of a

minute. Assuming that the number of Gaussians used in the mixture mode, Γ ∼ 100,

then it is easy to understand why there is no where close to enough data to be able

to estimate the mixture parameters for the speaker. This is one of the reasons why

we have to begin with an existing speaker-independent model and then adjust the

parameters slightly, based on the information in the limited enrollment data for the

said speaker.

This and other reasons that will be made more clear in the next few sections is

why we have to build a speaker-independent model. Assuming we have one, using

an adaptation technique such as MAP (Sections 10.2 and 11.3.1.3), we are able to

adjust the parameter vector, ϕϕϕn, to give us the best performance for the speaker of

choice. In the next section we will speak about speaker-independent models.

16.2 Background Models and Cohorts

In the last section we said that we need to have a speaker-independent model which

may be used as a starting point in order to be able to make a speaker model. We

discussed this in relation to GMM, however, it is true with basically any statistical
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model. We are only using GMM as an example. This is one of the reasons for need-

ing to have a speaker-independent model, but there are more reasons which are as

important and which will become more clear as we continue this discussion.

The speaker-independent model has been called by many names. A popular name

for it is a universal background model [40, 1] (UBM). Generally, the UBM model

is similar to having a speaker for which the speech of thousands of individuals have

been pooled to create a model of the average features of everyone in the database. Of

course, in the next section we will speak about how the number of Gaussians used in

a UBM may be different and usually much larger than the speaker-dependent model.

16.2.1 Background Models

As we started to say, the background model may be used as a reference model which

has been trained on many thousands of speakers to be able to have a robust and rich

model of speech, and to be able to use it for adapting the individual speaker model.

Usually this initial estimation of the GMM parameters for the background model is

known as training.

In that capacity, for the speaker-independent model, since an abundance of data

is usually available, we may use a lot more Gaussians for this model. Then, assum-

ing that an adaptation technique such as MAP (Sections 10.2 and 11.3.1.3) is used

to adjust the parameters, initially a survey may be done to deactivate certain mix-

tures which do not seem to be receiving an counts from the enrollment data of the

speaker of choice. Of course this technique usually creates more problems than it

alleviates. For instance, it is easy to see how by having a lot of rich data for a back-

ground model, we may end up with a disproportionately large number of Gaussians

compared to the amount of data available from the individual speaker. Then theoret-

ically, in the limit it is possible to have almost each frame associated with a different

Gaussian. Therefore, it is an art to be able to come up with the number of Gaussians

to use with the amount of data at hand.

A second role for a background model is for it to be used as a complementary

model. In Section 1.2.1 we talk about the need for such a complementary model

which would be the anti-model if you will. By having the UBM model trained on a

large population, we have a model of the so called average speaker. However, this

smooth model may become too smooth at times and not be able to provide enough

discrimination. Having such a model allows us to compare a new instance of speech

to the target speaker’s model, as well as the background model to decide whether to

accept the test speaker or not, in a verification scenario.
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16.2.2 Cohorts

There is a trade-off to using a universal background model or a set of cohorts. Co-

hort models are models of a population of speakers whose parameters resemble a

target speaker’s model. At the time of training, different cohort models may be as-

sociated with each model. When a test segment is received, it may be compared to

the target speaker’s model as well as the cohort models. The idea behind having

cohort models is that if we have have models for individuals who sound similar to

the target speaker and yet are not the target speaker, we have a good understanding

of the amount deviation that would tip the authentication from favorable to not. Of

course, one we have cohort models, we do not need other models anymore, since it

is very likely that if any test segment is rejected by a cohort model, then it would

have been rejected by models which are farther from the target speaker’s mode.

The trade-off comes in the amount of computation that is need to create and

maintain the cohort speaker models as well as the housekeeping effort involved in

associating speakers with their cohorts [5]. Also having a single UBM means that

for every verification, only two matches need to be done, one to the target model

and another one to the UBM. However, as the number of cohorts grows, the com-

putation load increases. However, if we have a set of good cohort models and if

we know how to associate cohort models with target speakers, then in the limit we

would approach the golden speaker identification scenario of which we spoke at the

beginning of this chapter.

16.3 Pooling of Data and Speaker Independent Models

As we mentioned in the previous two sections, there is a trade-off between having

a UBM or cohort models. In case of cohort models, the trade-off continues to get

larger once we increase the number of these models. The is a compromise which

reduces the smoothness of the UBM to the point that at least some distinction is

made between competing background models. This is the selective pooling of the

training data. A natural choice is to pool all the male speakers into one UBM and all

the females into another. In this specific case, we will have to do three comparisons

for each verification. Of course this may continue by making further classifications

where in the limit we would go from a UBM-based system to a cohort-base verifi-

cation system.

Of course it is important to note that as we discussed in Chapter 1, background

models are not only used for verification. They may be used with any branch of

speaker recognition in order to have a rejection scheme. For example, in the speaker

identification case, they provide the, so called, open-set speaker identification plat-

form (Section 1.2.2). In the case of segmentation, also, they provide a rejection
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scheme in order to be able to tag a segment of audio as an unknown segment or one

that has come from an unknown or unenrolled speaker.

16.4 Speaker Adaptation

The methodology for adapting the model of a speaker has a lot in common with the

actual identification and verification task. The first step before adaptation is done is

to decide what model to use as the basis for the adaptation. This is where identifica-

tion may come into place. An initial identification, although crude and inaccurate,

may be able to help us choose the basic model to use for the adaptation. For exam-

ple, let us say that we happen to have chosen a gender-based UBM technique. In that

case, we will have a general UBM which may be trained on all types of speakers.

We will then have two individual UBMs, each of which may have been trained on

data from males or females. Once we have a new enrollment, we may decide to ask

the gender of the individual and to use that information to assign a basic model for

the starter model. However, this is not at all practical.

First, obtaining the gender information will produce a lot of extra work and it

may create practical blocks as well. In most cases, it would not be permitted to ask

the gender of the individual. Also, even if it is legally feasible to do so, the venue for

obtaining this information may be costly. In addition, not all female speakers would

pass for a female and not all male speakers would pass for a male. It is far better

to conduct an initial gender classification and once the gender of the individual is

obtained from the models (even if incorrect), the closest model may be used as the

basis for the adaptation.

In Chapter 21 we will show a case study of speaker adaptation along the time

line. This is most useful for alleviating time-lapse effects which are the topic of

Chapter 20.

16.4.1 Factor Analysis (FA)

In Section 12.5 we went through a detailed description and formulation of factor

analysis. [28] started using factor analysis ideas in order to separate channel de-

pendent and speaker dependent features through projection. Kenny [28] calls this

usage for factor analysis, joint factor analysis (JFA). In the next section, we briefly

describe it in relation with the content of Section 12.5. Also, we will see in Sec-

tion 16.4.3 that although JFA is expected to identify channel and speaker variability,

the information still leaks from one information source to the other. In fact this was
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enough to have some researchers revert back to a single projection solution, namely

PCA.

16.4.2 Joint Factor Analysis (JFA)

Factor analysis has been used in pattern recognition for a long time [42]. Recently, it

has been used to handle the channel variation problem in the form of an adaptation

technique that would model the target speaker’s vocal characteristics in conjunction

with the channel effects in the form, called joint factor analysis, as it is apparent in

a large number of recent publications on the subject [27, 9, 51, 32, 23, 57]. There

have been treatments of different features, including prosodic ones [17] in recent

literature.

Most of the attempts on modeling speakers have been along the line of modeling

the mean vectors associated with Gaussian mixture models. As we mentioned in

Section 12.5, joint factor analysis models the data by splitting it into two compo-

nents: a speaker-dependent component and a channel-dependent component.

μμμ = μμμs +μμμc (16.1)

where μμμ is the overall mean vector, μμμs is the speaker-dependent mean vector and μμμc

is the channel-dependent mean vector. In Equation 16.2, we assume that the speaker

model consists of a Gaussian mixture with Γ Gaussians of D-dimension. Of course

in JFA, the means are not simply added, as will be seem shortly.

The reason this technique is called joint factor analysis is that it produces a factor

analysis based on the speaker and one based on the channel. Please refer to our thor-

ough treatment of factor analysis in Section 12.5. Especially, refer to Equation 12.58

which basically corresponds to one of the Equations in JFA, namely the one for the

speaker side of things. In addition to this Equation, the result, which is known to

be the speaker dependent mean, is used to do a separate analysis with the channels,

where in this case it is really a PCA with the mean vector being the speaker mean

computed from Equation 12.58. Here, we repeat equation 12.58 with a slight mod-

ification to the notation. We will call the output of that equation μ(s) to show its

relation to the speaker side of things,

μμμ
(s)
n = μμμ +Vθθθ n +ΛΛΛrn (16.2)

μμμ
(c)
n = μμμ

(s)
n +Uxn,c (16.3)

The elements of Equation 16.2 have been defined in detail in Section 12.5. In Equa-

tion 16.3, c is the index into the number of channel index. U : RC �→ RD is similar

to the role of V, only it operates on the channel data. Also, xn,c : R1 �→ RC is similar
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to θθθ n, only it is with respect to the channel, where θθθ n pertains to the speaker. xn,c

has two indices since it is dependent on the recording from speaker n with channel

c. JFA basically solves the combination of Equations 16.2 and 16.3 simultaneously,

trying to separate speaker and channel effects.

16.4.3 Total Factors (Total Variability)

In Section 12.5 we presented a full treatment of factor analysis. In that section,

Equation 12.54 basically states that the common factors and the specific factors

are uncorrelated. However, [16] postulates that the mean vector associated with the

channel variability, μμμc, still contains some speaker-related information, by showing,

empirically, that speakers may still be somewhat identified using this information.

For this reason, Dehak, et al. [16] propose recombining the speaker variability

and the channel variability spaces back into one, essentially ending with,

yn = μμμ +Vθθθ n (16.4)

They call θθθ n, total variability, and the space associated with it, the total variability

space [14]. However, as we discussed in detail, in Section 12.5, they are basically

reverting back to PCA, since they are removing the residual term which is one of the

main factors that differentiates factor analysis from PCA. Nevertheless, aside from

the problem with the terminology, it is perfectly fine to use PCA techniques for per-

forming speaker recognition. In later incarnations of their work [15, 45, 18], Dehak

et al. have called these vectors i-vectors. They have used these vectors in conjunc-

tion with support vector machines, employing the Cosine kernel (Section 15.4.4) as

well as others.

speaker factor coefficients are related to the speaker coordinates in the where

each speaker is represented as a point. This space is defined by the Eigenvoice ma-

trix. These speaker factor vectors are relatively short, having in the order of about

300 elements [19], which makes them desirable for use with support vector ma-

chines, as the observed vector in the observation space (x).

16.5 Audio Segmentation

Audio segmentation is one of the challenges faced in processing telephone or

recorded speech. Consider telephone speech for the moment. Majority of telephone

conversations take place between two individuals at the different ends of a channel.

It is conceivable to record a two-party conversation into two separate channels us-
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ing digital telephony channel such as ISDN-PRI channels (also known as four-wire

telephone channel). However, this kind of recording or interception is not available

in most scenarios. Most conversations take place on a multiplexed audio channel

(also known as two-wire telephone channel) with no access to the separate audio

channels that make up the conversation. In many cases, even when there is a T-1,

E-1 or any other digital telephony service available, the speaker recognition process

may not have access to the individual channels.

One solution is to devise techniques for separating the multiplexed audio into

individual streams. In the two-conversation example, there would be an assumption

that two distinct speakers are on the line. In that case, the goal would be the genera-

tion of two separate streams, each only containing the voice of one of the parties on

the telephone call.

If we are definitely sure that there are two speakers in a conversation, we can

address the problem of segmentation by first deploying a turn detection algorithm

which would split the original audio into small segments where interesting changes

happen at the border lines. Examples of these lower level segmentation techniques

are the Bayesian Information Criterion (BIC) [13] and model-based segmenta-

tion [26, 4].

Once we have this over-segmented audio stream, we may utilize any of an array

of different techniques which mostly utilize speaker recognition methods to tag and

merge these small segments. At the end these techniques arrive at a stream with

the individual segments alternatively tagged as speakers A and B. Some methods

use prior knowledge of the speakers’ identities to recognize the segments and to tag

them with proper labels. Others only postulate segments with alternate tags (A and

B).

Just as open-set speaker identification does, it is important for a two-speaker seg-

mentation system to have the capability of tagging parts of the audio as unknown.

It is possible to use an two-speaker open-set speaker identification system to talk

the different parts of speech. In most cases, speaker models are made on-the-fly and

once identification models are created, they are used to tag the different segments.

Another possibility is to run a classification system through the over-segmented au-

dio and to through out parts of the audio which are tagged as non-speech. After this,

the close-set limited identification system can tag the rest of the audio as speakers

A and B only, ignoring the rejection task.

Of course, in the couple of decades, there has been an increase in the number

of multi-party conference calls that take place. These conversations make the job

of audio segmentation quite difficult. With multi-party conversations, in most cases

the number of speakers on the conference call is unknown. Even if one can think up

scenarios where the number of speakers is predetermined (say through a registration

process to access the conference call), still it is unclear how many speakers would
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actually participate in the conversation. In most such multi-part conversations, the

distribution is far from uniform. In the majority of cases, one or two people conduct

most of the conversation while others just listen in.

Not knowing the exact number of speakers in a conference call and specifically

lack of knowledge about the distribution of length of speech from different individ-

uals in the call, makes it an extremely challenging problem. For this reason, most of

the effort in the literature has been focused on solving the two-speaker segmentation

problem. Multi-speaker analysis has been greatly ignored due to its difficulty.

Factor analysis has been used for speaker diarization as well. [10] uses sim-

ple factor analysis only containing Eigenvoices. [10] presents a comparison among

different techniques deploying joint factor analysis and variational Bayesian tech-

niques.

16.6 Model Quality Assessment

It is desirable to classify models by their quality. This allows for taking action when

necessary. There are different perspectives in what causes quality issues in models.

Some assumptions point toward the existence of outlier utterances in the enrollment

data and followers of this belief generally try to identify these outliers and to remove

them in order to provide a better quality model. In general, this approach, if more

than one outlier exists, they rate the whole model as a low quality model.

In a different light some researchers, in biometrics as a whole, entertain the idea

that different people perform differently and that they may be clustered into groups

with varying verification qualities. In this mindset, an analogy has been made to

animals, initially to farm animals and later to more exotic animals, in their behavior.

Therefore the, so-called, biometric menagerie1 was born. In Section 16.6.2 we will

discuss some of these ideas.

16.6.1 Enrollment Utterance Quality Control

Gu, et al. [24] address the utterance quality control problem by using the leave-

one-out (Section 13.8.4) technique in order to identify a trouble or outlier utterance

among N utterances using in an enrollment session. In this approach, each time a

1 Before the advent of zoos, a menagerie was a place where exotic animals were trained and kept
for exhibition.
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distinct list of N − 1 utterances out of the N available utterances is used for build-

ing a model and the Nth utterance is used to do a cross validation. This will leave

us with N models and N corresponding scores. A threshold is used to throw away

the utterance associated with the worst scoring model. If more than one utterance

is identified as an outlier, then the model is simply tagged as being a low quality

model. At this time, different decisions may be made about the use of the model,

which depend on the application.

Saeta and Hernando [44] present a different quality measure to throw away ut-

terance in the enrollment data which are not deemed of high quality, hence replacing

them with newly solicited sentences from the target speaker at the time of enroll-

ment. They show a 40% increase in their baseline accuracy by doing this for a test

in Spanish over a population of 184 speakers. The approach uses at least 5 utter-

ances for each speaker (N == 5), but practically many more (in the order of 16 to

48). The score that [44] uses is related to the discrimination capability of the model

between target and impostor utterances, but instead of impostors, they use the dif-

ferent utterances from the target speaker’s enrollment utterance pool. To build the

theory, [44] builds upon concepts discussed in [30], using a discrimination measure

derived from the zero normalization (z-norm) (Section 18.5.1) of the mean of the

target log-likelihood ratios (LLR) (Section 7.6) which may be given by the follow-

ing formula [29, 30],

Zm =
max{0,μt |m −μi|m}

σi|m (16.5)

where μt |m is the mean value of the LLR with the model of interest (model m) using

data from the target speaker, μi|m is the analogous mean for model m when using

data from impostors and σi|m is the standard deviation of the LLR for the impostor

data. Therefore, the larger the measure Zm is for a model m, the more discriminative

that model would be. For models with very little discrimination capability, Zm be-

comes nearly 0.

The main difference between Equation 16.5 and the definition of the z-norm

(Equation 18.9) is that here, the mean value of the LLR is used rather than a sin-

gle LLR. The max operation in Equation 16.5 only ensures that no positive numbers

are produced.

However, since [44] assumes that data from impostors may not be readily avail-

able, the score is defined as a similar score, only using different utterances from the

enrollment data of the target speaker as follows,

Sn ≥ μt −ασt (16.6)

where μt |n and σt |n are the mean and standard deviation of the log-likelihood scores

of all the utterances used to train model n ∈ {1,2, · · · ,N} and Sn is the LLR of each

utterance against a model, trained from this utterance and other utterances from the
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same data. In other words,

μt |n = E {{Si}n
i=1} (16.7)

Once Sn meets the criteria imposed by Equation 16.6, its model is deemed of

acceptable quality. [44] continues with the introduction of a threshold and an algo-

rithm for starting with a small number of utterances and going up to N/5 iterations

by increasing the number of utterances used in producing a model until the expres-

sion in Equation 16.6 is satisfied.

This perspective assumes that different parts of data coming from the same

speaker may have positive or negative contribution to the enrollment, hence veri-

fication results. Of course both of the above examples assume that the system is

provided with more utterances that it needs to be able to build a model. In most

practical cases this is indeed not the case. In practice, the users are always resistant

to giving large amounts of enrollment data. Both papers listed above were dealing

with short utterances in the form of digit sequences. Since text-dependent recogni-

tion systems can deal with much less training data, this may be somewhat practical.

However, for the text-independent case, it would be very hard to get any more data

that is needed for a bare-bone creation of a speaker model.

In fact, one of the problems with most of the NIST trials on speaker recognition

is the fact that the amount of enrollment data used in the tests is unrealistically large

(2+ minutes in most scenarios). Realistic systems seldom have access to any more

than 30 seconds of usable data for enrollment. In the next section, we will see a

different approach which assumes that different speakers have inherently different

qualities, related to the verification task.

16.6.2 Speaker Menagerie

In biometrics, often, candidates are categorized into the two main categories of

sheep and goats [49]. Those candidates who are categorized as sheep are the ones

that show great performance and consistency across different samples of their bio-

metric of choice. On the other hand, there are certain candidates who have a high

variance in their scores from one sample to another.

According to [29], there are other sets of animals associated with speaker recog-

nition, such as the following set of four animals, {sheep,goats, lambs,rams}, as-

sociated with speaker identification or even a larger set, {sheep,goats, lambs,
rams,wolves,badgers}, associated with speaker verification. Doddington, et al. [21]

suggested the four member set of {sheep,goats, lambs,wolves} for categorizing

speakers in a verification task. Table 16.1 shows a description of these different
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categories of speakers according to [21].

Speaker Category Description

Sheep Good target speaker acceptance

Goats Not accepted so easily

Lambs Vulnerable to impostors

Wolves Good impostors

Table 16.1: The Hypothetical Menagerie – an animal analogy of the behavior of speakers,
defined by [21]

�Doddington, et al. [21] used the results obtained from the NIST trials on speaker

verification in 1998 to study these populations of speakers. These trials used 30 sec-

ond test segments obtained from land-line telephone speech using different electret

handsets (see Section 22.3) used for training and testing stages. The gender distri-

bution included 200 men and 220 women. They found that the majority of speakers

may be categorized as sheep. However, most of the errors are generated by the small

complement space containing the rest of the speakers.

Of course these definitions only tell us the shortcomings of our speaker recog-

nition algorithms and how they carry over to part of the population. The category

of speakers dubbed sheep represent the class of speakers who match our algorithms

well and the other three categories signify those speakers for which the generaliza-

tion capabilities of our algorithms fail or in the least degrade. It is important to be

able to identify these different categories of speakers and to be able to provide dif-

ferent treatments in order to increase the generalization capability of the algorithm

of interest. For example, Thompson and Mason [49] proposed a method for finding

goats at the enrollment stage, for a speaker recognition system. As [49] puts it, it

allows for taking appropriate action before getting to the recognition stage. [21]

proposes two non-parametric statistical tests, the Kuskal-Wallis test which is a vari-

ant of the χ2 test and the Durbin test, which both analyze the variance of ranks.

Also, Stoll and Doddington [47] have used different features including jitter,

shimmer [33] and other pitch related statistics in addition to spectral analysis fea-

tures such as spectral slope statistics and formant statistics to be able to identify

different categories of speakers. Sometimes, if this is not possible, fusion techniques

may be used to supplement the source of information about each candidate, using

other biometrics which possess a generally independent source of information. As

an example, Poh and Kittler [39] provide such treatment for many biometrics, which

may easily include speaker biometrics. In Section 1.5.13 we spoke of such multi-

modal approaches and presented the examples in References[50, 7, 53].

Of course, the fun of animal analogies does not end with Table 16.1. Table 16.2

shows another categorization due to Yager and Dunstone [54, 55]. This is a different
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Speaker Category Description

Doves Good recognition accuracy – have unique features

Chameleons High match scores for all models – match everyone

Phantoms Low match scores for all models – even against their own models

Worms Inconsistent – cause of most errors

Table 16.2: The Biometric Menagerie – an animal analogy of the behavior of speakers, de-
fined by [54, 55]

perspective of the types of speakers. This categorization uses a relation between the

true and impostor match scores in lieu of the scores themselves. According to this

categorization, the hardest category of speakers to verify is what they call worms.

[55] also provides tests for identifying these groups and provides results for many

biometrics including speaker biometrics.
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Chapter 17

Speaker Recognition

17.1 The Enrollment Task

The objective of the enrollment process is to modify (adapt) a speaker-independent

model into one that best characterizes the target speaker’s vocal tract characteris-

tics. Depending on whether the task at hand is text-dependent or text-independent,

different objectives should be observed while designing the enrollment process.

As we discussed in Chapter 1, the text-dependent and text-prompted modalities

are only practical as far speaker verification is concerned. For other branches of

speaker recognition, we only limit our discussion to text-independent recognition.

In a pure text-dependent modality, the same the same phrase will be spoken at the

enrollment time as it will at the recognition time. Regardless of its practicality, the

enrollment process is quite simple for text-dependent enrollment. The phrase is pro-

duced to the user and the result is used to modify the models. The coverage in this

case is identical in the enrollment and verification.

In the case of text-prompted speaker verification, the enrollment phrase will pos-

sibly be different from the verification phrase. There are several approaches to de-

signing the enrollment process for this case. The simplest approach is to anticipate

all the different strings that the user may speak at the verification time and to cover

all of them at enrollment time. To be a bit more sophisticated, the enrollment and

verification text may be designed for each specific user. For example, the user may

be asked to say phrases which also carry information specific to her/him, such as

personal information.

However, one of the main attractions of speaker verification is the avoidance of

asking personal information such as social security numbers, birth dates, place of

birth, favorite color, etc. To alleviate this problem, most vendors of text-prompted

technologies limit their systems to a subset of all possible phones. An example

would be the use of digit-only strings. Some even go further into reducing the space
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of digits by using only a subset of digits. This way, the enrollment sequence will

include the limited space of coverage which will be seen at the verification time, but

at the verification time, a random process will prompt the user for a different string

every time to ensure liveness. Such as system is by no means impostor proof and

may theoretically be spoofed quite easily – see Section 22.11.

In a text-independent speaker recognition scenario, the text which is spoken by

the user may be completely unconstrained. However, in practice, consider the exag-

gerated example where the user repeats the same three word phrase over and over

again for the length of the enrollment. Also recall from Chapter 5 that the speech

signal is non-stationary. This means that depending on the nominal configuration of

the vocal tract, different resonance is produced.

Since in this book we are concerned with statistical speaker recognition, the In

a text-independent speaker recognition task, the enrollment text should be designed

to cover most phonemes and the most frequent phonetic transitions. The more data

is captured for enrollment, the richer will the statistics become which is used for

adapting models to the specific vocal characteristics of any specific user. An enroll-

ment text with a good coverage of the phonemes of interest would certainly increase

the accuracy of the recognition system. Since the scope of this book is to cover sta-

tistical recognition systems, it is important that the events which are expected at the

recognition time have been observed at the enrollment time.

17.2 The Verification Task

At this point it is important to understand the general method of computing the

scores involved in the decision making of verification. As we saw, in general, for

doing speaker verification we need one or more competing models. We also need a

target model which would be built on enrollment audio for the target speaker. The

competing models are generally created in a similar fashion to the target model,

with the exception that they are usually created from a select population of speak-

ers. These could either be cohorts of the target speaker or a large general population

sometimes called background population. The most popular variation of the com-

peting model is hence called the background model.

Verification then boils down to a comparison between the likelihood of the test

audio having been generated by the target model versus the competing model. Let’s

call the test sequence X. This is the output sequence for our front-end which takes

the audio and converts it to an abstract sequence based on our front-end modeling.

This sequence is conceptually the output of some model (which we can call the test

model at this point). The test model is never really created. It is an abstraction to

show that the sequence X must have been emitted by some model. The actual ver-

ification question is whether this sequence is more likely to have been emitted by

a specific target model or the competing model or models. Let us take the simpler
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case where there is only one competing model and let us call it SI . Also, since at

this point we are concerned with speaker verification, the test speaker must have pro-

vided an identity along with a speech sequence. The verification task has to validate

this identity. Therefore, the model for that identity which must have been created at

the time of enrollment is referenced. Let’s call that model SD.

If the likelihood of the test sequence being generated by the target model, SD, is

higher than if it were generated by the competing model, SI , then the test speaker is

verified, otherwise, the test speaker is rejected. One way of setting up this logic is to

divide the likelihood of the target model relative to the test audio by the likelihood

of the competing model relative to the test audio. This generates a likelihood ratio

such that a value greater than one would translate to verification and anything less

than one would translate to rejection.

To have a better resolution and to reduce numerical errors, we generally use the

log of the likelihood. Therefore, the likelihood ratio when performed in the log do-

main, would end up being a subtraction. Namely, the decision score, λ , would be the

difference between the Log Likelihood of the Target model relative to the test audio

and that of the competing model. It is customary to call this value the log likelihood

ratio. It is really the log of the likelihood ratio and if it is positive, it reduces to a

verification decision. A negative LLR would mean rejection.

In practice, the decision is made by comparing the LLR to a threshold which

would be set by the system designer. Let’s call this threshold, λo. The value of this

threshold is dependent on the performance of the system and the domain in which

it is utilized. It’s picked by looking at the performance of the system on some test

data which would best mimic the operating conditions of the system and it is chosen

based on how flexible we would want the verification system to be. The higher the

threshold, the higher the false rejection and the lower the false acceptance numbers.

Researchers typically plot the False Rejection rates of the recognizer against its

False Acceptance rates. This curve is call a Receiver Operating Characteristic (ROC)

curve. More recently, a different graph has been proposed by the National Institute

for Standards (NIST) called the Detection Error Trade-off (DET) curve. Most recent

papers use the DET curve.

In order to be able to describe the performance of a speaker verification system

with one number, sometimes a single somewhat controversial error rate is given. It

is called the equal error rate or EER for short. It is the operating point where the rate

of false acceptance of the system is equal to its false rejection. We will talk about

this later.
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17.2.1 Text-Dependent

Up to now, we have mostly concentrated on text-independent verification. As we

mentioned, this modality only matters with verification and generally does not make

much sense within other branches such as identification, segmentation, and classifi-

cation. However, in Chapter 13, we gave a detailed treatment of hidden Markov mod-

els. This treatment was partly done to fulfill the needs for the background. However,

the most direct usage of HMM is in text-dependent and text-prompted verification.

We also gave a rather detailed account of phonetics and phonology in Chapter 4 and

a considerable introduction on decision trees in Section 9.4. These are some of the

fundamentals needed for performing text-dependent speaker verification.

The problem, although cumbersome, is not a specifically hard problem compared

to the text-independent case. Generally, an HMM model is chosen, which is most

likely phoneme-based. A dictionary of phonemes is needed to look up different pho-

netic makeups for words in a dictionary. This part generally requires a first attempt

by someone who is well-versed with the topics covered in Chapter 4. Then, by con-

catenating phoneme-based HMM models to build a word or phrase model, one is

built and trained based on speaker independent data, initially. Upon the receipt of

enrollment data from the target speaker, the HMM is trained, using the techniques

described in Chapter 13, such as the Baum-Welch algorithm of Section 13.6.4 to

produce the best posterior probability given the enrollment data. At the time of

verification, the test data is passed through the HMM using a forward pass (Sec-

tion 13.6.2) and a score is computed to decide whether to authenticate the speaker

or not.

Some implementation of text-dependent verification may be found at the follow-

ing references [16, 24, 81, 49, 52, 57, 61, 69, 72, 77, 79, 82, 84, 86, 11, 28, 29, 33,

48]. Of course there are many more research efforts on the subject. It is interesting

that many of the research papers refer to the work they do as text-dependent speaker

identification. We mentioned that this does not make sense. Of course it can be done,

but it does not have many practical applications. In most cases, when one is trying

to identify a person, the effort has to be done in a passive manner. This means that

the speaker should be able to freely speak and be identified. It is almost comedic to

ask someone to say a specific phrase to be able to identify him/her.

17.2.2 Text-Prompted

In Chapter 1 we discussed the impracticalities of using a text-dependent speaker

recognition system. It reduces the chance of being able to check for liveness of

the test speaker. For this reason, text-prompted systems produce a (usually) random

prompt and ask the test speaker to repeat it. However, to lower the complexity of the
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model generation, most such systems simply concatenate digits and ask the speaker

to repeat the string. With digital recording capabilities of today’s devices, it would

be quite simple to record a person saying the 10 digits and to produce the string or

digits by simply typing on a keypad. This can easily be done, even using a smart-

phone. Although it is possible to created complex text strings for the prompt, the

lack of adequate amount enrollment makes this impractical. For example, usually, a

speech recognition system requests about 20 minutes of speech in order to be able

to build a speaker-dependent model. However, there is almost no application where

the speaker would be willing to speak that long in order to enroll for speaker recog-

nition. As we mentioned, 1 minute is usually the upper limit.

One of the techniques to reduce the amount of training is to use tied mix-

tures [55], but this is common practice in speech recognition. Some implementa-

tions of text-prompted speaker recognition may be found in the following refer-

ences [55, 15, 20, 51].

One of the reasons for moving to a text-prompted system rather than a text-

independent system is usually the shorter enrollment requirement. Therefore, even

text-prompter verification is not very practical!

It is conceivable that the same way phone models for the analysis of the audio

are concatenated to build a model for the prompt being spoken, the synthesis coun-

terpart may also be used to spoof the text-prompted system. These Text-to-Speech

systems using the voice of an individual to build their models have been around for

a while now.[38, 23] As handheld computers become more widely available, it will

become easier to build a synthesized model of the speech of the individual form

these baseforms and to play it back. Using a knowledge base in conjunction with

the speaker verification results will be one way to handle these types of attempts.

Of course this is nothing new and has been known by the industry from the first day

that extra information was asked by an agent trying to assess the authenticity of a

caller’s claimed identity.

Another way of handling trainable text-to-speech-based impostors is to look for

regularity in the phonemes being spoken. Methods using synthesis will have a reg-

ular set of synthesis model being concatenated together to form the synthesized

speech. Normal speech does not possess such regularity. The phones in an utter-

ance, once torn apart, do not look identical in natural speech. Of course, this is a

non-ending war since, as the speaker recognition systems add such sophistication,

the text-to-speech impostors will try to utilize random effects to modify the output

of their models and then it is the speaker recognition designers to cope with the new

threats; and it goes back and forth.

Still addition of a knowledge base and fusion with other biometrics will be the

correct way of handling these and other issues in addition to adding sophisticated

anti-spoofing techniques such as the one described in the previous paragraph.
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17.2.3 Knowledge-Based

Base on what we have discuss in the past few sections, knowledge-based verification

seems to be the answer. Of course the type of knowledge needs not (and should not)

be personal information. Getting away from providing personal information is one

of the major attractions of speaker recognition. The only reason for any knowledge-

based question is to assess the liveness of the individual. Simple questions may be

asked to ensure that the speaker is responding in an intelligent manner and that the

speech is not just a recording. The downfall of this is that such a technique is much

more costly. It requires access to a good speaker independent speech recognizer,

possibly, as well as a limited natural language understanding (NLU) engine.

17.3 The Identification Task

The identification decision is made quite in a similar fashion as compared to verifi-

cation. However, the identification problem involves N models, N being the number

of target speakers enrolled in the system. Of course, this would be the closed-set

identification process. The open-set identification process is an N +M match prob-

lem where M is the number of competing models. In the case where we have one

background model, this would require N + 1 likelihood computations. The result

is usually presented in two forms, summary and detail. The summary result would

simply be the ID of the target speaker whose model has the highest likelihood of

having generated the output test sequence, X . If the highest likelihood comes from

the competing model, then the result of identification would state that the speaker is

unknown.

The detailed results are usually in the form of a sorted list of possible identities

which are sorted based on decreasing likelihood. Again, for better numerical stabil-

ity and resolution, the log likelihood is used.

17.3.1 Closed-Set Identification

Closed set speaker recognition, as mentioned in Chapter 1, is a simple mode of iden-

tification where the test speaker is definitely in the database. In fact, if that is not the

case, there may be dire consequences, since such systems will generally return the

ID of the closest person in the database. Now this closest person may be very far

removed from the test speaker. The more practical, but also much harder problem is

open-set identification. The following references present some implementations of
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closed-set identification [21, 31, 34, 59, 39].

17.3.2 Open-Set Identification

The open set identification problem, as we stated, is the hardest problem. If we had

a perfect speaker identification system, then we would be able to implement every

other branch perfectly. It is specifically difficult as the population size grows. Three

problems plague open-set identification, and the first two are shared with closed-set

identification.

1. As the number of speakers grows, the number of comparisons increases (the-

oretically in a linear fashion). We say theoretically since it is possible to use

hierarchical techniques to reduce the number of comparisons to a logarithmic

level from linear [7]. Still this is a curse which does not plague speaker veri-

fication. Speaker verification usually deals with the same order of number of

comparisons.

2. As the number of speakers grows, the speakers get closer in the speaker space.

This increases the chance that one speaker is mistaken for another. Theoretically

this would not have been a problem if each speaker only occupied a single point

in the space. However, generally, there are large variations within the speech of

the same individual. Chapters 20 and 21 attest to this.

3. A complementary model is needed, specifically for an open-set identification

problem. This is similar to the speaker verification problem, however it involves

a lot more models than the two or so models in speaker verification.

Therefore, open-set identification seems to suffer from the problems of the closed-

set identification and speaker verification combined. The following are some refer-

ences on open-set identification [7, 3, 13, 27, 83, 88, 2].

17.4 Speaker Segmentation

Different strategies may be considered for detecting speaker changes. These tech-

niques fall into two general categories:

1. Detection of speaker identity changes, by performing sequential speaker identi-

fications and detecting a change of decision. Such approaches are described in

[5].

2. Detection of significant changes in the acoustic behavior followed by interpre-

tation of the nature of these changes. Such approaches have been previously

proposed in [73], [8] and [17].
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The algorithm described in [73] belongs to the second category. A draw-back of

the method described in [73] is its extremely poor detection of the exact location

of speaker changes. Furthermore, the resulting segmentation end-times rarely corre-

spond to pauses, silences or breath noises. Unfortunately, this is unacceptable when

the segmentation is followed by a speech recognition phase. Indeed, every time that

a boundary is introduced in the middle of a word, it introduces one or two word

errors. It is also a characteristic of methods which arbitrarily cut the input speech

into small segment and then re-cluster them[42, 35].

[1] presents a two-speaker segmentation technique by tackling the change de-

tection according to energy and statistical properties of the energy function. [30]

presents a comparison between the BIC technique [17] and an adapted GMM tech-

nique which basically builds GMM models for the segments. [37] compares several

techniques for segmenting the broadcast news corpus. [46] compares three different

segmentation approaches, all of which include BIC as an integral part. [58] com-

pares several different BIC based systems. [78] gives an overview of diarization

systems. [14] uses WOCOR features (Section 5.6.1.2) for doing the segmentation.

[19] uses a correlation matrix using anchor models. [12] uses the Eigenvoices model,

using a simple factor analysis model, for doing segmentation. [32] looks at feature

combinations for doing better diarization. [44] uses robustness analysis, based on

BIC, for doing segmentation. [47] combines video and audio cues. [64] uses a dy-

namic time warping (DTW) algorithm which is basically a dynamic programming

technique. [70] uses genetic algorithms and mutual information (Section 7.6.1). [67]

does a review of the state of the art in 2009. [4] uses kernel PCA (Section 15.7) to

do diarization.

17.5 Speaker and Event Classification

Sometimes either no enrollment is used for classification, or a special enrollment

techniques are utilized. For example, the enrollment data for several events or speak-

ers may be pooled together, as representative data for the class of interest. Another

approach would be the use of extra features in supplemental codebooks, related to

specific natural or logical aspects of the classes of interest.

In many practical audio processing systems, it is important to determine the type

of audio. For instance, consider a telephone-based system which includes a speech

recognizer. Such recognition engines would produce spurious results if they were

presented with non-speech, say music. These results may be detrimental to the op-

eration of an automated process. This is also true for speaker identification and

verification systems which expect to receive human speech. They may be confused

if they are presented with music or other types of audio such as noise. For text-

independent speaker identification systems, this may result in mis-identifying the
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audio as a viable choice in the database and resulting in dire consequences!

Similarly, some systems are only interested in processing music. An example is

a music search system which would look for a specific music or one resembling

the presented segment. These systems may be confused, if presented with human

speech, uttered inadvertently, while only music is expected.

The goal of audio classification is the development of a classification filter which

would tag a segment of audio as speech, music, noise, or silence. This problem con-

tains two separate parts. The first part is the segmentation of the audio stream into

segments of similar content. This work has been under development for the past few

decades with some good results [36, 8, 17].

The second part is the classification of each segment into speech, music, or the

rejection of the segment as silence or noise. Furthermore, when the audio type is

human speech, it is desirable to do a further classification to determine the gender

of the individual speaker. Gender classification is helpful in choosing appropriate

models for conducting better speech recognition, more accurate speaker verifica-

tion, and reducing the computation load in large-scale speaker identification.

On the other hand, if the signal of interest is music, it is interesting to be able

to determine the specific type of music, for instance in the form of identifying the

instrument. Of course, this problem is not quite so simple due to overlap of instru-

ments in orchestral pieces and the sheer number of possible instruments. However,

a close approximation to the target instrument and categorization as orchestral or

specific types of bands is also useful. We are also interested in an approach which

would not require tremendous modeling efforts for every new circumstance which

may arise.

To address the instrument identification problem and to be able to cover most

types of music, [6] uses a set of 14 representative instruments or collections of in-

struments to create models. Different approaches with varying perspectives to audio

source classification have been reported. One group has tried to identify individual

musical instruments [54, 50, 56, 26, 25, 9, 45]; whereas another group has concen-

trated on classifying speakers based on gender [18, 40, 60, 71, 85, 10]. [22] reports

developments in classifying the genre of audio, as stemming from different video

sources, containing movies, cartoons, news, etc.

17.5.1 Gender and Age Classification (Identification)

In 1952, Peterson [65] conducted a series of experiments on the 10 common vowels

in English. 33 men, 28 women, and 15 children (a total of 76 speakers) were asked
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to say 10 words (two times each) and their utterances were recorded. The words

were designed to examine the 10 vowels in context of an “h” to the left and a “d” to

the right: hid, hId, hEd, hæd, hAd, h@d, hÚd, hud, h2d, and hÇd.

In Figure 4.1 we saw that the mean value of the fundamental frequency for the

vowel in each of the above words, displayed for men, women, and children sep-

arately. Note that the fundamental frequency (formant 0) does not change much

among different vowels. This is the fundamental frequency of the vocal tract based

on a normal opening of the vocal folds when one is producing a vowel, but it varies

significantly across gender and age. Formants 1 and 2 do vary considerably depend-

ing on which vowel is being uttered, however Formant 3 does not (Section 4.1.5).

Recently, several different techniques [18, 40, 60, 71, 85, 10], based on the above

premise, have been reported for identifying gender. Some effort has also been fo-

cused on determining the age groups of individuals based on the above and the con-

cept of jitter (Section 3.6.4). [60] proposes using the mean MFCC as an indicator

of jitter and states that it is a good indicator of the gender and age of the individual.

[6] uses Cepstral mean subtraction (CMS), and shows great results for gender clas-

sification, indicating that gender does not seem to be so correlated to the Cepstral

mean. Of course, [6] has not been considered it in its study, it is possible that the

Cepstral mean may still be related to jitter and age.

Martin [54, 53] has used pattern recognition techniques for the problem of mu-

sical instrument identification. He uses the log-lag correlogram which is adopted

from cochlear models. This technique is related to the pitch which is usually ig-

nored in standard speaker recognition techniques that do not use prosodic features.

Since we are not using pitch here, it is fundamentally different from our approach.

For a robust and universal resolution, the objective is to determine timbre and not be

dependent on values related to pitch and sonority (Section 4.3.1).

[26] also uses cepstral coefficients for conducting musical instrument recogni-

tion. However, it uses very complex features which are connected to the dynamics

of musical pieces and maps the frequencies to the Bark frequecy scale [89] which is

similar to the Mel-Frequency mapping in that it is also based on the psychophysical

power law of hearing (Section 5.5.4). However, the complex set of features as well

as heuristics make this approach too impractical for the purpose of a simple and

universal pre-filter. The approach of [26] is more suitable for accurate recognition

of instruments and is inherently much more costly.
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17.5.2 Audio Classification

[68] classifies audio collected from the world wide web into three different cate-

gories, 1. speech, 2. music, 3. other. It uses support vector machines with the Fisher

kernel [41]. Reference [68] shows an error rate of about 19% for the classification

of about 173 hours of audio collected from the web.

[22] talks about using autoassociative neural networks in conjunction with GMM,

using LPCC and MFCC features. They try to categorize the genre of videos using

the audio track. For example, they use the following categories in their experiments:

advertisement, cartoon, movie, news, song and sports.

Beigi [6] uses 1400 excerpts of music in different styles from over 70 composers

together with the speech of 700 male and 700 female speakers. The audio signal

is telephone quality sampled at 8kHz with μ-law amplitude encoding for all cases

including the music, which is converted to reduce its quality and bring it to par with

the speech data. [6] reports 1% error rate of speech versus music classification and

a 1.9% gender classification error rate at speeds of more than three times real-time

on a single core of a multi-core Xeon processor.

17.5.3 Multiple Codebooks

In most cases, classification, more than any other branch of speaker recognition,

requires the combination of different information sources for obtaining the final de-

cision. This branch requires a greater artistic touch in its design, mostly dependent

on the specific problem at hand.

In Section 11.1, we discussed the idea of a codebook. To be able to combine

the different information sources, often, it makes sense to treat each source as a

different codebook and then to combine the decisions stemming from these dif-

ferent codebooks. This combination may be viewed as a fusion technique. In Sec-

tions 1.3.4 and 1.5.13, we discussed some applications of fusion of different infor-

mation sources. This combination of results from different codebooks in classifica-

tion is quite similar to those cases.

17.5.4 Farfield Speaker Recognition

There has been some work done in farfield speaker recognition. This is a very chal-

lenging problem due to the added noise and the drop in the quality of audio. [76]

presents a comparison among different speaker identification models such as the
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GMM-UBM model and kernel based methods such as SVM and relevance vector

machines (RVM) under adverse farfield recording with short utterances. It concludes

that the GMM-UBM system yields the best results.

[43] does a study of farfield speaker recognition by playing with the features, us-

ing MFCC (Section 5.3.6) with CMS (Section 18.4.1) and RASTA (Section 18.4.4)

for normalization. It compares 8 channels for variability and applies a reverberation

compensation and warping to enhance the results.

17.5.5 Whispering Speaker Recognition

We discussed whisper from speech generation and phonological points of view in

Chapter 4. We noted how in a whisper mode, the vocal folds become more relaxed

such that the harmonics are changed by moving toward a more turbulent flow com-

pared to voiced resonance. As we have seen, voice portions of the speech hold the

most information about the speaker’s vocal characteristics due to the presence of

rich harmonics. In the absence or alteration of such harmonics, the recognition could

seriously degrade.

17.6 Speaker Diarization

[87] A lot of what we have discussed in this chapter make up what is generally

called speaker diarization. It is the act of organizing and tagging a stream of au-

dio, which of course may be extracted from a video track. For diarization, many

speaker recognition branches are employed. A good example of a full diarization is

[80] which takes a video stream; segments the audio and video; identifies the speak-

ers; identifies the faces; and transcribes the audio in each segment associated with

a speaker. The results then become searchable by the name of the individual who

was recognized, the transcribed text is made searchable, and the content is filed for

future retrieval.

[67] and [66] provide two survey papers for the years 2009 and 2005 respectively.

[62] looks at most aspects of diarization including nonspeech removal. [74] makes

modifications to the basic NAP (Section 15.8), in order to obtain better performance

for speaker verification when using a two-wire telephone channel (speaker segmen-

tation, followed by verification). The method removes some dominant components

from the inter-speaker as well as inter-session spaces and shows improvement in a

two-wire verification, hence dubbed a two-wire NAP.
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17.6.1 Speaker Position and Orientation

Several research projects have been looking at finding the speaker position and ori-

entation. For example, [63] uses a linear microphone array to acoustically locate

a speaker. It uses crosspower-spectrum phase techniques to find the position of a

sound source and to assess whether it is moving or not. [75] uses only a single

microphone. It uses an HMM model of clean speech presented to the microphone.

Then using the results of the model, localization is deduced.
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Chapter 18

Signal Enhancement and Compensation

In Chapter 5 we had to defer the topic of signal enhancement since we had not yet

covered speaker modeling. As we shall see, some of the arguments for different

techniques refer to the act of recognition. It is recommended that after reading this

chapter, the reader would return to Chapter 5 and quickly glance at the topics which

were discussed. Some aspects in that chapter may sink in better with accumulated

knowledge.

In this chapter we will examine robustness to noise and conditions via two dif-

ferent perspectives. The first part of this chapter will treat either the raw signal, the

power spectrum or the cepstrum of the signal. The methods which are discussed

here, attempt to remove or at least reduce components of the signal related to noise,

special conditions such as microphone characteristics, or do some kind of normal-

ization of the signal based on the signal (or its derived attributes) alone.

In the second part, we will discuss an array of normalization techniques which

basically have the same goal, but utilize speaker-specific knowledge to achieve that

goal.

18.1 Silence Detection, Voice Activity Detection (VAD)

Silence Detection, sometimes referred to, as its complementary scheme, Voice Ac-

tivity Detection (VAD), is a very important practical step in doing speaker or speech

recognition. Normally, when there is silence, the relative signal to noise ratio could

be quite small and consequently all types of unexpected results may happen affect-

ing both disciplines.

Also, theoretically speaking, as we saw in Section 9.2.1 for the binary hypothesis

testing problem (e.g., associated with speaker verification), the likelihood ratio test
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(Equation 9.26) should be true almost everywhere, [x], which means that the feature

vector, x may not be 0.

In practice, in regard to speaker recognition, even when x �= 0, the features of

noise will occupy part of the feature space, forcing low power speech features to

congregate, reducing their variances. This can mainly happen when a spectrally rich

noise is on the line. VAD can basically remove these near-silence portions and un-

wanted sections to avoid such problems.

Based on experience, close to 30% of the audio frames in a normal audio record-

ing are silence frames. This means that through silence removal, the recognition

process may become faster by the same rate. In speech recognition, the extrane-

ous silence segments will produce spurious nonsense words by taking leaps through

different arcs of Hidden Markov Models. It is much simpler to use some energy

thresholding to cut out moments of silence (or only consider moments of speech)

than to have to model the silence, due to the variability of its noise content. The

elimination of silence will not only increase the accuracy, but it will also reduce

un-necessary processing energy and some cases bandwidth utilization.

The most efficient silence detection is energy thresholding due to its simplicity

and effectiveness. The actual threshold may be variable. Although some even use

phone models developed for speech recognition to detect silence. Sophisticated al-

gorithms may be used to estimate it along the time line. However, in principal, it

remains quite simple. Once a threshold is known, the signal power is computed and

if it falls below a certain threshold, it is considered to be silence. The signal power

may be simply computed using Parseval’s theorem which means that the total power

in a window is the sum of the squares of its sampled values. Another alternative is

to use the c0 value (see Section 5.3.6), but the value based on the actual samples is

much more reliable since it has not undergone the many transformations that were

used to attain the MFCCs.

Another piece of information which is somewhat complementary to the energy

level and which may be used to detect voice activity is the zero crossing rate of the

signal. The zero crossing rate is defined as,

ζ
Δ
=

1

N

N−1

∑
n=0

χ(hnhn−1) (18.1)

where χ(x) is an indicator function and is defined as follows,

χ(x)
Δ
=

{
1 i f x < 0

0 i f x >= 0
(18.2)

ζ is used in conjunction with the energy since usually, the energy for low frequency

periodic signals is high compared to high frequency aperiodic cases. The zero cross-

ing rate on the other hand works in the opposite manner. See [12] for a sample al-
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gorithm which uses both energy and zero crossing rate.

Many different algorithms have been devised to use this information in order to

detect the voice activity in a speech signal. Examples are maximum likelihood tech-

niques [9], neural network techniques and discrete wavelet transform methods [33].

In general, all the classification techniques which are used for speech and speaker

recognition based on speech features may be used for detecting voice activity.

In some cases, silence detection does not have to be perfect. An example is the

two-speaker channel normalization scheme that [39] uses. In this case, only frames

with energy levels above the 50% mark are used to do a CMN for a two-speaker

detection and tracking task. Of course since the task provides 60s of speech for each

case, this luxury may be afforded. Under normal and most practical circumstances,

the utterance sections could be much shorter in which case one needs be so choosy.

However, as [39] reports later, a fixed energy threshold still gives much better per-

formance even for this type of task. This is partly due to the fact that in this case

there are two speakers in a conversation and if it happens (as it usually does) that one

speaker’s channel energy level is higher than the other (depending on the telephone

channel and the speaker’s style), then the speaker with the higher energy level will

dominate the whole computation.

Another class of competing methods simply train one or more models for the

silence and then match against that model as if speaker detection is being done.

Sometimes, the feature codebooks used for the silence detection models may be

quite different and may use information specific to detecting silence which is not

used in regular speaker recognition models. Some of these features are things like

pitch detection and the zero crossing rate [3, 12]. Also there are models which are

based on non-Gaussian distributions which govern the presence of silence (such as

the exponential distribution). This method works well in cases where we have a rich

database of different silence situations. Otherwise, the threshold method should suf-

fice and sometimes produce better results.

Sometimes VAD is conducted at the communication channel level, such as in a

VoIP channel, to reduce bandwidth utilization. Since telephony applications are de-

signed mainly to be used in two-way conversations, the moments of silence, created

as a side-effect of VAD in the communication channel, are sometimes filled with a

certain noise called comfort noise. This noise is designed to assure the listener, on

the call, that the remote party has not been disconnected. This is not a natural noise

and is usually generated by a pre-designed model called a comfort noise genera-

tion (CNG) model [3]. These models may cause problems in the speaker recognizer

since the recognizer will try to learn the characteristics of the CNG model as part of

the speaker’s model. Also, sometimes the switch-over between this noise and actual

speech may create high-frequency components. In Section 18.4 we will discuss sev-

eral techniques for removing such anomalies.
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18.2 Audio Volume Estimation

In Section 5.2.4 we spoke about the importance of estimating the audio level in

real-time to be able to minimize quantization errors and to be able to achieve a bet-

ter spread of the audio in the dynamic range of the task at hand. When we are dealing

with a stream of audio being processed in real time, it becomes important to be able

to do audio level normalization. To do this, we need to be able to estimate the av-

erage audio level throughout the process of doing our task. Techniques that do this

estimation are called automatic gain control techniques. The International Telecom-

munications Union has produced a recommendation, ITU-T-P.56 [17], which pro-

vides two methods for the measurement of the active speech level. An ANSI-c code

is also available from the ITU.

18.3 Echo Cancellation

Echo cancellation was not included as any of the standard blocks in the sampling

process because it is not always necessary. Echo cancellation becomes especially

important in telephony applications. As we mentioned in the Introduction, one im-

portant advance of speaker recognition to other biometrics is the existence of the

telephony infrastructure. Therefore, telephony applications are of utmost impor-

tance to the subject.

Anyone who has ever use an international telephone line, should have heard this

anomaly, sometimes to an annoying level and at instances to the point where the

conversation becomes completely unintelligible. Aside from the annoying part, it

also changes the spectral characteristics of the audio which can jeopardize speaker

recognition efforts in two different ways. The spectral distortion affects the vocal

characteristic analysis and the audible echo can also degrade recognition rates for

text-dependent systems that rely on the utterance of a specific text.

In general, echo may be produced by two different means, acoustic-based and

network-based. Acoustic-based echoes are those which are quite familiar to anyone

who has been in a large ballroom or in a valley surrounded by mountains. It can also

happen from reflections off any objects around us when we speak. It may also be

present due to the reflections within the handset and feedback.

On the other hand, network delays are caused by the feedback of the speaker’s

own voice which travels through network and gets reflected from the remote end,

returning to the speaker’s handset. These delays are characterized by the level dif-

ference between the original signal and the echoed signal. This level difference is

measure by, “Talker Echo Loudness Rating” (TELR).[16] ITU-T G.122 [15] de-
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scribes how TELR may be determined in a 4wire/2wire hybrid telephone system

and the Terminal Coupling Loss of a telephone set. Most local loops are made up

of two wires (wires going from the telephone company’s Central Office to homes

and businesses) and most transmission lines between different Central Offices are

four-wire lines. The hybrid echo happens whenever the two meet. In these scenar-

ios, there are multiple reflection points which add to the complexity of the echo.

In addition, Voice Over IP (VoIP) systems have added echo due to the use of the

Internet for transporting the audio signal.

There are an array of echo cancellation programs available. Most high-end tele-

phony cards, such as voice T1 and E1 cards have sophisticated echo cancellation

software built into them. VoIP suffers more than others in this arena. This is partly

due to the fact that most client platforms run on non-realtime operating systems

such as Microsoft R© Windows R© which with built-in delays which add to the net-

work delays already present in these systems.[3]

Echo Cancellation software in essence tries to compare the original (sampled)

signal with the returning signal after it has been through the loop going to the far-

end and back. Then, they search, with an estimated window or delay, for two signals

that resemble each other. The echoed signal is then shifted in phase by 180 degrees

and removed from the returning signal prior to sending the returned signal to the

loudspeaker. Most of the challenge lies nonlinear signal changes along the way.

This includes the addition of colored noise and non-uniform changes to the spec-

trum of the signal.

Another challenge in the newer telephony environments is the full-bandwidth

effect of the echoes which are harder to remove than the original band-limited ver-

sions of the signals based on Public Switched Telephone Network (PSTN) lines

which operate at bandwidths lower than 4kHz and generally higher than 300Hz.

18.4 Spectral Filtering and Cepstral Liftering

In this section we will discuss filtering techniques used on the PSD and liftering of

the cepstra to remove components associated with noise. The main idea behind these

techniques is that the range of frequencies which may be produced by the human

vocal system is dependent on the motor control of the vocal tract. These frequencies

are usually in a central band. As we mentioned in Chapter 5, different microphones

introduce different DC components into the signal. By doing a hi-pass filter as the

first step of our signal processing, we removed some of this DC component from the

spectrum of the signal. There is evidence that slow varying components in the cep-

stral domain may still exist which are not always associated with the human speech

production system. Removal of such slow-moving dynamics have produced good
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performance results.
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Fig. 18.1: Spectrogram of audio used in the filtering and liftering exercises

In addition, we discussed the introduction of high frequency components due

to discontinuities in the signal related to CNG in Section 18.1 and other disconti-

nuities which may not be producible by the limited dynamics of the human vocal

system. These discontinuities show up as a high-frequency component in the spec-

tral domain and sharp edges in the cepstral domain. In other words, considering

the interpretation of the cepstral coefficients which was given in Section 5.3, high

frequency cepstral changes much have to do with a system which much faster dy-

namics than the human vocal tract is capable of achieving. Therefore, by removing

very high frequency components in the cepstral domain, the effects of noise sources

capable of such aggressive dynamics are reduced. These two ideas have led to the

development of several spectral filtering and cepstral liftering techniques which will

be discussed here.

Throughout this chapter, to see the effects of these different techniques, we will

be using a short representative segment of speech which was used in Chapter 5. The

spectrogram of this audio clip is given in Figure 18.1.
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18.4.1 Cepstral Mean Normalization (Subtraction) – CMN (CMS)

Cepstral mean normalization (CMN) is usually conducted by the act of cepstral

mean subtraction, so the two terminologies are used interchangeably. It is essen-

tially a longpass lifter1. However, the importance of it in speaker recognition is that

it removes the DC component only. This is equivalent to having a longpass lifter

with a cutoff of 0+ s. As we know, dynamics of filters (lifters) do not allow such

sharp contrast. However, since we work in a digital domain, it can readily be done

by estimating the mean of the cepstral features in the different dimensions and sim-

ply subtracting it form the features in all the frames. Chances are that using a normal

longpass lifter subject to dynamic limitations would remove some significant com-

ponents of Gv which was discussed in Section 5.3.

Although CMN may still remove some speaker characteristics, it has been shown

that under noisy conditions, it may improve results for both text-dependent and text-

independent speaker recognition implementations [11, 22, 18, 14]. This improve-

ment seems to be due to the fact that the dynamics of the human vocal system is

quite rich and that the gain in removing the slow moving components of the cep-

stra outweigh the loss of part of the vocal tract dynamics. This is why it is crucial

not to use a conventional longpass lifter and to try to take care of the DC compo-

nent through CMN alone. Speech recognition is not as sensitive to this as speaker

recognition, since in speech recognition, the goal is to also remove the slow varying

dynamics due to the slow vocal tract variations which are more characteristic of the

vocal tract itself that they are of the speech content which tends to have faster dy-

namics.

One important hurdle in conducting CMN is that for short segments, the cepstral

mean estimation, for example using a method such as sample mean computation,

can be quite far from the actual mean. It is usually recommended that the mean be

computed over an entire utterance so that a robust estimate is available. Incorrect

estimates could severely degrade the features. As a practical matter, since CMN is

one of the first manipulations, if we deal with audio streams, we cannot afford to

wait until the end of the utterance until we can start processing it. A moving average

method with a forgetting factor somewhat like the moving average technique in

ARMA modeling [21] may be used to create a running estimate of the cepstral mean.

Equation 18.3 is an exponential relation which works reasonably well [3],

lcd = (1− λ̄ ) (l−1)cd + λ̄ lcd (18.3)

where lcd signifies the estimated cepstral mean for dimension d and frame l. (l−1)cd

is the estimated mean at frame l − 1. Also, lcd is the value of d dimension of the

MFCC vector at the lth frame. λ̄ is called the forgetting factor or the exponential

factor. [3] suggests a forgetting factor of λ̄ = 0.999 to be used to give us a time

1 It is a lifter since it operates in cepstral domain which essentially has unit time – see Chapter 5
for more on this.
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Fig. 18.2: Top: MFCC components (c1 and c2) throughout the utterance; Bottom: Power
Spectral Density of c1 and c2
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Fig. 18.3: Top: c1 and c2 after CMN; Bottom: Power Spectral Density of c1 and c2 after
CMN
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constant of about 7 ms for a 10 ms frame advancement period.

In general, it is quite important to use a good Silence Detection or Voice Activity

Detection (VAD) scheme before using CMN. VAD can help in a better estimation

of the cepstral mean by reducing the effects of noise, low energy echoes and similar

artifacts.

18.4.2 Cepstral Mean and Variance Normalization (CMVN)
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Fig. 18.4: Top: c1 and c2 after CMVN; Bottom: Power Spectral Density of c1 and c2 after
CMVN

The cepstral mean subtraction of the previous section, makes the mean of the

cepstral features, 0. A natural extension is to normalize their variance as well. If

we assume that the dimensions of the MFCC are statistically independent, we may

normalize the variance of each dimension without affecting the other dimensions.

However, we may be making the dimensions more compatible such that a multi-

dimensional Gaussian cluster would have a more well rounded set of clusters. The

maximum likelihood estimate of the variance of each dimension of the MFCC vector

is given by the following equation – see Section 6.9.4,
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Var(cd) =
1

N

N−1

∑
n=0

nc2
d − c2

d (18.4)

where N is a large number of frames used to compute the sample mean and the

maximum likelihood estimate of the variance. Therefore, assuming a Gaussian dis-

tribution, to change the distribution of cd to a Gaussian with zero mean and a unit

variance, we will have to subtract the mean of each dimension of the MFCC vector

from the element in that dimension and divide the result by the standard deviation.

Namely,

l ĉd =
l ĉd − cd√

1
N ∑

N−1
n=0 nc2

d − c2
d

(18.5)
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Fig. 18.5: Impulse response of the
ARMA lifter
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Fig. 18.6: Impulse response of the
RASTA lifter

18.4.3 Cepstral Histogram Normalization (Histogram

Equalization)

[36] introduced Histogram Equalization (HEQ) for usage in speech processing. The

concept was derived from the histogram equalization technique used in image pro-

cessing. This technique is applied to the features, independently in every feature di-

mension, to normalize the speech. When MFCCs are used as features, this method

is called Cepstral Histogram Normalization (CHN) [3].

In essence, CHN also produces a zero-mean and unit-variance set of features

when applied to the MFCCs. It also produces very similar results to those obtained

by CMVN. Other similar techniques such as spectral subtraction [4] work in a sim-
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ilar manner, but in the spectral domain.

18.4.4 RelAtive SpecTrAl (RASTA) Filtering

[38] shows that for text-independent RASTA filtering reduces the accuracy of the

system in the absence of noise. However, it increases its accuracy significantly in the

presence of severe noise. This supports the intuitive notion that since RASTA per-

forms band-pass filtering of the spectrum, it removes some speaker characteristics

as well. This is quite good for speech recognition, but not so acceptable for speaker

recognition, especially the text-independent kind. This is also confirmed by the tests

reported by [11] on text-dependent cases. In that case, we see great performance by

RASTA and it may be attributed to the fact that text-dependent speaker recognition

is really a combination of text-independent speaker recognition and speech recog-

nition. Therefore, the gain due to noise removal greatly outweighs the loss due to

speaker characteristic removal.

18.4.4.1 J-RASTA Filtering

[11] has shown great performance for text-dependent speaker recognition using J-

RASTA. As we mentioned in the previous section, it may very well be the speech

content related part of the system that has benefited greatly from the J-RASTA filter-

ing as it is expected based on speech recognition results. Since both RASTA and J-

RASTA basically filter out slow moving spectral characteristics, theoretically, they

should remove substantial speaker characteristics as well. Under extremely noisy

conditions, this may be alright since the improvements due to noise reduction could

be more than the damages incurred due to lost speaker characteristics. This is prob-

ably why J-RASTA did substantially better than RASTA in [11]. In J-RASTA, the

J factor is learned and it can therefore improve performance. It was especially true

for the adaptive J-factor estimation case.

18.4.5 Other Lifters

[28] makes similar arguments for the justification of the band-pass lifter and sug-

gests a sinusoidal window function to be applied to the cepstral coefficients derived

from the LPC coefficients. This window is given by Equation 18.6,
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Fig. 18.7: Top: c1 and c2 after RASTA Liftering; Bottom: Power Spectral Density of c1 after
RASTA Liftering
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Fig. 18.8: Top: c1 and c2 after CMN and ARMA Liftering; Bottom: Power Spectral Density
of c1 after CMN and ARMA Liftering
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Fig. 18.9: Adult male (44 years old)
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Fig. 18.10: Male child (2 years old)
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(
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D
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(18.6)

Note that classic filter design techniques may be used to design bandpass lifter

which would perform as well or better than any of the techniques discussed here.

It is important to design the lifter in accordance with the conditions at hand. Fig-

ure 18.12 shows an example of such lifteration on the first two MFCCs. Figure 18.11

represents the impulse response of this shortpass lifter.

18.4.6 Vocal Tract Length Normalization (VTLN)

In Chapter 4 we noted that their fundamental frequencies are on the average at 130

Hz, 220 Hz, and 265 Hz respectively. The idea behind Vocal Tract Length Normal-

ization (VTLN) is the fact that the relative position of the formants compared to

the fundamental frequency is different for different people. An extreme example is

the comparison between an adult male and a child. Consider the two Figures 18.9

and 18.10 which were shown once in Chapter 3 and have been shown here again

for convenience. This is the same utterance that was spoken by the adult male and a

2-year old male child. Compare the locations of the formants. If we assume that the

vocal tract is modeled by a long tube with varying cross-sections (5.31), then the

length of the tube has an inverse relationship with the fundamental frequency and

the location of the formants [5].

Vocal Tract Length Normalization (VTLN) has stemmed out of this variation and

originally due to the fact that usually there is much more training data for speech

recognition obtained from adults, specifically adult males, and that it would be a

good idea to be able to transform the features such that they would map one class

of individuals to another. In this case, they would map the vocal tract characteristics

of a child to an adult male or vice versa to be able to train on one and test on the
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Fig. 18.11: Impulse response of the shortpass lifter
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Fig. 18.12: c1 and c2 after applying CMN followed by a shortpass lifter
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other. This operation may be done in two different ways. The first is the warping of

the feature to match a nominal vocal tract length. The second method is the modi-

fication of the model to match the speech being recognized. In the case of speaker

recognition, though, things are quit the opposite.

As you may recall, at the beginning of Section 5.3, we presented a control sys-

tem overview of the speech production system. Speaker recognition concentrates on

finding dissimilarities among speakers and speech recognition banks on their simi-

larities. It does not mean that VTLN cannot be used for speaker recognition; in fact

it has [10]. It just has to be done with a slightly different objective.

In VTLN, it is assumed that the simple model of Figure 5.31 is simplified even

more to the extent of the whole vocal tract being modeled as a single hollow tube of

length L. This assumption is based on the fact that most of the resonant information

about the vocal tract comes from the vowels (see Chapter 4) which are represented

by a combination of formants (harmonics). The range of the voice, may then be

measure as starting from the fundamental frequency, f0 (formant 0) and ending at

the Nyquist frequency, f̂c. The reason we have called the Nyquist frequency f̂c and

not fc is that we usually have no indication of the Nyquist frequency. All we have is

the folding frequency, f f which we had marked as fc in the previous treatments of

the features. Most research papers and reports have been quite sloppy in using the

term Nyquist frequency for this value. We would like to be very strict about this def-

inition since it causes many misunderstandings and incorrect results for that reason.

See Chapter 3 for a detailed description of the difference. Since speech is usually

sampled at far lower rates than the Nyquist frequency and is treated, as mentioned

at the beginning of this chapter, by a low-pass filter to avoid aliasing, we have no

idea what the range of an individual’s speech may be. We really just have the lower

limit, being the fundamental frequency, f0. f0 is then inversely proportional to the

length of the tube L.

As we mentioned, [10] assumes misses the difference between f f and fc and

assumes that the f f is actually the Nyquist frequency for the speaker. With that

(incorrect) assumption, a linear mapping is made from the source frequency range

(starting from f0 and going to f f , to a target frequency range. This linear mapping

is signified by multiplication of the frequency by a parameter, α .

[10] uses a hybrid approach to combine the results of a speaker verification sys-

tem with that of a speaker classification system. The speaker classifier provides the

information for the class of the individual speaker which in turn establishes the

warping factor that has to be used to do a VTLN on the features of the individual’s

speech. Then a normal verification system goes to work to do the actual verification

on the warped features. In this scenario, as opposed to a speech recognition scenario,

no warping is actually done. The warping factor, α is computed for each individual

in the training. Then an average is established. At the verification stage, the warping

factor is estimated again and compared to the mean, weighted and then added to the
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results of the classical Log-Likelihood Ratio classifier (see Chapter 17) to come up

with the results.

A glance at the Figures 18.9 and 18.10 shows the fact that for the adult male,

much more of the audio range falls within the sampling range and for the child it

is cut-off, signifying again that the f f is not a valid estimation of the Nyquist fre-

quency. Therefore, a more accurate VTLN approach would be to estimate the first

few formants and then estimate the VTLN parameter based on the relative distances

between pairs of formats and their distances from the fundamental frequency. A

linear, or possibly nonlinear mapping based on perceptual bases, may be used to

extract a dissimilarity parameter which may then be used in a similar fashion as in

[10]. It is also possible to use this parameter as a separate feature codebook and use

it in training and testing the system just like any other feature. The advantage of

this approach would be the fact that the formants will still be within the range of the

sampling and the problem we noted regarding the difference between f f and fc does

not exist anymore. This is especially true for low sampling rates such as telephony

applications.

Of course, we should also note that this information is already present in the

MFCC, PLP or LPC features that have been used to model the system, although not

explicitly. As we have seen, the VTLN is used in quite the opposite way. In speech

recognition it is used to normalize features. In speaker recognition it is used as a

feature to signify the variation.

18.4.7 Other Normalization Techniques

There have been many different normalization techniques which have been used in

the literature. Of course it will be impossible to list all of them. Here are some that

have shown marginal improvements.

18.4.7.1 Feature Warping

[22] introduced a method for feature warping to be able to handle channel mis-match

conditions and additive noise. As we mentioned in Section 18.4.2, one can modify

the distribution of the features if it is believed that the distribution has been modified

by a noisy process. However, the CMVN method uses an arbitrary destination for the

variance, namely, 1. In the feature warping approach of [22], it is assumed that the

features have been corrupted by noise and that their distribution has been modified

from an original distribution to a new distribution, gd(ĉd) where d is the index into

each dimension of the MFCC vector for a set of frames to be defined later. This
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technique may be combined with other techniques that we have discussed earlier.

The method describe in [22] seeks to warp the cepstral features such that over

a specific interval, the cumulative distribution of the new features matches a target

cumulative distribution. The ideal target distribution would be a multi-modal distri-

bution that would model the true underlying distribution of the speaker. However,

to simplify matters, a single mode distribution, namely a Gaussian distribution is

chosen.

As we mentioned, the cumulative distribution is only matched in a set time inter-

val. This is defined by a window of N frames. Assuming there are d feature in each

MFCC feature vector for each frame of audio, there will be d ×N-frame windows,

each operating on a specific dimension. The features in each N-frame window are

ranked according to their value, with the largest (most positive) raking as 1 and the

most negative ranking as N. Also, the rank of the feature that falls in the middle of

the ranked list (median of the features) is recorded and the value is saved in R. In

practice, N is usually set to about 300.

Given a target probability density function, gd(ĉd), then the cumulative distribu-

tion of the selected N-frame window is computed to fall at the center of the non-

parametric distribution seen by the ranking, namely,

ˆ ĉd

−∞

gd(ξ )dξ =
N + 1

2 −R

N
(18.7)

This really means that the measured feature, cd has the same cumulative proba-

bility distribution as the warped feature, ĉd , but it is based on a different probability

density function. Namely,

ˆ cd

−∞

hd(ζ )dζ =

ˆ ĉd

−∞

gd(ξ )dξ (18.8)

[35] also uses this technique for warping Frequency Modulation features – see Sec-

tion 5.6.2.1.

Pelecanos assumes that the original distribution of the features should have been

a Gaussian distribution with 0 mean and unit variance. However, the trouble is that

it really comes down to the selection of the density function and hence the distribu-

tion which is quite arbitrary. In fact the warping concept, here, is not very different

form the types of warping that we have done based on the frequency and magnitude

of the features according to perceptual distribution models. However, in the percep-

tion approaches, the distributions were based on an experiment results designed to

mimic human perception.
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18.4.7.2 Short-Time Gaussianization

Short-time Gaussianization was introduced [6] to be aid in density estimation for

high number of dimensions. It works by transforming the high dimensional data

into the least dependent coordinates and marginally Gaussuanizng each coordinate

separately. [6] claims that the results of the density estimation are sharper than tra-

ditional kernel methods.

The process may be done in two steps of a linear transformation, followed by the

nonlinear transofrmation of short-time windowed feature warping. [40] has used

short-time Gaussianization for formulating a robust speaker verification algorithm.

[41] has also used it by basically adding a kurtosis normalization (Section 6.6.4)

step right after what was done by [40]. The improvements seem to be quite nominal

in the EER (Section 19.1.1)!

18.4.7.3 Feature Mapping

[31] introduced a feature mapping technique which works on a similar idea as the

SMS (Section 18.4.7.4). However, in feature mapping, the features are not tied to

any specific model. In fact all features are mapped to a common space so that they

would work best with the same background model. This is done through a transfor-

mation which is derived based on the premise that by mapping the features, effec-

tively the Gaussian Mixture Model representing the new features would have been

transformed from a Model representing the original features to a universal model

representing the new features and being more compatible with all other transformed

features.

18.4.7.4 Speaker Model Synthesis (SMS)

Speaker Model Synthesis (SMS) was introduced by [27]. It uses different back-

ground models for different channel conditions such that there are essentially as

many background models as there are seen channels. Once these models are avail-

able, it uses the parameters of these channel models such as the mixture weights and

the Gaussian parameters to map any model from one channel to other channels.

Let’s assume that we only have a speaker’s voice on a cellular network. The trans-

formation will allow the synthesis of different enrollment models for this speakers

as if recordings were available from other types of channels like a land-line carbon

microphone and a land-line electret microphone channel. One major problem with

SMS is that it relies on having a rich background model for every channel which
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may be encountered.

18.4.7.5 Kalman Filtering

Kalman filtering [19] has been used in many different scenarios from control to sig-

nal processing. Sequential Interacting Multiple Models (SIMM) [20] is a method of

signal enhancement which uses an adaptive Kalman filter to compensate for nonsta-

tionary noise, which is the type noise associated with audio signals. This technique

was used for performing isolated digit recognition. It is interesting to see how it

would perform for speaker recognition applications.

18.4.8 Steady Tone Removal (Narrowband Noise Reduction)

Steady tones or narrowband noise generally exist in many different scenarios, but

they are prevalent in any audio that has at some point gone through an analog incar-

nation. These are steady bands which appear due to a variety of reasons. Sometimes

they appear in multiple locations in the spectrum. Of course they can seriously af-

fect the performance of a speaker recognition system, since they will show up as

features.

18.4.8.1 Conventional Notch Filters

Traditionally, these types of anomalies have been removed using a notch filter which

is a filter designed to remove part of the spectrum, associated with the narrow band

of interest. Of course, there is a need for recognizing the existence of this band and

its bandwidth. Also, such filters will basically remove all the information in that nar-

row spectral band, including the speaker information. In addition, there will always

be modifications made to the adjacent frequencies, mostly in the form of amplitude

reduction.

18.4.8.2 Single Value Decomposition (SVD)

Rice, et al. [32] use singular value decomposition for the detection of steady multi-

tones. Then they subtract the resulting components in the spectral domain and re-

construct the signal. This is basically a notch filter with a method for detecting the
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narrowband intrusion.

18.4.8.3 Other Notch-Based Tone Suppression

As another application of a notch filter, Strurim, et al. [34] describe a tone removal

scheme which was used in the MIT-LL2 system performing the NIST 2006 speaker

recognition task for auxiliary microphones. They use a long duration Hamming win-

dow3 (8s) to compute the Fourier transform of the signal. Then, they use a low pass

filter on the original signal to obtain a smooth version of the signal and subsequently

subtract it from the original signal to get a whitened spectrum. Then, by applying a

threshold to this whitened spectrum, culprit tones are detected and removed by sub-

tracting a 2−Hz bandwidth Gaussian from the amplitude (effectively a notch filer).

Then the 8 second segments are reconstructed and using an overlap, the 8 second

windows are joined to reconstruct the complete signal. [34] shows some positive

improvements by using the above technique on the said data.

18.4.8.4 Constant Modulus Algorithm (CMA)

Treichler and Agee [37] present the constant modulus algorithm (CMA) and an adap-

tive version of the same algorithm, constant modulus adaptive algorithm, which are

based on the premise that utilize the existence of an incidental amplitude modula-

tion which is generated by multipath reception of the signal and tonal interference.

As we discussed earlier, the cepstrum, itself tends to be robust to most multipath

reception issues. However, they do still show up in the features. Also, features that

are not cepstrum-based may even be more affected by the multipath effects. The

tonal addition generally affects all features to some degree.

18.4.9 Adaptive Wiener Filtering

Wiener filters have been used in enhancing the quality of speech with some suc-

cess. Quatieri and Baxter [25] proposed one such technique for specific usage with

speech signals. Their technique is an adaptive Wiener filter which is designed to

remove non-stationary noise from the background of speech recordings. The filter

was designed with the sensitivity of biological receptors in mind, when dealing with

spectral change. Biological receptors mask quick dynamics. This helps eliminate the

2 MIT-LL: Massachusetts Institute of Technology’s Lincoln Laboratories
3 Hamming window: see Section 5.3.2.1
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removal of valid signal components and aids in the removal of noise. An enhance-

ment to this filter was made in [26]. This filter was used by the MIT-LL system [34],

in conjunction with the tone removal filter discussed in Section 18.4.8.3.

18.5 Speaker Model Normalization

There are also methods that are based on normalization techniques applied to the

scores being returned by the recognition engine. Since decisions are based on these

scores and since the scores are channel dependent, certain normalization techniques

have been developed to use the channel information in order to transform the score

into a normalized score which would be more easily compared across the board.

Another group of methods for handling channel mismatch conditions concen-

trates on normalizing the scores that are returned by the recognition engine. These

techniques have been mainly applied to verification and are called score normaliza-

tion techniques. In these techniques, zero normalization or Z-Norm and test normal-

ization or T-Norm are the bases.

18.5.1 Z-Norm

The zero normalization, more widely known as the z-norm [30], uses a set of im-

postor utterances, at the time of enrollment, to get the impostor distribution for each

target model and this distribution is saved with the target models. Then the score

is modified against the relevant impostor distribution. The following equation is the

expression for the zero normalization of the log likelihood score, which tries to in-

crease the discriminability of the score.

Z =
S−μi

σi

(18.9)

where S is the score, which is usualy the log likelihood ratio, μi is the mean value

of S with the model of interest using data from many impostor speakers, and σi is

the standard deviation of the score, S, for the impostor data. On the other hand, S is

the log-likelihood ratio of the data being evaluated against the target model.
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18.5.2 T-Norm (Test Norm)

Test norm (T-Norm) was first introduced by [1]. It estimates the impostor score

distribution for each test utterance against a set of impostor models. Therefore the

impostor distribution is specific to each test utterance instead of the target model in

the case of Z-Norm.

18.5.3 H-Norm

Handset normalization (H-Norm) was introduced by [8]. It is basically a Z-Norm

where there is a different distribution for each handset type.

18.5.4 HT-Norm

Handset Test normalization or HT-Norm is in the same spirit as H-Norm, but is a

T-Norm algorithm which is dependent on different handsets.

18.5.5 AT-Norm

AT-Norm is a T-Norm with an adaptive cohort model selection for the impostor

models.

18.5.6 C-Norm

C-Norm is basically an H-Norm which tries to cluster lots of enrollment data to

come up with clusters associated with unknown, but learned handset types.
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18.5.7 D-Norm

D-Norm, introduced by [2] is a technique that normalizes the score by an approxi-

mation to the Jeffreys divergence (Section 8.2.2) between the target model and the

background model.

18.5.8 F-Norm (F-Ratio Normalization)

[23] describes a group specific normalization called F-Ratio Normalization. The pa-

per shows a relation between the so called F-Norm and the equal error rate. It is

described as interpolating between target dependent and target independent infor-

mation by introducing a mixture parameter which may be optimized by maximizing

the class description which is a measure of the separability between target and im-

postor distributions.

18.5.9 Group-Specific Normalization

This normalization technique was proposed by Poh, et al. [24]. It uses the groups of

speakers in the, so called, biometric menagerie, defined by Yager and Dunstone [42,

43] – see table 16.2 in Section 16.6.2.

18.5.10 Within Class Covariance Normalization (WCCN)

Hatch, et al. [13] proposed within class covariance normalization (WCCN) to be

used in conjunction with support vector machine based recognizers. WCCN uses

the one-against-all multiclass approach (Section 15.9) where one refers to the tar-

get speaker and all refers to a collection of impostors. It minimizes the expected

error rate in both false acceptance and false rejection senses in the training step of

the SVM [7].

18.5.11 Other Normalization Techniques

There are also many other techniques such as Joint Factor Analysis (JFA) (Sec-

tion 16.4.2), Nuisance Attribute Projection (NAP) (Section 15.8), World Maximum
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A-Posteriori (WMAP), Eigenchannel, etc. JFA is usually used in conjuction with

GMM models and NAP with SVM. However, as we have mentioned in the respec-

tive sections, some hybridization has also been done. Eigenchannel estimation is

similar to PCA and WMAP is an extension of MAP (Sections 10.2 and 11.3.1.3).

Also, [29] plays around with some new and some combination compensations

such as emotional stress compensation, Speaker and stress information based com-

pensation (SSIC), Compensation by removal of stress vectors (CRSV), and Selection

of compensation by stress recognition (scsr). These are all related to speakers oper-

ting under stress.
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Part III

Practice



Chapter 19

Evaluation and Representation of Results

Given all the discussions in this book, when it is time to present recognition re-

sults for the sake of performance evaluation and comparison among different tech-

niques, some quantitative evaluation standards are deemed necessary. This chapter

discusses the different evaluation metrics and jargon used in the speaker recognition

discipline.

19.1 Verification Results

Speaker verification and speaker identification are inherently different in the way

the results are presented. In this section we will describe different concepts which

help us in presenting verification results. As we will see, the results may be and have

been presented in many occasions by common platforms which are used by other

verification communities. However, recently, subtle changes have been adopted by

the speaker verification community which create a more customized methodology

for presenting the results in this field. Please refer to Definitions 9.6 and 9.7 before

continuing.

19.1.1 Equal-Error Rate

Equal Error Rate (EER) is a popular and yet a much despised method of report-

ing the performance of biometric techniques. In biometric applications, there is a

trade-off between the tolerated false rejection rate (FRR) and false acceptance rate

(FAR) of the system. In most implementations, there is a threshold which may be

chosen to change this trade-off toward either side. Most biometric engine providers

try to solve the general biometric problem and are not necessarily designing a spe-
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cific application with pre-dictated requirements. For this reason, they will have to

report their performance results at some operating condition. In order to be able to

quote percentages for the error rate, a popular operating point is the Equal Error

Rate which is the point where there is an equal chance of false rejections (FRR) and

false acceptances (FAR).

Therefore, the EER provides the means for producing a convenient percent error.

However, since normal operating conditions seldom lie at a point where there will

be as many false rejections made as there are false acceptances, the user community

does not like results produced for this operating point. To remedy this problem, the

National Institute of Standards and Technology (NIST) has proposed more informa-

tive means of reporting accuracies (error rates) which will be described later in this

chapter.

19.1.2 Half Total Error Rate

Sometimes it is desirable to compare performance by considering both false accep-

tance and false rejection numbers. The total error rate [3] is one such measure. The

total error rate (TER) is defined as the sum of the false rejection (FRR) and the false

acceptance (FAR) rates. Also, it makes sense to talk about a number which is of the

same order as FRR and FAR. Therefore, sometimes researchers talk about the half

total error rate (HTER) which is basically computed as a half of the total error rate.

In other words,

HT ER =
FRR+FAR

2
(19.1)

In systems where the TER (or HTER) stays constant, it is a good measure for

the performance of the system. However, it is possible that there is an imbalance

between the FAR and FRR such that, for example, the FAR changes with very little

change in FRR and vice versa. At those operating points, the TER (or HTER) is not

a good performance measure. The HTER is more popular in non-speaker biometrics.

19.1.3 Receiver Operating Characteristic (ROC) Curve

Receiver Operating Characteristic (ROC) curves were developed in the mid-20th

century by radio engineers to show noise levels of signals. These curves were

adopted by biometrics researchers up to the late 1990s, in order to show the dif-

ferent operating conditions of their engines. The ROC curves plot the false positive

rate on the abscissa and the true positive rate on the ordinate. For such curves, the
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objective is to approach a performance such that the area under the curve would be

nearly 1. Note that if a random guess is taken for the results, the mean area under

the curve would be 0.5.

In the speaker recognition circles, ROC curves are normally plotted with the false

acceptance rate on the abscissa and the false rejection on the ordinate. Figure 19.1

shows an example ROC curve comparing two different verification methods and

their combination. In this kind of ROC, the objective is to have the area under the

curve approach 0. Generally, a random guess should produce an area of about 0.5.
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Fig. 19.1: Sample Receiver Operating Characteristic (ROC) curve representing the same data
which was used to plot the DET Curve of Figure 19.2

Here are two sample ROC curves showing false rejection numbers at the ordinate

and false acceptance at the abscissa. They are plotted for the same system perform-

ing two different tasks each having different quality of audio. Note that the ROC

curve is usually plotted in a linear scale. It may also be plotted in logarithmic scale

to avoid the resolution problems seen in the figure at the right. The performance of

the system is so good in that figure that it is hard to see the graph. The location of

the equal error rate is marked in both of these curves. Notice that the three different

colors signify difference techniques.
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19.1.4 Detection Error Trade-Off (DET) Curve

The DET curve has been favored over traditional ROC curves since its introduction

by NIST in 1997.[1] The DET curve plots the “Miss Probability” in percentage form

verses the “False Alarm Probability,” also in percentages. Figure 19.2 shows the an

example DET curve comparing two different verification methods and their combi-

nation.
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Fig. 19.2: Sample Detection Error Tradeoff (DET) curve representing the same data which
was used to generate the ROC Curve of Figure 19.1

The DET curve always uses a logarithmic scale and it plots two different enti-

ties against each other. In this case the abscissa is the false alarm probability which

happens to be the same number as the false rejection. The ordinate is the miss proba-

bility which is the same as the false acceptance. The logarithmic scale usually makes

this curve more linear and the ROC more concave. The operating point for the equal

error rate is marked in these figures.

Note that simply knowing the EER does not really provide much insight into

other possible operating points. It is almost never desirable to operate at the EER

point. Depending on how much the security of the system being protected by the

verification engine is important to us versus the ease of use, we would use different

operating points. If we would definitely not want anyone to get into the system

without proper authority, then we would operate at a point where we may have to

disturb the clients by falsely rejecting some valid users in order to maintain high
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security. This is usually alleviated by requesting more audio data from the users or

using some supplemental information to make our decision.

19.1.5 Detection Cost Function (DCF)

NIST [2] defines a Detection Cost Function (DCF), CDet , as

CDet
Δ
= (CMiss p(Miss|Target) P(Target))+

(CFalseAlarm p(FalseAlarm|NonTarget) P(NonTarget)) (19.2)

where, CMiss is the cost of missed detection, CFalseAlarm is the cost of a false

alarm, p(Target) is the a-priori probability of a target speaker, and p(NonTarget) is

the a-priori probability of a non-target speaker. [2] uses the following values for the

1999 NIST evaluations,

CMiss = 10

CFalseAlarm = 1

P(Target) = 0.01

P(NonTarget) = 1−P(Target)

= 0.99

19.2 Identification Results

In this section, we show sample results of identification. It is important to show the

rank of an identification result as well as the top result. The figure shown here pro-

vides insight into how close the identification results were to the truth.

Figure 19.3 shows the result of an identification test performed on a telephony

task using call-center data. In this example, there are 78 speakers who have been

enrolled. A total of 78 tests have been conducted. 1 test speakers have not been

identified. This is due to the fact that the open-set option was chosen for the iden-

tification engine. 72 tests have rank of 1. This means that the test speaker was the

top result. In one test, the test speaker’s true identity showed up as the second in the

list (hence having rank 2). Similarly, two tests ranked 3 and one test ranked 7. 7 was

the largest rank, meaning that there was no test in which the rank was higher than

7 compared to the theoretic maximum of 78. Another number which is important

for understanding the performance of the identification process is the average rank.

In this case, the average rank was 1.15. The smaller this number, the better has the

engine performed. Of course, the minimum rank is 1, so the objective is to have the
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average rank approach 1.
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Fig. 19.3: Sample Histogram of the rank of the target speaker from a 78-speaker database
with 78 tests using the same data as was used for the verification task in Figures 19.1 and
19.2

The use of the average rank and the error rate are somewhat similar to giving an

EER for the verification case in contrast with the presentation of the DET or ROC

curve. Eventually, the DET curve in verification and the rank distribution in identi-

fication are more important than single numbers, although single number results are

still used for convenience.
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Chapter 20

Time Lapse Effects (Case Study)

The effect of time-lapse has not been studied well in biometrics. Although the liter-

ature is full of brief discussions about time-lapse effects in speaker recognition, no

proper quantitative study has been done on the subject. [9, 8] There are two main

types of time-lapse effects: short-term and long-term (aging). Here, short-term ef-

fects are studied for speaker recognition (speaker identification and speaker verifi-

cation). The RecoMadeEasy1 speaker recognition engine has been used to obtain

baseline results for 22 speakers who have been involved in a persistent (ongoing)

study.

Speakers were involved in language proficiency testing where they had to repeat

their tests due to undesirable scores. The speakers used here retook their tests two

more times after the original testing was accomplished. The time lapse between

consecutive tests was on the average between 1 to 2 months. Figures 20.1 and 20.2

show the distribution of the time lapse in days between tests 1 and 2 and tests 2 and

3 respectively. The words test and trial will be used interchangeably from this point

on. Each test consists of multiple audio segments which are each about 1 minute

long. These segments are free-form responses to questions to assess the candidates’

proficiency in the English language. Unfortunately, due to the fact that this type of

study is quite rare, no standard corpus is available.

The RecoMadeEasy R© Speaker Recognition engine uses a Gaussian Mixture

Model (GMM) approach to conduct identification and verification of the speakers.

Under normal circumstances, the first response of the first test (first trial) is used to

enroll the speaker in the database. Consequent segments are identified or verified

against the enrollment data captured from the first response. This scenario is used

to conduct the rest of the test without any need for a proctor, therefore reducing the

cost of testing. The data is obtained from a real-world application and has not been

manipulated or specifically collected for this purpose. These are real candidates tak-

1 RecoMadeEasy R© is the Commercial Speaker Recognition Engine of Recognition Technologies,
Inc.
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ing tests to be evaluated for English proficiency.

Tests have revealed that there is substantial degradation in the results of both

identification and verification from one seating to the next. There are two main

reasons for this degradation. The first well-known reason is known as channel mis-
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match between the enrollment session and the recognition of consequent tests. Many

different approaches have been taken to reduce the effects of this mismatch. Chan-

nel mismatch has in the past been mostly connected to handset mismatch, however,

it is quite more complicated than that. In addition to handset mismatch, changes in

the ambient noise (sometimes called source noise [14]), acoustic properties of the

ambiance (such as echo and reverberation), microphone distance and positioning

(angle), strain on the vocal tracts (holding the handset on one’s shoulder) and many

more are also responsible for these types of mismatches.[15].

Different techniques have been proposed for handling this type of mismatch by

considering specific sources of mismatch. These include Handset Score Normaliza-

tion (H-Norm) [13], feature mapping [12], and speaker model synthesis (SMS) [11].

Others have approached the problem by suppressing the effects through using

the Test Normalization (T-Norm), the Z-Norm [1, 2] and Feature Warping tech-

niques [10].

The second reason for degradation is a combination of other factors such as phys-

iological changes, environmental changes, emotional changes, etc.[4, 3] These ef-

fects are not very well understood and are bundled here in one category called time-

lapse effects. Among these changes, there are some which get worse with time. We

are interested in these effects which we lump together into time-lapse effects. Note

that we are not dealing with what the literature calls aging, since aging deals with

much longer effects, outside the range of these shorter-term studies. Aging effects

deal with more of the physiological changes that affect speakers as substantial time

progresses.[4, 3]

To see these effects of interest we have considered three consecutive tests per can-

didate. The changes between the first test and the second test include both channel-

mismatch and time-lapse effects. However, by doing a third test and seeing further

degradation of the recognition results, we can conclude that time-lapse effects have

caused most of the extra degradation seen from the first trial to the third trial as

compared to the changes from the first trial to the second trial.

First, a description of the data is given in the following section. Then, we dis-

cusses these degradations in more detail by doing a quantitative analysis of the

Identification and Verification results. Following this discussion, we try to reduce

the effects of time-lapse using several adaptation techniques and the results are re-

ported for identification and verification tasks followed by concluding remarks.
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20.1 The Audio Data

The audio data was collected using the μ-Law amplitude coding technique [5] at a

sampling rate of 8 kilo Hertz (kHz). The audio was then immediately converted to

the High-Efficiency Advanced Audio Coding Format (HE-AAC) [7] which is a very

aggressive, lossy and low-bit-rate audio compression technique. HE-AAC was used

to stream the audio to a server through flash. The audio, in turn, was converted back

to μ-Law 8-kHz audio and subsequently converted to a 16-bit linear Pulse Code

Modulation (PCM) which was used in the recognizer for enrollment, identification

and verification purposes.

The RecoMadeEasy R© speaker recognition engine was used for obtaining results.

This engine is a GMM-based text-independent and language-independent engine. It

uses models for the speaker and the competing models to conduct the identification

and verification tasks. The population in the identification task is the 22 speakers

described in the next section plus competing models. The models are parameters for

collections of multi-variate normal density functions which describe the distribution

of the Mel-Cepstral features for speakers’ enrollment data.

20.2 Baseline Speaker Recognition

As previously mentioned, each candidate goes through a testing procedure in which

questions are asked and responses from the candidate are recorded. Under usual cir-

cumstances, the first audio response is used to enroll the speaker into the system.

All the responses average to about 1 minute of audio. Figure 20.3 shows the results

of identification of individuals among the 22 candidates in our database. All sub-

sequent audio responses are identified at a rate of 100% or an error rate of 0%. In

this case, although the enrollment and recognition data differ, there is no channel

mismatch. These results are expected from a good commercial recognition system.

However, as conditions change and the candidates return to be tested for a second

or third time, a substantial degradation is noted, see figure 20.3. For the second trial

(test) and the third trial, there is channel mis-match [13] present as well as time-

lapse effects. Since the channels are chosen at a completely random manner in both

second and third trials, the extra degradation seen between trial 2 and trial 3 is most

likely due to time-lapse effects.

Figure 20.4 shows similar results for the verification process. In this figure, three

Detection Error Tradeoff (DET) curves [6] are presented using the first response in

the first test for enrollment, consequent data in the first test for verification of trial

1 and the second response in the second and third trials for verification of those tri-

als. The plot shows results which are similar to those seen in the identification case.

Namely, the Equal Error Rate (EER) increases from about 2.5% to nearly an order
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Fig. 20.4: Verification Time Lapse using Usual Enrollment

of magnitude higher for the second and third trials. In consistence with the results

for the identification tests, the performance of the verification system also degrades

in time as we move from the second to the third trial, whereas, the two channel con-

ditions in these trials are statistically as distant from the channel conditions of the

first trial. Therefore, the extra degradation from the second to the third trial may be

attributed to the time-lapse aspects.
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In the next chapter we will explore some adaptation techniques to allow for the

modification of the speaker models. Adaptation, as it will be seen later, allows for

significant reduction in the time lapse effects, although it does degrade the baseline

results slightly.
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Chapter 21

Adaptation over Time (Case Study)

In the previous chapter we noted the degrading effects of time lapse. The text- and

language-independent RecoMadeEasy R© speaker recognition engine was used to

obtain baseline results for 22 speakers who have been involved in a long-term study.

The speakers generated data in three seatings with 1 to 2 months delay between

consecutive collections. The speakers were actual proficiency test candidates who

were asked to speak in response to prompts. At each seating, several recordings

were made in response to different prompts. In this chapter, we will explore differ-

ent adaptation techniques which allow us to correct for some of these effects.

Adaptation techniques have been discussed in the literature and they mostly try

to adapt a speaker’s model to a universal background model (UBM), see [12, 1].

Here, we will further use adaptation to change the model for a candidate from the

originally adapted model based on the first enrollment data to a new model which

will be more resilient to changes in the channel and the time-lapse effects. The first

technique is data augmentation.

21.1 Data Augmentation

To modify the model for a speaker using data augmentation, the original enrollment

data is retained for the candidate. At a point when a positive ID of the candidate is

made, extra data is appended to the original enrollment data to provide a more uni-

versal enrollment model for the candidate matching different channel conditions and

time-lapse changes. Figures 21.1 and 21.2 show the identification and verification

results respectively, using the new models enrolled by utilizing the augmented data.

The results are in-tune with expectations. The identification performance degrades

from a perfect performance to a 5% error rate. This is due to the contamination of

the enrollment data which now contains channel information from trial 2 as well

as trial 1. It also results, quite expectedly, in a large improvement for the second

, H. Beigi Fundamentals of Speaker Recognition, 
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Fig. 21.1: Identification Time Lapse – Augmented-Data Enrollment
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Fig. 21.2: Verification using Augmented-Data Enrollment

trial. This is the case, since now the model contains channel information from the

second trial. However, there is also a very big improvement in the third trial which

is partly attributed to the smoother information content about channels contained in

the enrollment data. This smoothness is apparently attributing to better time-lapse

performance since no specific information is contained in the this enrollment about

the channel dynamics of the third trial.
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Similar results are seen in figure 21.2 for verification of the second and third tri-

als. In fact, comparing figures 20.4 and 21.2 shows that there is no degradation in

the verification of the first trial with the EER still being around 2.5%. However, the

EER of the second and the third trial have been reduced to only 10%, though the

overall performance in the second trial is still better than the third trial as expected.
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Fig. 21.3: Identification Time Lapse

21.2 Maximum A Posteriori (MAP) Adaptation

One of the problems with the augmented-data approach of Section 21.1 is that the

original audio data has to be maintained to be able to do a re-enrollment by adapting

from the speaker-independent model to the speaker model for the augmented data.

Also, conceptually, the same weight is given to the old data as is given to the new

data. One remedy is to use the adaptation techniques which were used to adapt from

the speaker-independent model to the speaker model, to adapt from the speaker

model to a new speaker model considering the new data at hand. The adaptation

technique which was used here is the Maximum A-Posteriori adaptation method.

Other techniques such as maximum likelihood linear regression (MLLR) may have

very well been used for this purpose. [1]

In doing the MAP adaptation, the number of iterations dictate the forgetting fac-

tor of the technique. The higher the number of iterations, the more the new data

is considered in contrast to the old data. Normally, about 5 iterations are used to

go from the speaker-independent model to the speaker model. Initially, this number
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was used to further transform the prototypes from the old model to the new model

for the speaker.

Figure 21.3 shows the results for identification using the new models compared

to the usual enrollment and the augmented-data enrollment. The MAP adapted en-

rollment using 5 iterations shows much better overall performance than both of the

usual enrollment and augmented-data enrollment models. However, because it over-

trains on the data of the second trial, the results of the first trial are highly degraded.

To remedy this problem, the number of iterations for this MAP adaptation was re-

duced to 1. The results are shown in the same figure ( 21.3). The results show that

no degradation is reported for the second and third trials, however, the identification

performance of the first trial is greatly improved.
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Fig. 21.4: Verification using 5 iteration Adaptation

Figures 21.4 and 21.5 show similar performance for the verification case. Again,

using 5 iterations degrades the first trial by over-training. Figure 21.5 portrays much

better performance across the different trials. In addition, the third trial has quite

an acceptable performance although no channel information has been included in

the speaker model from this trial. The EER for all three trials using a MAP adap-

tation with one iteration varies from about 10% for the best case which is trial two

(the trial for which we have adapted) to a respectable maximum of about 14% for

the worst case which is trial one from which we deviated. Trial three has an EER of

about 12% which seems to coincide with the average EER across the different trials.
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Fig. 21.5: Verification using 1 iteration Adaptation

21.3 Eigenvoice Adaptation

The Eigenvoice technique is an incarnation of Eigenfaces which has been quite suc-

cessful in the image recognition world. It is a PCA (Section 12.1)technique and just

line PCA, it has a linear and many nonlinear versions. [9] uses the linear version to

speed up adaptation by projection. [10] has implemented the nonlinear version of

Eignevoice adaptation based on kernel PCA (Section 15.7).

21.4 Minimum Classification Error (MCE)

Another adaptation technique which has been reported for adapting the continuous

density HMM parameters is the minimum classification error (MCE) technique [8].

The authors claim that this adaptation technique is more suitable for model adapta-

tions with small amount of data.
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21.5 Linear Regression Techniques

Starting with Leggetter and Woodland [11] in 1995, many techniques were intro-

duced which follow the simple idea of using linear regression to transform the pa-

rameters of the mixture models of speaker-independent models, using some small

adaptation data, into speaker-dependent parameters. the following sections are basi-

cally a proliferation of different combinations of ML, MAP, Eigenspace, and MCE

techniques of the previous sections with linear regression for parameter transforma-

tion. in essence most of these techniques start with transforming the means and then

are extended to include transformations for the covariance matrices as well.

21.5.1 Maximum Likelihood Linear Regression (MLLR)

In 1995, Leggetter and Woodland [11] proposed to use linear regression to adapt

the mean vectors of the probability density functions associated with the HMM

models used in modeling speakers. This was specifically related to speech recog-

nition and the adaptation of the speaker-independent model to generate speaker-

dependent versions of the model with limited data. The method, they proposed,

does not modify the covariance matrices. It assumes that a small amount of data

may be used to estimate the transformation matrix which would then transform the

speaker-independent mean vectors into the speaker-dependent ones. To deal with

small amounts of adaptation data, some tying may be done. Tying may be done ei-

ther at the state level of the HMM, or the probability density functions may be tied.

The latter would means that the same transformation matrix may be used for several

densities so that if any one density has not had enough representation in the limited

quantity adaptation data, it would still be transformable. All the tied densities which

share a transformation matrix are said to be within the same regression class. In fact

[11] proposes the usage of single transformation matrix when the adaptation data is

extremely small.

The transformation matrix is designed such that it would maximize the likelihood

of the adaptation data. For this reason, the techniques is called maximum likelihood

linear regression (MLLR. For the normal probability density family, the likelihood

of a model given a sample, x and parameters, ϕϕϕ , would be given by Equation 6.196,

which is repeated here for convenience.

L (ϕϕϕ|x) = p(x|ϕϕϕ)

=
1

(2π)
D
2 |ΣΣΣ | 1

2

exp

(
−1

2
(x−μμμ)TΣΣΣ−1(x−μμμ)

)
(21.1)

where

{
x, μμμ ∈ RD

ΣΣΣ : RD �→ RD
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Since in the original MLLR approach, the covariance matrices are untouched, the

shapes of the density functions are not changed. Only their locations are translated

in the feature space.

First, the MLLR approach augments the mean vector with a parameter called the

offset term, ωγ : 0 ≤ ω ≤ 1. ωγ This parameter is designed to allow for added input.

Christensen [6] has a whole thesis dedicated to the implementation of the MLLR in

speaker adaptation using HMMs.

21.6 Maximum a-Posteriori Linear Regression (MAPLR)

Using the Bayesian framework, variance estimation in MAPLR [5] is similar to the

method used in MLLR, with the difference that the a-priori distribution of the trans-

formation matrix is also multiplied by the likelihood and the argmax function is

computed. In other words, the maximization is done over the a-posteriori probabil-

ity rather than the likelihood.

21.6.1 Other Adaptation Techniques

There are many other adaptation techniques some of which are designed for spe-

cial tasks and situations. WMLLR [7] is a modification of the MLLR technique. It

is designed to speed up MLLR. Discounted likelihood linear regression (DLLR) is

yet another similar technique due to [2]. It uses the EM algorithm (Section 11.3.1).

Then there are two variations on MLLR and MAP by the names of Eigenspace max-

imum likelihood linear regression (EMLLR) [3] and [4], respectively.

21.7 Practical Perspectives

We have seen that there seem to be other effects in addition to channel mismatch

which further degrade the identification and verification performance of a statistical

speaker recognition system. We have lumped all these effects into a category called

time-lapse effects. These effects along the side of channel mismatch effects were

somewhat suppressed using an augmented data approach where the enrollment au-

dio data is always kept around and augmented with new data whenever a positive

ID is made and this way the overall performance increases. Although this degrades
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the best case performance of the engine.

One of the problems with keeping the enrollment audio data is the memory-

intensive nature of the solution. In addition security breaches may occur including

legal and constitutional issues with keeping audio data around on a server. Some

constitutions including that of the United States of America attach an ownership to

the raw audio of a person. In addition, compromised access to the server holding

the audio data will cause security breaches such as spoofing capabilities, etc. In or-

der to remedy these problems and the performance degradation issues, we used a

MAP adaptation technique to adapt an existing speaker model to a new model us-

ing new enrollment data. It was shown that using non-aggressive adaptation works

a lot better since over-training causes an overall degradation in the performance of

both identification and verification engines. From the results we may further deduce

that there is indeed a time-dependent degradation which may be remedied by using

smoother models with more information across the time-line as well as different

channels.

We have only scratched the surface of the time-lapse issue and plan to do much

further research in this area to do better speaker model smoothing using other com-

pensation techniques such as MLLR [1] and Latent Factor Analysis (LFA) [13]. At

the present, the study is being expanded to include over 100 speakers and to experi-

ment with more re-takes to see how the time-lapse effects and the adaptation results

follow the trends seen here.
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Chapter 22

Overall Design

22.1 Choosing the Model

As we have seen, there are quite a number of modeling tools which are available

for utilization in different branches speaker recognition. There are many different

variables which help us decide on the type of algorithms or techniques. These are

mostly application-dependent. In fact one of the main purposes of writing this text-

book was to bring the many methods together and provide enough information to

the reader so that the art of choosing different components for a specific problem

would be supported by some a-priori knowledge about these available techniques.

The core of a speaker model has basically been designed based on statistical

analysis and modeling of the data. A GMM system, intrinsically, requires a smaller

number of parameters to be learned. This may be understood by remembering that

most HMM-based techniques use GMM as their underlying distributions. Also, as

we mentioned, a GMM is really a single-state degenerate HMM. Which means that

it must reside at the lower limit of the number of parameters.

Of course there are also some fundamental problems associated with the choice

of GMM and HMM models. One such problem is associated with the problem of

local optima which are returned by the training algorithms used in training the pa-

rameters of the GMM or HMM, such as the k-means algorithm and its variations

and the EM algorithm. We have talked in detail about these issues in Chapter 11.

Another problem which is more related to the text-dependent speaker verification

and speech recognition is the problem associated with the proper capturing of the

dynamics associated with the transitions within the said phrase. We discussed this

issue in detail at the end of Section 13.8.

Another model that has been discussed, is based on SVM. We also saw that most

SVM implementations require a large number of parameters to be solved across an
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extended time-line. Features are usually concatenated to create large supervectors

which act as the input to large optimization problems requiring more computation

than, say GMM. There have also been combinations of these models to be able to

use the best features of each of technique.

Generally speaking, most of the decision comes to the fundamental question

of the amount of data that is available for doing the recognition. In forensic and

broadcast-type situations where the recognition task usually runs in a passive, back-

ground mode, large amounts of data could be available based on long conversa-

tions. Then, more complex techniques such as Large Vocabulary Continuous Speech

Recognition (LVCSR) techniques [48] may even be used, which require long seg-

ments (at least 30s) of speech by the speaker. However, in most everyday speaker

recognition problems such as authentication applications and quick identifications,

even the 10s or so which is recommended for GMM-based text-independent recog-

nizers is hard to attain. For any lengths in between, we can consider HMM-based

and most SVM-based techniques.

When we need to seriously lower the length of speech input down to the order of

4s or less, then we really need to resort to text-dependent or text-prompted models

which in themselves may have quite an array of different modeling techniques.

According to a comparison done across different models, Campbell, et al. [9]

report that the best performance is achieved on the NIST SRE 8c task by fusing

many different models. However, within individual models, GMM with factor anal-

ysis seems to have the best overall performance. It is hard to make any conclusions

from these tests though. There are so many different considerations to be made

while choosing a model. Also, all the results have a statistical margin of error that

could be quite data dependent. However, it may be safely concluded that the state of

the art at the present lies within some combination of GMM and factor analysis or

SVM and NAP or MLLR or other transformations. Therefore, regardless of which

classifier is used (GMM, HMM, SVM, etc.), it seems like there is a need to handle

the session variability through some feature transformation to separate the effects of

the channel from the speaker characteristics.

22.1.1 Phonetic Speaker Recognition

Phonetic models have been used in a text-independent setting to utilize the informa-

tion associated with expected phones in a given language. Using such models lim-

its the text-independent recognizer to being somewhat language-dependent. Due to

phonetic similarities, some languages or dialects may be lumped together to reduce

the language-dependency, but certain languages have inherently different phones.

Examples of phonetic speaker recognition models are [23, 28, 33, 41, 1, 16, 15, 38,
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31, 10].

22.2 Choosing an Adaptation Technique

We discussed several different speaker adaptation techniques, MAP (Section 21.2),

MLLR (Section 21.5.1) and Eigenvoice (Section 21.3) adaptation. The main claim

of Eigenvoice is that it needs less data for the adaptation than MAP or MLLR.[34]

However, based on the comparison reported by [40], MAP seems to do better with

the GMM-based approach, when tested against the 1999 NIST speaker recognition

evaluation database. Of course, as we all know, there is no general rule and there

is usually no best approach, only the most appropriate approach given the data, the

conditions and the task.

22.3 Microphones

There are several aspects that make microphones fundamentally different from one

another. One distinguishing characteristic is the directionality and sensitivity of the

microphone. In terms of directionality they are often categorized into directional

(unidirectional) or omnidirectional types. As for sensitivity, there are close-talk and

sensitive microphones.

There is no single microphone which would be suitable for all conditions, how-

ever, as a general rule, unidirectional close-talk microphones are better suited for

most speaker recognition applications. Most microphones are sensitive to the au-

dio signal present in a space in the from a cardioid (heart shape) region around the

microphone. Unidirectional microphones can be more efficiently used in controlled

recognition systems.

Very sensitive, omnidirectional microphones can increase the possibility of inter-

cepting unwanted spurious signals such as ambient noise and other speakers. Specif-

ically, when other voices are superimposed on the voice of interest, the recognition

task may quite easily be compromised. However, there are conditions in which a

unidirectional close-talk microphone is simply not suitable for the application at

hand. An example of such conditions is the case of teleconferencing in which mul-

tiple individuals share a microphone in a conference room and the minutes of the

conference are automatically taken using speaker and speech recognition software

– see Section 1.4.6. Therefore, the choice of a proper microphone may be essential

in the results of recognition.
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There are two major technologies used in microphone manufacturing, electret

and carbon-button types. The name, electret is a composed of parts of the words

in the phrase electrostatic magnet. An electret microphone is a condenser type

microphone.[45] Its design is based on the use of stable dielectric materials which

stay charged for a long time (in order of centuries). Because of this type of charged

material, it does not require any polarizing power. Electret microphones generally

come in three different forms, diaphragm, back-electret and front-electret. The lat-

ter is the most recent technology. The charged material is normally made of special

plastic.

Carbon button or carbon microphones are becoming harder to find these days.

They were used in telephones in the early days until the mid 1980s. These micro-

phones are generally made of carbon granules which are sandwiched between two

metal plates. A direct current is passed through the sandwich. The compression of

the carbon granules caused by the audio wave excitation is translated into a varying

resistance in the carbon sandwich. This varying resistance changes the flow across

the two metal plates causing in the creation of an electric signal related to the audio

excitation.

All microphones have their own characteristics which become interleaved with

the vocal characteristics of the speaker being monitored. A good microphone is one

that has a large dynamic range and that will add the least amount of distortion to

the audio being captured. Those with experience with photography will note the

analogy of a good microphone being similar to a good lens in a camera, one that

produces the least distortion to the photograph being taken.

Unfortunately, once the audio signal has been distorted by the characteristics of

the microphone, it is almost impossible to extract the true signal even if the exact

characteristics of the microphone are known. This is due to the highly nonlinear ef-

fects possessed by audio capture devices and the fact that some types of distortion

destroy the original dynamics of the signal in an irreversible fashion. A simple ex-

ample is band limitation which cuts off higher and lower frequency contents of the

audio signal getting rid of some essential parts of speech such as fricatives.

However, the shear number of different types of microphones makes the problem

even harder. It is next to impossible to be able to recognize all the different makes

and models of microphones and to be able to account for their distortions on the

signal.

Pop screens filter the pops (impulses) that are associated with stops such the bh

and ph sounds. To some degree these impulses should be preserved to allow dis-

tinguishing ability between regular and aspirated stops. However, since the energy

level of these aspirations is quite large they can present saturation conditions in the

microphone output making screens useful.
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One thing which is known for sure is that one of the most attractive aspects of

speech as a biometric is the fact that it can use existing infrastructure. Therefore,

for speaker recognition to be successful, it needs to cope with all kinds of micro-

phones and acoustic conditions. Therefore, researchers will always strive for more

robust algorithms in the hope of reducing the effects of microphone effects and mis-

matches – see Section 22.4.

22.4 Channel Mismatch

[32] uses microphone-specific background models to reduce channel handset mis-

match effects. It creates two models which are the equivalent of the Universal

Background Model for the two major sets of microphones, carbon-button and elec-

tret. Similar number of speakers (46 in this case) are used to create each of these

background models which are used to provide the competing model in the speaker

verification test. This achieved some tangible improvement in the performance of

matched channel tests, but did not really improve the mismatched channel results.

Using an Auto Associative Neural Network for a nonlinear principal component

analysis (PCA) in conjunction with these specialized background models a tangible

reduction in the error rate of the mismatched microphone and channel was observed.

However, from the results it is hard to hypothesize the amount of improvement due

to the PCA and that of the specialized models since no results for the PCA with the

Universal Background Model has been reported.

22.5 Voice Over Internet Protocol (VoIP)

The dominant codec using in VoIP systems is the ITU-T G.711. This codec has been

the standard fall-back codec which means that all Voice over IP (VoIP) systems are

required to support it. Because of its low bandwidth requirements, G.729 has been

increasingly utilized in VoIP systems where bandwidth is at a premium. A typical

G.711 system (PCMU or PCMA) uses 64-kbps transmission and G.729 only uses

8-kbps. See Chapter 26 for more information on these standards.

One of the problems that plagues VoIP systems is echo. Usually, because of large

network delays and hardware delays, the echo in VoIP systems becomes one of

the most important problems. ITU-T G.131 [26] defines acceptable round-trip de-

lays based on the strength of the signal difference between the main signal and the

echoed signal, on average, round-trip delays of about 30ms are tolerated, but most

VoIP systems have much longer delays, amplifying this issue. The recommended

maximum delay on the total round-trip delay is 150ms where a maximum 400ms,
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one-way delay for all circumstances has been recommended by ITU-T G.114 [25].

See Section 18.3 for more information.

22.6 Public Databases

There have been quite a few public databases collected in the past decade or so. It

is not only impossible to list them all here, but it is also outside the realm of this

book. We will briefly describe a few of the databases which have been used in the

literature.

22.6.1 NIST

The National Institute of Standards and Technology (NIST) has been putting to-

gether many corpora which have been used in their regular evaluations. Most of

these are available from the LDC [36]. In the recent years, these corpora have in-

cluded many different languages. NIST has also been generating corpora for other

speech-related evaluations which have sometime been used for the training and the

evaluation of speaker recognition systems by independent authors.

With the exception of the years 2007 and 2009, some kind of a speaker recog-

nition evaluation was conducted by NIST in every year from 1996 to 2010 (when

this book is being written). The details of these evaluations and are available from

the NIST website [42] for all these years with the exception of 1996. The website

includes information about the evaluation plan for each year. It also includes some

useful software for processing the data and the results.

22.6.2 Linguistic Data Consortium (LDC)

Linguistic Data Consortium (LDC) [36] is a nonprofit organization which works on

preparing data in most speech and language dependent tasks. It works by member-

ship with a different price structure for education, nonprofit, government, and com-

mercial institutions. Of course some of the data may be purchased without being a

member. They have put out many corpora related to speech and speaker recognition

in the recent past. Here are some of these data sets.
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22.6.2.1 The Fisher Corpus

The Fisher corpus is a collection of 16,000 telephone conversations in English,

about 2,000 hours of which were transcribed by 2004.[12] Although the Fisher cor-

pus was collected for text-to-speech efforts, it has been used in speaker recogni-

tion benchmarks [9] as well. It is available from the Linguistic Data Consortium

(LDC) [36].

22.6.2.2 TIMIT and NTIMIT

The TIMIT database is one of most widely used speaker recognition corpora [2,

3, 4, 5, 11, 18, 19, 46, 49]. It was developed for DARPA and is distributed by the

Linguistic Data Consortium (LDC). In TIMIT, speech samples have been obtained

from 630 speakers using 8 different dialects of English, across the United States.

The gender distribution in TIMIT is not balanced. There are 438 male speakers and

only 192 female speakers. Each speaker has been asked to read out 10 sentences

based on a phonetically balanced text. [22] The recordings were done in a con-

trolled clean environment and there is only one speaker per session. So it is ideal for

performing speaker identification and verification tests. However, it cannot be used

for segmentation evaluations.

The TIMIT recordings were done on a clean wideband microphone at a sampling

rate of rate of 16 kHz was used for recording the audio, producing an 8 kHz speech

bandwidth in a controlled clean environment.

NTIMIT is another database which is basically very similar to the TIMIT

database, but it was recorded using telephone handsets over a PSTN with half of

the calls going through long distance carriers.

22.6.2.3 KING

The KING database is distributed by the LDC and has been used for many years

as the basic comparison of speaker recognition algorithms [13, 43]. It is not being

used very often these days due to many limitations. It only contains the speech of

51 male speakers and no female presence. It was recorded using a combination of

wideband microphones as well as some electret telephone handsets through a PSTN.

The donors were asked to either read out or repeat prompted words, digit strings,

and sentences. They were also shown photos which they had to describe in free form

phrases and sentences.

The KING speech data was recorded in a clean environment and contains only

clean speech. One attractive feature of the database is that the recordings were done
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in 10 sessions which were spread out over several weeks. This allows for studying

limited variations due to time lapse. In general, the KING corpus is not very useful

for any serious analysis and testing.

22.6.2.4 YOHO

The YOHO database is distributed by the LDC. It is a collection of low bandwidth

recordings produced in a clean office environment containing clean speech. It only

includes prompted digit strings and has been organized into 4 enrollment sessions

and 10 verification sessions per speaker. There are a total of 138 speakers in the

database which includes an unbalanced mix of 106 male speakers and 32 female

speakers.

Although YOHO was used in many results produced in the early days of the de-

velopment of speaker verification [14, 50], it is not very appropriate for evaluations

in real conditions. It is especially not very useful for text-independent speaker ver-

ification evaluations. The one attractive feature of the database is its low sampling

rate which is only 3.8 kHz.

22.6.2.5 Switchboard I & II

There are two switchboard databases which are distributed by the LDC. They have

been recorded over various types of telephone handsets through PSTN. The main

feature of these databases is the fact that they have a balanced distribution of male

and female speakers (about 50% in each gender). The recordings depict conver-

sational speech, although the channels are separated so that there is only a single

speaker in each channel. There are from 1 to 25 sessions of speech per speaker with

each session containing about 5 minutes of speech in either a home or an office en-

vironment.

The switchboard I database contains a total 543 speakers and it has been used ex-

tensively in evaluating speaker recognition tasks.[8, 35, 20, 21, 44] The switchboard

II database has also been used extensively for such evaluations.[9, 47] In addition, a

subset if the switchboard I database is known as the SPIDRE corpus and it is often

used for the evaluation of speaker identification algorithms.
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22.6.2.6 Cellular Switchboard

In the last section, we discussed two switchboard corpora distributed by the LDC.

However, those databases were recorded over PSTN. A cellular version is also avail-

able from the LDC, called simply, the cellular switchboard database. It is also made

up of recordings in the form of conversation speech, but through various cellular

handsets using the GSM 1900 cellular standard. The recordings are done over nor-

mal settings in which cellular telephony is used. There are at least 10 sessions per

speaker, recorded in the course of several days. Each session contains about 5 min-

utes of speech and there are a total of 190 speakers in the database with an equal

distribution of males and females.

22.6.2.7 Tactical Speaker Identification

The tactical speaker identification (TSID) database is distributed by the LDC. It has

been collected in order to test the performance of speaker identification algorithms

over military radio handsets. The database is quite unbalanced with regard to gen-

der. There are a total of 40 speakers in the database, one of whom is female, the

rest of the 39 speakers coming from male speakers. A single session of speech data

per person was recorded outdoors, using 4 military radio handsets and an electret

microphone. The military handsets were transmitted over HF, UHF and VHF bands

and wideband. The speakers were asked to read out sentences and digits and also to

utter free-style speech.

22.6.3 European Language Resources Association (ELRA)

The European Language Resources Association (ELRA) [17] is the European coun-

terpart of LDC which has been quite active in capturing speech in most official Euro-

pean Union languages. The data is also made available for sale to interested parties

in the same manner as it is with the LDC. The ELRA databases are quite extensive.

It presents quite a wide variety of speakers in different languages. Most of the ELRA

databases contain large numbers of speakers under different conditions. Over 140

corpora with large number of speakers (up to a maximum of about 4000 speakers)

are available from ELRA, recorded through PSTN and cellular networks with var-

ious handsets. These recordings have been done with sessions spanning over many

months in British English, German, Spanish, Italian, French, Danish, and Finish. In

the following few sections, we will describe a few of these databases.
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22.6.3.1 SIVA

SIVA is a gender-balanced Italian corpus which contains two different sets of tele-

phony data recorded over PSTN. The first set is a collection of 18 sessions per

individual, recorded in the span of 3 days for 40 speakers. The second set is a series

of single session recordings from 800 different speakers. The recordings were done

in office and home environments and contain short sentences of prompted words

and digits.

22.6.3.2 POLYVAR

POLYVAR is a French telephony corpus from ELRA which was recorded over PSTN

and ISDN, in clean home and office environments. It includes

22.7 High Level Information

High level information such as phonology, suprasegmental information (see Sec-

tion 4.3), syntax and dialog may be used to reduce the speaker recognition error

rates [30]. However, as with any other improvement, there is a price to pay. In

these systems, usually, significantly larger training data is need to be able to account

for the extra information. Also, these types of clues are usually quite language-

dependent and come at a high cost in terms of processing and analysis which in

most cases does not justify the amounts of improvement seen in the results. Also,

the reported results in the literature could be quite biased based on the database used

for doing these evaluations.

It is also important to try to learn from the experience of other related fields.

According to Lalit Bahl, when we were working together in the speech group of

IBM research in 1995, there has been a paradox surrounding the role of linguistic

knowledge in the advancement of speech recognition performance. Around 1972

when serious research efforts began in the field of speech recognition by some ma-

jor players such as IBM and AT&T, a natural assumption was made that the more

linguistic knowledge one uses, the better results will be obtained for speech recogni-

tion. However, Figure 22.1 shows a qualitative relationship according to Lalit Bahl

over the course of about 30 years. This may be counter-intuitive, but a major reason

behind this behavior is the fact that linguistic knowledge is a rigid set of rules cre-

ated to give order to an otherwise free-form natural phenomenon which is speech.

Although there is order in speech so that it may be understood, the order is not so

clear cut and it is very hard to model in a global sense so that all possible variations

are considered.
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Also, looking at Figure 22.1, one may then mistakenly conclude that we can do

away with all linguistic knowledge. That is certainly not the case. If were able to

account for every possibility, then having more linguistic knowledge would have

produces better performance. In fact it has been shown that N-Gram language mod-

els [39] gain quite considerable performance for speech recognizers. In addition, it

has been shown that a class-based N-Gram model [7] performs even better. The rea-

son for the better performance of the class-based N-Gram versus normal N-Gram

and N-Gram versus more strict language models is the smoothing effect that occurs.

This is a consequence of maximum entropy in Information Theory 7 which states

that in the absence of any knowledge about a system, the maximum entropy solution

is the most optimal. Here, we are operating between the two extremes of knowing

nothing, which would then require equal probability (maximum entropy) solutions

and thinking that we know everything there is to know about the linguistic content

in which case, everything would be modeled to the ’t’. In this mid-point operating

condition, it is best to use some information, but to smooth that information with

a maximum entropy solution which would allow for exceptions. This is true in any

statistical system.

Fig. 22.1: The Qualitative Relation between Linguistic Knowledge used in a Speech Recog-
nition System and its Performance.

Given this experience from the speech recognition field, we should also try to use

some suprasegmental information together with traditional features based on local
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information, such as MFCCs. This combination is sure to work better than any one

sided approach as evidenced by such experiments such as [30]. The design objec-

tive then will have two levels. At the first level, each of the local and suprasegmental

models should be optimally generated and at the second level, they should be opti-

mally combined to produce the best possible results.

We also have to be careful about using terms such as we just did, “the best possi-

ble results.” Best results would always have to be determined relative to the deploy-

ment environment. This is one thing that has always disturbed me about tests and

results that are requested and reported. Users request numbers such as error rates

and accuracies and researchers, reluctantly, provide them. Based on my own experi-

ence, the best of breed systems that I have developed under certain conditions have

not necessarily performed the best under natural circumstances. It is important that

this thesis is considered when deployments of the speaker recognition system are

made. It is quite feasible that a higher level decision making apparatus be developed

whose expertise is the automatic configuration of the recognition engine with the

requested environment. This should be an area of research and would most likely

render speaker recognition much more practical and reliable.

22.7.1 Choosing Basic Segments

One important thing to remember is that segmentation may also be language de-

pendent. Phonetic segmentation has worked well with many languages of Indo-

European origin. However, we should remember that there are many syllabic and

mora-based languages which could benefit from those boundaries as the basic ele-

ments of the speech or at least to be considered as a suprasegmental division which

would add further information to the process.

[27] uses a syllabic lattice based algorithm for speaker verification – see Sec-

tion 4.3.1.1. In this approach, a large vocabulary continuous speech recognizer

(LVCSR) is used to approximate the likelihoods of the background model and the

target-speaker. In this approach the optimal state alignment of the best speech recog-

nition result which is the speaker independent HMM model and the alignment re-

sults from the target-speaker’s HMM model are used to estimate the likelihoods of

the background model and the target speaker model respectively. This is done in

the place of the regular GMM models for the background and target models (as

compared to the GMM approach). This approach is similar to the Dragon Systems’

approach used in the NIST-1999 evaluations [48] for the two-speaker detection and

tracking task, with the difference that [27] used a syllabic lattice model (Chinese)

and [48] used a basic phonetic model (English).
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22.8 Numerical Stability

Once it gets down to the actual implementation of a recognizer, there are many dif-

ferent aspects of design that should be considered. One of the most important, is

numerical stability. About 15 years ago, I remember spending a great deal of my

time on optimizing for integer-based processors. I guess this should not be an issue

today, since unlike those days, math co-processors are quite standard even on the

smallest handheld and embedded processors. As we have seen, quite a lot of log-

arithms have to be computed, both in the front-end and back-end of such systems.

For an integer implementation, the best remedy is to use logarithm tables and some

handy decompositions. The most important table is one that adds two logs (a lo-

gadd function). Of course, even with the existence of fancy math co-processors, it

sometime makes sense to use tables due to their stability. There is a great renewed

interest in being able to implement embedded acoustic models [37] in handheld de-

vices such as smartphones.

Take the MFCC computation step. At the stage when we should take the log of

the spectrum, it is possible, due to precision problems to end up with a very small

number whose log may approach −∞. There are some possible remedies for these

situations. One is to use tables as mentioned. A more appropriate technique is to set

a floor for the domain of the log function and to check the argument and set it to the

chosen floor value if it happens to be less.

Another very important tool for avoiding numerical instabilities is proper scaling.

In general, it is quite important to assess the dynamic range of different variables

and in use, both in the domain and range of the functions related to these variables.

Then a proper scaling may buy us quite consider stability. This is especially true for

probabilities. It is important to use logs of probabilities as much as possible. Some-

times it makes sense to take the logarithm of any set of numbers is a computation

involving varying ranges of variables. Then after the final computation, we may ex-

ponential and go back to the original space.

In the process of designing a recognizer. We deal with covariance-like matrices

quite a bit. These may be true covariance matrices or other matrices of a similar

nature, such as the Hessian matrix, its inverse and their numerical updates. As we

have seen in Chapter 25, many rank-two update techniques bank on formulating the

updates in terms of square-roots of the final update. A great example of a similar

technique for using covariance matrices is the Cholesky factorization (Cholesky de-

composition) [6] or square-root filtering which is widely used in signal processing

techniques whenever covariances are used. For instance, square-root filtering is used

in the estimation of the ARMA model parameters (or Kalman filtering).

Take matrix such as a covariance matrix, ΣΣΣ : RN �→ RN . Cholesky factorization

gives us the following decomposition for the matrix,
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ΣΣΣ = LLT (22.1)

The condition number of the ΣΣΣ is defined as,

cΣ =
λ◦1

λ◦N

(22.2)

where λ◦1 and λ◦N are the largest and smallest Eigenvalues of ΣΣΣ , respectively. When

ΣΣΣ is factorized, the Eigenvalues of L are equal to
√
λ◦n,n = {1,2, · · · ,N}. This means

that the condition number of L is also
√

c.

This could be very significant for cases where there is relative discrepancy in

the sizes of the different dimensions of a vector. For example, if λ◦1 = 1000 and

λ◦N = 0.001, then the condition number of ΣΣΣ would be 1,000,000 and the one for

L would only be 1000. This could determine the success level of the whole recog-

nizer. Once the computations are completed in the square-root space, they may be

converted back.

Another very important strategy, for attaining and maintaining numerical stabil-

ity, is normalization. We spent some time discussing signal enhancement and nor-

malization techniques in Chapter 18. Many of those techniques tried to remove the

variability of the data due to conditions. However, sometimes, normalization may

be used to simply bring variables into more valid and consistent dynamic ranges.

Take two codebooks of features, for instance. Let us say one is based on the MFCCs

and the other on a new feature with which we are experimenting. It is important to

consider the dynamic ranges of these two feature sets and then normalize them so

that they would be comparable without changing the intra-variability of these fea-

tures. These techniques are quite successful in practice.

22.9 Privacy

Privacy is also an important problem which can manifest itself in different forms.

For example, speaking in populated settings may not be suitable, making it hard to

use speaker recognition in some cases. Also, some individuals may not be happy

with supplying voice samples. This problem seems to be less prevalent in speaker

recognition than other biometrics as we touched on it earlier in the tutorial.
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22.10 Biometric Encryption

Some believe it may be important to do extra encryption of the models to ensure

that there is no reversible information deduced from the models. Usually statistical

models are not reversible since due to the change in entropy it is generally impossi-

ble to build any audio from statistical models. Care must be given that non-essential

data is not stored in the models and only an irreversible model is kept. Even then, it

is important to store and send these models back and forth using utmost encryption.

22.11 Spoofing

Spoofing is the act of presenting a verification system with the audio of the target

speaker by an impostor which has been either collected using interception or gen-

erated by other means. If the possible response is limited to a small set of phones,

then it may be possible to concatenate enrollment audio to create the string needed

to fool the verification system. Also, many speech synthesis systems are increas-

ingly becoming capable of using enrollment data from a speaker and then produce

speech with that speaker’s characteristics [29].

Spoofing is a serious concern for speaker recognition platform designers. At the

early stages of the utilization of speaker recognition systems, enough attention may

not have been paid to this subject. Most of the effort has been devoted to solving

basic problems such as recognition results and condition mismatch problems. How-

ever, as the discipline matures, anti-spoofing is beginning to move up in the to-do

lists of engine and application designers as well implementors. Here, we will discuss

possible spoofing scenarios for different modalities of speaker verification. We also

build the case toward the abandonment of text-dependent and text-prompted systems

for more security conscious applications. Instead we show that text-independent

verification systems present more freedom in being able to build in a sophisticated

knowledge-base into the complete verification solution to avoid spoofing.

22.11.1 Text-Prompted Verification Systems

In Chapter 17 we discussed the text-prompted scenario in some detail. Limiting the

space to be able to handle text-prompted enrollment and verification has its dis-

advantages. Let us say we limit the coverage to only digits. Then, an impostor may

presumably have a recording of the voice of the target speaker (say from intercepting

the enrollment process) and can segment that audio to retain samples for individual

digits. Since the number of digits is limited to 10, this would be quite an easy task.
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Then by hearing the prompt and the aid of an audio editing software, the impostor

may either type in the digits which are requested at the verification prompt and have

the software play back that sequence with the target speaker’s voice. This will get

the impostor in.

As a counter measure, one may attempt an anti-spoofing mechanism such that at

the verification time, exceptionally good scores are also rejected. This would usu-

ally happen when the verification string is made up of the enrollment data. However,

this anti-spoofing technique may not quite work. For starters, since the audio may

have been intercepted, if it were intercepted by a different recording device from,

say, a telephone line, any characteristics of the recording apparatus may modify the

audio. This modification may be enough to conceal the spoofing characteristic of the

signal. Also, a more sophisticated impostor may even modify the enrollment data to

make it seem different, fooling the simple anti-spoofing mechanism discussed here.

In general, as in any other system, there will always be a struggle between bio-

metric engine and application designers and professional hackers. Our conclusion is

that a sophisticated knowledge-based recognition would be much more practical. As

the knowledge-base becomes more sophisticated, text-dependent and text-prompted

systems will no longer be practical and only text-independent recognition is rec-

ommended to be able to handle the more complete space of vocal characterization

dictated by the advanced question and answer sessions.

22.11.2 Text-Independent Verification Systems

At this beginning of the spoofing discussion we noted that there are increasingly

more sophisticated systems capable of synthesizing speech using the vocal char-

acteristics of an individual [29]. To be able to do this, these synthesizers require

enrollment data. It is very important to guard the audio which is used for the en-

rollment of speaker recognition systems. Practical systems would capture the audio

over a secure line and then discard it immediately after the enrollment for the recog-

nizer has been completed. Many implementors are hanging on the enrollment audio

to be able to do further research and tuning of their systems. It is important that seri-

ous live implementations of speaker recognition demand the immediate destruction

of the audio as soon as the enrollment process is completed.

Even with taking such security measures, it is conceivable that the avid impostor

would find a way of intercepting the target speaker’s audio from other sources and to

train a synthesizer to mimic the speech of that individual. As we mentioned earlier,

from the viewpoint of engine developers and implementors, it is important to build

in sophisticated question and answer sessions which would utilize a speech recog-

nizer in conjunction with the speaker verification system and to test the knowledge
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level of the test speaker for knowledge that may only be know to the target indi-

vidual. In this manner, even if the impostor has the means for generating perfect

replicas of the speech of the target speaker, the knowledge-base is not readily avail-

able to the impostor.

However, the verification engine designer should assume that the impostor will

be able to ascertain the knowledge-specific responses and will also be able to gen-

erate the audio on-the-fly to spoof the system. In this regard, it will become impor-

tant for verification engine designers to understand speech synthesis engines and to

try to bank on their vulnerabilities to be able to avoid being defeated. One possi-

ble techniques is the recognition of the, so called, annoying effects of synthesizers.

Customizable synthesizers usually possess discontinuities and clicks at boundaries

of speech segments. Also, silence generated by these synthesizers is usually un-

natural (see Section 18.1). Verification engines may be tooled with components that

would recognize such anomalies. In addition, until these synthesizers become more

sophisticated, the speech being generated will be repeatable. Anti-spoofing mech-

anisms may be utilized to look for these regular repetitions which are not possible

through natural speech generation means.

As synthesizers become more sophisticated, verification engines should keep up

with the synthesizer advancements and use counter-measures to avoid being spoofed

using these synthesizers. Using these techniques together with destroying the raw

enrollment audio and a smart and sophisticated knowledge-base which would be

ever-adapting to test for liveness, speaker verification using text-independent tech-

niques would be quite viable. The technology will, however, always have to be in

alert mode to counter new techniques for spoofing.

22.12 Quality Issues

Data quality is another problem. The training and enrollment data are of utmost

importance since if they are not of representative quality the models will almost

be useless for doing further recognition. Also, the quality of the candidate audio

segment should be good and representative to be able to assess the identity of the

individual based on stored models. We will discuss data quality a bit more in the

next few slides.

Another problem is the effect of aging on an individual which was somewhat

described earlier. In addition to the long-term aging, there are short-term time-lapse

discrepancies which are usually due to a combination of different changes in the

data capture scenario, changes in the behavior of the speaker, anatomical changes,

channel mismatch, variations in the distance and angle of the microphone, strains on

the person’s vocal tract, and many other issues. We will talk about these problems
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and possible solutions later.

22.13 Large-Scale Systems

A last but in no means least problem is the handling of a large-scale database. As we

mentioned, the matching may take a long time. Inter-speaker variation may become

smaller than the intra-speaker variations and a central location may be needed for

the storage of the large database together with all sorts of associated problems such

as redundancy, integrity, etc.

22.14 Useful Tools

Some useful open source tools have been develped recently. These tools are geared

toward allowing for segmentation and cleaning of the speech data such as Praat

which has been developed by people from University of Amsterdam. It runs on

many different operating systems and allows for a quite and accurate segmentation

of the speech data.

Another toolkit is the very useful Matlab toolbox for speech processing. It is

written by people from the Imperial College of London and it is made available un-

der the GPL public license. It includes a rich set of functions and is a good first pass

for trying something new.

The hidden Markov toolkit (HTK) [24] is a set of C libraries which includes

many functions for building and manipulating hidden Markov models. Its develop-

ment started in 1989 as a project at Cambridge University as a byproduct of their

large vocabulary speech recognition system [51]. It was made available as an open

source package under its own license agreement which, although similar to the GNU

license, it has its own quirks. Nevertheless, it has been used by many academic re-

search organizations to develop speech and speaker recognition systems. Its HMM

format is also quite standard and is used by several other engines, or at least is in-

cluded as an import/export format by such engines such as the Julius speech recog-

nition software. According to the HTK website, at the time of the writing of this

book, the latest version of the HTK was Version 3.4.1 which was released in March

of 2009. No new releases have been available up to May of 2011. To be able to

download the HTK, one must register at the product website. At this time, the HTK

is owned by the Microsoft corporation through the purchase of its owner, Entropic,

however, at the moment the license is delegated back to Cambridge University.
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Background Material



Chapter 23

Linear Algebra

23.1 Basic Definitions

Definition 23.1 (Identity Matrix). The N dimensional it identity matrix is denoted

by IN (or sometimes I) and is defined as follows,

IN : RN �→ RN is the matrix such that

Ii j =

{
1 ∀ i = j

0 ∀ i �= j
(23.1)

where i, j ∈ {1,2, ...,N} are the row number and column number of the correspond-

ing element of matrix IN.

Definition 23.2 (Transpose of a Matrix). The transpose of a matrix A : RN �→ RM

is given by AT : RM �→ RN such that,

AT
ji = Ai j (23.2)

where indices i ∈ {1,2, ...,M} and j ∈ {1,2, ...,N} denote the location of ele-

ments of the matrix such that the first index corresponds to the row and the second

index corresponds to the column number.

Definition 23.3 (Hermitian Transpose). The Hermitian transpose of a matrix A :

C N �→ C M is given by AH : C M �→ C N such that,

A = AR + iAI (23.3)

AR,AI : RN �→ RM

and
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AH = AT
R − iAT

I (23.4)

Matrix AH is also known as the adjoint matrix of matrix A.

Definition 23.4 (Hermitian Matrix). A Hermitian matrix A : C N �→ C N is the

matrix for which,

A = AH (23.5)

Definition 23.5 (Inverse of a Square Matrix). The Inverse of a Square Matrix

A : RN �→ RN (if it exists) is denoted by A−1 : RN �→ RN and is that unique matrix

such that,

A−1A = AA−1 = IN (23.6)

Definition 23.6 (Kronecker Product). The Kronecker product of two matrices,

A : RN �→ RM and B of arbitrary dimension is denoted by A⊗B and is defined as

follows,

A⊗B
Δ
=

⎡⎢⎢⎢⎢⎢⎢⎣

(A)[1][1] B (A)[1][2] B · · · (A)[1][N] B

(A)[2][1] B (A)[2][2] B · · · (A)[2][N] B

...
...

...
...

· · · · · · · · · . . .

(A)[M][1] B (A)[M][2] B · · · (A)[M][N] B

⎤⎥⎥⎥⎥⎥⎥⎦ (23.7)

23.2 Norms

To quantify the magnitude of a vector or a matrix, several norms have been used in

the literature. In this book, predominantly, the Euclidean norm [8] is used. Let us

examine the norm of a vector and following by looking at one special norm used for

matrices.

Definition 23.7 (Euclidean Norm of a Vector). The Euclidean norm of a vector

x ∈ RN is denoted by ‖x‖E and is defined as,

‖x‖E =

(
N

∑
i=1

(x)2
[i]

) 1
2

(23.8)
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where, (x)[i] , i ∈ {1,2, ...,N} is the ith element of vector x.

The norm of a vector may be generalized in the form of an Lp-norm where {p :

p ∈�, p ≥ 1}. Here is the definition of an Lp-norm:

Definition 23.8 (Lp-norm of a vector). The Lp-norm of a vector x ∈ RN, where

{p : p ∈�, p ≥ 1}, is denoted by ‖x‖p and is defined as,

‖x‖p =

(
N

∑
i=1

|(x)[i] |p

) 1
p

(23.9)

where, (x)[i] , i ∈ {1,2, ...,N} is the ith element of vector x.

The Euclidean Norm of a vector given by Definition 23.7 is, therefore, a special

case of the Lp norm where p = 2. Other important special cases which are often

used are the L1 norm,

‖x‖1 =
N

∑
i=1

|(x)[i] | (23.10)

and the L∞ Norm (also known as the Maximum Norm),

‖x‖∞ = lim
p→∞

=
N

max
i=1

|(x)[i] | (23.11)

Definition 23.9 (Linear Dependence / Independence). A set of vectors si ∈
RN , i ∈ {1,2, ...,N} is said to be a linearly dependent set if there exist numbers

λi, i ∈ {1,2, ...,N}, not all zero, such that,

N

∑
i=1

λisi = 0 (23.12)

Definition 23.10 (Euclidean (Frobenius) Norm of a Matrix). The Euclidean

(Frobenius) norm of a matrix A : RN �→ RM is denoted by ‖A‖E or ‖A‖F and

is defined as,

‖A‖E = ‖A‖F

=

(
M

∑
i=1

N

∑
j=1

(A)2
[i][ j]

) 1
2

(23.13)

where (A)[i][ j] ,(i ∈ {1,2, ...,M}; j ∈ {1,2, ...,N}) is the (i, j)th element of matrix

A.
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The Euclidean norm of a matrix can also be written in the following forms,

‖A‖E = ‖A‖F =

(
M

∑
i=1

‖Aui‖2
E

) 1
2

(23.14)

where ui, i ∈ {1,2, ...,M} is any orthonormal basis

‖A‖E = ‖A‖F =
√

tr (AT A) (23.15)

where tr
(
AT A

)
denotes the trace of

(
AT A

)
which is equivalent to the sum of all its

diagonal elements.

In general, all matrix norms satisfy the following four conditions:

For A,B : RN �→ RM and C : RM �→ RN,

1. ‖A‖ ≥ 0 and ‖A‖ = 0 iff A = 0

2. ‖kA‖ = |k|‖A‖ where k is any scalar

3. ‖A+B‖ ≤ ‖A‖+‖B‖ (Triangular Inequality)

4. ‖AC‖ ≤ ‖A‖‖C‖ (Schwarz’s Inequality)

If the set is not linearly dependent, then it is said to be linearly independent.

Definition 23.11 (Unitary / Orthogonal Matrices). A matrix, U : C N �→ C N is

said to be Unitary if,

UHU = UUH = IN (23.16)

A special case of unitary matrices is V : RN �→ RN in which case,

VT V = VVT = IN (23.17)

Matrices falling under this special case are called orthogonal.

Definition 23.12 (Conjugacy, Orthogonality, and Orthonormality). Any set of

linearly independent vectors,

vi : vi ∈ RN , i ∈ {1,2, ...,M},M ≤ N (23.18)

is said to be mutually conjugate about a positive definite, full rank matrix, Q : RN �→
RN such that,

vT
i Qvi =

{
a > 0 ∀ i = j

0 ∀ i �= j
(23.19)
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If Q = IN, then the set is a mutually orthogonal set of vectors. If in addition

a = 1, then the set is mutually orthonormal (i.e., for an orthonormal set of vectors,

‖vi‖E = 1).

Definition 23.13 (Singular Values of a Matrix). If A : C N �→ C M, then the strictly

positive square roots σi of the non-zero eigenvalues of AHA (or AAH) are called

the singular values of matrix A.

Definition 23.14 (Rank of a Matrix). Matrix A : C N �→ C M has rank k if it has k

singular values.

Next, we will define singular value decomposition (SVD) which was introduced,

independently, by Beltrami [2] and Jordan [9] in 1873 and 1874 respectively.

Definition 23.15 (Singular Value Decomposition). If A : C N �→ C M has rank k

and its singular values are denoted by σ1 ≥ σ2 ≥ ... ≥ σk ¿ 0, then there exist two

unitary matrices,

U = [u1,u2, ...,uM] : C M �→ C M (23.20)

and

V = [v1,v2, ...,vM] : C N �→ C N (23.21)

such that,

S = UHAVandA = USVH (23.22)

where,

S =

[
D 0

0 0

]
: C N �→ C M (23.23)

and,

(D)[i][ j] =

{
σi ∀ i = j

0 ∀ i �= j
(23.24)

Then,
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A = USVH (23.25)

is the singular value decomposition of matrix A, where, for 1 ≤ i ≤ k, ui = Avi
σi

and vi = AH ui
σi

are Eigenvectors of AAH and AHA respectively, associated with the

k eigenvalues σ2
i > 0 and the vectors ui,k + 1 ≤ i ≤ M and vi,k + 1 ≤ i ≤ N are

Eigenvectors associated with the zero eigenvalues. If A is real, then U and V will

also be real and are therefore orthogonal matrices.

Definition 23.16 (Pseudo-Inverse (Moore-Penrose Generalized Inverse)). If A :

C N �→ C M and A† : C M �→ C N, then A† is the pseudo-inverse (Moore-Penrose

generalized inverse) of A iff,

1. AA†A

2. A†AA†

3. A and A† are Hermitian

Furthermore, if the singular value decomposition of A is given by,

A = USVH (23.26)

then the pseudo-inverse of A, A†, is given by,

A† = VS†UH (23.27)

where,

S† =

[
E 0

0 0

]
: C M �→ C N (23.28)

E is the kxk diagonal matrix such that,

Ei j =

{
1
σi

∀ i = j

0 ∀ i �= j
(23.29)

and k is the rank of A. For more on the Pseudo-Inverse see [10].

For a real matrix, A, A† may be written in terms of the following limit [4],

A† = lim
ε→0

(
AT A+ εI

)−1
AT (23.30)

Definition 23.17 (Positive Definiteness). Let s be any vector such that s ∈ RN. A

matrix G : RN �→ RN is said to be positive definite if,
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sGs > 0∀s �= 0 (23.31)

23.3 Gram-Schmidt Orthogonalization

Two types of Gram-Schmidt orthogonalization techniques are covered here. The

first one is the ordinary procedure and then a modified version with higher numerical

accuracy is described.

23.3.1 Ordinary Gram-Schmidt Orthogonalization

Suppose, vi : vi ∈ RN , i ∈ {1,2, ...,M},M ≤ N are a set of unit vectors. Then, the

following is the Gram-Schmidt procedure [12] which generates the set of vectors

vi, i ∈ {1,2, ...,M} which form an orthonormal set spanning the same space as vec-

tors vi,

u1 = v1 (23.32)

ui = vi −
i−1

∑
j=1

(vT
i z j)z j with i ∈ {1,2, ...,M} (23.33)

zi =
ui

‖ui‖E

with i ∈ {1,2, ...,M} (23.34)

23.3.2 Modified Gram-Schmidt Orthogonalization

The following pseudo-code presents a modified Gram-Schmidt orthogonalization

method which, theoretically, gives the same set of vectors as the ordinary procedure

(Section 23.3.1), but it is more accurate in its numerical implementation,

1. a. u1 = v1

b. z1 = u1
‖u1‖E

2. v
(1)
i = vi − (vT

i z1)z1 for i = 2,3, ...,M

3. a. u j = v
( j−1)
j

b. z j =
u j

‖u j‖E
for j = 2,3, ...,M

c. v
( j)
i = v

( j−1)
i − (v

( j−1)
i

T
z j)z j for i = j +1, ...,M
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23.4 Sherman-Morrison Inversion Formula

If Gk+1,Gk : RN �→ RN , then the rank M(M ≤ N) update to Gk for obtaining Gk+1

is,

Gk+1 = Gk +RSTT (23.35)

where R,T : RM �→ RN and S : RM �→ RM , then the inverse of Gk+1 is given by

the following,

G−1
k+1 = G−1

k −G−1
k RU−1TT G−1 (23.36)

where,

U = S−1 +TT G−1
k R (23.37)

Equation 23.36 is known as the Sherman-Morrison formula [6]. It is used to

keep track of the change in the inverse of a matrix as the original matrix is updated

through 23.35.

23.5 Vector Representation under a Set of Normal Conjugate

Direction

Theorem 23.1 (Conjugate Directions). Since conjugate directions are linearly

independent, any vector v ∈ RN can be represented in terms of a set of direc-

tions, si, i ∈ {1,2, ...,N − 1}, conjugate about a positive-definite full rank matrix

G : RN �→ RN as follows,

v =
N

∑
i=1

λisi (23.38)

where,

λi =
sT

i Gv

sT
i Gsi

(23.39)
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Furthermore, there always exists a full set of N directions si conjugate directions

about G [1] since the Eigenvectors of G form such a set.

Theorem 23.2 (Inverse of a Matrix). Consider the matrix,

H =
N

∑
i=1

sis
T
i

sT
i Gsi

(23.40)

where si ∈ RN , i ∈ {1,2, ...,N} are a set of directions mutually conjugate about

the positive-definite full rank matrix, G : RN �→ RN. Post multiplication by Gsk

gives,

N

∑
i=1

1

sT
i Gsi

sis
T
i Gsk =

sksT
k Gsk

skGsk

(23.41)

= sk (23.42)

since siGsk =

{
1 ∀ i = k

0 ∀ i �= k
(23.43)

Therefore, H is the representation of the inverse of G [1],

G−1 = H =
N

∑
i=1

sis
T
i

sT
i Gsi

(23.44)

23.6 Stochastic Matrix

In probability theory, we often run across a special type of matrix called a stochastic

matrix. Here is a formal definition for such matrices.

Definition 23.18 (Stochastic Matrix). A Stochastic matrix A : RN �→ RM is a

matrix such that (A)[i][ j] ≥ 0 and

N

∑
j=1

(A)[i][ j] = 1 ∀ {i : 1 ≤ i ≤ M} (23.45)

For example, stochastic matrices are used to denote the transition probabilities

of Markov chains.

23.7 Linear Equations

Consider the following set of linear equations,
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Aλλλ̄ = g (23.46)

where A : RM �→ RN , λλλ̄ : R1 �→ RM , and g : R1 �→ RN .

Farkas [5] published a paper examining the vector space represented by this sim-

ple linear equation. By definition, Aλλλ̄ , where λλλ̄  0, defines a polyhedral cone,

where the columns of A represent the outer boundary of the cone, in RN . In other

words, it is said that the columns of A span a cone. Note the following definition of

a cone.

Definition 23.19 (Cone). A cone is a convex set, C ∈ RN (see Definition 6.28),

such that for all a : R1 �→ RN, where a ∈ C ,

λ̄a ∈ C ∀ λ̄ ≥ 0 (23.47)

Note that it is easy to show that for a cone, C , if

a1,a2 ∈ C ⇐⇒ λ̄ 1a1 + λ̄ 2a2 ∈ C (23.48)

Definition 23.20 (Polyhedral Cone). A polyhedral cone is a closed convex set,

C ∈ RN, such that for all ai : R1 �→ RN , i = {1,2, · · ·}, where ai ∈ C , then

M

∑
i=1

λ̄ iai ∈ C ∀ λ̄ i ≥ 0 (23.49)

Equation 23.49 may be written in matrix form as follows,

Aλλλ̄ ∈ C ∀ λλλ̄  0 (23.50)

Equation 23.50 attests to the closedness and convexity of the polyhedral cone.

This becomes important in the way Farkas approaches the establishment of the ex-

istence of a solution for the set of linear equation given by Equation 23.46. These

results are at the core of linear optimization and constrained nonlinear optimization

theory, as we will see in Section 25.5. Figure 23.1 shows the geometric representa-

tion of a polyhedral cone which is spanned by the columns of A.

Farkas’ Lemma [5] is basically a separation statement for polyhedral cones. A

general separation theorem would be stated as follows,

Theorem 23.3 (General Separation Theorem). If S1 and S2 are both closed

convex sets, then they may be separated by a hyperplane if their common space is

empty, i.e.,

S1 ∩S2 = {∅} (23.51)

In words, Farkas Lemma[5] notes that a vector g would either be in a polyhe-

dral cone defined by the columns of a spanning matrix A, or it would be sepa-
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Fig. 23.1: Polyhedral Cone Spanned by the columns of AAA.

rated from the cone by a hyperplane. There are many different variations of this

Lemma [5, 7, 6, 3, 11]. Here is a variation which expresses the above statement in

mathematical terms. It is most useful for handling linear inequality constraints in

an optimization problem – see Section 25.5.1.3.

Lemma 23.1 (Farkas’ Lemma). Consider matrix A : RM �→ RN, vector λλλ̄ : R1 �→
RM, and vector g : R1 �→ RN. Then, one and only one of the following statements

can hold,

1. g = Aλλλ̄
2. ∃ {s : R1 �→ RN} : As  0 ∧ sT g < 0

Proof. see [5, 6]. ��
As we mentioned, statement 1 in the lemma corresponds to the case when g ∈ C

and statement 2 corresponds to when g /∈ C , where C is the polyhedral cone defined

as follows,

C = {x : x = Aλλλ̄ ,λλλ̄  0} (23.52)
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s in statement 2 is the normal vector, defining the separating hyperplanes which

separates g from cone C .
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Chapter 24

Integral Transforms

This chapter is a rich section of the book which includes information usually covered

in pieces in graduate courses such as Complex Variable Theory, Integral Transforms,

Partial Differential Equations, Analog and Digital Signal Processing, and Control.

As stated in the Preface, one of the goals of this book is to bring all the fundamental

sciences and mathematics needed for doing speaker recognition into one place with

a comprehensive narrative connecting all the dots in the field. The fact that speaker

recognition is greatly multi-disciplinary has been the stumbling block for the devel-

opment of such a textbook. Although it is impossible to be complete, but the goal is

to include all the necessary information in one place. It makes this chapter ideal for

students and professionals and allows for a complete understanding of the subject. It

is recommended that it be treated like any other chapter of the book and not skipped.

The only reason it is included in this background chapter is to keep the higher-level

flow of speaker recognition smoother, but as they say, “the Devil is in the Details.”

In the following section we will give some basic definitions, theorems and prop-

erties related to the Real (�) and Complex (�) Domains. There are different nota-

tions in the literature depending on the subject being discussed. Since in this book

we are interested in time-dependent signals, we do not consider the Cartesian space.

For that reason, we either speak of Time (t : t ∈�) or we speak of the complex plane

in which the variable used here is {s = (σ+ iω) : s ∈�,σ ∈�,ω ∈�}. The choice

of σ and ω for the real and imaginary axes of the Complex plane, as will be seen

later, has to do with their coincidence with the definitions of Laplace and Fourier

transforms. This may introduce some strange looking notation when we arrive at the

point of handling the Laplacian and partial derivative notations used in the Cauchy-

Riemann Conditions. There, we will use σ and ω in place of the more familiar x

and y from the wave and heat equations which propagate in Cartesian-Based media

and which were the historic problems of interest at the time of the development of

these definitions and theorems. Strange as the notation may seem, it is rigorous and

great care has gone into making sure that all the necessary definitions are present in

the text.

, H. Beigi Fundamentals of Speaker Recognition, 
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24.1 Complex Variable Theory in Integral Transforms

In this section, we will cover many of the concepts related to the theory of complex

variables, needed to formulate integral transforms. Once we have addressed these

fundamental definitions, in the following sections we will move toward the defini-

tion of integral equations followed by the general form of integral transforms. Then,

specific transforms are covered in consequent sections.

24.1.1 Complex Variables

Since the theory of complex variables is at the heart of integral equations, we will

spend some time on defining basic concepts in this theory. Of course, the most in-

teresting part of a complex variable is related to its imaginary part. Therefore, we

start with the definition of an imaginary number.

Definition 24.1 (Imaginary Number). i is the imaginary number and is defined as,

i
Δ
=

√−1 (24.1)

Fig. 24.1: Representation of a Number
s0 in the Complex Plane

Fig. 24.2: Representation of a Circle in
�

Definition 24.2 (Modulus or Magnitude of a Complex Number). The Modulus

or Magnitude of the complex number, {s : s = σ + iω ∈�}, is denoted by |s| and is

defined as,
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|s| =
√
σ2 +ω2 (24.2)

See Figure 24.1.

N.B., In the complex plain, size is considered using the modulus, e.g., we cannot

say s1 < s2, but we can say |s1| < |s2|.
Property 24.1 (Properties of Complex Variables).

|s| = |s| (24.3)

|s|2 = ss (24.4)

s+ s = 2Re{s} (24.5)

s− s = 2I m{s} (24.6)

{s0 : s0 ∈�} may be represented in polar coordinates as follows,

s0 = ρ0eiθ0 (24.7)

where

ρ0 = |s0| (24.8)

and

θ = �s0

= sin−1

(
ω0

ρ0

)
(24.9)

= cos−1

(
σ0

ρ0

)
(24.10)

= tan−1

(
ω0

σ0

)
(24.11)

Property 24.2 (Triangular Inequality in the Complex Plane).

|s1 + s2| ≤ |s1| |s2| (24.12)

Property 24.3 (Product of Complex Variables).

s1s2 = ρ1eiθ1ρ2eiθ2

= ρ1ρ2ei(θ1+θ2)

= ρ1ρ2ei(θ1+θ2+2nπ) where n = {0,±1,±2, · · ·} (24.13)

N.B., In Equation 24.13, we have added the period of the complex exponential func-

tion for generalization, see Problem 24.4.

Property 24.4 (Quotient of Complex Variables).
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s1

s2
=

ρ1eiθ1

ρ2eiθ2

=
ρ1

ρ2
ei(θ1−θ2)

=
ρ1

ρ2
ei(θ1−θ2+2nπ) where n = {0,±1,±2, · · ·} (24.14)

N.B., In Equation 24.14, we have added the period of the complex exponential func-

tion for generalization, see Problem 24.4.

Theorem 24.1 (Modulus of the product of two Complex Numbers). The modulus

of the product of two complex numbers, s1 and s2, is equal to the product of the

moduli of the two numbers, namely,

|s1s2| = |s1| |s2| (24.15)

Proof.

See Problem 24.1. ��
Definition 24.3 (A Circle in the Complex Plane). A circle is defined by its center,

s0 and its radius, ρ . In the complex place, such a circle is defined by,

|s− s0| = ρ (24.16)

See Figure 24.2

Definition 24.4 (Distance between two Complex Variables). The distance be-

tween two complex variables, s1 and s2 is defined as,

d (s1,s2)
Δ
= |s2 − s1| (24.17)

Property 24.5 (Euler identities).

eiθ = cos(θ)+ i sin(θ) (24.18)

e−iθ = cos(θ)− i sin(θ) (24.19)

Theorem 24.2 (de Moivre’s Theorem).

(cosθ + isin(θ))n = cos(nθ)+ isin(nθ) n = {0,±1,±2, · · ·} (24.20)

Proof.

Using the Euler identities (Property 24.5),

s = ρ [cosθ + isinθ ]

= ρeiθ (24.21)

Therefore,

sn = ρn [cosθ + isinθ ]n

= ρneinθ (24.22)
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��
Definition 24.5 (A Hermitian Function). A function H(s) = U(σ ,ω)+ iV (σ ,ω),
{s ∈�,σ ∈�,ω ∈�,s = σ + iω}, is called a Hermitian function if

H(−s) = H(s)

= U(σ ,ω)− iV (σ ,ω) (24.23)

24.1.2 Limits

Now that we have defined the basics of an complex variable, let us review limits re-

lated to these numbers in general, but also to the special subset which is the real line.

Definition 24.6 (Limit of a Sequence of Numbers).

lim
n→∞

Sn = A (24.24)

A is the limit of sequence Sn as n → ∞. Examples are,

lim
n→∞

2n

n+1
= 2

and

lim
n→∞

(
1+

1

n

)n

= e

Definition 24.7 (One Sided Limit of a Function – Right Hand Limit).

lim
t→t0+

h(t) = A (24.25)

Implies that given ε > 0, ∃ δ (ε) > 0 : |h(t)−A| < ε if t0 < t < t0 +δ

Definition 24.8 (One Sided Limit of a Function – Left Hand Limit).

lim
t→t0−

h(t) = A (24.26)

Implies that given ε > 0, ∃ δ (ε) > 0 : |h(t)−A| < ε if t0 −δ < t < t0

Definition 24.9 (Limit of a Function of a Continuous Variable).

lim
t→t0

h(t) = A (24.27)
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Implies that given ε > 0, ∃ δ (ε) > 0 : |h(t)−A| < ε when 0 < |t − t0| < δ
Note that all the points lying inside a circle of radius ε and center t0 are an ε neigh-

bor of t0.

∃ lim
t→t0

h(t) = A ⇐⇒ lim
t→t0+

h(t) = lim
t→t0−

h(t) = A.

Example 24.1 (Existence of the Limit).

Take the following question: If

h(t) = 1+
|t|
t

(24.28)

does the limit, lim
t→0

h(t) exist?

The right hand limit of 24.28 is,

lim
t→0+

1+
|t|
t

= 1+1 = 2 (|t| = t) (24.29)

The left hand limit of 24.28 is,

lim
t→0−

1+
|t|
t

= 1−1 = 0 (|t| = −t) (24.30)

Therefore, the limit, lim
t→0

h(t) does not exist since the left hand and right hand

limits are not equal.

Definition 24.10 (Positive Infinite Limit). If ∀ M > 0 ∃δ > 0 : h(t) > M when 0 <
|t − t0| < δ , then,

lim
t→t0

h(t) = ∞ (24.31)

Definition 24.11 (Negative Infinite Limit). If ∀ M > 0 ∃δ > 0 : h(t) <
−M when 0 < |t − t0| < δ , then,

lim
t→t0

h(t) = −∞ (24.32)

24.1.3 Continuity and Forms of Discontinuity

In Definition 24.9 we started dealing with the concept of a continuous variable. It

makes sense to review some definitions of continuity of functions and later to exam-

ine different kinds of discontinuities. In fact, as we will see, it makes sense to define

bounds and smoothness of functions, at the same time.
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Definition 24.12 (Continuity of Functions). If ∀ ε > 0 ∃δ (ε) > 0 such that 0 <
|t − t0| < δ =⇒ |h(t)−h(t0)| < ε , then, h(t) is continuous at t = t0, or,

lim
t→t0

h(t) = h(t0) (24.33)

The function h(t) is a continuous function if it is continuous for all t0.

Definition 24.13 (Discontinuous Functions). A function h(t) is discontinuous if

for some t0,

lim
t→t0

h(t) �= h(t0) (24.34)

A function may be discontinuous at a point t0 for two main reasons:

1. h(t) may not approach any limit as t → t0.

2. h(t) may approach a limit different from h(t0).

Let us classify the different points of discontinuity.

Definition 24.14 (A Point of Ordinary Discontinuity). When lim
t→t0

h(t) exists, i.e.,

lim
t→t0

h(t) = lim
t→t0+

h(t) = lim
t→t0−

h(t) (24.35)

but is not equal to h(t0) or h(t0) is not defined, then t0 is a point of ordinary discon-

tinuity.

Example 24.2 (Ordinary Discontinuity).

Take the following function,

h(t) = (t − t0)sin

(
1

t − t0

)
(24.36)

h(t0+) = h(t0−), but h(t0) is not defined.

Here, we may postulate that h(t0) = 0 and then h(t) becomes continuous. In cases

where h(t0+) �= h(t0−), regardless of the definition of h(t0), t0 becomes a point of or-

dinary discontinuity – see Figure 24.3.

Example 24.3 (Ordinary Discontinuity at t = 0).

The following function has an ordinary discontinuity at t = 0, see Figure 24.4

h(t) =
sin(t)

|t| (24.37)



654 24 Integral Transforms

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t
0
 = 2

t

h
(t

)

Fig. 24.3: Point of ordinary discontinuity at t = t0 = 2

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

h
(t

)

t
0
 = 0

Fig. 24.4: Point of ordinary discontinuity at t = t0 = 0 (h(t) = sin(t)
|t| )



24.1 Complex Variable Theory in Integral Transforms 655

lim
t→0+

sin(t)

|t| = lim
t→0+

sin(t)

t
= 1 (24.38)

lim
t→0−

sin(t)

|t| = lim
t→0−

sin(t)

−t
= −1 (24.39)

Note that in order to be able to use l’Hôpital’s rule for obtaining the values of the

limits, we replaced |t| by its corresponding equivalent for the cases of the positive

and negative limits.

Based on Equations 24.38 and 24.39,

lim
t→0+

sin(t)

|t| �= lim
t→0−

sin(t)

|t| (24.40)

Namely, the limit does not exist.

Definition 24.15 (A Point of Infinite Discontinuity). The following are the differ-

ent cases of infinite discontinuities,

1. h(t0+) = h(t0−) = ±∞

2. h(t0+) = +∞ and h(t0−) = −∞

3. h(t0+) = ±∞ and h(t0−) exists

4. h(t0+) exists and h(t0−) = ±∞

Definition 24.16 (A Point of Oscillatory Discontinuity). An oscillatory disconti-

nuity s0 is one where no matter how small the ε neighborhood of s0 {s : |s− s0| < ε}
is made, the value of s oscillates to different values with function H(s) not being de-

fined at the exact value of s0, but it may be defined in its neighborhood (it is defined

for the Finite Amplitude version – see below).

The following are the different kinds of oscillatory discontinuities,

1. Finite Amplitude:

h(t) = sin

(
1

t − t0

)
(24.41)

Figure 24.5 shows a plot of h(t) in Equation 24.41 where t0 = 0. Figure 24.6

zooms into this plot. No matter how much one zooms in, in the vicinity of t = 0,

there is an oscillation where at the exact point, t = 0, h(t) is undefined.

2. Infinite Amplitude:

In this case, in addition to the oscillatory nature of the discontinuity s0, the value

of the function will approach infinity in the neighborhood of the singularity. An

example is,

h(t) =
1

(t − t0)
sin

(
1

t − t0

)
(24.42)
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Definition 24.17 (Continuity of a Function in an Interval). A function h(t) is said

to be continuous in an interval [a,b] if

lim
t→t0

h(t) = h(t0) a < t < b (24.43)

lim
t→a+

h(t) = h(a)

lim
t→b−

h(t) = h(b)

Definition 24.18 (Boundedness). A function h(t) is bounded in an interval [a,b], if

∃ M : |h(t)| ≤ M ∀ t ∈ [a,b].

Property 24.6 (Boundedness of a Continuous Function). A function h(t) which

is continuous in an interval [a,b], is bounded.

Proof.

If a function is continuous in an interval [a,b], then by definition of continuity, Def-

inition 24.12, a small change, δ , in t can only cause a small change, ε in h(t),
therefore, in the finite interval [a,b] where

max
a≤t≤b

a≤t0≤b

|t − t0| = b−a (24.44)

|t − t0| is bounded, so ∃M : M < ∞ so that

max
a≤t≤b

a≤t0≤b

|h(t)−h(t0)| < M (24.45)

Therefore, based on Definition 24.18, h(t) is bounded in interval [a,b].
��

Definition 24.19 (Continuity Class (Degree of Continuity)). A function h(t) is

continuous with degree 1 if it is continuous and its first derivative is continuous.

First degree continuity is denoted as C1.

If function h(t) is continuous and all its derivatives up to the nth derivative are

continuous, then the function is a Cn continuous function. N.B., If a function is up to

n derivatives, then it is at least of continuity class Cn−1, namely all the derivatives

up to and including degree n−1 are also continuous.

A class C0 function is simply continuous.

Definition 24.20 (Smoothness). A function h(t) is smooth if it is continuous and

it has up to order ∞ continuous derivatives, namely it is of class C∞ continuous.

N.B. All analytic functions are smooth, but since there is a requirement that analytic
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functions be determined completely by a power series, not all smooth functions are

analytic. See Definition 24.34.

Definition 24.21 (Piecewise Continuity). A function h(t) is piecewise continuous

if it is continuous at all points in an interval except a finite number of discontinuities

in that interval.

Definition 24.22 (Piecewise Smoothness). A function h(t) is piecewise smooth if it

is piecewise continuous and its derivatives are piecewise continuous.

24.1.4 Convexity and Concavity of Functions

Continuity, smoothness, and boundedness have secondary connotations, as we will

see. When we speak about these concepts, it also makes sense to further qualify the

shape of functions in the form of convex or concave functions, since these shapes

will play a role in their boundedness and convergence aspects. In this section, con-

vexity and concavity are defined and analyzed in some detail.

Definition 24.23 (Convex Function). A real-valued function, h(t), which is contin-

uous in the closed interval {t : t ∈ [a,b]}, is said to be convex if

h(αt0 +(1−α)t2)≤αh(t0)+(1−α)h(t2) ∀t0, t2 ∈ [a,b] and ∀α ∈ [0,1] (24.46)

Note that a function which has a non-negative second derivative over the whole

interval, [a,b], is convex in that interval. Figure 24.7 depicts as example of a convex

function (h(t) = − ln(t)), with a graphic representation of the inequality in Equa-

tion 24.46.

Definition 24.24 (Strictly Convex Function). A strictly convex function is defined

by Definition 24.23, such that the inequality in Equation 24.46 is changed to a strict

inequality, not allowing equality, except when {α = 0∨α = 1}.

Note that a function which has a positive second derivative over the whole inter-

val, [a,b], is strictly convex in that interval.

Theorem 24.3 (Convex Function). A real-valued function, h(t), which is C1 con-

tinuous in the closed interval {t : t ∈ [a,b]}, is said to be convex if it has a non-

negative second derivative,

d2h(t)

dt2
≥ 0 (24.47)
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Proof.

Let us take two points, t0, t2 ∈ [a,b] and the parameter, α ∈ [0,1], as in Defini-

tion 24.23 such that t0 ≤ t2. Furthermore, define an intermediate point, t1, in terms

of t0 and t1, according to Definition 24.23, based on parameter α ,

t1 = αt0 +(1−α)t2 (24.48)

Therefore, by Equation 24.46, h(t) is convex if and only if,

h(t1) ≤ αh(t0)+(1−α)h(t2) ∀ α ∈ [0,1] (24.49)

Note that we may write h(t1) as follows,

h(t1) = αh(t1)+(1−α)h(t1) (24.50)

Therefore, substituting from Equation 24.50 into Equation 24.49, we have

αh(t1)+(1−α)h(t1) ≤ αh(t0)+(1−α)h(t2) (24.51)

The inequality in Equation 24.51 may be rewritten as follows,

α (h(t1)−h(t0)) ≤ (1−α)(h(t2)−h(t1)) (24.52)
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If we prove the identity in Equation 24.52 from the assumption of the non-negativeness

of the second derivative of h(t), then we have proven the proposition in this theorem.

If we consider the two intervals, tl ∈ [t0, t1] and tr ∈ [t1, t2], on the left side and

right side of Equation 24.52, then we may write the following two equations based

on the mean value theorem (Theorem 24.10),

dh(t)

dt

∣∣∣
t=tl

=
h(t1)−h(t0)

t1 − t0
(24.53)

dh(t)

dt

∣∣∣
t=tr

=
h(t2)−h(t1)

t2 − t1
(24.54)

where, by definition,

a ≤ t0 ≤ tl ≤ t1 ≤ tr ≤ t2 ≤ b (24.55)

Based on the main assumption of this theorem, the second derivative of h(t) is non-

negative for all t ∈ [a,b],

d2h(t)

dt2
≥ 0 ∀ t ∈ {a,b} (24.56)

Therefore, based on the inequalities of Equations 24.55 and 24.56,

dh(t)

dt

∣∣∣
t=tl

≤ dh(t)

dt

∣∣∣
t=tr

(24.57)

By Equation 24.53, the left hand side of Equation 24.52 may be written as fol-

lows,

α (h(t1)−h(t0)) = α
dh(t)

dt

∣∣∣
t=tl

(t1 − t0) (24.58)

Due to the inequality in Equation 24.57, we may write the following inequality for

the right hand side of Equation 24.58,

α
dh(t)

dt

∣∣∣
t=tl

(t1 − t0) ≤ α
dh(t)

dt

∣∣∣
t=tr

(t1 − t0) (24.59)

Now let us subtract αt0 +(1−α)t1 from both sides of Equation 24.48 to develop

an expression for α(t1 − t0) which shows up in the right side of Equation 24.59,

α(t1 − t0) = (1−α)(t2 − t1) (24.60)

Substituting for α(t1 − t0) from Equation 24.60 into the right hand side of the in-

equality in Equation 24.59 and for the left hand side of the inequality from Equation

24.58, we may write the following inequality,
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α (h(t1)−h(t0)) ≤ (1−α)(t2 − t1)
dh(t)

dt

∣∣∣
t=tr

(24.61)

Using Equation 24.54, we may rewrite the above inequality, only in terms of values

of h(t) and α ,

α (h(t1)−h(t0)) ≤ (1−α)(h(t2)−h(t1)) (24.62)

The inequality in Equation 24.62 is equivalent to the proposition of Equation 24.52,

which has been shown by using the non-negativeness of the second derivative of

h(t) in the closed interval, {t : t ∈ [a,b]}.

��
It is easy to show that h(t) will be strictly convex if and only if, all the condi-

tions in Theorem 24.3 would hold in addition to the restriction that the inequality in

Equation 24.56 would become a strict inequality, making the second derivative of

h(t) positive definite.

Definition 24.25 (Concave Function). A real-valued function, h(t), which is con-

tinuous in the closed interval {t : t ∈ [a,b]}, is said to be concave if

h(αt0 +(1−α)t2)≥αh(t0)+(1−α)h(t2) ∀t0, t2 ∈ [a,b] and ∀α ∈ [0,1] (24.63)

Note that a function, which has a non-positive second derivative over the whole

interval, [a,b], is concave in that interval. Figure 24.8 depicts as example of a con-

cave function (h(t) = ln(t)), with a graphic representation of the inequality in Equa-

tion 24.63.

Definition 24.26 (Strictly Concave Function). A strictly concave function is de-

fined by Definition 24.25, such that the inequality in Equation 24.63 is changed to a

strict inequality, not allowing equality, except when {α = 0∨α = 1}.

Note that a function, which has a negative second derivative over the whole in-

terval, [a,b], is strictly concave in that interval.

24.1.5 Odd, Even and Periodic Functions

There is a global perspective which categorizes functions in their shape with respect

to some reference system. The, so called, odd and even nature of functions may be

used to simplify their integration and related operations. In addition to these two

concepts, the periodicity of a function becomes important in the same sense. In this

section, we will provide the basic definitions in these regards.
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Definition 24.27 (Odd Functions). A function h(t) is odd if h(−t) = −h(t) ∀ t.

If h(t) is periodic with period 2π , then oddness implies that,

ˆ π

−π
h(t)dt = 0 (24.64)

Example 24.4 (Some Odd Functions).

Some examples of odd functions are,

h(t) = sin(t) (24.65)

and

h(t) = t3 (24.66)

Definition 24.28 (Even Functions). A function h(t) is even if h(−t) = h(t) ∀ t.

If h(t) is periodic with period 2π , then oddness implies that,

ˆ π

−π
h(t)dt = 2

ˆ π

0

h(t)dt (24.67)
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Example 24.5 (Some Even Functions).

Some examples of even functions are,

h(t) = cos(t) (24.68)

and

h(t) = t2. (24.69)

Property 24.7 (Odd and Even Functions). Here are some properties related to

odd and even functions,

• odd function × odd function = odd function

• odd function × even function = odd function

• even function × even function = even function

Definition 24.29 (Periodic Function). Let s be a variables in the Domain D ⊂�.

Also, let λ̃ be a constant where λ̃ �= 0 and such that s + λ̃ ∈ D . A function H(s) is

said to be periodic with period λ̃ if H(s) = H(s+ λ̃ )∀s ∈ D .

Definition 24.30 (Periodic Extension of a Function). Let h(t), t ∈� be defined in

an interval t0 ≤ t < t0 + λ̃ , then the periodic extension of h(t), h̃(τ) is defined as a

function defined in −∞ < τ < ∞ where h̃(t +nλ̃ ) = h(t), t0 ≤ t < t0 + λ̃ ;−∞ < n < ∞.

This is essentially the collection of h(t) and its copies which have been shifted by

nλ̃ ,n = 1,2, · · · to the right and to the left. The periodic extension is a useful notion

for doing manipulations on functions where the function is expected to be periodic,

such as the Fourier Series expansion [18] – see Section 24.6.

24.1.6 Differentiation

We have reviewed many concepts relating to functions. In this section, differentia-

tion will be covered, especially related to functions of complex variables.

Definition 24.31 (Differentiation of Functions of Complex Variables). Let H(s)
be a single-valued function of s : s ∈ D ⊂�. Let s0 be any fixed point in domain

D . Then, H(s) is said to have a derivative at point s0 if the limit in Equation 24.70

exists.

dH(s)

ds

∣∣∣∣∣
s=s0

= lim
s→s0

H(s)−H(s0)

s− s0
(24.70)

Property 24.8 (Differentiation of Functions of Complex Variables). The formal

rules for the differentiation of functions of complex variables are similar to those
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for functions of real variables. If s ∈ �, c is a constant such that c ∈ �, and G(s)
and H(s) are functions of s defined in �, then,

dc

ds
= 0 (24.71)

ds

ds
= 1 (24.72)

d [H(s)±G(s)]

ds
=

dH(s)

ds
± dG(s)

ds
(24.73)

d [H(s).G(s)]

ds
= H(s)

dG(s)

ds
+G(s)

dH(s)

ds
(24.74)

and assuming G(s) �= 0,

d
[

H(s)
G(s)

]
ds

=
G(s) dH(s)

ds
−H(s) dG(s)

ds

G(s)2
(24.75)

Also, the chain rule still holds in the complex domain, namely,

w
Δ
= H(η)

= H (G(s))

Therefore,

dw

ds
=

dw

dη

dη

ds
(24.76)

Definition 24.32 (Partial Differentiation Notation). If u(ξ1,ξ2, · · · ,ξn) is a func-

tion of n variables, then the following shorthand derivative notation is used,

Partial Derivatives,

uξi

Δ
=

∂u(ξ1,ξ2, · · · ,ξn)

∂ξi

(24.77)

Partial Second Derivatives,

uξiξ j

Δ
=

∂ 2u(ξ1,ξ2, · · · ,ξn)

∂ξi∂ξ j

(24.78)

Laplacian,
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∇2u
Δ
=

n

∑
i=1

uξiξi
(24.79)

=
n

∑
i=1

∂ 2u(ξ1,ξ2, · · · ,ξn)

∂ξ 2
i

(24.80)

Definition 24.33 (Laplace’s Equation). Laplace’s equation states that

∇2u(ξ1,ξ2, · · · ,ξn) = 0 (24.81)

where ∇2u(ξ1,ξ2, · · · ,ξn) is defined by Equation 24.79. It describes many states of

nature including steady-state heat conduction and potentials such as gravitation

and electric potential.

24.1.7 Analyticity

The analyticity of functions is an important concept which shows up in the state-

ment of the residue theorem and many other theorems. The residue theorem is a

fundamental theorem needed for the formulation of the inverse of integral trans-

forms. This section is devoted to analyticity and related theorems.

Definition 24.34 (Analytic Function). A function of a complex variable, H(s)
where s ∈ D ⊂ �, is said to be analytic in an interval [a,b] if it is single valued

in that domain (only has one value for each point in the domain) and if the first

derivative,
dH(s)

ds
, exists at every point of the domain. In addition, an analytic func-

tion may be completely described in terms of power series in a Domain D ⊂�. See

Definition 24.42.

Analytic functions may alternatively be called Holomorphic or Regular. Based

on a consequence of the Cauchy Integral Formula, an analytic function is class C∞

continuous – see Definition 24.19 and Theorem 24.11.

Definition 24.35 (Pointwise Analyticity of Functions). A function H(s) is said to

be analytic at point s0 if H(s) is analytic in neighborhood of s0.

Theorem 24.4 (Relation between existence of derivative and continuity). If a

function of a complex variable, H(s) where s ∈�, has a derivative at s0 ∈�, then

it is continuous at s0. All analytic functions are continuous.

Proof.
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lim
s→s0

[H(s)−H(s0)] = lim
s→s0

(s− s0) lim
s→s0

[
H(s)−H(s0)

(s− s0)

]
= 0× dH(s)

ds

∣∣∣∣∣
s=s0

= 0 (24.82)

Hence,

lim
s→s0

H(s) = lim
s→s0

[H(s0)+(H(s)−H(s0))]

= H(s0) (24.83)

Equation 24.83 is just the definition of continuity, see Equation 24.33 in Defini-

tion 24.12.

��
However, not all continuous functions are analytic. i.e. Continuity does not nec-

essarily imply differentiability. For example, take H(s) = |s|2 which is continuous

for all s ∈�.

G(s)
Δ
=

H(s)−H(s0)

s− s0
(24.84)

=
|s|2 −|s0|2

s− s0
∀ (s �= s0)

=
ss− s0s0

s− s0

= s+ s0

[
s− s0

s− s0

]
(24.85)

Now let us do a change of variable and use polar coordinates for convenience,

ρeiθ ≡ s− s0

= ρ(cos(θ)+ isin(θ)) (24.86)

Then,

G(s) = s+
s0ρe−iθ

ρeiθ

= s+ s0e−i(2θ) (24.87)

From Equations 24.84 and 24.87,

G(s) =
H(s)−H(s0)

s− s0

= s+ s0 [cos(2θ)− isin(2θ)] (24.88)

Consider two different ways s → s0 in the complex plane �,
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1. s → s0 along θ = 0 =⇒ G(s) = s0 + s0

2. s → s0 along θ = π
4 rad. =⇒ G(s) = s0 − s0

Therefore, in general the limit, hence the derivative, does not exist unless s0 = 0

where G(s) = s0 = 0. This implies that although H(s) = |s|2 exists everywhere and

hence is continuous, it is not analytic since its derivative does not exist except at

s = 0.

Definition 24.36 (Cauchy-Riemann Conditions). If H(s) may be written in its real

and imaginary components, namely,

H(s) ≡ U(σ ,ω)+ iV (σ ,ω) (24.89)

Then, the Cauchy-Riemann conditions dictate that,

Uσ = Vω (24.90)

Uω = −Vσ (24.91)

Theorem 24.5 (Cauchy-Riemann Theorem). A necessary condition for a func-

tion, H(s) = U(σ ,ω)+ iV (σ ,ω) to be analytic in a domain D ⊂� is that the four

partial derivatives, Uσ ,Uω ,Vσ , and Vω exist and satisfy the Cauchy-Riemann con-

ditions (see Definition 24.36) at each point in D .

Proof.

Let s0 = σ0 + iω0 be any fixed point in domain D . Then,

dH(s)

ds

∣∣∣∣∣
s=s0

= lim
s→s0

H(s)−H(s0)

s− s0

= lim
s→s0

ΔH(s)

Δs
(24.92)

Consider two paths long which s → s0,

1. Let s → s0 along a line parallel to the�-axis, i.e. along ω = ω0. Therefore,

s− s0 = σ + iω0 −σ0 − iω0

= σ −σ0

= Δσ

dH(s)

ds

∣∣∣∣∣
s→s0
ω=ω0

= lim
Δσ→0

U(σ0 +Δσ ,ω0)−U(σ0,ω0)

Δσ
+

i lim
Δσ→0

V (σ0 +Δσ ,ω0)−V (σ0,ω0)

Δσ

= Uσ (σ0,ω0)+ iVσ (σ0,ω0) (24.93)
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2. Let s → s0 along a line parallel to the �-axis, i.e. along σ = σ0. Therefore,

s− s0 = σ0 + iω−σ0 − iω0

= i(ω−ω0)

= iΔω

dH(s)

ds

∣∣∣∣∣
s→s0
σ=σ0

= lim
Δω→0

U(σ0,ω0 +Δω)−U(σ0,ω0)

iΔω
+

i lim
Δω→0

V (σ0,ω0 +Δω)−V (σ0,ω0)

iΔω

=
Uω(σ0,ω0)

i
+Vω(σ0,ω0)

= −iUσ (σ0,ω0)+Vσ (σ0,ω0) (24.94)

If
dH(s)

ds
|s→s0

exists, the expressions arrived at Equations 24.93 and 24.94 should

be identical. Equating the real and imaginary parts of Equations 24.93 and 24.94 we

get,

Uσ (σ0,ω0) = Vω(σ0,ω0)

Uω(σ0,ω0) = −Vσ (σ0,ω0)

which are the Cauchy-Riemann conditions stated in Definition 24.36.

��
Problem 24.2 shows that Theorem 24.5 only supplies necessary condition and not

sufficient for analyticity. See Theorem 24.7 for a necessary and sufficient statement

of the theorem.

Theorem 24.6 (Alternate Cauchy-Riemann Theorem). Another way of stating

Theorem 24.5 is that a necessary condition for a function, H(s) = U(σ ,ω) +
iV (σ ,ω) to be analytic in a domain D ⊂ � is that the Laplace’s Equation (see

Equation 24.81) be satisfied for both Real and Imaginary parts of H(s), namely,

∇2U(σ ,ω) = 0 (24.95)

∇2V (σ ,ω) = 0 (24.96)

Proof.

Let us consider the Cauchy-Riemann conditions of Equations 24.90 and 24.91. If

we take ∂
∂σ of Equation 24.90 and ∂

∂ω of Equation 24.91 and add the two resulting

Equations together we get,

Uσσ +Uωω = Vωσ −Vσω (24.97)

or

∇2U(σ ,ω) = 0 (24.98)



24.1 Complex Variable Theory in Integral Transforms 669

Similarly, if we take ∂
∂ω of Equation 24.90 and ∂

∂σ of Equation 24.91 and add the

two resulting Equations together we get,

Uσω −Uωσ = Vσσ +Vωω (24.99)

or

∇2V (σ ,ω) = 0 (24.100)

Equations 24.98 and 24.100 together with the proof of Theorem 24.5 prove The-

orem 24.6.

��
Theorem 24.7 (Necessary and Sufficient Cauchy-Riemann Theorem (General

Analyticity)). A necessary and sufficient condition for a function, H(s) =U(σ ,ω)+
iV (σ ,ω) to be analytic in a domain D ⊂ � is that the four partial derivatives,

Uσ ,Uω ,Vσ , and Vω exist, be continuous in domain D , and satisfy the Cauchy-

Riemann conditions (see Definition 24.36) at each point in D .

Proof.

H(s+Δs)−H(s)

Δs
=

U(σ +Δσ ,ω +Δω)+ iV (σ +Δσ ,ω +Δω)

Δσ + iΔω
−

U(σ ,ω)+ iV (σ ,ω)

Δσ + iΔω

=
U(σ +Δσ ,ω +Δω)−U(σ ,ω)

Δσ + iΔω
+

i [V (σ +Δσ ,ω +Δω)−V (σ ,ω)]

Δσ + iΔω
(24.101)

Now,

U(σ +Δσ ,ω +Δω)−U(σ ,ω) = U(σ +Δσ ,ω +Δω)−
U(σ +Δσ ,ω)+U(σ +Δσ ,ω)−U(σ ,ω)

By the virtue of the law of mean (mean value theorem), Theorem 24.10,

U(σ +Δσ ,ω)−U(σ ,ω) = Uσ (σ ′,ω)Δσ (24.102)

where σ < σ ′ < σ +Δσ

and

U(σ +Δσ ,ω +Δω)−U(σ +Δσ ,ω) = Uω(σ +Δσ ,ω ′)Δω (24.103)

where ω < ω ′ < ω +Δω
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U(σ +Δσ , ω +Δω)−U(σ ,ω)

= Uσ (σ ′,ω)Δσ +Uω(σ +Δσ ,ω ′)Δω (24.104)

where

{
σ < σ ′ < σ +Δσ
ω < ω ′ < ω +Δω

Equation 24.104 is actually the extension of the Mean Value Theorem for two

variables.

Similarly,

V (σ +Δσ , ω +Δω)−V (σ ,ω)

= Vσ (σ ′′,ω)Δσ +Vω(σ +Δσ ,ω ′′)Δω (24.105)

where

{
σ < σ ′′ < σ +Δσ
ω < ω ′′ < ω +Δω

Let us define the following,

ε1
Δ
= Uσ (σ ′,ω)−Uσ (σ ,ω)

ε2
Δ
= Uω(σ +Δσ ,ω ′)−Uω(σ ,ω)

ε3
Δ
= Vσ (σ ′′,ω)−Vσ (σ ,ω)

ε4
Δ
= Vω(σ +Δσ ,ω ′′)−Vω(σ ,ω)

(24.106)

Using the assumption of continuity of Uσ ,Uω ,Vσ , and Vω at each point in Domain

D ,

lim
Δs→0

(Δσ→0,Δω→0)

εi = 0 i = {1,2,3,4} (24.107)

Using εi in Equations 24.104 and 24.105,

U(σ +Δσ ,ω +Δω)−U(σ ,ω) = Uσ (σ ,ω)Δσ +Uω(σ ,ω)Δω +

ε1Δσ + ε2Δω (24.108)

V (σ +Δσ ,ω +Δω)−V (σ ,ω) = Vσ (σ ,ω)Δσ +Vω(σ ,ω)Δω +

ε3Δσ + ε4Δω (24.109)

Using Equations 24.108 and 24.108 in 24.101,

H(s+Δs)

Δs
=

UσΔσ + iVωΔω + iVσΔσ +UωΔω

Δσ + iΔω
+

ε1Δσ + ε2Δω + ε3Δσ + ε4Δω

Δσ + iΔω

and using the Cauchy-Riemann conditions, Uσ = Vω and Vσ = −Uω ,



24.1 Complex Variable Theory in Integral Transforms 671

H(s+Δs)

Δs
=

Uσ (Δσ + iΔω)

(Δσ + iΔω)
+ i

Vσ (Δσ + iΔω)

(Δσ + iΔω)
+

[ε1 + iε3]
Δσ

Δs
+[ε2 + iε4]

Δω

Δs

= Uσ (σ ,ω)+ iVσ (σ ,ω)+(ε1 + iε3)
Δσ

Δs
+(ε2 + iε4)

Δω

Δs
(24.110)

Taking the lim
s→0

of Equation 24.110,

dH(s)

ds
= lim

Δs→0

H(s+Δs)−H(s)

Δs

= Uσ (σ ,ω)+ iVσ (σ ,ω)+

lim
Δs→0

[ε1 + iε3]
Δσ

Δs
+

lim
Δs→0

[ε2 + iε4]
Δω

Δs
(24.111)

Using the limits of εi from Equation 24.107 and the fact that,
∣∣Δσ
Δs

∣∣ ≤ 1 and∣∣Δω
Δs

∣∣ ≤ 1, the limits on the right hand side of Equation 24.111 vanish and we are

left with,

dH(s)

ds
= Uσ (σ ,ω)+ iVσ (σ ,ω) (24.112)

Therefore, since Uσ (σ ,ω) and Vσ (σ ,ω) exist in all points in Domain D , then

based on Equation 24.112,
dH(s)

ds
must exits in all points in Domain D and by the

Cauchy-Riemann conditions, we may further establish that,

dH(s)

ds
= Uσ (σ ,ω)+ iVσ (σ ,ω) (24.113)

= Vω(σ ,ω)− iUω(σ ,ω) (24.114)

��
Definition 24.37 (Harmonic Conjugate). If U(σ ,ω) and V (σ ,ω) are harmonic

functions of the variables σ ,ω : s = σ + iω ∈ D ⊂ �, and H(s) = U(σ ,ω) +
iV (σ ,ω) is an analytic function in Domain D , V (σ ,ω) is the harmonic conjugate

of U(σ ,ω). See Problem 24.3.

Theorem 24.8 (Analyticity of the Exponential Function). The Exponential func-

tion, es is analytic.

Proof.

H(s) = es = eσ cos(ω)︸ ︷︷ ︸
U

+i eσ sin(ω)︸ ︷︷ ︸
V

(24.115)
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Let us write the four partial derivatives of H(s),

Uσ = eσ cos(ω)

Uω = −eσ sin(ω)

Vσ = eσ sin(ω)

Vω = eσ cos(ω)

All four partial derivatives are continuous and are defined in the � plane. Also,

the Cauchy-Riemann conditions are satisfied. Therefore, H(s) = es is analytic ev-

erywhere. ��
Theorem 24.9 (Analyticity of the Trigonometric Functions). Trigonometric Func-

tions of complex variable s are defined in terms of the Exponential Function, es, as

follows,

sin(s)
Δ
=

eis − e−is

2i

cos(s)
Δ
=

eis + e−is

2

csc(s)
Δ
=

1

sin(s)

sec(s)
Δ
=

1

cos(s)

tan(s)
Δ
=

sin(s)

cos(s)

cot(s)
Δ
=

cos(s)

sin(s)

All these functions are analytic everywhere in the� plane. sin(s) and cos(s) are

periodic with period 2π .

Proof.

The proof is quite simple and since these functions are defined in terms of es which

was proven to be analytic everywhere by Theorem 24.8, the same methodology as

in the proof of Theorem 24.8 may be followed. ��

24.1.8 Integration

In this section, we will look at some ideas related to the integrals of functions. Nat-

urally, these concepts are quite central to the idea of integral transforms. As we will

see, the domain of integration and, in the case of integration on the complex plane,

the contour of integration are essential to the formulation of an integral transform

and its inverse. As we shall see in the statement of the residue theorem, the choice
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of a contour of integration highly simplifies the computation of otherwise very com-

plex integrals.

Definition 24.38 (Absolutely Integrable). A function h(t) is absolutely integrable

in a closed interval [a,b] if it is piecewise continuous in that interval, if ∃ M : M < ∞,

and if

ˆ b

a

|h(t)|dt < M (24.116)

or in words, if the integral in Equation 24.116 is bounded.

Definition 24.39 (Riemann Integral (Definite Integral)). Consider a function h(t)
defined and continuous in the closed interval, a ≤ t ≤ b, then the Riemann Integral,

R
Δ
=

ˆ b

a

h(t)dt (24.117)

is a number defined by the following process:

1. Choose an integer n ≥ 1 and arrange the closed interval [a,b] as follows,

[a,b] = {a = t0, t1, t2, · · · , tn−1, tn = b} (24.118)

Such that t0 < t1 < t2 < · · · < tn and let Δ ti
Δ
= ti − ti−1 where i = 1,2, · · · ,n

2. In each subinterval choose an arbitrary point t ′i such that ti−1 ≤ t ′i ≤ ti
3. Form the approximating sum ∑

n
i=1 h(t ′i)Δ t ′i

4. Then,

R = lim
n→∞
Δ ti→0

n

∑
i=1

h(t ′i)Δ ti =

ˆ b

a

h(t)dt (24.119)

Property 24.9 (Properties of the Riemann Integral (Definite Integral)).

1. Continuous functions are always integrable.

2. Functions somewhere, but not everywhere, continuous

a. are integrable if they have finite numbers of points of discontinuity.

b. maybe integrable if they have an ∞ number of discontinuities.

Lemma 24.1 (Riemann’s Lemma). Let h(t) be piecewise continuous in the closed

interval a ≤ t ≤ b, also assume that h(t) has piecewise continuous derivatives in

that interval. Then,

lim
k→∞

ˆ b

a

h(t)sin(kt)dt = lim
k→∞

ˆ b

a

h(t)cos(kt)dt = 0 (24.120)
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Proof.

Here, we will prove the case for the sine function in Equation 24.120 and due to

similarity the results may be generalized to include the case with the cos function.

1. Let us take the simplest case where h(t) and
dh(t)

dt
are both continuous in the

closed interval a ≤ t ≤ b. Then, using integration by parts (i.e.
´

( f ′g) = f g−´
( f g′) where f ≡ − sin(kt)

k
and g ≡ h(t)),

ˆ b

a

h(t)sin(kt)dt = −cos(kt)

k
h(t)

∣∣∣∣∣
b

a

+

ˆ b

a

cos(kt)

k

dh(t)

dt
dt (24.121)

Based on the assumption that h(t) and
dh(t)

dt
are continuous, they are bounded in

that interval (see Property 24.6), namely,

|h(t)| ≤ M (24.122)

and∣∣∣∣dh(t)

dt

∣∣∣∣≤ M′ (24.123)

Combining Equations 24.121, 24.122, 24.123 and using the mean value theorem

(Theorem 24.10), and taking the absolute values and the limits of both sides as

k → ∞,

lim
k→∞

∣∣∣∣∣
ˆ b

a

h(t)sin(kt)dt

∣∣∣∣∣≤ lim
k→∞

2M +M′(b−a)

k
(24.124)

In Equation 24.124, the limit on the right hand side clearly approaches 0 for any

arbitrary bounds a and b. Therefore, the left hand side of Equation 24.124 must

be 0 which implies that,

lim
k→∞

ˆ b

a

h(t)sin(kt)dt = 0 (24.125)

2. Now let us add a simple complication to the first case by allowing the derivative

of h(t) to have discontinuities at the end points of the interval. Namely, the

interval of continuity of
dh(t)

dt
is relaxed a bit to include only the open interval

a < t < b, but the interval of continuity of the function h(t) itself still remains

as the closed interval of case 1. In this case, let us remove a neighborhood of

the end points of the interval by a small amount ε . Therefore, the left side of

Equation 24.121 may be written as follows,
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ˆ b

a

h(t)sin(kt)dt =

ˆ a+ε

a

h(t)sin(kt)dt

+

ˆ b−ε

a+ε
h(t)sin(kt)dt

+

ˆ b

b−ε
h(t)sin(kt)dt (24.126)

Taking the absolute values of the two sides of Equation 24.126, h(t) is still

bounded in the interval a ≤ t ≤ b due to continuity in this interval, so the abso-

lute value of Equation 24.126 may be written as,∣∣∣∣∣
ˆ b

a

h(t)sin(kt)dt

∣∣∣∣∣≤ 2Mε +

∣∣∣∣∣
ˆ b−ε

a+ε
h(t)sin(kt)dt

∣∣∣∣∣ (24.127)

Consider the first term in the right hand side of Equation 24.127. ε may be

chosen to be arbitrarily small so in the limit,

lim
ε→0

2Mε = 0 (24.128)

Let us define another closed interval, a + ε ≤ t ≤ b − ε . In that interval, the

second term of Equation 24.127 is continuous in both h(t) and
dh(t)

dt
. Thus,

based on the proven hypothesis of case 1, it goes to 0 in the limit as k → ∞.

Therefore,

lim
k→∞

∣∣∣∣∣
ˆ b

a

h(t)sin(kt)dt

∣∣∣∣∣ ≤ lim
k→∞
ε→0

2Mε + lim
k→∞
ε→0

∣∣∣∣∣
ˆ b−ε

a+ε
h(t)sin(kt)dt

∣∣∣∣∣
≤ 0+0 (24.129)

which means that

lim
k→∞

ˆ b

a

h(t)sin(kt)dt = 0 (24.130)

3. Finally, we generalize to the case where there are a finite number of discon-

tinuities of
dh(t)

dt
in the interval a ≤ t ≤ b. In this case, assuming there are n

such discontinuities, again, an ε neighborhood of the discontinuity may be iso-

lated as we did in the last case. Then, we will be left with n+1 closed intervals

with continuity of
dh(t)

dt
and n isolated integrals in a small interval, where the

absolute values of each equal Mε . The integrals with continuity in the closed

subset intervals between discontinuities go to 0 as k → 0. The contribution of

the discontinuities will be at most nMε . Since n is finite, lim
ε→0

nMε = 0. Hence,

lim
k→∞

ˆ b

a

h(t)sin(kt)dt = 0 (24.131)
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for this case as well.

The last case is the most general case and completely proves the Lemma.

��
Theorem 24.10 (Mean Value Theorem (Law of Mean)). Let h(t) be a C1 contin-

uous function in the closed interval, a ≤ t ≤ b. Then, there is a point T in the open

interval, a < t < b, such that,

h(b)−h(a) =
dh(t)

dt

∣∣∣∣∣
t=T

(b−a) (24.132)

Let c = b−a. Then T = a+αc where 0 < α < 1.

h(a+ c) = h(a)+ c
dh(t)

dt

∣∣∣∣∣
t=(a+αc)

0 < α < 1 (24.133)

Equation 24.104 denotes the extension of this theorem to a function of two variables.

The derivation of this extension which has been shown within the body of the Proof

of the general analyticity theorem (Theorem 24.7) may be extended to functions of

any number of variables by following the same procedure.

Definition 24.40 (Simply Connected Domain). A simply connected domain is one

in which every closed contour, Γ in domain D ⊂�, contains only points in D . i.e.

We can shrink any closed contour Γ in D down to a point without leaving the do-

main D .

Alternatively, a domain D ⊂� is simply connected if, given any two continuous

curves, Γ1 and Γ2 with the same initial and terminal points, each curve is continu-

ously deformable to the other.

Theorem 24.11 (Cauchy Integral Theorem).

• Simply Connected Domains:

Let H(s) be analytic in a simply connected Domain D ⊂ � and let Γ be any

closed contour in D . Then,

‰
Γ

H(s)ds = 0 (24.134)

• Multiply Connected Domains:

Let Γ ,Γ1,Γ2, · · · ,Γn be simple closed contours, each described in the positive

(counter clockwise) direction and such that each Γj is inside Γ and outside

Γk∀ j �= k; j,k = {1,2, · · · ,n}. See Figure 24.10.

Let H(s) be analytic on each of the contours Γ and Γj, j = {1,2, · · · ,n} and

at each point interior to Γ and exterior to all the Γj, j = {1,2, · · · ,n}. Then,
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Fig. 24.9: Integration Path of Multiply
Connected Contours

Fig. 24.10: Individual Contour Paths
Used by the Cauchy Integral Theorem

the contour integral which contains all the said analytic points of H(s) is zero,

namely,

‰
Γ

H(s)ds+

j
Γ1

H(s)ds+

j
Γ2

H(s)ds+

j
Γ3

H(s)ds+ · · ·+
j
Γn

H(s)ds = 0 (24.135)

See Figure 24.9 for the path of integration and note the integration directions

in each term of Equation 24.135.

Changing the direction of integration for contours Γj, j = {1,2, · · · ,n},

‰
Γ

H(s)ds =

‰
Γ1

H(s)ds+

‰
Γ2

H(s)ds+

‰
Γ3

H(s)ds+ · · ·+
‰
Γn

H(s)ds

=
n

∑
j=1

‰
Γj

H(s)ds (24.136)

Definition 24.41 (Length of a Contour Γ in �). Consider the contour Γ , defined

by the parameter {τ : τ1 ≤ τ ≤ τ2}, such that,

s(τ) = σ(τ)+ω(τ) (24.137)

Then Length of the contour, LΓ is given by the following definition,
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Fig. 24.11: Contour of Integration for Cauchy Integral Formula

LΓ
Δ
=

ˆ τ2

τ1

[(
dσ(τ)

dτ

)2

+

(
dω(τ)

dτ

)2
] 1

2

dτ (24.138)

=

ˆ τ2

τ1

∣∣∣∣ ds

dτ

∣∣∣∣dτ (24.139)

Theorem 24.12 (Absolute Integral Bound). Consider the complex contour Γ de-

fined in terms of a parameter τ , i.e. Γ is defined on the curve, g(τ) : τ �→ �,τ1 ≤
τ ≤ τ2. Then,∣∣∣∣ˆ τ2

τ1

g(τ)dτ

∣∣∣∣≤ ˆ τ2

τ1

|g(τ)|dτ (24.140)

Proof.

s =

ˆ τ2

τ1

g(τ)dτ

= |s|eiθ

(24.141)

where θ
Δ
= �s.

Based on the polar representation of s,

s = |s|eiθ =⇒ |s| = se−iθ (24.142)

Then, the left hand side of Equation 24.140 may be written as,
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|s| =

∣∣∣∣ˆ τ2

τ1

g(τ)dτ

∣∣∣∣
= e−iθ

ˆ τ2

τ1

g(τ)dτ

=

ˆ τ2

τ1

g(τ)e−iθdτ

≥ 0 (24.143)

Note thatˆ τ2

τ1

g(τ)e−iθdτ ≤
ˆ τ2

τ1

∣∣∣g(τ)e−iθ
∣∣∣dτ

=

ˆ τ2

τ1

|g(τ)|
∣∣∣e−iθ

∣∣∣dτ
=

ˆ τ2

τ1

|g(τ)|dτ (24.144)

Therefore,∣∣∣∣ˆ τ2

τ1

g(τ)dτ

∣∣∣∣≤ ˆ τ2

τ1

|g(τ)|dτ (24.145)

��
Theorem 24.13 (Cauchy Integral Formula).

• Part I (For Analytic Functions):

Let H(s) be analytic within and on a simple closed contour Γ in Domain D ⊂
�. If s = s0 is any point inside contour Γ , then,

H(s0) =
1

2πi

‰
Γ

H(ζ )

ζ − s0
dζ (24.146)

N.B. The contour integration is taken in the positive (counter-clockwise) sense.

• Part II (For Derivatives of Analytic Functions):

Furthermore, based on the definition of analyticity of functions, Definition 24.34,

these functions may be written in the form of a power series (Definition 24.42)

and therefore, the n-th derivative of H(s) evaluated at s = s0 may be written as,

dH(s)

ds

∣∣∣∣∣
s=s0

=
n!

2πi

‰
Γ

H(ζ )

(ζ − s0)n+1
dζ (24.147)

for any n. A consequence of this is that any analytic function is infinitely differ-

entiable, hence of class C∞ continuity.
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Proof.

• Part I (For Analytic Functions):

Since H(s) is assumed to be analytic, then,

ϕ(s) =
H(s)

s− s0
(24.148)

is also analytic at all points inside the contour Γ except for s = s0. Draw a small

circle of radius r and center s0 lying entirely inside contour Γ and call it Γ1 –

see Figure 24.11. According to the Cauchy Integral Theorem (Theorem 24.11),

‰
Γ
ϕ(s)ds =

‰
Γ1

ϕ(s)ds (24.149)

Since H(s) is analytic at s = s0,

H(s) = H(s0)+
dH(s)

ds

∣∣∣∣∣
s=s0

(s− s0)+ ε(s)(s− s0) (24.150)

where

ε(s) =

⎧⎨⎩ H(s)−H(s0)
s−s0

− dH(s)
ds

∣∣∣∣
s=s0

∀ s �= s0

0 for s = s0

‰
Γ1

ϕ(s)ds =

‰
Γ1

H(s)

s− s0
ds

=

‰
Γ1

H(s0)+ dH(s)
ds

∣∣
s=s0

(s− s0)+ ε(s)(s− s0)

s− s0
ds

= H(s0)

‰
Γ1

ds

s− s0︸ ︷︷ ︸
Integral1

+
dH(s)

ds

∣∣
s=s0

‰
Γ1

ds︸ ︷︷ ︸
Integral2

+

‰
Γ1

ε(s)ds︸ ︷︷ ︸
Integral3

(24.151)

Now, let us evaluate the three Integrals labeled in Equation 24.151.

Integral 1:

On Γ1, let s− s0 = reiθ . Therefore, ds = ireiθdθ . Then,‰
Γ1

ds

s− s0
=

ˆ 2π

0

ireiθ

reiθ
dθ

= 2πi (24.152)

Integral 2:
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‰
Γ1

ds = ir

ˆ 2π

0

eiθdθ

= ir

ˆ 2π

0

[cos(θ)+ isin(θ)]dθ

= 0 (24.153)

Since it is a closed contour.

Integral 3:

Let us take a look at the absolute value of Integral 3,∣∣∣∣‰
Γ1

ε(s)ds

∣∣∣∣≤ 2πrε (24.154)

where ε
Δ
= max

sonΓ1

|ε(s)|.

Combining Equations 24.151, 24.152, 24.153, and 24.154,

∣∣∣∣‰
Γ1

ϕ(s)ds−2πiH(s0)

∣∣∣∣≤ 2πrε (24.155)

r = |s− s0| → 0 =⇒ ε → 0 (see Definition of ε). Therefore,∣∣∣∣‰
Γ1

ϕ(s)ds−2πiH(s0)

∣∣∣∣= 0 (24.156)

∴

‰
Γ1

ϕ(s)ds = 2πiH(s0) (24.157)

From Equations 24.157 and 24.148,

H(s0) =
1

2πi

‰
Γ1

H(s)

s− s0
ds (24.158)

• Part II (For Derivatives of Analytic Functions):

Let s0 and s0 +δ be points interior to a simple closed contour Γ . Then,

H(s0 +δ )−H(s0)

δ
=

1

2πiδ

‰
Γ

[
1

s− s0 −δ
− 1

s− s0

]
H(s)ds

=
1

2πi

‰
Γ

H(s)

(s− s0 −δ )(s− s0)
ds (24.159)

1

(s− s0 −δ )(s− s0)
=

1

(s− s0)2
+

δ

(s− s0 −δ )(s− s0)2
(24.160)
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Combining Equations 24.159 and 24.160,

H(s0 +δ )−H(s0)

δ
=

1

2πi

‰
Γ

H(s)

(s− s0)2
ds+

δ

2πi

‰
Γ

H(s)

(s− s0)2(s− s0 −δ )
ds (24.161)

Let us consider,

lim
|δ |→0

δ

2πi

‰
Γ

H(s)

(s− s0)2(s− s0 −δ )
ds (24.162)

Since H(s) is continuous on Γ , it is bounded, so, |H(s)| ≤ M on Γ . Let L be

the length of contour Γ and let r be the smallest distance from s0 to Γ . Let us

choose |δ | : |δ | ≤ 1
2 r. Then, for a point s on contour Γ ,

|s− s0| ≥ r (24.163)

|s− s0 −δ | ≥ |s− s0|− |δ | ≥ r − r

2
=

r

2
(24.164)

Hence,

δ

2πi

‰
Γ

H(s)

(s− s0)2(s− s0 −δ )
ds ≤

(
ML

πr3

)
|δ | (24.165)

lim
|δ |→0

(
ML

πr3

)
|δ | = 0 (24.166)

This means that,

lim
|δ |→0

δ

2πi

‰
Γ

H(s)

(s− s0)2(s− s0 −δ )
ds = 0 (24.167)

Taking the limit of Equation 24.161 as δ → 0 in conjunction with the result of

Equation 24.167,

dH(s)

ds

∣∣
s=s0

= lim
δ→0

H(s0 +δ )−H(s0)

δ

=
1!

2πi

‰
Γ

H(s)

(s− s0)2
ds (24.168)

or

‰
Γ

H(s)

(s− s0)2
ds =

2πi

1!

dH(s)

ds

∣∣∣∣∣
s=s0

(24.169)
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The above procedure may be repeated to prove the general case,

dnH(s)

ds

∣∣∣∣∣
s=s0

=
n!

2πi

‰
Γ

H(ζ )

(ζ − s0)n+1
dζ (24.170)

��
Theorem 24.14 (Morera’s Theorem (Converse of Cauchy’s Integral Theorem)).

If H(s) is continuous in a Domain D ⊂� and if,
�
Γ H(s)ds is zero for every closed

contour, Γ , then H(s) is analytic.

Fig. 24.12: Taylor Series Convergence
for an Analytic Function

Fig. 24.13: Laurent Series Annular Re-
gion of Convergence for an Analytic
Function

24.1.9 Power Series Expansion of Functions

In this section, we will review the power series expansion of analytic functions and

related concepts such as convergence criteria and the definitions of poles and zeros.

Definition 24.42 (Taylor Series (Expansion of an analytic function into a Power

Series)). Let H(s) be analytic within the interior of a circular Domain D ⊂� with

center s0 and radius ρ , i.e. D = {s : |s− s0| ≤ ρ}. Then, at each point s interior to

D , the function H(s) may be written in terms of the following power series,

H(s) =
∞

∑
n=0

an(s− s0)
n (24.171)
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where,

an =
1

2πi

‰
C

H(ζ )

(ζ − s0)n+1
dζ n = {0,1,2, · · ·} (24.172)

As a consequence of the Cauchy Integral Formula for derivatives (Equation 24.147),

Equation 24.171 may be written as the following which is the Taylor Series expan-

sion of H(s) in powers of (s− s0).

H(s) =
∞

∑
0

1

n!

dnH(s)

ds

∣∣∣∣∣
s=s0

(s− s0)
n (24.173)

Moreover, the series converges uniformly (Definition 24.69) for points within and

on any circle Γ with center at s0 and radius r < ρ where ρ is the radius of conver-

gence. Given any center s0, the radius of convergence, ρ , is the distance from s0 to

the nearest singularity of the function. See Figure 24.12

N.B. When s0 = 0, the Taylor Series is known as the McLauren series.

Example 24.6 (Infinite Radius of Convergence).

The radius of convergence of H(s) = es is ρ = ∞ for any center s0.

Example 24.7 (Radius of Convergence).

If the center of the domain Γ is taken to be s0 = 0, then the radius of convergence of

H(s) =
es

s−1
(24.174)

will be ρ = 1.

Definition 24.43 (Laurent Series (Expansion of analytic functions in an Annular

Region)). Letϒ be an annular region bounded by two concentric circles, Γ1 and Γ2

(see Figure 24.13) with centers at s0 and radii r1 and r2 where r1 < r2. Let H(s) be

analytic withinϒ and on Γ1 and Γ2. Then at each point in the interior ofϒ , H(s) can

be represented by a convergent power series consisting of both positive and negative

powers of (s− s0) as follows,

H(s) =
∞

∑
n=0

an(s− s0)
n +

∞

∑
n=1

bn(s− s0)
−n (24.175)

where,

an =
1

2πi

‰
Γ2

H(ζ )

(ζ − s0)n+1
dζ n = {0,1,2, · · ·} (24.176)

bn =
1

2πi

‰
Γ1

H(ζ )

(ζ − s0)−n+1
dζ n = {1,2, · · ·} (24.177)
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N.B.

b1 =
1

2πi

‰
Γ1

H(ζ )dζ (24.178)

is the residue of H(s) at s = s0. Also, note that the Taylor Series expansion defined

in Definition 24.42 is a special case of the Laurent Series where r1 → 0.

Property 24.10 (Uniqueness of Power Series). If two power series, ∑
∞
n=0 an(s −

s0)
n and ∑

∞
n=0 bn(s − s0)

n both converge to the same function H(s), in the same

neighborhood of s0, |s− s0| < ρ , then the two series are identical. i.e. an = bn ∀ n =
{0,1,2, · · ·}.

Property 24.11 (Addition and Multiplication of Power Series). If two power

series, G(s) = ∑
∞
n=0 an(s − s0)

n and H(s) = ∑
∞
n=0 bn(s − s0)

n both converge with

nonzero convergence radii r1 and r2 respectively, such that, r1 ≤ r2, then,

G(s)±H(s) =
∞

∑
n=0

(an ±bn)(s− s0)
n where |s− s0| < r1 (24.179)

and

G(s) ·H(s) =
∞

∑
n=0

(cn)(s− s0)
n (24.180)

where cn =
n

∑
k=0

akbn−k

|s− s0| < r1

n = {0,1,2, · · ·} (24.181)

Property 24.12 (Division of Power Series). Consider the two power series G(s)
and H(s) of Property 24.11. If H(s) �= 0, then there exists a power series ∑

∞
n=0 cn(s−

s0)
n and a number ζ > 0 such that

G(s)

H(s)
=

∞

∑
n=0

cn(s− s0)
n ∀ |s− s0| < ζ (24.182)

where the coefficients cn satisfy the following equations.

an =
n

∑
k=0

ckbn−k (24.183)

bn =
n

∑
k=0

ckan−k (24.184)

Definition 24.44 (Zeros of a Function). A point s0 is called a zero of order r of

H(s) if
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lim
s→s0

[
(s− s0)

−rH(s)
]
= M where M �= 0∧M < ∞ (24.185)

Definition 24.45 (Isolated Singularities and Poles of a Function). A point s0 is

called an isolated singularity or an isolated singular point of H(s) if H(s) is not

analytic at s0, but it is analytic in a deleted neighborhood of s0. s0 is also called a

pole of order r of function H(s) if,

lim
s→s0

[(s− s0)
rH(s)] = M where M �= 0∧M < ∞ (24.186)

Example 24.8 (Isolated Singularity).

The function,

H(s) =
s2 +1

(s2 +4)(s2 −5s)
(24.187)

is analytic over the entire� except at the points where it blows up. s = ±2i,0,5 are

isolated singularities of H(s).

24.1.10 Residues

In this section, we will state one of the most powerful theorems in the theory of

complex variable which provides the means for inverting an integral transform, fol-

lowed by another theorem which facilitates the computation of the residues. Let us

start with the definition of a meromorphic function which is the type of function

handled by the Cauchy residue theorem.

Definition 24.46 (Meromorphic Functions). A function H(s) which is analytic

in a Domain D ⊂ � except at some point of D where it has poles is said to be

meromorphic in D .

Theorem 24.15 (The Cauchy Residue Theorem). Let Γ be a simple closed con-

tour and H(s) be analytic onΓ and interior toΓ except at a finite number of isolated

singular points, (s1,s2, · · · ,sn) – See Figure 24.10. Then,

‰
Γ

H(s)ds = 2πi
n

∑
k=1

Residue [H(s),sk] (24.188)

Proof.

By the Cauchy Integral Theorem for a Multiply Connected Region (Theorem 24.11),

‰
Γ

H(s)ds =
n

∑
k=1

‰
Γk

H(s)ds (24.189)
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Recall the b1 coefficient of the Laurent series expansion of H(s) about sk – see

Equation 24.178 in Definition 24.43. Then,‰
Γk

H(s)ds = 2πib1

= 2πi Residue [H(s),sk] (24.190)

Combining Equations 24.190 and 24.189, we get the statement of this theorem,

namely,

‰
Γ

H(s)ds = 2πi
n

∑
k=1

Residue [H(s),sk] (24.191)

��
Theorem 24.16 (The Residue Evaluation Theorem). Suppose H(s) is analytic in

a neighborhood of s = s0 except at s0 where it has a pole of order m. Then,

Residue [H(s),s0] =
1

(m−1)!
lim
s→s0

d(m−1)

ds(m−1)
[(s− s0)

mH(s)] (24.192)

Proof.

Define

l(s)
Δ
= (s− s0)

mH(s) (24.193)

In essence l(s) is analytic everywhere including at s = s0. Now let us write the power

series for l(s) about s0 (see Definition 24.43)

l(s) =
m−1

∑
k=0

bm−k(s− s0)
k +

∞

∑
n=0

an(s− s0)
n+m (24.194)

Differentiate l(s), (m−1) times and then take its limits as s → s0,

lim
s→s0

d(m−1)l(s)

ds(m−1)
= (m−1)!b1 (24.195)

Residue [H(s),s0] = b1

=
1

(m−1)!
lim
s→s0

d(m−1)

ds(m−1)
[(s− s0)

mH(s)] (24.196)

��
N.B. For a simple pole, i.e. m = 1,
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Residue [H(s),s0] = lim
s→s0

[(s− s0)H(s)] (24.197)

24.2 Relations Between Functions

There are several different definitions which convey the relationships of two or more

functions in varying perspectives. These relationships manifest themselves in the

form of functions over the same domain as the original functions which they relate.

Two of the most important such functions used in signal processing are convolution

and correlation.

24.2.1 Convolution

The convolution function Conv(g,h)(t) is an indication of the amount of overlap

between two functions g(t) and h(t) at t where one function is slid an amount t with

respect to the other function. It may be defined in two different ways for Riemann

integrable continuous functions (see Definition 24.39).

Definition 24.47 (Finite-Domain Convolution).

Conv(g,h)(t) = (g∗h)(t)

Δ
=

ˆ t

0

g(τ)h(t − τ)dτ (24.198)

The finite domain definition is popular in control and signal processing where

t stands for time.[17] It is most used in conjunction with Laplace Transforms as

we shall see later. In general, however, many signal processing techniques use the

Infinite-Domain Convolution when they explore the signal with Fourier Transforms.

The relationship between convolution and integral transforms will become more

apparent in future sections of this chapter.

Definition 24.48 (Infinite-Domain Convolution (Convolution)). Infinite-Domain

Convolution is the more popular definition of Convolution and may be expressed as

follows:

Conv(g,h)(t) = (g∗h)(t)

Δ
=

ˆ ∞

−∞

g(τ)h(t − τ)dτ (24.199)

Assume that f (t), g(t), and h(t) are general complex-valued functions and that

γ = α + iβ is a constant in the complex domain, �. The following properties hold

and are easily verifiable by writing out the expression for convolution in terms of

the definition in Equation 24.199
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Property 24.13 (Commutativity of Convolution). Convolution of functions g(t)
and h(t) is commutative, namely,

g∗h = h∗g (24.200)

Property 24.14 (Associativity of Convolution). Convolution among functions

f (t), g(t) and h(t) is associative, namely,

f ∗ (g∗h) = ( f ∗g)∗h (24.201)

Property 24.15 (Distributivity of Convolution). Convolution is distributive, namely,

( f +g)∗h = ( f ∗h)+(g∗h) (24.202)

Property 24.16 (Scaling Associativity of Convolution). Convolution is associa-

tive with respect to scaling, namely,

γ(g∗h) = (γg)∗ (γh) (24.203)

24.2.2 Correlation

Another relationship between functions, which is defined in the form of correlation,

signifies the location at which the second function has similar features to the first

function. It is usually used in cases where a long-term signal is searched for spe-

cific features. These features may be represented in a shorter signal which then is

slid along the longer signal looking for locations where the similarity peaks. The

correlation is defined in mathematical terms as follows,

Corr(g,h)(t) = (g◦h)(t)

Δ
=

ˆ ∞

−∞

g(τ)h(t + τ)dτ (24.204)

In Equation 24.204, the independent variable t is called lag.

For real-valued functions,

Corr(g,h)(t) = (g◦h)(t)

Δ
=

ˆ ∞

−∞

g(τ)h(t + τ)dτ (24.205)

The correlation of a function with itself is called autocorrelation and it peaks at

the lag t = 0, since at lag of zero, the two functions are identical. Correlation is also

known as the sliding inner product (see Definition 24.49), cross-correlation and the

sliding dot product of two functions. Like convolution it has interesting connections
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with the Fourier Transform of functions which will be discussed later in this chapter.

24.3 Orthogonality of Functions

As we shall see, orthogonality plays a very important role in the expansion of func-

tions, also leading to the concept of an integral transform. In this section some of

these concepts are defined and reviewed. It is recommended to review the Section

on measure theory (Section 6.2) prior to, or in conjunction with, this section.

Definition 24.49 (Inner Product of Functions). The inner product of two functions

of a complex variable, ϕ(s) and ψ(s), in a closed interval s1 ≤ s ≤ s2, is denoted by

〈ϕ,ψ〉 and is defined by the following integral,

〈ϕ,ψ〉 =

ˆ s2

s1

ϕ(s)ψ(s)ds (24.206)

Refer to the Definition 6.49 of the class of p-integrable functions. Let us assume

that functions ϕ(s) and ψ(s) are members of the class of 2-integrable functions

(ϕ(s),ψ(s) ∈ L2). Then, according to Theorem 6.4 and Definition 6.50, they satisfy

Hölder’s inequality for p = q = 2, known as the Schwarz inequality. Namely,

〈ϕ,ψ〉 ≤ [〈ϕ,ϕ〉] 1
2 [〈ψ,ψ〉] 1

2 (24.207)

or

(〈ϕ,ψ〉)2 ≤ 〈ϕ,ϕ〉〈ψ,ψ〉 (24.208)

Note that Definition 24.49 is a general definition of the inner product which

applies to any complex function of complex variables. Special cases of the in-

ner product include the inner product of complex or real variables in the product

space, (H ×H ,H×H). For example, consider ϕ,ψ ∈ H , where the inner prod-

uct is given by 〈ϕ,ψ〉 : {H ×H } �→�, for the Hilbert metric space (see Defini-

tion 6.34).

Definition 24.50 (Orthogonality of Functions). Two complex-valued functions,

ϕ(s) and ψ(s) are orthogonal in a closed interval, s1 ≤ s ≤ s2 if their inner product

is zero,

〈ϕ,ψ〉 =

ˆ s2

s1

ϕ(s)ψ(s)ds = 0 (24.209)

Definition 24.51 (Orthogonality of a Set of Functions). An infinite set of func-

tions, ϕn(s),n = {1, , · · ·}, is an orthogonal set in the closed interval, s1 ≤ s ≤ s2
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if,

ˆ s2

s1

ϕn(s)ϕm(s)ds = 0 ∀ n �= m (24.210)

and

ˆ s2

s1

ϕn(s)ϕn(s)ds �= 0 ∀ n = 1,2, · · · (24.211)

If in addition to being orthogonal, the norm of each of the functions (Sec-

tion 6.5.4) is equal to 1 (‖ϕn‖ = 1,n = {1, , · · ·}), then the set is said to be an or-

thonormal set of functions.

Definition 24.52 (Orthogonality of a Set of Functions about a Weighting Func-

tion). An infinite set of functions, ϕn(s), is an orthogonal set about a weighting

function, w(s), in the closed interval, s1 ≤ s ≤ s2 if,

ˆ s2

s1

ϕn(s)w(s)ϕm(s)ds = 0 ∀ n �= m (24.212)

and

ˆ s2

s1

ϕn(s)w(s)ϕn(s)ds �= 0 ∀ n = 1,2, · · · (24.213)

Theorem 24.17 (Bessel’s Inequality).

Consider an orthonormal set of functions, denoted by {ϕn(s)} ∈ Hp,n = {1,2, · · ·},

where Hp is a pre-Hilbert space, generally defined in terms of the complex plane

(see Section 6.2.6.1). Then if we denote the components of a function, h(s), repre-

sented in this orthonormal basis as,

cn
Δ
= 〈h,ϕn〉 (24.214)

the following inequality known as Bessel’s inequality holds for any such orthonor-

mal system.

N

∑
n=1

|cn|2 ≤ 〈
h,h

〉
(24.215)

Proof. (due to [12])

A truncated expansion of h in terms of the basis functions of the orthonormal set,

{ϕn}, would be one that is written for n = {1,2, · · · ,N}. Therefore, the following

expansion error seems evident,
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ˆ

D

∣∣∣∣∣h(s)−
N

∑
n=1

cnϕn(s)

∣∣∣∣∣
2

ds ≥ 0 (24.216)

We may expand the terms on the left hand side of Equation 24.216 as follows,

ˆ

D

∣∣∣∣∣h(s)−
N

∑
n=1

cnϕn(s)

∣∣∣∣∣
2

ds =

ˆ

D

|h|2 ds−2
N

∑
n=1

cn

ˆ

D

h(t)ϕn(s)ds

+
N

∑
n=1

|cn|2 (24.217)

Using the Equation 24.206 and the definition of cn, given by Equation 24.214, in

Equation 24.217, we may write,

ˆ

D

∣∣∣∣∣h(s)−
N

∑
n=1

cnϕn(s)

∣∣∣∣∣
2

ds =
〈
h,h

〉−2
N

∑
n=1

|cn|2 +
N

∑
n=1

|cn|2 (24.218)

=
〈
h,h

〉− N

∑
n=1

|cn|2 (24.219)

≥ 0 (24.220)

The transition from Equation 24.217 to Equation 24.218 takes advantage of the or-

thonormality of {ϕn}.

Therefore, we can write,

N

∑
n=1

|cn|2 ≤ 〈
h,h

〉
(24.221)

However,
〈
h,h

〉
is independent of N, so the inequality in Equation 24.221 should be

valid for any N, even as N → ∞. Therefore,

∞

∑
n=1

|cn|2 ≤ 〈
h,h

〉
(24.222)

��
Bessel’s inequality tells us, not only that the sum of squares of the expansion

coefficients of all orthonormal expansions converges, but also that it is bounded by

the inner product of the function with itself, or namely, the square of its norm.

Theorem 24.18 (Least Squares Estimation (Approximation in the Mean)). Let

us consider an expansion of h(s) in terms of a truncated set of orthonormal func-

tions, {ϕn},n = {1,2, · · · ,N}. Then, the coefficients, {a}N
1 , of the approximation of

h(s) by the linear combination approximation of the basis functions, {ϕ}N
1 ,
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h(s) ≈
N

∑
n=1

anϕn(s) (24.223)

has the smallest sum of squares of errors,

S
Δ
=

ˆ

D

∣∣∣∣∣h(s)−
N

∑
n=1

anϕn(s)

∣∣∣∣∣
2

ds (24.224)

if and only if {a}N
1 = {c}N

1 , where,

cn = 〈h,ϕn〉 ∀ n = {1,2, · · · ,N} (24.225)

Proof.

Given Equation 24.225, Equation 24.224 may be expanded as follows,

S =

ˆ

D

∣∣∣∣∣h(s)−
N

∑
n=1

anϕn(s)

∣∣∣∣∣
2

ds (24.226)

=

ˆ

D

|h(s)|2 ds+
N

∑
n=1

|an − cn|2 −
N

∑
n=1

|cn|2 (24.227)

(24.228)

Therefore, since the cn are functions of the basis, {ϕ}N
1 , the only term in Equa-

tion 24.227 which may be manipulated in order to make S minimal is the second

term. Therefore, S would be minimum if and only if an = cn ∀ n = {1,2, · · · ,N}.

��
Definition 24.53 (Complete Space). Any orthonormal function space given by the

basis functions, ϕn,n = {1,2, · · ·} is said to be a complete space if for any piecewise

continuous function, h(s), there exists an N which may be chosen such that the sum

of squares of errors, S, given by Equation 24.229 may be made arbitrarily small,

i.e., S < ε , where ε > 0 ∈� is an arbitrarily small positive real number.

S
Δ
=

ˆ

D

∣∣∣∣∣h(s)−
N

∑
n=1

cnϕn(s)

∣∣∣∣∣
2

ds < ε (24.229)

Theorem 24.19 (Completeness Relation (Bessel’s Identity in a Complete Space)).

Consider an orthonormal set of functions, denoted by {ϕn(s)} ∈ H ,n = {1,2, · · ·},

where H is a Hilbert space, generally defined in terms of the complex plane (see

Section 6.2.6.2). Then if we denote the components of a function, h(s), represented

in this orthonormal basis as, cn = 〈h,ϕ〉, the following completeness relation or

Bessel’s identity holds for any such orthonormal system.
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∞

∑
n=1

|cn|2 =
〈
h,h

〉
(24.230)

Proof.

Since the Hilbert space is a complete space (see Definition 24.53), then ε in Defini-

tion 24.53 may be made arbitrarily small by taking N in Definition 24.53 to be large

enough such that in the limit as N → ∞, the sum of squares of errors, S, in Equa-

tion 24.229 vanishes, hence the inequality in Equation 24.222 turns into an equality,

given the identity in Equation 24.230.

��
The reason Equation 24.230 is known as the completeness relation is that it de-

fines a space, given by an orthonormal set of basis functions which form a complete

space. This is a Hilbert space, since it is a complete space where an inner product

is also defined – see Definition 6.33.

Note that Bessel’s inequality does not mean that any function h(s) may be ex-

panded using an orthonormal set of functions as a basis, given that infinite compo-

nents are chosen. All it states is the, so called, completeness relation [12],

lim
N→∞

ˆ

D

∣∣∣∣∣h(s)−
N

∑
n=1

cnϕn(s)

∣∣∣∣∣
2

ds = 0 (24.231)

which is a necessary, but not sufficient, condition for the existence of the expan-

sion. The sufficience condition, however, requires that the series converges uniformly

(Definition 24.69) , namely that,

ˆ

D

lim
N→∞

(
h(t)−

N

∑
n=1

cnϕn(t)

)2

dt = 0 (24.232)

The completeness relation (Equation 24.231) means that the series converges in the

mean to h (see Theorem 24.18).

24.4 Integral Equations

Integral equations have been used in many different fields including problems in

engineering, theoretical physics, mathematics, etc. They are at the base of integral

transforms and have been used in many approaches for signal processing as well as

pattern recognition such as support vector machines. In this section, we present the

basic definition of an integral equation and an integral transform.
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Definition 24.54 (Linear Integral Equations). A general linear integral equa-

tion [24, 39, 40, 41, 30] may be written in the following form [31],

A(s)ϕ(s)+

ˆ

D

K (s, t)ϕ(t)dt = f (s) (24.233)

where A(s) is known as the coefficient, K is known as the kernel1, or the kernel of

the integral operator (see Definition 24.56), f (s) is the free term, and D : s, t ∈ D is

the domain of the integral equation [31].

In definition 24.54, depending on the value of A(s), different kinds of integral

equations are produced as follows,

• First Kind: if A(s) = 0 ∀ s ∈ D , then Equation 24.233 is known as a linear

integral equation of the first kind.

• Second Kind: if A(s) �= 0 ∀ s ∈ D , then Equation 24.233 is known as a linear

integral equation of the second kind.

• Third Kind: if A(s) = 0 only for s ∈ D1 ⊂ D , then Equation 24.233 is known

as a linear integral equation of the third kind.

Definition 24.55 (General Integral Transform).

The Equation pair 24.234 and 24.235 represents the general integral transform and

its inverse (if it exists), respectively. In these relations, K (t,s) and K −1(t,s) are

the kernel and inverse kernel functions [12]. The choice of the kernel function (Defi-

nition 24.56) and the bounds of the integration define the different integral transform

at hand.

T (s) =

ˆ t2

t1

K (t,s)h(t)dt (24.234)

h(t) =

ˆ s2

s1

K −1(t,s)T (s)ds (24.235)

In the next section we will examine the kernel function in more detail. This is

useful, not only for understanding integral transforms, but in general, for under-

standing other kernel techniques. Some important examples of kernel techniques,

aside from integral transforms, are support vector machines (Chapter 15), Kernel

PCA (Section 12.3.1), and Kernel k-Means (Sections 11.2.6.3).

1 In his 1904 book [24], David Hilbert used the German word kern for K (s, t)
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24.5 Kernel Functions

The Kernel function, as its name implies, is at the heart of integral equations. Let us

begin with its definition and then follow by examining some special such functions

and their properties.

Definition 24.56 (Kernel Function). A general kernel function provides a mapping

of the form,

K (s, t) = {K : D ×D �→�} (24.236)

where K (s, t) satisfies Equation 24.233. As a spacial case, the range of K may be

real (�).

A kernel function, K (s, t), as we shall see briefly, may in some cases be ex-

panded in terms of a set of orthogonal2 Eigenfunctions (also known as characteris-

tic functions [26]) and which provides the means for a mapping between a generally

infinite sets of values, s, to another generally infinite set of values, t. The act of

mapping is really a projection from the definition of a point based on one infinite set

of orthogonal basis functions to another. This is a one-to-one mapping through the

use of the kernel operator on the product space of the two infinite sets. The kernel

function may or may not be symmetric and/or definite.

We may start with the general definition of a Hermitian kernel.

Definition 24.57 (Hermitian Kernel). A Hermitian kernel is such that,

K (s, t) = K (t,s) (24.237)

For real valued kernels, this amounts to the concept of symmetry.

Definition 24.58 (Symmetric Kernel). A symmetric kernel [12] is such that,

K (s, t) = K (t,s) (24.238)

Courant and Hilbert3 [12] show that every symmetric kernel that does not vanish

identically, possesses Eigenvalues4 and Eigenfunctions5, also that real symmetric

kernels have only real Eigenvalues. Kellogg [26] presents a method which begins

with an arbitrary function as the first Eigenfunction and continues to determine

2 see Definition 24.50.
3 Courant was the author for this book, but as he states in his preface to volume I, being Hilbert’s
student, he used Hilbert’s notes and papers in producing the material in the book.
4 Mercer [30] calls them singular values.
5 Courant and Hilbert [12] give a complete treatment of the evaluation of the Eigenvalues and
Eigenfunctions of a kernel function in their Chapter 3. This is an elaborate procedure and is outside
the scope of this textbook.
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the Eigenvalues and corresponding Eigenfunctions (characteristic functions) for the

kernel. This method is also described in Chapter 3 of [12]. Also, see Section 24.5.2

for the description of a method due to Hilbert.

Definition 24.59 (Gram Matrix (Kernel Matrix)). Let us assume that we have a

kernel function, K (sl ,sm), defined by Definition 24.56. Furthermore, assume that

there are N possible samples, {s}N
1 = {sn : n = {1,2, · · · ,N}}. Then, the Gram ma-

trix [12] (kernel matrix) associated with the sequence, {s}N
1 , is K : C N �→ C N such

that,

(K)[l][m] = K (sl ,sm) ∀ l,m ∈ {1,2, · · · ,N} (24.239)

Definition 24.60 (Definite Kernel). K (s, t) is a definite kernel if all its Eigenvalues

have the same sign [12]. If they are all positive, then the kernel is known to be

positive definite and if they are all negative, then it is known to be negative definite.

On the other hand, if the kernel possesses positive and negative Eigenvalues,

it is known to be an indefinite kernel6. If the Eigenvalues are either 0 or positive,

the kernel is positive semidefinite and if they are either 0 or negative, it is negative

semidefinite.

Definition 24.61 (Mercer Kernel). A positive semidefinite kernel, per Defini-

tion 24.60, is sometimes called a Mercer kernel7 in celebration of its relation to

the extension of Hilbert’s expansion theorem (Theorem 24.21) by J. Mercer [30]

(Theorem 24.23).

In essence, a positive semi-definite kernel has the property that if we set K (s, t) =
〈ϕϕϕ(s),ϕϕϕ(t)〉, then,

∞

∑
l=1

M

∑
m=1

cmclK (s, t) ≥ 0 (24.240)

Some have called Equation 24.240, the Mercer condition [42, 1].

Theorem 24.20 (Schwarz Inequality for Positive Semidefinite Kernels). In Sec-

tion 24.3, we stated the Schwarz inequality for the inner product of two functions.

The following Schwarz inequality also holds [42] for positive semidefinite kernels,

|K (s1,s2)|2 ≤ K (s1,s1)K (s2,s2) (24.241)

Proof.

Since the kernel is positive semidefinite, the determinant of the Gram matrix (Defi-

nition 24.59) associated with the two values s1 and s2 must be greater than or equal

6 Mercer [30] calls such function, one of ambiguous type.
7 A Mercer kernel is also known by the following names: covariance function [38], reproducing

kernel [42] (see Property 24.17), and admissible kernel [42].
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to zero,

ΓK

∣∣∣
{s1,s2}

= det(K)

= (K)[1][1] (K)[2][2] − (K)[1][2] (K)[1][2]

= (K)[1][1] (K)[2][2] −
[
(K)[1][2]

]2

≥ 0 (24.242)

Equation 24.242 directly proves the statement of the theorem.

��

24.5.1 Hilbert’s Expansion Theorem

David Hilbert [12] introduced an expansion theorem for representing the kernel,

K (s, t), in terms of a generally infinite set of orthogonal Eigenfunctions, ϕn(s), and

their corresponding Eigenvalues, λ◦n, associated with K . Equation 24.243 presents

this proposed expansion.

K (s, t) =
∞

∑
n=1

ϕn(s)ϕn(t)

λ◦n

(24.243)

The problem with Equation 24.243 is that it may not be proven to be true in general.

Therefore, Hilbert presented his theorem as the first cut, covering a special case

which will be expressed in Theorem 24.21. This Theorem was later strengthened by

Schmidt and then by Mercer to include more general cases. These extensions will

be presented in Theorems 24.22 and 24.23, respectively.

Theorem 24.21 (Hilbert’s Expansion Theorem). Any continuous function, T (s),
which may be written as an integral transform (Equation 24.234) of a piecewise

continuous function, h(t), using the symmetric kernel, K (s, t), may be expanded

using a series of the Eigenfunctions of the kernel, K (s, t) given by given by Equa-

tion 24.243. This series converges uniformly (Definition 24.69) and absolutely.[12]

Theorem 24.22 (Shmidt’s Extension to Hilbert’s Expansion Theorem). A sym-

metric kernel, K (s, t), may be expanded using a series of the Eigenfunctions of

the kernel, given by Equation 24.243 if that series converges uniformly (Defini-

tion 24.69) – see Section 8 (page 449) of [39].

Theorem 24.23 (Mercer’s Theorem). If K (s, t) is a definite continuous symmet-

ric kernel, or if it has only a finite number of Eigenvalues of one sign, then the said

kernel may be expanded by Equation 24.243 in terms of its Eigenfunctions and this
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series converges uniformly (Definition 24.69) and absolutely.[30, 12]

Proof.

Mercer [30], on page 444, states and proves this theorem for the case where all the

kernel is positive definite. Then, he handles the case where the kernel is negative

definite. At the end of [30], Mercer remarks that with some slight modifications

the expansion is still valid and converges uniformly if there are a finite number of

Eigenvalues with an opposite sign, compared to the sign of the rest of the infinite

set of Eigenvalues. Courant [12] produces the complete statement of the theorem as

remarked at the end of [30] and discusses the proof.

��
An important class of kernels is known as the class of degenerate kernels. These

kernels are used for many practical applications including support vector machines

and intermediate developments for proving properties of more general kernels. Once

such application is the development of the techniques used in Section 24.5.2 for

computing the Eigenvalues and Eigenfunctions of more general kernels. Here is a

definition of a degenerate kernel.

Definition 24.62 (Degenerate Kenrnel). A degenerate kernel, K (s, t), is one

which may expanded in terms of a finite series of products of two sets of functions,

ξn(s) and ζn(t), which are functions of s and t respectively,

A (s, t) =
N

∑
n=1

ξn(s)ζn(t) (24.244)

In its compact form, we assume that {ξ}N
1 are linearly independent among them-

selves and so are {ζ}N
1 , assuming that s and t are defined in the same domain,

s, t ∈ D .

To be able to work with a single set of orthogonal functions, it is possible to

express the two sets of functions, ξ1N and ζ1N, in terms of another orthogonal set

of functions, {ω}M
1 , leading to a double sum expression for the degenerate kernel

as follows,

A (s, t) =
M

∑
l=1

M

∑
m=1

σl,mωl(s)ωm(t) (24.245)

Note that the degenerate kernel expressed by Equation 24.245 will be a symmetric

kernel if σl,m = σm,l . Therefore, for a symmetric degenerate kernel, let us define new

coefficients, cm, in terms of σm,l such that,

σm,l = σl,m = cmcl ∀ l,m ∈ {1,2, · · · ,M} (24.246)
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Then, we may write the double sum expression for the symmetric degenerate kernel

as follows,

A (s, t) =
M

∑
l=1

M

∑
m=1

clcmωl(s)ωm(t) (24.247)

=
M

∑
m=1

M

∑
l=1

cmclωm(s)ωl(t) (24.248)

= A (t,s) (24.249)

(24.250)

24.5.2 Eigenvalues and Eigenfunctions of the Kernel

In this section we only concern ourselves with real symmetric kernels (Defini-

tion 24.58). We will present a summary of the method of finding Eigenvalues and

Eigenfunctions given by [12], based upon the proof given by Eric Holmgren. Here,

we have elaborated some of the steps which were simply stated in [12].

Let us begin with the introduction of the following quadratic integral form,

J (ϕ,ϕ)
Δ
=

ˆ

D

ˆ

D

K (s, t)ϕ(s)ϕ(t) ds dt (24.251)

where ϕ : D �→ � is any piecewise continuous function. We may write Equa-

tion 24.251 in terms of inner products, defined by Equation 24.206,

J (ϕ,ϕ)
Δ
= =

ˆ

D

⎛⎝ˆ
D

K (s, t)ϕ(s)ds

⎞⎠ϕ(t)dt (24.252)

= 〈〈K,ϕ〉,ϕ〉 (24.253)

Let us write the Schwarz inequality (Equation 24.208) for Equation 24.253,

[J (ϕ,ϕ)]2 ≤ [〈K ,K 〉〈ϕ,ϕ〉]〈ϕ,ϕ〉 (24.254)

≤ 〈K ,K 〉〈ϕ,ϕ〉2 (24.255)

= 〈ϕ,ϕ〉2

ˆ

D

ˆ

D

K 2(s, t) ds dt (24.256)

In summary,

[J (ϕ,ϕ)]2 ≤ 〈ϕ,ϕ〉2

ˆ

D

ˆ

D

K 2(s, t) ds dt (24.257)
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If we restrict the function, ϕ , to be bounded and, without any loss of generality, if

we normalize the function, ϕ , such that

〈ϕ,ϕ〉 = 1 (24.258)

then the quadratic integral form, J (ϕ,ϕ), is bounded by the double integral on the

right hand side of Equation 24.257. Naturally,

ˆ

D

ˆ

D

K 2(s, t) ds dt ≥ 0 (24.259)

Therefore, J (ϕ,ϕ) = 0, if and only if the kernel is zero everywhere.

The entity J (ϕ,ϕ) is quite important, since it is related to the Eigenvalues of

the kernel function. In fact, the smallest Eigenvalue of the kernel, λ◦1 is give by the

following [12],

λ◦1 =
1

κ1
(24.260)

where,

κ1 = max
ϕ

J (ϕ,ϕ) (24.261)

for an appropriate function, ϕ , and where the maximizer of the functional, J , in

Equation 24.261,

ψ1(s) = argmax
ϕ

J (ϕ,ϕ) (24.262)

is the Eigenfunction associated with λ1.

Since J (ϕ,ϕ) is a functional, a form for ϕ should be assumed in order to go

on with the maximization effort. Courant and Hilbert [12] solve the maximization

problem by assuming that the kernel may be approximated uniformly, by a sequence

of degenerate symmetric kernels (see Definition 24.62 and Section 24.1.2), such that

the nth sequence is given by,

An(s, t) =
Mn

∑
l=1

Mn

∑
m=1

σ
(n)
l,mωl(s)ωm(t) (24.263)

where

σ
(n)
l,m = σ

(n)
m,l (24.264)

and where the products, ωl(s)ωm(t) are linearly independent in the domain of s and

t – the rectangle of limits of the double integration, ({s1 ≤ s ≤ s2}×{t1 ≤ t ≤ t2}).
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Note that here we have used the double sum expression for expressing the degener-

ate kernel sequence, as defined in Definition 24.62.

Therefore, the approximation for the nth approximation of the quadratic integral

form, Jn(ϕ,ϕ), given by the following,

Jn(ϕ,ϕ) =

ˆ

D

ˆ

D

An(s, t)ϕ(s)ϕ(t) ds dt (24.265)

=

ˆ

D

ˆ

D

Mn

∑
l=1

Mn

∑
m=1

σ
(n)
l,mωl(s)ωm(t)ϕ(s)ϕ(t) ds dt (24.266)

=
Mn

∑
l=1

Mn

∑
m=1

σ
(n)
l,m

ˆ

D

ωl(s)ϕ(s)ds

ˆ

D

ωm(t)ϕ(t)dt (24.267)

=
Mn

∑
l=1

Mn

∑
m=1

σ
(n)
l,m 〈ωl ,ϕ〉〈ωm,ϕ〉 (24.268)

=
Mn

∑
l=1

Mn

∑
m=1

σ
(n)
l,m xl xm (24.269)

where

xm
Δ
= 〈ωm,ϕ〉 (24.270)

Therefore, Jn(ϕ,ϕ) is a quadratic function of the Mn variables, {x}Mn
1 .

If we apply Bessel’s inequality (Theorem 24.17) to Equation 24.270 for the ex-

pansion of the orthogonal sequence of functions, {ω}Mn
1 , we will have the following

inequality,

Mn

∑
m=1

x2
m ≤ 〈ϕ,ϕ〉 (24.271)

Earlier, we have imposed the a restriction on function ϕ , given by Equation 24.258.

This presents the following limit on the quadratic summation in Equation 24.272,

Mn

∑
m=1

x2
m ≤ 1 (24.272)

Since Equation 24.269 has a quadratic form, Jn(ϕ,ϕ) will be maximal in relation

to the choice of xm, when the equality holds in Equation 24.272,

Mn

∑
m=1

x2
m = 1 (24.273)
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Therefore, we will pick the values of xm such that the Equality of Equation 24.273

holds. Notice that Equation 24.269 subject to Equation 24.258 will then be maxi-

mized by doing a principal component analysis (Section 12.1) where the Eigenvalue

problem of Equation 12.2 is such that the elements of covariance matrix, ΣΣΣ (n), are,(
ΣΣΣ (n)

)
[l][m]

= σ
(n)
l,m ∀ l,m ∈ {1,2, · · · ,Mn} (24.274)

and the elements of the vector in Equation 12.2 are given by(
x(n)

)
[m]

= xm ∀ m ∈ {1,2, · · · ,Mn} (24.275)

where the superscript (n) specifies the fact that the vector, x(n), is associated with the

summation associated with the nth sequence which has Mn terms. The Eigenvalue

problem of Equation 12.2 may then be written as follows,

ΣΣΣ (n)x(n) = κ
(n)
1 x(n) (24.276)

Then based on the discussion of Section 12.1, the maximum value for Jn(ϕ,ϕ)
is given by the first Eigenvalue of the solution to the Eigenvalue problem of Equa-

tion 24.276 which gives the largest principal component,

max
〈ϕ,ϕ〉=1

Jn(ϕ,ϕ) = κ
(n)
1 (24.277)

Since ϕn(s), associated with the nth sequence may be any piecewise continuous

function and since the set of basis functions, {ω}Mn
1 , which were used to express the

degenerate kernel, A (s, t) are linearly independent, let us use this set to describe

ϕn(s). Furthermore, since the set, {x}Mn
1 , that maximize Jn(ϕ,ϕ) obey the normal-

ization of Equation 24.273, we know that we can use these values as coefficients

for expressing ϕn(s) such that we are left with a normalized function. Therefore, we

write ϕn(s) in terms of the basis functions, {ω}Mn
1 , and the normalized coefficients,

{x}Mn
1 , as follows,

ϕn(s) =
Mn

∑
l=1

xlωl(s) (24.278)

Let us rewrite the Eigenvalue problem of Equation 24.276 in scalar form,

κ
(n)
1 xl =

Mn

∑
m=1

σn
l,m xm (24.279)

Now if we multiply both sides of Equation 24.279 by ωl(s) and sum both sides over

l, we will have the following,
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κ
(n)
1

Mn

∑
l=1

xl ωl(s) =
Mn

∑
l=1

Mn

∑
m=1

σn
l,m xm ωl(s) (24.280)

=
Mn

∑
l=1

Mn

∑
m=1

σn
l,m

ˆ t2

t1

ωm(t)ϕn(t)dt ωl(s) (24.281)

Note that based on our choice of ϕn(s), given by Equation 24.278, the left hand side

of Equation 24.281 is just equal to κ
(n)
1 ϕn(s). Therefore, by rearranging the terms

on the right hand side of Equation 24.281, we may rewrite it as follows,

κ
(n)
1 ϕn(s) =

ˆ t2

t1

(
Mn

∑
l=1

Mn

∑
m=1

σn
l,mωl(s)ωm(t)

)
ϕn(t)dt (24.282)

=

ˆ t2

t1

An(s, t)ϕn(t) dt (24.283)

Therefore, we may solve for ϕn(s) from Equation 24.283,

ϕn(s) =
1

κ
(n)
1

ˆ t2

t1

An(s, t)ϕn(t) dt (24.284)

= λ◦(n)
1

ˆ t2

t1

An(s, t)ϕn(t) dt (24.285)

Since we have use an orthogonal set of functions to express the degenerate kernel

approximation, An(s, t), to the original kernel, K (s, t), we may write the following

convergence bound,

|K (s, t)−An(s, t)| < ε (24.286)

Let us revisit Equation 24.253. If we write the expression for J (ϕ,ϕ) −
Jn(ϕ,ϕ) in the same manner, we will have the following,

J (ϕ,ϕ)−Jn(ϕ,ϕ) = 〈〈(K −An),ϕ〉,ϕ〉 (24.287)

Then we may write the Schwarz inequality (Equation 24.208) for Equation 24.287,

much in the same as we did in Equation 24.254 and its subsequent equations,

[J (ϕ,ϕ)−Jn(ϕ,ϕ)]2 ≤ [〈(K −An),(K −An)〉〈ϕ,ϕ〉]〈ϕ,ϕ〉 (24.288)

≤ 〈(K −An),(K −An)〉〈ϕ,ϕ〉2 (24.289)

= 〈ϕ,ϕ〉2

ˆ t2

t1

ˆ s2

s1

[K (s, t)−An(s, t)]
2

ds dt (24.290)

If we Equations 24.258 and 24.286, we may write Equation 24.290 as follows,

[J (ϕ,ϕ)−Jn(ϕ,ϕ)]2 ≤
ˆ t2

t1

ˆ s2

s1

ε2 ds dt (24.291)

= ε2

ˆ t2

t1

ˆ s2

s1

ds dt (24.292)
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Let us assume that the limits on the integration are bounded by a and b from the

bottom and the top. Namely, we may write,

a ≤ s1 < s2 ≤ b (24.293)

and

a ≤ t1 < t2 ≤ b (24.294)

Then, we may write Equation 24.291 as follows,

[J (ϕ,ϕ)−Jn(ϕ,ϕ)]2 ≤ ε2(b−a)2 (24.295)

We see from Equation 24.295 that due to the arbitrary nature of the right hand

side, the sequence, Jn(ϕ,ϕ) converges to J (ϕ,ϕ) as n increases,

lim
n→∞

Jn(ϕ,ϕ) = J (ϕ,ϕ) (24.296)

Therefore, the maximum values of the two sides of Equation 24.296 must also abide

by this convergence,

lim
n→∞

maxJn(ϕ,ϕ) = maxJ (ϕ,ϕ) (24.297)

Equation 24.297 may be written in terms of κ ,

lim
n→∞

κ
(n)
1 = κ1 (24.298)

Similarly, if we consider the limit of convergence of the sequence, ϕn(s), as n

grows, we may call this limit, ψ1(s),

lim
n→∞

ϕn(s) = ψ1(s) (24.299)

Therefore, in the limit, Equations 24.284 and 24.285 may be written as follows,

ψ1(s) =
1

κ1

ˆ t2

t1

K (s, t)ψ1(t) dt (24.300)

= λ◦1

ˆ t2

t1

K (s, t)ψ1(t) dt (24.301)

where

〈ψ1,ψ1〉 = 1 (24.302)

ψ1(s) is the maximizer of J (ϕ,ϕ),

J (ψ1,ψ1) = κ1 (24.303)

Using Equation 24.302, we can write Equation 24.303 as follows,
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J (ψ1,ψ1) = κ1 〈ψ1,ψ1〉 (24.304)

Therefore, J evaluated at any other function, ψ , would have a value which is

smaller than or equal to that evaluated at the Eigenfunction associated with κ1, ψ1.

In other words,

J (ψ,ψ) ≤ κ1 〈ψ,ψ〉 (24.305)

In essence, we have provided a method for computing λ1 which is the smallest

Eigenvalue, λ◦1 of the kernel, K (s, t), and its associated Eigenfunction, ψ1(s). Now,

let us consider the rest of the Eigenvalues and Eigenfunctions. The simplest way of

computing those values is to eliminate the known Eigenvalue and Eigenfunction

from the objective function of maximization and then, recursively, compute the next

smallest Eigenvalue and its associated Eigenfunction. To do this, we have to add to

the conditions that we use for finding the Eigenfunction. For the first Eigenfunc-

tion, we had the condition given by Equation 24.258. Now, we should add another

condition, which requires that the new Eigenfunction being sought is orthogonal to

the ones that have already been found. Namely, if we are seeking the mth smallest

Eigenvalue and its corresponding Eigenfunction,

〈ϕ,ψl〉 = 0 ∀ l < m (24.306)

The set of equations given by Equation 24.306 for the mth Eigenvalue and Eigen-

function are called orthogonality conditions, which should be satisfied in conjunc-

tion with the normalization condition of Equation 24.258.

Essentially, according to the Hilbert, Schmidt, and Mercer expansion theorems

(Theorems 24.21, 24.22, and 24.23), we may eliminate the known terms associated

with the already computed Eigenvalues and Eigenfunctions as follows,

K (m−1)(s, t) = K (s, t)−
m−1

∑
l=1

ψl(s)ψl(t)

λ◦ l

(24.307)

Therefore, the new maximization objective function, J (m−1)(ϕ,ϕ), may be written

as follows,

J (m−1)(ϕ,ϕ)
Δ
=

ˆ

D

ˆ

D

K (m−1)(s, t)ϕ(s)ϕ(t) ds dt (24.308)

Therefore, the mth Eigenvalue and Eigenfunction may be computed by maximiz-

ing Equation 24.308, much in the same way as we did for the first Eigenvalue and

Eigenfunction.

κm =
1

λ◦m

= max
ϕ

J (m−1)(ϕ,ϕ) (24.309)
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ψm(s) = argmax
ϕ

J (m−1)(ϕ,ϕ) (24.310)

It is easy to see that due to the orthogonality conditions, the succeeding Eigen-

values and Eigenfunctions also satisfy the Equivalent of Equation 24.301, namely,

ψm(s) =
1

κm

ˆ t2

t1

K (s, t)ψm(t) dt (24.311)

= λ◦m

ˆ t2

t1

K (s, t)ψm(t) dt (24.312)

where

〈ψl ,ψm〉 =

{
1 ∀ l = m

0 ∀ l �= m
(24.313)

Eventually, we will be left with the expression for the Kernel, given by the Hilbert

expansion theorem (Theorem 24.21),

K (s, t) = lim
m→∞

m

∑
n=1

ψn(s)ψn(t)

λ◦n

(24.314)

where the λ◦n are the Eigenvalues of K (s, t), such that,

λ◦1 ≤ λ◦2 ≤ ·· · ≤ λ◦m (24.315)

and the ψn are the corresponding Eigenfunctions.

At this point, let us present a very important kernel property which is a direct

consequence of Equation 24.314 or equally from the equivalent which is Hilbert’s

expansion theorem. Assuming that a kernel may be given by Equation 24.314, then

we may write define ψψψ(x as follows,

(ψψψ)[n] (x)
Δ
=

ψn(x)√
λ◦n

(24.316)

Therefore, we may write any such kernel by the following inner product,

K (xl ,xm) =ψψψT (xl)ψψψ(xm) (24.317)

Then the following property holds for such a kernel.

Property 24.17 (Reproducing Kernel). A kernel which meets the criteria of Mer-

cer’s expansion theorem (Theorem 24.23) has the following property called the re-

producing kernel property.

〈K (x,xl),K (x,xm)〉 = K (xl ,xm) (24.318)

Proof.

According to Mercer’s expansion theorem and if we use the shorthand version of
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ψψψ(x), ψψψ(xl), and ψψψ(xm), written as ψψψ , ψψψ l , and ψψψm respectively,

〈K (x,xl),K (x,xm)〉 =
(
ψψψTψψψ l

)T (
ψψψTψψψm

)
=
(
ψψψT

l ψψψψψψ
Tψψψm

)
(24.319)

In Equation 24.319, we know from Equation 24.313 thatψψψψψψT = I. Therefore, Equa-

tion 24.319 reduces to

〈K (x,xl),K (x,xm)〉 =
(
ψψψT

l ψψψψψψ
Tψψψm

)
=
(
ψψψT

l ψψψm

)
= K (xl ,xm) (24.320)

��
This property states that the product of two kernels is itself a kernel.

In this chapter, we will examine several different kernel functions and limits

which define the most useful transforms in speaker recognition, namely, Laplace,

Fourier and z transforms. Before doing this, we will have to review review certain

series expansions such as Fourier and wavelet series.

24.6 Fourier Series Expansion

Historically, most of the theory behind the Fourier Series expansion of functions

has been developed while studying the heat equation [18], Equation 24.321, and the

associated Eigensystem which came out of solving these boundary value problems.

In 1822, Fourier published a book on the theory of heat transfer [18], in which he in-

troduced the series expansion of functions. Although some of his assumptions were

incorrect, the main idea was quite revolutionary and lead to the further development

of the Fourier Series expansion and handling different boundary conditions includ-

ing Dirichlet, Neumann and the more general mixed boundary conditions (Equa-

tions 24.322 and 24.323).

∂u(x, t)

∂ t
=

1

w(x)

∂

∂x

[
κ(x)

∂u(x, t)

∂x

]
+q(x)u(x, t)

{∀ −L < x < L

∀ t > 0
(24.321)

Boundary conditions,

a11u(−L, t)+a12
∂u(x, t)

∂ t

∣∣
(x=−L,t)

= 0 ∀ t > 0 (24.322)

a21u(L, t)+a22
∂u(x, t)

∂ t

∣∣
(x=L,t)

= 0 ∀ t > 0 (24.323)
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Initial Condition,

u(x,0) = f (x) ∀ −L < x < L (24.324)

By doing a separation of variables, the time-dependent and space-dependent seg-

ments will be separated into different equations and the general Sturm-Liouville

problem arises. Although we are interested in time-dependent speech signals here,

the processing resembles the space-dependent Sturm-Liouville problem. Therefore,

at the first stage we will change the variable x to t for consistency with the rest

of the text. The most general Eigenvalue problem which evolves from the separa-

tion of variables of the one-dimensional heat equation is the general Sturm-Liouville

problem – see Equations 24.337 and 24.338 which are shown with a change of the

independent variable from x to t, for this class of Eigenvalue problems and boundary

conditions.

Before we can define the complex Fourier series of a function of time, h(t), the

boundary of the signal will have to also be defined. As we shall see later, the Fourier

Series is only valid for a periodic function. This period in the Cartesian space is in

the interval [−L,L] as it was defined in Equation 24.321. In the time domain we

use the interval, [−T,T ]. You may have noticed that here were are talking about

the closed interval [−L,L] or [−T,T ] whereas Equation 24.321 was defined in the

open interval (−L,L). To clarify this distinction, note that the Boundary conditions

handle the points at −L and L and eventually, the differential equation results have

to become continuous between point pairs −L+ and −L and L− and L.

A function h(t), which is at least piecewise C1 continuous in the interval [−T,T ],
may be represented in terms of a Complex Fourier Series expansion if it meets the

Dirichlet convergence conditions. In dealing with the heat equation, Dirichlet stud-

ied the convergence of the Fourier Series and in the process defined some necessary

and sufficient conditions for the convergence of the series.

Definition 24.63 (Dirichlet Conditions). Consider the function, h(t) in the interval

−T ≤ t ≤ T . The following are the Dirichlet Conditions for the convergence of the

Fourier Series of that function,

1. h(t) is absolutely integrable in the interval [−T,T ] – see Definition 24.38

2. h(t) is periodic with period 2T

3. h(t) is at least C1 continuous in the interval [−T,T ]

N.B., See Definition 24.38. It happens that for h(t) to be absolutely integrable in

[−T,T ], it has to be piecewise continuous in that interval with no infinite disconti-

nuities in that interval – see Definition 24.15.

Definition 24.64 (Complex Fourier Series Expansion). If h(t) meets all the

Dirichlet conditions, it may be represented by an infinite sum of orthogonal func-
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tions (see Definition 24.50), namely, the family of exponential functions in the fol-

lowing form,

h(t) ≈
∞

∑
n=−∞

cnei( nπt
T ) (24.325)

where,

cn =
1

2T

ˆ T

−T

h(t)e−i( nπt
T )dt (24.326)

At some occasions in the text, in order to simplify the Fourier Series expansion,

we will attempt to use an equivalent form with a normalized period. Take the fol-

lowing new variable,

t̂
Δ
=

π

T
t (24.327)

such that

t =
T

π
t̂ (24.328)

t̂ is defined such that the function h(t) in the interval −T ≤ t ≤ T is linearly

redistributed as h(t̂) such that the points for t are mapped to −π ≤ t̂ ≤ π . Using this

new mapping, the Dirichlet conditions may be rewritten as,

Definition 24.65 (Dirichlet Conditions with Period Normalization).

1. h(t̂) is absolutely integrable in the interval [−π,π]
2. h(t̂) is periodic with period 2π
3. h(t̂) is at least C1 continuous in the interval [−π,π]

The statement of the Fourier Series expansion in the new variable, t̂ is,

Definition 24.66 (Complex Fourier Series Expansion with Period Normaliza-

tion).

h(t̂) ≈
∞

∑
n=−∞

cnei(nt̂) (24.329)

where,

cn =
1

2π

ˆ π

−π
h(t̂)e−i(nt̂)dt̂ (24.330)

Note that Equations 24.327 and 24.328 may be used to go back and forth between

the periods of 2T and 2π . Without any loss of generality, let us drop the ˆ with the

understanding that the new variable t used for the rest of this section is really the
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normalized t for which the corresponding function has a period of 2π instead of 2T ,

so that,

h(t) ≈
∞

∑
n=−∞

cnei(nt) (24.331)

where,

cn =
1

2π

ˆ π

−π
h(t)e−i(nt)dt (24.332)

We will use the un-normalized and normalized versions of the Fourier series expan-

sion interchangeably depending on the needs of the subject being discussed.

Equation 24.331 is known as the Complex Fourier Series expansion of h(t) and

is based on the premise that the complex exponential trigonometric function, ei(nt)

forms a set of orthogonal functions (see Definition 24.51), namely,ˆ π

−π
ei(kt)ei(nt)dt =

ˆ π

−π
ei(kt)e−i(nt)dt

=

ˆ π

−π
ei(k−n)tdt

=
−iei(k−n)t

k−n

∣∣∣∣∣
π

−π

=

{
0 ∀ k �= n

2π for k = n
(24.333)

Dirichlet also showed that for the limited number of discontinuities of h(t), in

the interval [−π,π], the series in 24.331 converges to
h(t0+)+h(t0− )

2 where t0 are the

points of finite discontinuities of h(t).

Using Property 24.5 of the complex trigonometric function, eint , the Complex

Fourier Series expansion of Equation 24.331 may be written in terms of series in

sines and cosines in the following form,

h(t) ≈ a0

2
+

∞

∑
n=1

(an cos(nt)+bn sin(nt)) (24.334)

an =
1

π

ˆ π

−π
h(t)cos(nt)dt n = 0,1,2, · · ·

bn =
1

π

ˆ π

−π
h(t)sin(nt)dt n = 1,2, · · ·

Note that if the function h(t) is odd, then the expansion will reduce to one in-

cluding sines only, since the {an} vanish. Similarly, if h(t) is even, then the {bn}
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vanish and the function may be expanded in terms of a0
2 and the cosine terms in

Equation 24.334 – see Definitions 24.27 and 24.28.

Property 24.18 (Fourier Coefficients of a Real function are Real). Note that

in 24.334, h(t) ∈ � ⇐⇒ an ∈ �∧ bn ∈ �. The equivalent of this statement for

Equation 24.331 is that h(t) ∈� ⇐⇒ c−n = cn.

In fact, the Fourier Series is a general series which may be written in terms

of any infinite system of functions {ϕ0,ϕ1,ϕ2, · · ·} orthogonal relative to a weight

function, w(t) in the closed interval [t1, t2].

Definition 24.67 (General Fourier Series). See [2]. Let {ϕ0,ϕ1,ϕ2, · · ·} be an

infinite system of functions orthogonal relative to the weight function w(t) in the

closed interval [t1, t2]. If h(t) is piecewise continuous, then,

h(t) ≈
∞

∑
k=0

akϕk(t) (24.335)

where

an =

´ b

a
h(t)ϕ(t)w(t)dt´ b

a
ϕ2

n (t)w(t)dt
(24.336)

is the General Fourier Series expansion of h(t) relative to the system of orthogonal

functions, {ϕn(t)}. The {an} are called the General Fourier Coefficients of h(t) rel-

ative to the orthogonal basis, {ϕn(t)}.

The Complex Fourier Series is a special case of the General Fourier Series. In this

special case, the orthogonal set of functions (Definition 24.51), ϕn(t), are the family

of exponential functions, ei(nt) and the weighting function, w(t) = 1. A more general

set of orthogonal functions happen to be the Eigenfunctions of the Sturm-Liouville

Eigenvalue problem which stems from the problem of cooling of a uniform rod with

mixed boundary conditions (Equations 24.321, 24.322, 24.323 and 24.324).

The General Sturm-Liouville Eigenvalue problem is as follows,

1

w(t)

d

dt

[
κ(t)

dϕ(t)

dt

]
+q(t)ϕ(t)+λ◦ϕ(t) = 0 ∀t1 < t < t2 (24.337)

C1

[
ϕ(t1)

ϕ(t)
dt

∣∣
t=t1

]
+C2

[
ϕ(t2)

ϕ(t)
dt

∣∣
t=t2

]
= 0 (24.338)

Equation 24.338 which is a set of general boundary conditions (a linear combination

governed by the constant mixture matrices C1,C2 : R2 �→ R2 of the function and
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its derivative at the boundaries) should be satisfied by the function, h(t). Also, h(t)
should be C2 continuous in the interval [t1, t2] for uniform convergence of the se-

ries of Equation 24.335. The set of orthogonal functions in Equation 24.335 are the

Eigenfunctions of the Eigenvalue problem 24.337 which are orthogonal about the

weighting function w(t) of the same Eigenvalue problem. The λ◦s in Equation 24.337

are the corresponding Eigenvalues. The use of the independent variable t in Equa-

tion 24.337 is to make it relevant to the discussion in this section. In order to better

understand the physics behind the original problem, note that the independent vari-

able is x which is the position in the length of a uniform rod and the weighting

function w is the specific heat per unit volume, κ is the conductivity of the beam

being considered and q is the rate of heat generation (heat input into the rod).

24.6.1 Convergence of the Fourier Series

There are different notions of convergence. To examine the convergence of the Com-

plex Fourier Series, let us define two different convergence criteria:

First, we define a partial sum approximation of an infinite series expansion of a

function, h(t), in terms of a set of orthogonal functions, ϕk(t) as,

sn(t)
Δ
=

n

∑
k=0

akϕk(t) (24.339)

Definition 24.68 (Pointwise Convergence in an Interval). A pointwise conver-

gence of an infinite series expansion of a function, h(t), in an interval [t1, t2] means

that the partial sum sn(t) (Equation 24.339) of the infinite series (Equations 24.335

and 24.336) converges to h(t) for every point t ∈ [t1, t2] independently as n → ∞.

For pointwise convergence of the Complex Fourier Series of a function, the func-

tion has to be C1 continuous in the interval [t1, t2] except for a finite number of

discontinuities – see Definition 24.19.

Definition 24.69 (Uniform Convergence in an Interval). For uniform convergence

of the infinite series expansion described in Equations 24.335 and 24.336, the par-

tial sum, sn(t) (Equation 24.339) should converge to h(t) in the interval [t1, t2] in the

following manner. Let us define,

{ε : ε ∈ � ∧ ε > 0} (24.340)

such that,

∀ε ∃{N(ε) : N(ε) ∈ {1,2, · · ·}} (24.341)
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with the property that,

|h(t)− sn(t)| ≤ ε ∀ n ≥ N(ε) (24.342)

Definition 24.69 implies uniform convergence in the interval [t1, t2] since no mat-

ter how small we make ε , the partial sum still converges to h(t) in the interval.

This means that two adjacent points in the interval cannot have very different con-

vergence rates. This neighborhood of continuity of convergence is described by ε
which may be taken to be as small as needed. To achieve this type of convergence,

of course, it is intuitively apparent that as ε is made smaller, N(ε) should grow. For

this relatively stringent convergence, the function h(t) must possess an extra fea-

ture and that is class C2 continuity instead of the C1 continuity which was needed

for pointwise convergence. See [2] for a uniform convergence proof for the General

Fourier Series expansion of a function, h(t).

24.6.2 Parseval’s Theorem

Parseval’s theorem was developed before Fourier series were defined, but was later

applied to Fourier Series and Fourier and other transforms. It was originally defined

for real-value functions. The original motivation of the theorem roughly translate to

the fact that the total spectral energy of a signal (over all frequencies) is equal to the

total energy of the signal over all time. Parseval’s Theorem for the general case of

complex functions is stated as follows,

Theorem 24.24 (Parseval’s Theorem – Fourier Series). Assume that there are two

functions, g(t) and h(t) which may be expanded using Fourier Series Expansion as

follows,

g(t) =
∞

∑
m=−∞

Gmei(mt) where Gm =
1

2π

ˆ π

−π
g(t)e−i(mt)dt (24.343)

h(t) =
∞

∑
n=−∞

Hnei(nt) where Hn =
1

2π

ˆ π

−π
h(t)e−i(nt)dt (24.344)

Then,

∞

∑
n=−∞

GnHn =
1

2π

ˆ π

−π
g(t)h(t)dt (24.345)

Proof.

Before we start the proof, note that if s = ∑i si where s ∈�∀i, then

s = ∑
i

si (24.346)
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Also, examine the product, seiθ , where s = σ + iω and s ∈ �,σ ∈�,ω ∈�, and

θ ∈�. Then, the following is the conjugate of this product,

seiθ = (σ + iω)eiθ

= (σ + iω)(cos(θ)+ isin(θ))

= (σ cos(θ)−ω sin(θ))+ i(σ sin(θ)+ω cos(θ))

= (σ cos(θ)−ω sin(θ))− i(σ sin(θ)+ω cos(θ))

= cos(θ)(σ − iω)− sin(θ)(ω + iσ)

= cos(θ)(σ − iω)− isin(θ)(σ − iω)

= (σ − iω)(cos(θ)− isin(θ))

= se−iθ (24.347)

Let us start the proof from the right hand side of Equation 24.345 and having in

mind Equations 24.346 and 24.347,

1

2π

ˆ π

−π
g(t)h(t)dt =

1

2π

ˆ π

−π

∞

∑
m=−∞

Gmei(mt)
∞

∑
n=−∞

Hne−i(nt)dt

=
1

2π

ˆ π

−π

∞

∑
m=−∞

∞

∑
n=−∞

Gmei(mt)Hne−i(nt)dt

=
1

2π

∞

∑
m=−∞

∞

∑
n=−∞

ˆ π

−π
GmHnei(mt)e−i(nt)dt

=
1

2π

∞

∑
m=−∞

∞

∑
n=−∞

GmHn

ˆ π

−π
ei(mt)e−i(nt)dt (24.348)

From the orthogonality of the set of complex exponential functions (see Defini-

tion 24.51 and Equation 24.333),

ˆ π

−π
ei(mt)e−i(nt)dt =

{
0 ∀ m �= n

2π for m = n
(24.349)

Equation 24.349 means that one of the infinite sums in Equation 24.348 reduces to a

single value, at the point where m = n and it becomes zero for all other m. Therefore,

Equation 24.348 may be written as follows,

1

2π

ˆ π

−π
g(t)h(t)dt =

∞

∑
n=−∞

GnHn (24.350)

proving the original statement of the Theorem.

��
Note that if g(t) = h(t),

∞

∑
n=−∞

HnHn =
1

2π

ˆ π

−π
h(t)h(t)dt (24.351)
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or

∞

∑
n=−∞

|Hn|2 =
1

2π

ˆ π

−π
|h(t)|2 dt (24.352)

24.7 Wavelet Series Expansion

Recall the Generalized Fourier Series expansion described by Equations 24.335

and 24.336. This series is a linear combination of a set of orthogonal functions

which map each point in time h(t) (either pointwise (Definition 24.68) or uniformly

(Definition 24.69) in a neighborhood) to points in the frequency domain defined by

the combination coefficients.

The following is a basic wavelet expansion using the basis functions, {ψ jk(t)}
which are derived from the stretching and translation of a basic function for the

set called the Mother Wavelet, ψ(t). The coefficients of this expansion form a two-

dimensional infinite matrix of numbers {ai j} which are called the Discrete Wavelet

Transform (DWT) of h(t) and are analogous to the Discrete Fourier Transform dis-

cussed in section 24.10. Although theoretically this matrix has infinite elements,

based on a property of wavelets only a few of these elements are enough to provide

a good approximation of the function being expanded.

h(t) =
∞

∑
k=−∞

a jkψ jk(t) (24.353)

Usually, the transformation of the mother wavelet to the individual members of

the basis function looks something like Equation 24.354.

ψ jk(t) = 2
j
2ψ(2 jt − k) (24.354)

Note that the wavelet expansion is not unique. In fact there are infinitely many

different wavelet bases which may be used to expand any function h(t). Although

wavelets had been studied in as early as 1910 ([21] and [6]), the 1980s brought about

a revolution in their expansion and usage in different engineering problems. [32]

[48] and [5] present useful tutorials on the history of wavelets and treat the subject

in detail.

In his early work, Haar showed that taking certain functions and modifying them

through scaling and shifting to form orthogonal bases can represent many different

types of signals using a two-dimensional infinite series given by Equation 24.355.
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Fig. 24.15: The Haar Mother Wavelet
ψ(t)

h(t) =
∞

∑
k=−∞

⎛⎜⎝ck ϕ(t − k)︸ ︷︷ ︸
Haar Scale Function

+
∞

∑
j=0

d jkψ(2 jt − k)︸ ︷︷ ︸
Haar Wavelet

⎞⎟⎠ (24.355)

where,

ϕ(t) =

{
1 ∀ 0 ≤ t < 1

0 ∀ t < 0∨ t ≥ 1
(24.356)

and

ψ(t) =

⎧⎨⎩
0 ∀ t < 0∨ t ≥ 1

1 ∀ 0 ≤ t < 1
2

−1 ∀ 1
2 ≤ t < 1

(24.357)

In Section 24.12 we will see a very interesting connection between wavelets

transforms and different forms of Fourier Transforms.

For a list of popular wavelets and their properties see [5].

24.8 The Laplace Transform

To be able to understand the nature of integral transforms used in most signal pro-

cessing applications such as Speaker Recognition, we start with a general class of

Integral Transforms , namely, the Laplace Transform of which the Fourier Trans-

form and the z-Transform are special cases.

Consider the General Integral Transform and its inverse given by Equation

pair 24.234 and 24.235. The General Laplace Transform is defined by setting
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K (t,s) = e−st , t1 = −∞, and t2 = ∞ in Equation 24.234. This is the most gen-

eral integral transform using the exponential family of orthogonal functions. As we

will see later, by making certain restrictions on the definition of s, other transforms

will be generated.

Definition 24.70 (Laplace Transform). The general Laplace Transform is defined

by the following,

H(s) = L {h} Δ
=

ˆ ∞

−∞

h(t)e−stdt s ∈� (24.358)

Although it is defined for −∞ < t < ∞; for speaker recognition, or signal pro-

cessing in general, we are only interested in functions of time where we may ignore

the history of the signal. Assume that a signal started τ seconds prior to the point

where our origin of time is defined, then without any loss of generality, we may

shift the origin with which we define t to the past by τ seconds so that the function

of interest h(t) = 0 ∀ t < 0. With this new definition of t, the integral limit t1 of

Equation 24.234 may be set to 0. In fact, to be able to allow for the definition of the

Laplace Transform of an Impulse function, we will set t1 = 0−. This issue will be

visited later, when we explore the Laplace Transform of the more important func-

tions. Based on this new definition of the origin, we define the, so called, Unilateral

(one-sided) Laplace Transform.

Definition 24.71 (Unilateral (One-Sided) Laplace Transform). The Unilateral or

One-Sided Laplace Transform is defined by the following,

H(s) = L (h)
Δ
=

ˆ ∞

0−
h(t)e−stdt s ∈� (24.359)

In general, the Laplace Transform of Equation 24.359 does not exist for the whole

Complex plane. However, it does exist for functions which grow at most as fast as

exponential functions.

Theorem 24.25 (Existence and Boundedness of the Unilateral Laplace Trans-

form). For the Unilateral Laplace Transform to exist, the integral of Equation 24.359

should be bounded, or,∣∣∣∣ˆ ∞

0

h(t)e−stdt

∣∣∣∣< M where M : M < ∞ (24.360)

A sufficient condition for this to happen is that the function h(t) would be bounded

by an exponential family of functions, namely, that ∃ {k,sc} such that,

|h(t)|
{≤ kesct ∀ t ≥ 0

= 0 ∀ t < 0
(24.361)
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Proof.

For the Laplace transform to exist, we should show that,∣∣∣∣ˆ ∞

0

h(t)e−stdt

∣∣∣∣< M (24.362)

We know from Theorem 24.12 that,∣∣∣∣ˆ ∞

0

h(t)e−stdt

∣∣∣∣ ≤ ˆ ∞

0

∣∣h(t)e−st
∣∣dt (24.363)

=

ˆ ∞

0

|h(t)| ∣∣e−st
∣∣dt (From Theorem 24.1) (24.364)

≤
ˆ ∞

0

kesct
∣∣e−st

∣∣dt (From Equation 24.361) (24.365)

=

ˆ ∞

0

keσct
∣∣e−σt

∣∣ ∣∣eiωct
∣∣ ∣∣e−iωt

∣∣dt (24.366)

=

ˆ ∞

0

keσcte−σtdt
(
Since

∣∣eiωct
∣∣= ∣∣e−iωt

∣∣= 1
)

(24.367)

=

ˆ ∞

0

ke(σc−σ)tdt (24.368)

Therefore, if ∃ {k,sc = σc + iωc} such that

k

ˆ ∞

0

e(σc−σ)tdt < M (24.369)

Consequently, ∃ {sc = σc + iωc} such thatˆ ∞

0

e(σc−σ)tdt < M̃ (24.370)

(24.371)

where M̃ is another number such that M̃ < ∞, or∣∣∣∣ˆ ∞

0

h(t)e−stdt

∣∣∣∣< M̃ (24.372)

which means that the Laplace Transform exists.

��
Figure 24.16 shows the region of convergence of the Laplace Transform. The

transform converges everywhere to the right of the, so called, abscissa of conver-

gence of the transform, the line parallel to the imaginary axis and going through σc

as defined in Theorem 24.25.
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Fig. 24.16: Convergence Region for the Laplace Transform

24.8.1 Inversion

h(t) =
1

2πi

[ˆ σc+i∞

σc−i∞

H(s)estds

]
(24.373)

σc is chosen so that all the singularities are to the left of the line going parallel to

the Imaginary access. Based on the Residue Theorem (Theorem 24.15) , integrating

over a semicircle in the left of the s-plane,

h(t) =
1

2πi
2πi∑ (Residue inside Contour) (24.374)

e.g.,

H(s) =
1

(s+a)(s+b)
(24.375)

The Residue at s = −a is,
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(s+a)est

(s+a)(s+b)

]
s→−a

(24.376)

and the Residue at s = −b is,[
(s+b)est

(s+a)(s+b)

]
s→−b

(24.377)

Therefore,

h(t) =
1

b−a

[
e−at − e−bt

]
(24.378)

24.8.2 Some Useful Transforms

Unit Step Function,

h(t) =

{
1 ∀ t ≥ 0

0 ∀ t < 0
(24.379)

H(s) =

ˆ ∞

0

e−stdt =

[
e−st

−s

]∞

0

=
1

s
(24.380)

hence a simple pole at the origin.

Unit Ramp Function,

h(t) =

{
t ∀ t ≥ 0

0 ∀ t < 0
(24.381)

H(s) =

ˆ ∞

0

te−stdt (24.382)

Using Integration by Parts,

H(s) =

[
te−st

−s

]∞

0

+
1

s

ˆ ∞

0

e−stdt =
1

s2
(24.383)
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24.9 Complex Fourier Transform (Fourier Integral Transform)

Fourier Transform may be viewed from two main perspectives. One view would

be as the extension of the Fourier series expansion of Section 24.6. This track of

thinking is geared toward the removal of the periodicity dependence of the expan-

sion. Recall that one of the Dirichlet conditions necessary for the convergence of

the Fourier Series states that the function h(t) must be periodic with period, 2T , and

that it should be absolutely integrable in the interval, [−T,T ]. In fact, to be able to

use the Fourier Series expansion, of a function, we had to resort to the definition

of the periodic extension of the function, Definition 24.30 and performed the se-

ries expansion for that extension of the function. Then we stated that would only

be interested in the interval [−T,T ] of the constructed series. If we take the limit

of T → ∞, we arrive at the Fourier Integral in place of the Fourier Sum. Rewriting

Equations 24.329 and 24.330 which define the Period Normalized Complex Fourier

Series Expansion of a periodic function h(t), and taking the period from 2π to ∞,

using ω for the continuous version of the integration variable, and using H(ω) as

the continuous version of cn, we have,8

h(t) =

ˆ ∞

−∞

H(ω)ei(ωt)dω (24.384)

where,

H(ω) =
1

2π

ˆ ∞

−∞

h(t)e−i(ωt)dt (24.385)

The pair h(t) and H(ω) are the Complex Fourier Integral Transform pair and

their relation is denoted as follows,

h(t) ↔ H(ω) (24.386)

Note that there is some freedom in the definition of the pair of functions

in 24.386. The following is a more general statement of these functions,

H(ω) = α

ˆ ∞

−∞

h(t)e−i(ωt)dt (24.387)

and,

h(t) = β

ˆ ∞

−∞

H(ω)ei(ωt)dω (24.388)

where,

8 Here we have replaced the more proper ≡ sign with = for the sake of convenience.
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α ·β =
1

2π
(24.389)

To end up with the version of the Fourier Transform used in the historic paper

of Shannon [43], we chose α = 1 and β = 1
2π which will give us the following

definition,

H(ω) =

ˆ ∞

−∞

h(t)e−i(ωt)dt (24.390)

and,

h(t) =
1

2π

ˆ ∞

−∞

H(ω)ei(ωt)dω (24.391)

Some have also defined the Fourier Transform pair in terms of the Frequency

f = ω
2π which removes the need for carrying over the 1

2π factor, but complicates the

exponential function,

H( f ) =

ˆ ∞

−∞

h(t)e−i(2π f t)dt (24.392)

and,

h(t) =

ˆ ∞

−∞

H( f )ei(2π f t)d f (24.393)

In Equations 24.392 and 24.393,

ω︸︷︷︸
rad/s

≡ 2π f︸︷︷︸
Hz

(24.394)

Hence,

[H( f )] f = ω
2π

≡ H(ω) (24.395)

Note that in Equations 24.392 and 24.393, if h = h(x) where x is measured in

meters, then H = H( f ) where f is in cycles per meter or in the units of 1

λ̃
where λ̃

is the wavelength, measured in meters.

There is yet more freedom where one may choose to use ei(ωt) in 24.390 which

then forces the choice of e−i(ωt) in 24.391. All these different forms are used and

each may be preferred at certain circumstances for the sake of convenience. As

stated earlier, we have chosen the form which is used in Shannon’s paper [43]

(Equations 24.390 and 24.391) so that the statement of the Sampling Theorem in
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Section 3.1.1 will follow Shannon’s definition more closely.

Another way of arriving at the Complex Fourier Integral Transforms is as a spe-

cial case of the Laplace Transform (Equations 24.358 and 24.373) in which the

Laplace variable s = iω , namely, the transform happens along the imaginary axis.

This will identically produce Equations 24.390 and 24.391.

24.9.1 Translation

Fourier transform is a linear operation

i.e.,

F{h±g} = F{h}±F{g} (24.396)

24.9.2 Scaling

F{ah} = aF{h} (24.397)

24.9.3 Symmetry Table

Let “h(t) ↔ H(ω)” denote a Fourier Transform Pair. The following table provides

a set of statements where given the statement on the left, the statement on the right

is true
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h(t) ∈� H(ω) = H(−ω)(H(ω) is Hermitian)

h(t) ∈ � H(ω) = −H(−ω)

h(t) = h(−t)(h(t) is even) H(ω) = H(−ω)(H(ω) is even)

h(t) = −h(−t)(h(t) is odd) H(ω) = −H(−ω)(H(ω) is odd)

h(t) ∈�∧h(t) = h(−t) H(ω) ∈�∧H(ω) = H(−ω)

h(t) ∈�∧h(t) = −h(−t) H(ω) ∈ �∧H(ω) = −H(−ω)

h(t) ∈ �∧h(t) = h(−t) H(ω) ∈ �∧H(ω) = H(−ω)

h(t) ∈ �∧h(t) = −h(−t) H(ω) ∈ �∧H(ω) = −H(−ω)

24.9.4 Time and Complex Scaling and Shifting

The following are Fourier transform pairs:

• h(αt) ↔ 1
|α|H(ωα ) (Time Scaling)

• 1
|γ|h( t

γ ) ↔ H(γω) (Frequency Scaling)

• h(t − t0) ↔ H(ω)eiωt0 (Time Shifting)

• h(t)eiω0t ↔ H(ω−ω0) (Frequency Shifting)

24.9.5 Convolution

Let g(t) and h(t) be two functions defined in the time domain with their Fourier

transforms as G(ω) and H(ω) respectively,

g(t) ↔ G(ω) (24.398)

h(t) ↔ H(ω) (24.399)

The convolution is defined in the time domain as follows,
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g∗h
Δ
=

ˆ ∞

−∞

g(τ)h(t − τ)dτ (24.400)

property of convolution,

g∗h = h∗g (24.401)

Theorem 24.26 (Convolution Theorem). The Fourier Transform of the convolu-

tion of two functions is the product of their individual Fourier Transforms. Namely,

the following is a Fourier Transform pair,

g(t)∗h(t) ↔ G(ω)H(ω) (24.402)

F{g(t)∗h(t)} = F{g(t)}F{h(t)} (24.403)

24.9.6 Correlation

The correlation of two functions, f (t) and g(t) is defined as follows (see Sec-

tion 24.2.2),

g(t)◦h(t)︸ ︷︷ ︸
function of lag t

Δ
=

ˆ ∞

−∞

g(τ + t︸︷︷︸
lag

)h(τ)dτ (24.404)

Theorem 24.27 (Correlation Theorem). The Fourier Transform of the correlation

of two functions is the product of the Fourier Transform of the first one and the

Fourier Transform of the negative frequency for the second one. Namely, the follow-

ing is a Fourier Transform pair,

g(t)◦h(t) ↔ G(ω)H(−ω) (24.405)

Usually, g ∈� and h ∈� =⇒ H(−ω) = H(ω)
or

F{g◦h} = F{g}F{h} (24.406)

24.9.7 Parseval’s Theorem

Theorem 24.28 (Parseval’s Theorem – Fourier Transform). The Total power in a

signal is the same when computed in the time or Frequency domain. In other words,

the Total Power P is given by,
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P
Δ
=

ˆ ∞

−∞

|h(t)|2dt

=
1

2π

ˆ ∞

−∞

|H(ω)|2dω (24.407)

Proof.

Consider the definition of the Complex Fourier Transform and its inverse given by

Equation pair 24.390 and 24.391. Also, note the proof of Parseval’s theorem for the

Complex Fourier Series in Section 24.6.2. Take any two complex, time dependent

functions, g(t) and h(t), and let us define the integral,

P̂
Δ
=

ˆ ∞

−∞

g(t)h(t)dt (24.408)

Note that based on the argument of Section 24.6.2, if

h(t) =
1

2π

ˆ ∞

−∞

H(ω)eiωtdω (24.409)

then,

h(t) =
1

2π

ˆ ∞

−∞

H(ω)e−iωtdω (24.410)

Also, the inverse Complex Fourier transform expression for G(ω) is,

g(t) =
1

2π

ˆ ∞

−∞

G(ω)eiωtdω (24.411)

Plugging in g(t) and h(t) into Equation 24.408 from Equations 24.411 and 24.410

respectively,

P̂ =
1

(2π)2

ˆ ∞

−∞

ˆ ∞

−∞

G(ω1)e
iω1tdω1

ˆ ∞

−∞

H(ω2)e
−iω2tdω2dt

=
1

(2π)2

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞

G(ω1)e
iω1tH(ω2)e

−iω2tdω2dω1dt

=
1

(2π)2

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞

G(ω1)H(ω2)e
iω1t e−iω2tdω2dω1dt

=
1

(2π)2

ˆ ∞

−∞

ˆ ∞

−∞

G(ω1)H(ω2)

ˆ ∞

−∞

eiω1t e−iω2tdtdω2dω1 (24.412)

Recall the orthogonality of the exponential function,

ˆ ∞

−∞

eiω1t e−iω2tdt =

{
0 ∀ ω1 �= ω2

2π for ω1 = ω2
(24.413)

Using the orthogonality relation of Equation 24.413 in Equation 24.412,
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P̂ =

ˆ ∞

−∞

g(t)h(t)dt

=
1

2π

ˆ ∞

−∞

G(ω)H(ω)dω (24.414)

Now, if we set g(t) = h(t), we have,

P =

ˆ ∞

−∞

|h(t)|2 dt

=
1

2π

ˆ ∞

−∞

|H(ω)|2 dω (24.415)

��

24.9.8 Power Spectral Density

Take the integrand of the right hand side of Equation 24.415. |H(ω)|2 is the power

spectral density which means that it is the power for the infinitesimal portion of the

spectrum of the signal, h(t), from frequency f to f + d f or in angular form from
ω
2π to ω+dω

2π . Of course it may be defined in terms of the spectral space from ω to

ω+dω as well. The former would be in the units of unit of Power
Hz

and the latter would

be in unit of Power
rad. . To recapitulate, the power spectral density in the linear frequency

is given by,

Pd( f ) = |H( f )|2 (24.416)

where f = ω
2π and the power spectral density in angular frequency is given by,

P◦
d (ω)

Δ
=

|H(ω)|2
2π

(24.417)

24.9.9 One-Sided Power Spectral Density

Most of the time, we do not distinguish between negative and positive frequencies.

Therefore, the one-sided PSD is defined to contain both ω and −ω .

The one-sided Power Spectral Density (PSD) for the linear frequency of signal

h(t) is defined as,

Pdh( f )
Δ
= |H( f )|2 + |H(− f )|2 0 ≤ f < ∞ (24.418)

and the one-sided PSD for the angular frequency is,
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P◦
dh(ω)

Δ
=

|H(ω)|2 + |H(−ω)|2
2π

0 ≤ ω < ∞ (24.419)

Note that for h(t) ∈�,

H(− f ) = H( f ) ↔ Pd( f ) = 2|H( f )|2

H(−ω) = H(ω) ↔ P◦
d (ω) =

1

π
|H(ω)|2 (24.420)

Therefore the total power P may be given as,

P =

ˆ ∞

0

Pd( f )d f

=

ˆ ∞

0

P◦
d (ω)dω (24.421)

24.9.10 PSD-per-unit-time

If h(t) is in general non-trivial (non-zero) for −∞ < t < ∞ then the total power of

the signal will be infinite.

Thus, we are interested in PSD-per-unit-time which is computed by taking a long,

but finite portion of h(t), computing the PSD for h(t) for a finite time and assuming

that h(t) = 0 everywhere else. Then, we divide the resulting PSD by total time T or
PSD

T
.

By Parseval’s Theorem,

Pdt
Δ
= mean(|h(t)|2)︸ ︷︷ ︸

mean of the square of amplitude of h(t)

(24.422)

24.9.11 Wiener-Khintchine Theorem

Theorem 24.29 (Wiener-Khintchine Theorem). The autocorrelation of a signal

is the Inverse Fourier transform of its Power Spectral Density. Alternatively, the

Power Spectral Density of a signal is the Fourier transform of its autocorrelation.

In mathematical terms,

(h◦h)(t) = F−1{P◦
d} (24.423)

or

P◦
d (ω) = F{(h◦h)} (24.424)
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Proof.

Let us start with the autocorrelation of h(t) (see Section 24.2.2) and write it in terms

of the inverse Fourier transform of its spectra, somewhat in the same manner as we

did for the proof of Parseval’s theorem, Theorem 24.28.

(h◦h)(τ) =

ˆ ∞

−∞

h(t)h(t + τ)dt (24.425)

Recall that,

h(t) =
1

2π

ˆ ∞

−∞

H(ω)eiωtdω (24.426)

and

h(t) =
1

2π

ˆ ∞

−∞

H(ω)e−iωtdω (24.427)

Therefore, Equation 24.425 may be written as follows,

(h◦h)(τ) =
1

(2π)2

ˆ ∞

−∞

ˆ ∞

−∞

H(ω1)e
−iω1tdω1

ˆ ∞

−∞

H(ω2)e
iω2(t+τ)dω2dt

=
1

(2π)2

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞

H(ω1)H(ω2)e
−iω1tdω1eiω2(t+τ)dω2dt

=
1

(2π)2

ˆ ∞

−∞

ˆ ∞

−∞

H(ω1)H(ω2)[ˆ ∞

−∞

e−iω1−ω2tdt

]
eiω2τdω1dω2 (24.428)

Note that by definition,

ˆ ∞

−∞

e−i(ω1−ω2)tdt = δ (ω1 −ω2) (24.429)

Plugging the identity of Equation 24.429 for the bracketed expression in Equa-

tion 24.428,

(h◦h)(τ) =
1

(2π)2

ˆ ∞

−∞

ˆ ∞

−∞

H(ω1)H(ω2)e
iω2τδ (ω1 −ω2)dω1dω2 (24.430)

An important property of the Delta function, δ (x), is that for any function ϕ(x),

ˆ ∞

−∞

ϕ(x)δ (x− x0)dx = ϕ(x0) (24.431)

Using this property,

ˆ ∞

−∞

H(ω1)δ (ω1 −ω2)dω1 = H(ω2) (24.432)
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Therefore, Equation 24.430 becomes,

(h◦h)(τ) =
1

(2π)2

ˆ ∞

−∞

H(ω2)H(ω2)e
iω2τdω2

=
1

2π

ˆ ∞

−∞

|H(ω2)|2
2π

eiω2τdω2

= F−1{ |H(ω)|2
2π

}
= F−1{P◦

d} (24.433)

��

24.10 Discrete Fourier Transform (DFT)

To work with a finite set of sampled data points, we need a mechanism that would

allow us to obtain a transform of the sampled data into a finite set of finite frequency

components. Let us consider discretizing the Complex Fourier transform given by

Equation pair 24.390 and 24.391. Before attempting the discretization, let us assume

that we have a finite set of data points and we would like to map them to a finite set

of frequencies. Let us assume that we have a finite set of N samples from time t = 0

to t = N −1. Then, we can write the discrete time instances as,

tn = nT n = {0,1, · · · ,N −1} (24.434)

Furthermore, let us assume that we would like to have a frequency resolution of N as

well. This means that we should be able to take the whole frequency space and dis-

cretize it into N equi-distant values. We know that our signal has been sampled using

the concepts discussed in Chapter 3 based on the sampling theorem. Therefore, the

signal is band-limited and sampled such that there are only spectral components

present that have frequencies less than fc. Therefore, referring to the inverse Com-

plex Fourier transform given by Equation 24.391, instead of ranging from −∞ to

∞, the frequency will range from − fc to fc. This means that the resolution of the

discrete frequency is such that there is a step of 2 fc
N

frequency levels. There fore, the

discrete frequency would be,

fk =
k

NT
k = {0,1, · · · ,N −1}

ωk =
2πk

NT
k = {0,1, · · · ,N −1} (24.435)

Now let us start from Equation 24.390 which is the Complex Fourier Transform

of signal h(t) and discretize the integral with the N number of sample points using

the following definitions,
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hn = h(nT )

Ĥk = H

(
ω =

2πk

NT

)
(24.436)

Then, in discrete form, the integral of Equation 24.390 changes to a finite sum of

the N values of the signal with dt → T . Therefore,

Ĥk =
N−1

∑
n=0

hne
−i 2πk

N�T
n�T

T

=
N−1

∑
n=0

hne−i 2πkn
N T (24.437)

To make the Discrete Fourier Transform independent of the sampling frequency, we

define the Discrete Fourier Transform Hk such that

Ĥk = HkT (24.438)

Therefore, the Discrete Fourier Transform (DFT) is defined as,

Hk =
N−1

∑
n=0

hne−i 2πkn
N (24.439)

Note that there is also another type discretized Fourier transform called Discrete-

Time Fourier Transform and it should not be confused with the subject of this sec-

tion which is Discrete Fourier Transform.

24.10.1 Inverse Discrete Fourier Transform (IDFT)

Now, to compute the inverse Discrete Fourier Transform, consider the inverse Com-

plex Fourier Transform, Equation 24.391, and discretize it by having dω → 2ωc
N

=
2π
NT

, then, the discretized version of Equation 24.391 will become,

hn =
1

2π
Ĥkei 2πk

NT nT 2π

NT

=
1

��2π
Hk�T e

i 2πk

N�	T
n�	T ��2π

N�T

=
1

N
Hkei 2πkn

N (24.440)

Therefore, Equations 24.441 and 24.442 are the DFT and IDFT respectively,

Hk =
N−1

∑
n=0

hne−i 2πkn
N (24.441)

hn =
1

N
Hkei 2πkn

N (24.442)
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It is customary to define a factor called the twiddle factor in the following way,

WN
Δ
= ei 2π

N (24.443)

Therefore, Equations 24.441 and 24.442 may be expressed in terms of WN as fol-

lows,

Hk =
N−1

∑
n=0

hnW−kn
N (24.444)

hn =
1

N
HkW

kn
N (24.445)

The DFT is generally a set of complex numbers. If we have a real signal (which

is the case for speech samples), then, since the hn are real, when k = 0, the exponent

in Equation 24.441 becomes 0, making the exponential term 1 for all the elements

of the summation. Therefore, H0 becomes real. This term is called the DC term.

Also, when N is even (which is usually the case with DFT implementations), then

for k = N
2 , the exponential term of the summation may be written as,

e−i 2πkn
N = e

−i

2π(�N


2
)n

�N

= e−iπn

= cos(nπ)+ isin(nπ)

= ±1

This means that the value of the DFT for the folding frequency, fc is also real.

Also, the real-ness of the signal means that,

Hk = HN−k ∀ 0 < k <
N

2
(24.446)

Since H0,HN
2
∈� as shown earlier, we may add these two cases to the list in Equa-

tion 24.446 so that,

Hk = HN−k ∀ 0 ≤ k ≤ N

2
(24.447)

where N is even.

Note the similarity of the IDFT to DFT. In a practical sense, with slight mod-

ifications, the DFT may be used to compute the IDFT. This is done in practice.

Therefore, there is only need for the implementation of one side of the algorithm,

the DFT. Later, we will see that there are efficient techniques for computing the

DFT. Fast Fourier Transform is one such algorithm which will be discussed later.
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24.10.2 Periodicity

Now, consider Hk+N ,

Hk+N =
N−1

∑
n=0

hne−i
2π(k+N)n

N

=
N−1

∑
n=0

hne−i 2πkn
N e

−i 2π�Nn

�N

=
N−1

∑
n=0

hne−i 2πkn
N

= Hk (24.448)

Equation 24.448 suggests that the set of Hk is periodic with period N.

In the case where we have a real signal (such as speech), then by only knowing

the first N
2 + 1 elements, we will know the information for any index since the el-

ements from N
2 + 1 to N − 1 are complex conjugates and easily determined by the

first N
2 +1 elements and the indices for N and higher are just periodically related to

the first N numbers.

To recapitulate, H0 corresponds to the DC level, HN
2

corresponds to fc. In-

dices 0 < k < N
2 − 1 corresponds to 0 < f < fc and N

2 + 1 < f < N correspond

to fc < f < 0.

24.10.3 Plancherel and Parseval’s Theorem

Following the example of Parseval’s Theorem for the Complex Fourier Series (Sec-

tion 24.6.2) and the Complex Fourier Transform (Section 24.9.7), it may easily be

shown that for two sampled signals, gn and hn,

N−1

∑
n=0

gnhn =
1

N

N−1

∑
k=0

GkHk (24.449)

Some call this general theorem, Plancherel’s Theorem and the case when gn = hn,

Parseval’s Theorem.

N−1

∑
n=0

|hn|2 =
1

N

N−1

∑
k=0

|Hk|2 (24.450)

Equation 24.450 is the statement of Parseval’s theorem for the Discrete Fourier

Transform (DFT).
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24.10.4 Power Spectral Density (PSD) Estimation

The definition of the Power Spectral density for the angular frequency may be ex-

tended from the continuous case, Equation 24.417, using Parseval’s Theorem for

the Discrete Fourier Transform, Equation 24.450 and the methods of discretization

discussed in Section 24.10, we can write the discrete Power Spectral Density as,

P◦
d (k) =

1

N2
|Hk|2 (24.451)

Since,

Hk =
N−1

∑
n=0

hne−i 2πkn
N (24.452)

then the power spectral density may be written in terms of the original signal as,

P◦
d (k) =

1

N2

∣∣∣∣∣N−1

∑
n=0

hne−i 2πkn
N

∣∣∣∣∣
2

(24.453)

Equation 24.453 is known as the Periodogram estimation of the power spectral den-

sity.

Note that the PSD for DTFT (considering an infinite length for the signal) is

slightly different. See Section 24.11.1 for more on the PSD of a DTFT.

One of the problems with the Periodogram estimate is that we will not be able

to increase the accuracy (decrease the variance) of the estimate by simply taking

a larger number of points in our DFT. The variance is independent of N and is

always 1. To address this problem, several different methods have superseded the

Periodogram estimation technique. One very effective method is due to Welch [49].

Welch proposed blocking the N-point sampled data into K, 2M-point data seg-

ments. Then we may do a Periodogram estimate of the windowed version of each

of the K segments and average all of them to come up with the spectrogram for

M+1-frequency values. See the Welch window definition in Section 5.3.2.3. He re-

ports that the variance of this estimate is 1
K

of the variance of the larger spectrogram.

Also, K × 2M FFT evaluations are less computationally intensive than one larger,

2MK FFT evaluation. Note that N and M should be powers of 2 as usual.

In this case, we would have to sacrifice some frequency resolution, or if we have

access to more data, we can increase our N so that when split into K bins, it would

still provide a decent number of frequency values. Of course, this will not always

be the case. For example in speech, due to the non-stationary nature of the signal,

we will not be able to increase N arbitrarily and the value of N is dependent on the
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dynamics of the speech segment – see Section 5.3. In this case, Welch proposes that

we may break up the data into overlapping segments of half their original lengths.

The variance reduction factor will then be 11/9.

24.10.5 Fast Fourier Transform (FFT)

The DFT, when computed directly from Equation 24.441, requires an O(N2) oper-

ations to be done. In most applications such as speaker recognition, the DFT has to

be computed many many times and any improvement in the efficiency of its compu-

tation will be hugely amplified in practice. An idea which is based on splitting the

data into subsections over and over has been used to derive an array of algorithms

for accelerating the computation of the DFT, called Fast Fourier Transform (FFT)

algorithms.

The first known FFT algorithm was developed by Carl Gauss.[19] According

to [23] it is estimated to have been written in 1805. Although, the manuscript at hand

is from a collection of his works published in 1866 [19]. Right after Gauss, others

such as Carlini, Smith, Everett, and Runge published variations, all within the re-

mainder of the 19th century.[23] These extensions (and sometimes re-inventions)

continued until a famous paper by Cooley and Tukey [11] which published the

most widely used version of the algorithm to that date. However, according to [23],

Gauss’ algorithm and that of Cooley and Tukey are equivalent, once the notation is

changed and some conversions are done. All these algorithms reduce the number of

operations from O(N2) down to O(N log2(N)) arithmetic operations.

One widely used algorithm which was first developed by Yavne [50] in 1968 and

then by Duhamel and Hollmann [16], Martens [29], Vetterli and Nussbaumer [47]

independently in 1984, is known as the Split-Radix algorithm. This algorithm re-

quires N log2(N)− 3N + 4 multiplications and 3N log2(N)− 3N + 4 additions [3].

Apparently, the name was first coined by [16]. An efficient version of the split-radix

algorithm was presented by Sorensen and Heideman in 1986 [44] which was used

for a long time in practical applications.

It is interesting that these improvements come in waves. At this point, there is

another wave of improvements in three other papers which came out in 2007 and

they have reduced the number of operations to 3.78N log2(N) operations. This im-

provement has brought the number of operations down from that of the split-radix

which was in the order of 4N log2(N) to 3.78N log2(N). There three algorithms are

the algorithm of Lundy and Van Buskirk [28] the FFT of the West (FFTW) algo-

rithm [25], and Bernstein’s Tangent FFT algorithm [3].
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The main idea behind most of these algorithms is the same. They take the N

point FFT and split it into 2 × N
2 problems. Then they keep repeating that until

they are left with single leaves of tree, hence the O(N log2(N)) operations. Let us

examine one such algorithm due to Danielson and Lanczos [13, 14] as described

by [37]. Consider the DFT expression given by Equation 24.443 written again here

for convenience,

Hk =
N−1

∑
n=0

hnW−kn
N (24.454)

Hk may be written as the following two smaller sums,

Hk =

N
2 −1

∑
n=0

h2nW
−k(2n)
N︸ ︷︷ ︸

even

+

N
2 −1

∑
n=0

h2n+1W
−k(2n+1)
N︸ ︷︷ ︸

odd

=

N
2 −1

∑
n=0

h2nW−kn
N
2

+W−k
N

N
2 −1

∑
n=0

h2n+1W−kn
N
2

= H
(e)
k +W−k

N H
(o)
k (24.455)

where,

H
(e)
k

Δ
=

N
2 −1

∑
n=0

h2nW−kn
N
2

(24.456)

H
(o)
k

Δ
=

N
2 −1

∑
n=0

h2n+1W−kn
N
2

(24.457)

As you can see, this process may be repeated for log2(N) times until leaves are

reached. The leaves will just be the data points themselves. Therefore, at the leaves,

we will have the data points shuffled in a certain way and they will be tagged by a

sequence of odd and even tags such as for instance, H
(oeooe···eo)
k . The algorithm states

that we would replace every o with a 1 and every e with a 0, then do a bit reversal

(i.e. making the most significant bit the least significant and so on), and the binary

number that gets generated will be the index of the original sampled data. Thus, we

are left with a binary decision tree where the leaves are the sampled data points and

the indices of these points related to the leaves are known by the described binary

substitution and bit reversal.

In addition, the bit reversal may be done on the indices of the original sampled

points in memory, so that all we have to do is to combine adjacent points to get

2-point transforms and then combine another layer and get 4-point transforms, and

continue until we obtain the N-point transform. Each combination of this kind re-

quires O(N) operations. Since there are are log2(N) layers in the tree, there will be

N log2(N) operations required all together.
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As we mentioned in Section 24.10, for real signals,

Hk = HN−k ∀ 0 ≤ k ≤ N

2
(24.458)

therefore, the DFT problem may be split into two other problems, a DCT (Discrete

Cosine Transform) and a DST (Discrete Sine Transform). This is usually done in

practice to reduce the complexity of the computation. A good implementation for

real samples is given by [45, 46].

24.11 Discrete-Time Fourier Transform (DTFT)

In the definition of the DiscreteFourierTrans f orm(DFT ), we started with the con-

tinuous time and frequency of the Complex Fourier Transform and discretized both

of them. Now, let us take another approach toward the development of the Discrete-

Time Fourier Transform (DTFT).

Recall the Complex Fourier Series expansion discussed in detail in Section 24.6.

In that expansion, the continuous domain of time was mapped to an infinite number

of discrete frequencies. Now, imagine doing the exact opposite. let us keep the fre-

quency domain, ω continuous and discretize the time axis. In that case, all that will

happen is that the Fourier Integral, given by Equation 24.390, is sampled in time.

To do this, we can just pass the signal, h(t), through an ideal sampler providing us

with samples, hn = h(nT ), for the nth time instance with the sampling period T (see

Chapter 3). The Discrete-Time Fourier Transform may then be written as follows,

H(ω)
Δ
=

∞

∑
−∞

hne−iωn (24.459)

In the definition of Equation 24.459, we have defined H(ω) without the T multi-

plier which would have come out of the approximation of the dt in the integral.

This makes the DTFT dimensionless and somewhat independent of the sampling

frequency, as was in the case of the definition for DFT in Section 24.10.

Notice that the angular frequency,ω is still continuous. Now, realizing the duality

between the Complex Fourier Series and the DTFT, consider the normalized version

of the series and its coefficients given by the Equation pair 24.329 and 24.330. We

will immediately see that Equation 24.459 is in the form of that normalized Complex

Fourier Series given by Equation 24.329 with the following change of variables,

ω ←→ t̂ and hn ←→ cn. Therefore, we may use the expression for the coefficients,

cn, given by Equation 24.330 to solve for hn. Therefore, the inverse Discrete-Time

Fourier Transform may be written as,
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hn =
1

2π

ˆ π

−π
H(ω)e−i(ωn)dω (24.460)

What is quite interesting is that if we truncated the series in Equation 24.459 and

quantize the angular frequency such that,

ωk =
2πk

N
0 ≤ k < N (24.461)

and plug the new quantized frequency into Equation 24.459, then,

H(ωk) = Hk

=
N−1

∑
n=0

hne−i( 2πk
N )n (24.462)

which is exactly the expression for the DFT given in Equation 24.441.

Another interesting relation is that much in the same way that Fourier transform

is a special case of Laplace transform for which s = iω , if we set z = eiω in the

definition of the z-transform we get the expression for the DTFT. See Section 24.14

for more information on the z-transform.

24.11.1 Power Spectral Density (PSD) Estimation

We presented the PSD for the DFT case in Section 24.11.1. Now, let us consider

the DTFT case. For a DTFT, The power spectral density will be a function of a

continuous frequency. Therefore, following the same trend in the differences among

continuous, Discrete and Discrete-Time versions, the PSD for the angular frequency

and DTFT is given by the following equation,

P◦
d (ω) =

1

2π
|H(ω)|2 (24.463)

Since,

H(ω) =
∞

∑
n=−∞

hne−iωn (24.464)

then the power spectral density may be written in terms of the original signal as,

P◦
d (ω) =

1

2π

∣∣∣∣∣ ∞

∑
n=−∞

hne−iωn

∣∣∣∣∣
2

(24.465)

Equation 24.465 is known as the Periodogram of the power spectral density and it

is usually reported in dB per radian. For this, it would have to be offset by the power
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at 1000 Hz which is the hearing threshold – see Section 5.1.2.

24.12 Complex Short-Time Fourier Transform (STFT)

Complex Fourier Transform is usually concerned with stationary signals – see Def-

inition 3.4. However, as have discussed at the beginning of Chapter 3, the speech

signal is an non-stationary signal, which means that its parameters are constantly

changing with time. According to [15], an average phone lasts for about 80 ms.

Even within that time, the vocal tract varies in length and configuration, changing

its spectral properties. the main idea behind the short-time Fourier transform is to

only consider part of a signal at any moment. Therefore, the STFT is not only a

function of the frequency, ω , but it is also a function of time, t, around which the

STFT has been computed.

Imagine a signal h(t) which is non-stationary. Take the moment in time, t. We

may choose to only analyze part of the signal in the vicinity of t and ignore the signal

far to the right or left of this time instance. Then, we can analyze the spectrum of

the selected portion of the signal. One way to do this is to just clip some Δ t to the

right and left of t. However, this is equivalent to multiplying the signal by a square

window function. Let us assume that we have a window function that would look

to the left of t = 0 by an amount δ t and to the right by the same amount, δ t. The

window function may be written as a linear combination of two step functions, u(t),
shifted to the left and right of the origin by an amount δ t. Namely,

w(t) = u(t +δ t)−u(t −δ t) (24.466)
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Fig. 24.17: Original signal overlaid with
a square window of 60ms width at t =
80ms
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Fig. 24.18: Windowed Signal
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Therefore, if we are interested in the signal, but only in the vicinity of t = τ , all

we have to do is to shift w(t) given by Equation 24.466 so that its center is at time

t = τ and then multiply it by the original signal creating a new signal, ĥ(t), which

only has a portion of the original signal,

ĥ(t) = h(t)w(t − τ) (24.467)

Now, let us write the Complex Fourier Transform and its inverse for the new

signal,

Ĥ(ω) =

ˆ ∞

−∞

ĥ(t)e−i(ωt)dt (24.468)

ĥ(t) =
1

2π

ˆ ∞

−∞

Ĥ(ω)ei(ωt)dω (24.469)

By doing this, we have added one more dimension to the Fourier Analysis. Equa-

tions 24.468 and 24.469 are only for the version of the function windowed at t = τ .

So in general, we may write a transform that represents all possible locations of the

window function. This is called the Short-Time Fourier Transform of the function,

h(t) and may be written as follows,

H(ω,τ) =

ˆ ∞

−∞

h(t)w(t − τ)e−i(ωt)dt (24.470)

Also, its inverse is,

h(t)w(t − τ) =
1

2π

ˆ ∞

−∞

H(ω,τ)ei(ωt)dω (24.471)

Note that at this point, we have not made any restrictions on the size and shape of

the window function. Therefore, we have many choices for possible windows and

their corresponding sizes. Let us try to use this advantage to find a class of windows

such that the Fourier transform of the signal h(t) would encompass all the short-time

Fourier transforms along the time domain, namely, let us require that,

H(ω) =

ˆ ∞

−∞

H(ω,τ)dτ (24.472)

Let us examine Equation 24.472, by plugging in for H(ω,τ) from Equation 24.470.

H(ω) =

ˆ ∞

−∞

[ˆ ∞

−∞

h(t)w(t − τ)e−iωtdt

]
dτ

=

ˆ ∞

−∞

h(t)

ˆ ∞

−∞

w(t − τ)dτe−iωtdt (24.473)

Equation 24.473 means that for Equation 24.472 to be true, the area under the

window function must be 1, namely,
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ˆ ∞

−∞

w(t − τ)dτ = 1 ∀ t (24.474)

We will use this restriction in choosing the window function. It still leaves us

with infinite number of possibilities. Now, to recapitulate, the Short-Time Fourier

Transform of h(t) is as follows,

H(ω,τ) =

ˆ ∞

−∞

h(t)w(t − τ)e−iωtdt (24.475)

where,

ˆ ∞

−∞

w(t − τ)dτ = 1 ∀ t (24.476)

and as a property,

H(ω) =

ˆ ∞

−∞

H(ω,τ)dτ (24.477)

Figures 24.19 and 24.20 show the effect of the modified square window such

that the area under the window is 1. Note that we are only using a square window

here for simplicity of demonstrating the idea behind STFT. Using a square window,

because of the sharp drop at its edges, creates strong, high frequency components

which will show up in the transform. For this reason, practical windows are chosen

to have a very smooth and gradual transition between the center of the window and

the sides which tend to zero. This will act like a low-pass filter which reduces the

leakage effect.
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Fig. 24.19: Original signal overlaid with
a square window of 60ms width at t =
80ms with a normalized window using
Equation 24.474
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24.12 Complex Short-Time Fourier Transform (STFT) 743

Now, let us consider the inverse Fourier transform for Equation 24.473,

h(t) =
1

2π

ˆ ∞

−∞

H(ω)eiωtdω

=
1

2π

ˆ ∞

−∞

ˆ ∞

−∞

H(ω,τ)eiωtdω

=

ˆ ∞

−∞

[
1

2π

ˆ ∞

−∞

H(ω,τ)eiωtdω

]
dτ (24.478)

=

ˆ ∞

−∞

h(t)w(t − τ)dτ (24.479)

The function,

h(t,τ)
Δ
= h(t)w(t − τ) (24.480)

is known as a wavelet of h(t) and is given by the inverse Fourier transform of the

short-time Fourier transform of h(t) at time τ ,

h(t,τ) =
1

2π

ˆ ∞

−∞

H(ω,τ)eiωtdω (24.481)

Therefore, since h(t,τ) is a wavelet of h(t), then H(ω,τ), the short-term Fourier

transform at τ is also a wavelet transform of h(t). We, briefly, touched upon the

wavelet series expansion of functions in Section 24.7. Now, we have see the con-

nection between the Fourier transform and the Wavelet transform.

In fact, one special wavelet transform, known as the Gabor transform is defined

as a special case of short-time Fourier transform where the window function has

been chosen to be a Gaussian function. Since

ˆ ∞

−∞

e−t2
=

√
π (24.482)

the window was chosen to meet the requirement of Equation 24.476 which means,

wg(t) = e−πt2
(24.483)

Therefore, the Gabor transform becomes,

HG(ω,τ) =

ˆ ∞

−∞

h(t)e−π(t−τ)2
e−iωtdt (24.484)

and its inverse (known as the Gabor wavelet) is,

hg(t,τ) =
1

2π

ˆ ∞

−∞

Hg(ω,τ)eiωtdω (24.485)

and h(t) is then given by Equation 24.479 or,
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h(t) =

ˆ ∞

−∞

hg(t,τ)dτ

=

ˆ ∞

−∞

1

2π

ˆ ∞

−∞

Hg(ω,τeiωtdωdτ (24.486)

As a practical note,

wG(t) ≈ 0 ∀ |t| > 2 (24.487)

Therefore, one may write an approximation to the Gabor transform as,

H̃G(ω,τ) =

ˆ 2

−2

h(t)e−π(t−τ)2
e−iωtdt (24.488)

where, H̃G(ω,τ) ≈ HG(ω,τ).

24.12.1 Discrete-Time Short-Time Fourier Transform DTSTFT

In this section, we will derive the Discrete-Time Short-Time Fourier Transform (DT-

STFT) whose relationship to the continuous version is analogous to the relationship

of the DTFT and the Complex Fourier Transform.

Let us start with the same objective as we did for the continuous STFT, which is

the isolation of our analysis to a portion of a non-stationary signal to be able to cap-

ture local stationary effects. Consider, as did with the continuous case, a windowed

version of the sampled signal, hn at time instance m,

ĥn = hnw(n−m) (24.489)

The DTFT of the new signal is,

Ĥ(ω) =
∞

∑
n=−∞

ĥne−iωn (24.490)

and using Equation 24.462, the inverse transform is

ĥn =
1

2π

ˆ π

−π
Ĥ(ω)eiωndω (24.491)

Equations 24.490 and 24.491 are only for the original function windowed at the

discrete time instance, m. Therefore, we may write the transform that represents all

the possible locations of the windowed signal as,
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H(ω,m) =
∞

∑
n=−∞

hnw(n−m)e−iωn (24.492)

with its inverse,

hnw(n−m) =
1

2π

ˆ ∞

−∞

H(ω,m)eiωndω (24.493)

Now, let us exert the following restriction,

H(ω) =
∞

∑
m=−∞

H(ω,m) (24.494)

which may be rewritten out as,

H(ω) =
∞

∑
m=−∞

∞

∑
n=−∞

hnw(n−m)e−iωn

=
∞

∑
n=−∞

hneiωn
∞

∑
m=−∞

w(n−m) (24.495)

One way For Equation 24.495 to hold, is if the window function w(n) has the fol-

lowing property,

∞

∑
m=−∞

w(n−m) = 1 ∀ n (24.496)

Then,

H(ω,m) =
∞

∑
n=−∞

hnw(n−m)e−iωn (24.497)

where,

∞

∑
m=−∞

w(n−m) = 1 ∀ n (24.498)

and H(ω,m) has the following property,

H(ω) =
∞

∑
m=−∞

H(ω,m) (24.499)

Now, let us consider the case of the inverse transform,
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hn =
1

2π

ˆ ∞

−∞

H(ω)eiωndω

=
1

2π

ˆ ∞

−∞

∞

∑
m=−∞

H(ω,m)eiωndω

=
∞

∑
m=−∞

1

2π

ˆ ∞

−∞

H(ω,m)eiωndω

=
∞

∑
m=−∞

hnw(n−m) (24.500)

Then we can define,

hnm
Δ
= hnw(n−m) (24.501)

which is a discrete wavelet of hn and is given by,

hnm =
1

2π

ˆ ∞

−∞

H(ω,m)eiωndω (24.502)

Therefore, the DTSTFT of hn, H(ω,m), evaluated at time instant m is a discrete-

time wavelet transform of hn.

24.12.2 Discrete Short-Time Fourier Transform DSTFT

In this section, we are going to derive the Discrete Short-Time Fourier Transform

and its inverse much in the same manner as we did for the Discrete-Time Short-

Time Fourier Transform. As you may recall, the difference between these two is

analogous to the difference between DTFT and DFT where in DTSTFT and DTFT,

the frequency is continuous and the time domain is sampled, but in a countably infi-

nite fashion (see Section 6.7). Since we have gone through similar exercises for the

STFT and DTSTFT, here, we will simply derive the equations for the DSTFT case

this section, without much discussion.

ĥn
Δ
= hnw(n−m) (24.503)

Ĥk =
N−1

∑
n=0

hne−i 2πnk
N (24.504)

ĥn =
1

N

N−1

∑
k=0

Ĥkei 2πnk
N (24.505)
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Hkm =
N−1

∑
n=0

hnw(n−m)e−i 2πnk
N (24.506)

hnw(n−m) =
1

N

N−1

∑
k=0

Hkmei 2πnk
N (24.507)

Similar to our previous restriction, let us require that,

Hk =
N−1

∑
m=0

Hkm (24.508)

Therefore,

Hk =
N−1

∑
m=0

N−1

∑
n=0

hnw(n−m)e−i 2πnk
N

=
N−1

∑
n=0

hne−i 2πnk
N

N−1

∑
m=0

w(n−m) (24.509)

Equation 24.509 will hold in general if we choose our window function, w(n) such

that,

N−1

∑
m=0

w(n−m) = 1 ∀ n (24.510)

This gives us the following Discrete Short-Time Fourier Transform,

Hkm =
N−1

∑
n=0

hnw(n−m)e−i 2πnk
N (24.511)

where,

N−1

∑
m=0

w(n−m) = 1 ∀ n (24.512)

and Hk has the property that,

Hk =
N−1

∑
m=0

Hkm (24.513)

Now, let us derive the inverse transform,
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hn =
1

N

N−1

∑
k=0

Hkei 2πnk
N

=
1

N

N−1

∑
k=0

N−1

∑
m=0

Hkmei 2πnk
N

=
N−1

∑
m=0

1

N

N−1

∑
k=0

Hkmei 2πnk
N

=
N−1

∑
m=0

hnw(n−m) (24.514)

Then we can define,

hnm
Δ
= hnw(n−m) (24.515)

which is given by,

hnm =
1

N

N−1

∑
k=0

Hkmei 2πnk
N (24.516)

24.13 Discrete Cosine Transform (DCT)

At the end of Section 24.10, we touched upon the fact that the DFT may be split up

into its real and imaginary parts (DCT and DST). The Discrete Cosine Transform,

because of it relation to the real axis, becomes important in speech processing. One

place it is used is as the last stage of the computation of Mel Frequency Cepstral

Features (MFCC) – see Section 5.3.6. Besides speech processing, some familiar

image compression techniques such as Joint Photographic Expert Group (JPEG)

compression use a two dimensional version of the DCT. In this book, we will only

be concerned with the one dimensional case pertaining to the time axis.

Since the cosine transform is a component of the Fourier transform, it can also

take on a discrete form in time and frequency (DCT) or a just in time which would

be called the Discrete-Time Cosine Transform (DTCT). Since we will not really

use the DTCT in this book and since the relation between DTCT and DCT is quite

similar to that of the DTFT and DFT, we will only discuss the DCT.

There are several different ways the DCT may be defined. This is due to the fact

that for indices which are zero, the sin component of the Fourier transform vanishes,

but the cos becomes 1 which produces a DC value for the transform. There are

different ways this DC component may be define. We will not go into the details.

Here, we have picked a popular form of the Discrete Cosine Transform (DCT) which

is as follows,
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Hk =
N−1

∑
n=0

hn cos

(
π(2n+1)k

2N

)
(24.517)

where k = {0,1, · · · ,N −1} is the frequency index.

The inverse DCT (IDCT) for the form we have chosen (Equation 24.517), is the

following,

hn =
N−1

∑
k=0

akHk cos

(
π(2n+1)k

2N

)
(24.518)

where

ak =

{
1
N

f or k = 0
2
N

∀ k > 0
(24.519)

Normally, the DCT is computed using an FFT algorithm and the real part is ex-

tracted. However, there are special cases where an FFT will not be the most efficient

way of approaching the problem. In the following section, we will examine some

methods that take advantage of the problem at hand and increase the efficiency of

computation of the DCT.

24.13.1 Efficient DCT Computation

In relation to the topic of this book, we are interested in processing of a long se-

quence of speech. As it is made apparent in Chapter 5, the speech is processed in

equal size frames and for each frame, the cos values to be determined, and which

are the highest costing part of the computation, may be computed only once and

stored in a vector. Then the cosine transform part of the process can recall these

values without having to compute them for every frame. In this case, we can do the

processing in much more efficient manner compared to computing the FFT values

for each frame.

Another example where more efficient algorithms may be used to compute the

DCT is the case of Dual Tone Multi-Frequency (DTMF) detection, also known as

touch tone detection. In this problem and other related cases, we are interested in as-

sessing the power associated with specific frequencies in a signal (the DTMF part)

and not necessary the whole signal (the whole telephone conversation). The Go-

ertzel Algorithm [20] provides one such mechanism. It is a recursive algorithm used

for computing finite trigonometric series, such as the Discrete Cosine Transform

(DCT). This algorithm is well-known for its application to DTMF detection. DTMF

signals are the touch tone signal with which we are mostly familiar through our daily
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lives. The goal of a DTMF detector is to assess the power associated with specific

DTMF frequencies. This job could always be done using FFT (see Section 24.10.5),

however, the FFT algorithms are still too slow for this specific task which has to

be almost instantaneous. The Goertzel Algorithm provides a much faster approach,

since only a limited number of spectra are needed. It is designed to evaluate a finite

trigonometric series, in this case a Discrete Cosine Transform (DCT), by conducting

only N multiplications and about 2N additions [8]. Goertzel’s algorithm is a recur-

sive algorithm which is structured such that it may be parallelized quite easily. This

allows efficient VLSI implementations [7].

In the DTMF application, only eight frequencies and their second harmonics are

needed for the detection. For each frequency, there is a second harmonic frequency

(hence the dual tone descriptor in the name). The second harmonic frequency is used

to make sure that there is no confusion between the DTMF and voice or other audio

components on the call. The sampling frequencies for these frequency components

are assumed to be 8 kHz.

[8] also present another algorithm which is designed to be implemented in a par-

allel setting. It also presents a circuit for doing this computation.

24.14 The z-Transform

Assume that we have a signal, h(t), which has been sampled using an ideal sampler

(see Section 3.6.1). Therefore, the sampled signal, if represented in the continuous

domain, is given by Equation 3.48. Let us take the one-sided Laplace transform of

h∗(t), which is the output of an ideal sampler with a sampling frequency T ,

L {h∗} = H∗(s) =
∞

∑
n=0

h(nT )e−nT s (24.520)

Now, since the general form of a Laplace transform applied to the output of an

ideal sampler will have an exponential component (based on Equation 24.520, and

since the exponential function is not a rational function, taking the inverse Laplace

transform would be quite difficult. This is the motivation behind the definition of

the z-transform. Let us define,

z
Δ
= eT s (24.521)

Then, the s may be written in terms of z as follows,

s =
1

T
lnz (24.522)
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If we write the real and imaginary components of the complex variable s,

s = σ + iω (24.523)

then the real and imaginary components of z may be given by,

Re(z) = eT s cos(ωT ) (24.524)

I m(z) = eT s sin(ωT ) (24.525)

(24.526)

Also, note that the z-transform of h∗ is as follows,

H(z) = H∗
(

s =
1

T
lnz

)
=

∞

∑
n=0

h(nT )z−n (24.527)

Since we started with one-sided Laplace transform, the definition of z-transform

which is derived from it is also the one-sided z-transform.

Notice the relation between Laplace and z transforms:

H(s) =

ˆ ∞

0

h(t)e−stdt ←→ H(z) =
∞

∑
n=0

h(nT )z−n (24.528)

But if we let T → 0,

lim
T→0

H(z) �= H(s) (24.529)

since the output of an ideal sample does not approach the signal as T approaches 0,

namely,

lim
T→0

h∗(t) �= h(t) (24.530)

In fact, as T → 0, we will end up with an infinite number of impulses at t = 0.

Let us examine the z-transform of some prevalent functions.

Also, much in the same way that Fourier transform is a special case of Laplace

transform for which s = iω , if we set z = eiω and use the definition of the two-sided

z-transform, we get,

H(ω) =
∞

∑
−∞

h(nT )e−iωn (24.531)

which is called the Discrete Time Fourier Transform (DTFT) – not to be con-

fused with Discrete Fourier Transform (DFT). Just like the relation between Fourier

Transform and Laplace, since the DTFT is evaluation at z = eiω , and since
∣∣eiω

∣∣= 1,
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the points of this mapping lie on the perimeter of the unit circle which means that

there is no damping. See Section 24.11 for more on the DTFT.

Now take the unit step function given by Equation 24.532,

u(t)
Δ
=

{
1 ∀ t ≥ 0

0 ∀ t < 0
(24.532)

Then the output of the ideal sampler would be,

u∗(t) =
∞

∑
n=0

δ (t −nT ) (24.533)

and

L {u∗} =
∞

∑
n=0

e−nT s

=
1

1− e−T s
f or

∣∣e−T s
∣∣< 1 (24.534)

(24.535)

Writing Equation 24.535 using the substitution in Equation 24.521,

Z {u} =
1

1− z−1

=
z

z−1
f or

∣∣z−1
∣∣< 1(|z| > 1) (24.536)

Now, let us consider the decaying exponential function,

h(t) = e−at (24.537)

Then,

H(z) =
∞

∑
n=0

e−anT z−n converges for all
∣∣e−aT z−1

∣∣
=

1

1− e−aT z−1

=
z

z− e−aT
∀ ∣∣e−aT z−1

∣∣< 1 or
∣∣z−1

∣∣< eaT (24.538)

Now consider the periodic function,

h(t) = sin(ωt) (24.539)

Again, by using the ideal sampler output,
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H(z) =
∞

∑
n=0

sin(ωnT )z−n

=
∞

∑
n=0

eiωnT − e−iωnT

2i
z−n

=
1

2i

[
∞

∑
n=0

eiωnT z−n −
∞

∑
n=0

e−iωnT z−n

]

=
1

2i

[
z

z− eiωT
− z

z− e−iωT

]
=

zsin(ωT )

z2 −2zcos(ωT )+1
(24.540)

The Ramp function is defined as,

h(t) = t (24.541)

We can also write the Ramp function in the following form:

h(t) = tu(t) (24.542)

where u(t) is the unit step function given by Equation 24.532. Therefore,

H(z) =
∞

∑
n=0

nT z−n

= T z−1 +2T z−2 + · · · (24.543)

If we multiply both sides of Equation 24.543 by z−1, we will have,

H(z) = T z−2 +2T z−3 + · · · (24.544)

Now subtract Equation 24.544 from Equation 24.543,

(1− z−1)H(z) = T z−1 +T z−2 + · · · (24.545)

If we multiply Equation 24.545 by z−1 and subtract the result from Equation 24.545,

we will get,

(1− z−1)
[
1− z−1

]
H(z) = T z−1 (24.546)

Therefore,

H(z) =
T z−1

(1− z−1)2

=
T z

(z−1)2
(24.547)

Note that,
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H(s) =
1

s2
(24.548)

Figure 3.24 shows the effect of folding in the Laplace domain when applied to

the output of an ideal sampler. In the z-plane, the portion that is highlighted in the

figure is mapped to the unit circle with its center at the origin. Since the circle is

cyclic, the higher harmonics (reflections) show up as the addition of ±2nπi in the

the polar coordinates. See Section 3.6.1 for more information about folding.

Fig. 24.21: The corresponding extrema in the Laplace and z planes

Consider the extreme cases of the values of s and z:
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1.

s = 0 ←→ z = 1 (24.549)

2.

s = i
ωs

2
←→ z = eT(iωs

2 ±2πim) (24.550)

since ωs = 2π
T

,

z = eiπ±2πim

= cos(π)± isin(π)

= −1+ i0

(24.551)

Therefore,

s = i
ωs

2
←→ z = −1 (24.552)

3.

s = −∞+ i
ωs

2
←→ z = eT (−∞+iωs

2 )±2πim (24.553)

Let us write z in polar coordinates, then,

z = ρeiθ±2πim

= e−∞ei Tωs
2 ±2πim

∴ ρ = e−∞ = 0 (24.554)

Therefore,

s = −∞+ i
ωs

2
←→ z is at the origin (24.555)

4. By the same token as the previous point,

s = −∞− i
ωs

2
←→ z is at the origin (24.556)

5.

Fors = 0− i
iωs

2
(24.557)

since
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z = eT s±2πim

= e0T e−i iωsT
2 ±2πim

= 1e−π±2πim

(24.558)

Therefore, in a polar representation of z, ρ = 1 and theta = −π .

Figure 24.21 shows the locations of the corresponding 5 extrema on the Laplace and

z planes.

24.14.1 Translation

The z-transform is a linear operation

i.e.,

Z {h±g} =
∞

∑
n=0

ah(nT )z−n ±
∞

∑
n=0

ag(nT )z−n

= Z {h}±Z {g} (24.559)

This may be shown as the follows,

h(t)±g(t) ←→ H(z)±G(z) (24.560)

24.14.2 Scaling

Z {ah} = aZ {h} (24.561)

Z {ah} =
∞

∑
n=0

ah(nT )z−n

= a
∞

∑
n=0

h(nT )z−n

= aH(z) (24.562)

Therefore,

h(t) = ag(t) ⇐⇒ H(z) = aG(z) (24.563)
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24.14.3 Shifting – Time Lag

Consider h(t) which is shifted to the right by an amount kT (a time lag of kT sec-

onds). Then its z-transform may be written as follows,

Z {h(t − kT )u(t − kT )} =
∞

∑
n=0

h(nT − kT )z−(n−k)

= z−k
∞

∑
n=0

h(nT − kT )z−(n−k)

= z−k
∞

∑
n̄=0

h(n̄T )z−(n̄)

= z−kH(z) (24.564)

Therefore, the time lag theorem becomes,

Z {h(t − kT )} = z−kH(z) (24.565)

24.14.4 Shifting – Time Lead

Now, consider h(t) which is shifted to the left by an amount kT (a time lead of kT

seconds). Then its z-transform is as follows,

Z {h(t + kT )u(t + kT )} =
∞

∑
n=0

h(nT + kT )z−(n+k)

= zk
∞

∑
n=0

h(nT + kT )z−(n+k)

= zk
∞

∑
n̄=k

h(nT )z−n

= zk

[
H(z)

k−1

∑
n̄=0

h(nT )z−n

]
(24.566)

Therefore, the time lead theorem becomes,

Z {h(t + kT )} = zk

[
H(z)

k−1

∑
n̄=0

h(nT )z−n

]
(24.567)

24.14.5 Complex Translation

We know that a complex translation in the Laplace domain relates to scaling with

the exponential,
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H(s±a) ←→ e∓ath(t) (24.568)

Now, let us take the z-transform of this scaled signal,

Z {e∓ath(t)} =
∞

∑
n=0

h(nT )e∓anT z−n

Now, if we define,

z̄
Δ
= ze±aT (24.569)

then,

Z {e∓ath(t)} =
∞

∑
n=0

h(nT )z̄−n

= H(z̄)

= H
(
ze±aT

)
(24.570)

24.14.6 Initial Value Theorem

Theorem 24.30 (Initial Value Theorem).

lim
n→0

h(nT ) = lim
z→∞

H(z) (24.571)

Proof.

H(z) =
∞

∑
n=0

h(nT )z−n

= h(0)+h(T )z−1 + · · ·
(24.572)

If we take the limit of H(z) as z → ∞, all the terms but h(0) in Equation 24.572

vanish. Therefore,

lim
z→∞

H(z) = h(0)

= lim
n→0

h(nT ) (24.573)

��

24.14.7 Final Value Theorem

Theorem 24.31 (Final Value Theorem). The final value theorem states that,
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lim
n→∞

h(nT ) = lim
z→1

(1− z−1)H(z) (24.574)

if
(
1− z−1

)
H(z) has no poles outside the unit circle.

Proof.

Take the truncated z-transform of h(t) up to the kth term,

k

∑
n=0

h(nT )z−n (24.575)

Now, consider the truncated z-transform of h(t) with a lag of one period (h(t −T ))
and again truncated to the kth term,

k

∑
n=0

h((n−1)T )z−n (24.576)

Here, if n = 0, the first term of the series becomes h(−T ) which is zero since,

h(t) = 0 ∀ t < 0.

Therefore, writing out all the terms of the summation Expression 24.576, we see

that,

k

∑
n=0

h((n−1)T )z−n = z−1
k−1

∑
n=0

h(nT )z−n (24.577)

Notice the similarity between the right hand side of Equation 24.577 and the sum-

mation in Expression 24.575. Subtract the right side of Equation 24.577 from Ex-

pression 24.575, and take the limit of z → 1 in the result,

lim
z→1

[
z−1

k−1

∑
n=0

h(nT )z−n −
k

∑
n=0

h(nT )z−n

]
=

k

∑
n=0

h(nT )−
k−1

∑
n=0

h(nT )

= h(kT )(24.578)

Since we had truncated the z-transforms, now, we would like to take the limit of

k → ∞ for both sides of Equation 24.578 and replacing the infinite series with its

z-transform equivalent,

lim
k→∞

h(kT ) = lim
z→1

(1− z−1)H(z) (24.579)

��

24.14.8 Real Convolution Theorem

Theorem 24.32 (Real Convolution). If h(t) = 0 ∀ t < 0 and g(t) = 0 ∀ t < 0,
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Z {(h∗g)} = Z {
n

∑
k=0

h(kT )g(nT − kT )} (24.580)

= H(z)G(z) (24.581)

Proof.

Take the right hand side of Equation 24.580 which is the definition of convolution

and write our the infinite sum z-transform,

Z {
n

∑
k=0

h(kT )g(nT − kT )} =
∞

∑
n=0

n

∑
k=0

h(kT )g(nT − kT )z−n (24.582)

For the right hand side of Equation 24.582, because the terms g(t −τ) = 0 ∀ τ > t,

we can change the upper limit of the inner summation from n to ∞. Therefore,

Z {
n

∑
k=0

h(kT )g(nT − kT )} =
∞

∑
n=0

∞

∑
k=0

h(kT )g(nT − kT )z−n (24.583)

Let us define,

n̄
Δ
= n− k (24.584)

and rewrite Equation 24.583 using the Definition 24.584,

Z {
n

∑
k=0

h(kT )g(nT − kT )} =
∞

∑
k=0

h(kT )z−k
∞

∑
n̄=−k

g(n̄T )z−n̄ (24.585)

However, as we stated earlier, g(t −τ) = 0 ∀ τ > t, so the lower limit of the second

summation (involving g(t)) may be changed to n̄ = 0 which gives,

Z {
n

∑
k=0

h(kT )g(nT − kT )} = H(z)G(z) (24.586)

��

24.14.9 Inversion

To derive the inversion formula for the z-transform, we will take the same approach

as we took in deriving the expression for the transform itself. Namely, we will start

with the inversion expression for the Laplace transform and substitute for t = nT

using the ideal sampler. The inverse Laplace transform is given by Equation 24.373

which is repeated here, in Equation 24.587, for convenience,

h(t) =
1

2πi

[ˆ σc+i∞

σc−i∞

H(s)estds

]
(24.587)
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where σc denotes the abscissa of convergence (see Section 24.8.1). The integral in

Equation 24.587 is evaluated along the abscissa of convergence from −i∞ to i∞ (see

Figure 24.16).

Note the folding phenomenon which was described in Section 3.6.1 when we

deal with an ideal sampler. The effects of the extra harmonic reflections due to fold-

ing were shown in Figure 3.24. The integration in Equation 24.587, when applied to

the output of an ideal sampler may be written as a sum of the integrals for each of

the harmonic components of the integration, namely,

h(nt) =
1

2πi

∞

∑
k=−∞

[ˆ σc+i 2k+1
2 ωs

σc+i 2k−1
2 ωs

H(s)enT sds

]
(24.588)

Now, we can do a change of variables to isolate each section of the integration using

s ≡ ŝ+ ikωs (24.589)

Therefore, using Equation 24.589 in 24.588, and moving the summation inside the

integral, we have,

h(nt) =
1

2πi

[ˆ σc+iωs
2

σc−iωs
2

∞

∑
k=−∞

H(ŝ+ ikωs)e
nT ŝdŝ

]
(24.590)

Using the results for the Fourier transform of the output of an ideal sampler,

Equation 3.49, and using the fact that a Fourier transform is only a special case of

the Laplace transform with s = iω , we have the following expression for the Laplace

transform of an ideal sampler,

H∗(s) =
1

T

∞

∑
n=−∞

H(s+ inωs) (24.591)

Using Equation 24.591 in Equation 24.590, we have,

h(nt) =
T

2πi

[ˆ σc+iωs
2

σc−iωs
2

H∗(ŝ)enT ŝdŝ

]
(24.592)

Plug in from Equation 24.521 into Equation 24.592 and change H∗(ŝ) with H(z)
and use the fact that

dŝ =
1

T
d(ln(z))

= z−1 dz

T
(24.593)

Then we have,
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h(nT ) =
1

2πi

‰
Γc

H(z)zn−1dz (24.594)

which is the inversion formula for the z-transform. Note that the abscissa of con-

vergence, s = σc translates to ρ = eσcT where ρ = |z| is the radius of z in a polar

representation. This means that the convergence space of the Laplace domain maps

into |z| < eσcT . This circle is the Γc in Equation 24.594. Therefore, all the singulari-

ties (poles) of H(z)zn−1 should lie within this contour. The Cauchy residue theorem

(Theorem 24.15) may be used for computing the inverse z-transform. In most cases,

though, the functions of interest are rational, in which case the method of partial

fractions may be utilized.

For a more complete coverage of the z-transform, see [27].

24.15 Cepstrum

In studying echoes, Bogert, et al. [4] considered analyzing the log of the power

spectral density of the echo-contaminated signal to estimate the echo delay. Equa-

tion 24.595 represents a signal with an additive echo of itself after a delay of τ
seconds. The reflection factor is denoted by a.

x(t) = h(t)+a h(t − τ) (24.595)

If we compute the power spectral density of the new signal, x(t) which contains

the original signal, h(t) and a reflected echo with a reflection factor, a, arriving τ
seconds later, we will have,

|X(ω)|2 = |H(ω)|2 +a2 |H(ω)|2 +2acos(ωτ) |H(ω)|2
= |H(ω)|2 [1+a2 +2acos(ωτ)

]
(24.596)

Let us take the log of both sides of Equation 24.596,

log(|X(ω)|2) = log(|H(ω)|2)+ log
(
1+a2 +2acos(ωτ)

)
= log(|H(ω)|2)+ log

([
1+a2

][
1+

2acos(ωτ)

1+a2

])
= log(|H(ω)|2)+ log(1+a2)+

log

(
1+

2a

1+a2
cos(ωτ)

)
(24.597)

The last term in Equation 24.597 may be expanded using an infinite power series,

except at the points, a = ±1 and cos(ωτ) = ±1.[9, 22]

log(1+α cos(ωτ)) =
∞

∑
j=1

(−1) j+1

j
(α cos(ωτ)) j (24.598)
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where,

α
Δ
=

2a

1+a2
(24.599)

Equation 24.598 suggests a spectral modulation in the log of the power spectral den-

sity of the signal in the form of a cosinusoidal ripple. As we can see, the amplitude

and frequency of this ripple are related to the reflection factor, a, and the echo delay,

τ , respectively.

To analyze this spectral modulation, [4] computed the power spectral density of

the log of power spectral density of the signal. This computation is related to the

time domain and has units of time, however, it also possesses all the aspects of a

spectral analysis. Therefore, in their paper [4], Bogert, et al. decided to utilize some

play on words to derive new terminology which would be analogous to spectral

analysis, but would apply to the time domain instead of the frequency domain. For

instance, the new domain was called the “cepstral” domain, by flipping the first four

letters of the word, “spectral.” Table 24.1 shows these analogs.

Spectral Domain Cepstral Domain

Frequency Quefrency
Spectrum Cepstrum
Phase Saphe
Amplitude Gamnitude
Filter Lifter
Harmonic Rahmonic
Period Repiod
Lowpass Shortpass
Hipass Longpass

Table 24.1: Terminology analogs of the spectral domain, used in the cepstral domain

[9] defines the general expression for the power Cepstrum in terms of the z-

transform of the signal H(z) as follows,

h̃pc
Δ
=
[
Z −1{log

(
|H(z)|2

)
}
]2

=

[
1

2πi

‰
Γc

log
(
|H(z)|2

)
zn−1dz

]2

(24.600)

[9] calls h̃pc the power Cepstrum to differentiate it from two other Cepstrum defi-

nitions, namely, the complex Cepstrum and the phase Cepstrum. The original defi-

nition of Cepstrum presented in [4] is a special case of this entity, evaluated on the
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unit circle, to coincide with its Fourier transform version of the definition.9

The definition given by Equation 24.600, for h̃pc, uses the square of the inverse

z-transform. The square was used by [9] in order to be consistent with the original

definition of Cepstrum by [4]. There are many different variations of the Cepstrum

in the literature. most of them analyze the log of the power spectral density, but they

differ in the final definition related to the spectral analysis of the log of the PSD.

Equation 24.600 squares the inverse z-transform. At this point let us limit ourselves

to the values on the unit circle in the z-plane, leading to a Fourier transform version

of the power Cepstrum.

In the continuous-time, the power Cepstrum may be defined in terms of the in-

verse of the Fourier transform of the log of the PSD as follows,

h̃pc =

[
1

2π

ˆ π

−π
log

(
|H(ω)|2

)
eiωt

]2

(24.601)

Example 24.9 (Cepstrum of an Echo).

Consider the periodic signal of Equation 24.602 which is a combination of 4 sinu-

soidal components,

h(t) = 0.2(sin(ωt)+ sin(2ωt)+ sin(3ωt)+ sin(4ωt)) (24.602)

where ω = 2π f and f = 80 Hz.

Furthermore, consider a simple echo of this signal which arrives at a delay of

τ = 0.3s with a reflection factor of a = 0.4 governed by Equation 24.595. The new

signal will include the original signal plus the echo. Equation 24.603 describes this

new signal.

x(t) = h(t)+0.4h(t −0.3) (24.603)

Figure 24.22 shows the waveform and spectrogram representations of x(t) of

Equation 24.603. Figure 24.23 is a zoomed portion of the signal around the point

in time when the echo arrives (t = 0.3s). In figure 24.24, we see the 4 peaks as-

sociated with the 4 different frequencies in the basic periodic signal. Finally, Fig-

ure 24.25 shows a plot of the power Cepstrum of the echo-contaminated signal of

Equation 24.603. Note the peak at the arrival of the echo, t = 0.3s. The 1977 pa-

per by Childers, et al. and its correction [9, 10] present a thorough treatment of the

power Cepstrum, the complex Cepstrum and the phase Cepstrum. [35] also presents

a good historical account of the Cepstrum for further reference.

9 [4] simply used Cepstrum since it only defined the power Cepstrum. The complex Cepstrum was
defined later by Oppenheim [36] in the process of developing the subject of homomorphic system

theory.
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The problem of echo arrival-time detection is similar to the problem of pitch

detection in speech, since speech may be viewed as the convolution of the impulse

response of the vocal tract with the set of glottal pulses which manifest themselves in

a quasi-periodic manner.[35] Noll [33, 34] applied a short-time version of the power

Cepstrum to the speech signal to deconvolve the speech signal and to determine the

pitch which is the basis for the cepstral analysis of speech signals used in Chapter 5.

[35] demonstrates the pitch detection problem with an example. Consider a signal,

h(t) of this type which is formed from the convolution of two other signals, h1(t)
and h2(t), see Equation 24.604.

h(t) = h1(t)∗h2(t) (24.604)
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The Fourier transform of h(t), H(ω) may be written as the product of the Fourier

transforms of the convolved signals, namely,

H(ω) = H1(ω)H2(ω) (24.605)

Since the Cepstrum of h(t) is computed from the log(H(ω)), if we use ĥ(t) to

denote the Cepstrum of h(t), then,

ĥ(t) = ĥ1(t)+ ĥ2(t) (24.606)

Therefore, convolution in the time domain is represented by the summation in the

cepstral domain.

Liftering (filtering in the cepstral domain) has been used by [4] to enhance the

determination of the echo arrival. Using the complex Cepstrum, Oppenheim [36]

introduced the concept of homomorphic deconvolution to separate different compo-

nents of a signal which is made up of the convolution of several underlying signals.

Examples of such signals is the speech signal viewed as a convolution of the vocal

tract impulse response and the glottal pulses as described earlier. See Section 5.3,

specifically Figure 5.10 for more information on the convolution of the speech sig-

nal.

Equation 24.607 presents the definition of the complex Cepstrum.

ĥ
Δ
= Z −1{log(H(z))}
=

1

2πi

‰
Γc

log(H(z))zn−1dz (24.607)

Note that the complex Cepstrum does not use the power spectrum of the log PSD.

Instead, it is the inverse z-transform of the complex logarithm (hence complex Cep-

strum) of the z-transform of the signal. This preserves the phase information which

allows us to reconstruct the signal from its complex Cepstrum ([9] describes the

procedure for this reconstruction in detail). The same is not true for the power Cep-

strum, since the power Cepstrum loses the phase information of the signal. Upon

modification of the complex Cepstrum, by removing certain additive components in

the cepstral domain, the resulting complex Cepstrum may be used to reconstruct the

version of the signal which has deconvolved the unwanted component of the time-

domain signal. This process is called homomorphic deconvolution. This deconvolu-

tion may be done in the form of liftering the Cepstrum using similar concepts to the

filtering of the spectral domain. Therefore, one may use a long-pass, short-pass or

notch lifter in the cepstral domain. See Table 24.1 for the analogs of these filters in

the spectral domain.

Since the complex logarithm is a periodic function with a period of 2πi, the imag-

inary part of log of the z-transform of the signal, logH(z) has the period 2π
T

where T

is the sampling period. Furthermore, by definition, the complex Cepstrum of a real
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function is itself a real function which requires that the imaginary part of the com-

plex Cepstrum be an odd periodic function of the ω . See phase unwrapping in [9].

[9] shows that the power Cepstrum at time, nT is related to the complex Cepstrum

at times nT and −nT as follows,

h̃pc(nT ) =
(
ĥ(nT )+ ĥ(−nT )

)2
(24.608)

In speaker recognition we are usually not concerned with the reconstruction of

the signal, so we use the power Cepstrum instead of the complex Cepstrum. In most

cases, the power Cepstrum is defined without squaring the inverse transform. Using

this definition, the power Cepstrum would become,

ĥpc
Δ
= Z −1{log

(
|H(z)|2

)
}

=
1

2πi

‰
Γc

log
(
|H(z)|2

)
zn−1dz (24.609)

or in the Fourier domain,

ĥpc =
1

2π

ˆ π

−π
log

(
|H(ω)|2

)
eiωt (24.610)

Another possible definition of Cepstrum is that of the phase Cepstrum which is

analogous to the power Cepstrum with the difference that in the phase Cepstrum,

the inverse z-transform of the phase of the complex logarithm is computed instead

of the inverse z-transform of its magnitude. Ripples are generated in the phase of the

complex logarithm much in the same way as the appear in its magnitude. See [9] for

more on this subject.
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Problems

For solutions to the following problems, see the Solutions section at the end of the

book.

Problem 24.1 (Modulus of the Product).

Prove Theorem 24.1, namely, show that,

|s1s2| = |s1| |s2| (24.611)

Problem 24.2 (Cauchy-Riemann Conditions not Sufficient).

Consider,

H(s) = U(σ ,ω)+ iV (σ ,ω) (24.612)

where

U(σ ,ω) =
σ3 −ω3

σ2 +ω2

V (σ ,ω) =
σ3 +ω3

σ2 +ω2

and show that meeting the Cauchy-Riemann Conditions is not sufficient for a func-

tion, H(s), to be analytic. This problem relates to Theorem 24.5.

Problem 24.3 (Harmonic Conjugate).

Given U(σ ,ω) = eσ cos(ω), find the harmonic conjugate V (σ ,ω). This problem is

related to Definition 24.37

Problem 24.4 (Perid of Exponential).

What is the period of the exponential function,

H(s) = es (24.613)

Problem 24.5 (Zeros of Complex Functions).

Show that the only zeros of complex functions sin(s) and cos(s) are the zeros of the

real sine and cosine functions.

Problem 24.6 (z-Transform).

Find the z-transform of,

h(t) = cos(ωt) (24.614)
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Chapter 25

Nonlinear Optimization

Throughout this chapter, we only treat the minimization problem for convex func-

tions (see Definition 24.23). Furthermore, in most cases, we assume that the objec-

tive function being minimized is a quadratic function. These minimization assump-

tions may easily cover the cases where a function needs to be maximized. In the case

of concave functions (Definition 24.25), where we are interested in the maxima, the

function may be multiplied by −1 which inverts it into a convex function such that

the location of the maximum now points to the minimum of the new function. So,

the maximization function is changed to a minimization function.

The treatment of a quadratic function is undertaken since it is a much simpler

optimization problem. Since we are concerned with a quadratic or higher order

function, the optimization is known as nonlinear optimization. In general, if the

objective function or any of the constraints is nonlinear, then the problem is known

as a nonlinear optimization problem. On the other hand, to have a linear optimiza-

tion problem, the objective function as well as all the constraints would have to be

linear with respect to the dependent variable.

Most smooth functions (see Definition 24.20) may be approximated by quadratic

functions in a small interval. Therefore, a general function, depending on whether it

is locally concave or convex, may be approximated by a quadratic function in small

intervals around the optimal points and then the total solution may be reached based

on the solution to the smaller quadratic convex minimization problems.

A very important problem is one of finding the global optimum versus the local

optima and saddle points. A general multivariate function, E(x), may have several

minima, maxima and saddle points (see Figure 25.1). These, so called, stationary

points, are points at which the gradient of the function approaches zero,

∇xE(x) = 0 (25.1)
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Fig. 25.1: Stationary Points of a Function of Two Variables

Generally, at the location of a maximum, the matrix of its second partial deriva-

tives (Hessian), G, is negative definite (has all-negative Eigenvalues – see Sec-

tion 12.1). It is positive definite (has all positive Eigenvalues) for a minimum and

it is indefinite (has zero or both positive and negative eigenvalues) for a saddle point.

The following definitions identify the states (values of the dependent variable)

for which we will be searching, in this chapter.

Definition 25.1 (Global Minimizer). A state x∗ is the global minimizer of the ob-

jective function E(x) if,

E(x∗) ≤ E(x) ∀ x (25.2)

Definition 25.2 (Strict Local Minimizer (Strong Local Minimizer). A state x∗
i is

a strict local minimizer of E(x) if,

E(x∗
i ) ≤ E(x) ∀ x ∈ Xi, i = {1, · · · ,N} (25.3)

where Xi ⊂ DE , i = {1, · · · ,N}, DE is the Domain of E and N is the number of strict

local minimizers in that domain.
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25.1 Gradient-Based Optimization

This section describes a set of gradient based minimization techniques which re-

quire the evaluation of the objective function, its gradient and sometimes the Hes-

sian for certain states. Another group of minimization techniques are described in

Section 25.2 which require evaluations of the objective function only. In the latter

methods, no direct gradient evaluations are needed.

Let us define the following short-hand notation,

gk
Δ
= ∇xE

∣∣∣∣
xk

(25.4)

Gk
Δ
= ∇2

xE

∣∣∣∣
xk

(25.5)

As it will be made more apparent later, this notation will be useful in writing out the

equations in the following section in a more compact form.

25.1.1 The Steepest Descent Technique

The steepest descent technique is a gradient-minimization method which uses a first

order approximation to the objective function (E) to generate directions of descent

with the knowledge of the gradient at each iteration k. The steepest descent method

is very reliable since it always provides a descent direction. This technique is ideal

for points which are far away from the local minima. However, close to the local

minima, the steepest descent technique will generally require lots of iterations to

converge due to its nature of approximating the objective function with a linear

function.

Let x∗ denote the state vector which results in a minimum objective function

E. Further, assume that the current state is xk and define Δxk to be the difference

between the states at k and k +1 iterations, namely,

Δxk = xk+1 −xk (25.6)

Decompose the step Δxk into a direction sk and a magnitude ηk,

Δxk = ηksk (25.7)

Since the gradient of E points in the ascent direction, the steepest descent is

given by the direction opposite to the gradient direction at every step k. Therefore

for steepest descent minimization,
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Fig. 25.2: Contour plot of the function of Figure 25.1

sk = − gk

‖gk‖ (25.8)

Figure 25.2 shows the contour plot of the function displayed earlier in Figure 25.1.

Note the direction of the gradient relative to the contour lines. The gradient points

to the increasing value of the function (the local maximum). Therefore, the negative

of the gradient points to the local minimum in the vicinity of the location of the

gradient evaluation.

However, a line search should be used to provide an optimum step size η∗
k to

minimize E in the sk direction. This will produce the following recursive steepest

descent technique for minimization of E,

xk+1 = xk −η∗
k

gk

‖gk‖ (25.9)

The steepest descent method only provides good minimizing directions if the

condition number of the Hessian of the objective function is close to 1. As this con-

dition number gets larger, the steepest descent becomes slower and more advanced

minimization techniques (preferably with quadratic convergence) will be preferred.

To further enhance the speed of learning of the network, let us consider the follow-

ing more advanced minimization techniques.
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25.1.2 Newton’s Minimization Technique

Write the Taylor series expansion (Definition 24.42) of E at x∗ and about xk as-

suming that every update of the state vector should drive the state vector to optimal

value x∗, namely, x∗ = xk +Δxk,

E(x∗) = E(xk)+∇T
x E

∣∣∣∣
xk

Δxk +
1

2
ΔxT

k ∇2
xE

∣∣∣∣
xk

Δxk +O(Δx3
k) (25.10)

where O(Δx3
k) is the Bachmann-Landau asymptotic notation1, showing that the rest

of terms are of O(Δx3
k).

Using the definitions of Equations 25.4 and 25.5, Equation 25.10 may be rewrit-

ten as follows,

E(x∗) = E(xk)+gT
k Δxk +

1

2
ΔxT

k GkΔxk +O(Δx3
k) (25.11)

If we disregard the higher than second order terms in 25.11 and thus approxi-

mate E with a quadratic function in the vicinity of xk and x∗, then the quadratic

approximation of Equation 25.11 may be written as follows,

E(x∗) ≈ E(xk)+gT
k Δxk +

1

2
ΔxT

k GkΔxk (25.12)

Note that for a minimum of E(x∗), a necessary condition is that ∇xE be zero.

However, keeping the current state, xk, constant and then taking the gradient of both

sides of Equation 25.12, since x∗ = xk +Δxk,

∇xE

∣∣∣∣
x∗

≈ gk +GkΔxk (25.13)

Setting the gradient of E at x∗ equal to zero, gives,

gk +GkΔxk ≈ 0 (25.14)

or,

Δxk ≈ −G−1
k gk (25.15)

Since E is generally not a quadratic function in xk, the following recursive update

may be used for the computing the state vector,

1 The Bachmann-Landau notation for O was first introduced by Bachmann in 1894 [2], and later in
1909, it was adopted by Landau [42] and included in a more elaborate asymptotic notation which
included o(.), etc.
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xk+1 = xk +η∗
k sk (25.16)

where η∗
k is the optimum step size in the direction, sk, and sk is given by the follow-

ing,

sk = − G−1
k gk

‖G−1
k gk‖

(25.17)

A line search method could be used to determine η∗
k along direction sk.

This method provides quadratic convergence and is very efficient in the vicin-

ity of the minima. However, there are three problems that are faced when trying

to use this algorithm. The first problem is that in order for E to always descend in

value, the matrix G−1 should be positive definite. Since E is generally not quadratic,

G−1 could become indefinite or even negative definite. There are many techniques

developed to keep a positive definite approximation of the inverse Hessian matrix,

G−1, such that the quadratic information in the Hessian matrix will be used. Us-

ing the quadratic information generally provides a better direction of descent than

the steepest descent direction, especially in the vicinity of the minima. Among the

methods for keeping a positive definite approximation of the inverse Hessian ma-

trix are Greenstadt’s method [28], Marquardt [46], Levenberg [44], and Goldfeld,

Quandt and Tratter’s alternative [27].

A second problem is that for systems with a small number of variables it might

be feasible to find the Hessian matrix, however, for systems with large number of

variables and complicated objective functions, it will become a very difficult task.

In addition, it will be very hard to write general equations for the evaluation of the

elements of the Hessian matrix as done for the elements of the gradient vector g.

Let us, for the sake of argument, say that a Hessian matrix is calculated at ev-

ery iteration k. Then a still more serious problem occurs. For huge systems it is not

practical to take the inverse of the Hessian matrix. Taking this inverse in most cases

will require more time than taking more steps using a simpler method such as the

steepest descent method.

The problem of retainment of positive definiteness of the inverse Hessian can be

solved by the methods noted above. However, problems two and three make using

Newton’s method quite impractical. These limitations are reasons for looking at the

following alternatives which in turn will solve the aforementioned problems and

still keep a super-linear rate of convergence.
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25.1.3 Quasi-Newton or Large Step Gradient Techniques

From Equation 25.16, we can write the following generalized recursive algorithm

to update the state vector such that a minimum E will be approached,

xk+1 = xk +η∗
k Hk∇xE

∣∣∣∣
xk

(25.18)

where η∗
k is a weighting factor, and Hk is a square symmetric matrix. Depending

on the choice of Hk, different optimization algorithms will be resulted. Therefore,

Hk, multiplied by the gradient of E will provide a direction of descent in the objec-

tive function E and η∗
k is the optimal step in that descent direction as provided by

some line search method. If Hk in Equation 25.18 is made equivalent to the identity

matrix, I, then the method reduces to the steepest descent technique which provides

linear convergence. Making Hk equivalent to the inverse of the Hessian matrix, G−1,

of the quadratic approximation of E, as previously defined, the method will reduce

to the Newton minimization technique which provides quadratic convergence.

Instead of using the real inverse-Hessian, Quasi-Newton methods use an approx-

imation to the inverse-Hessian provided by an iterative updating scheme. Quasi-

Newton methods usually start with an approximation to the inverse-Hessian matrix

such as the identity matrix. Different updates for Hk are then used, leading to differ-

ent types of Quasi-Newton methods. Updates to matrix Hk are done recursively in

different directions of the inverse-Hessian space, based on the information obtained

from the function and gradient behavior in that direction. Depending on whether

these updates are done in one or two directions at a time, rank one or rank two

methods are generated. Those Quasi-Newton methods which retain a positive def-

inite Hk are called variable metric methods. Not all Quasi-Newton methods use

variable metric updates. Newton-like methods in general try to keep Newton’s con-

dition 25.19 satisfied.

HΔgk = Δxk (25.19)

where,

H
Δ
= G−1 (25.20)

Condition 25.19 is automatically satisfied for a quadratic function, if H is the

exact inverse Hessian matrix. However, since in Quasi-Newton methods, the inverse

Hessian is supposed to be approximated, instead of HkΔgk = Δxk, these methods

try to keep the following relation satisfied at each step k,

Hk+1Δgk = Δxk (25.21)

This relationship is referred to as the Quasi-Newton condition and it means that the

inverse Hessian matrix should be updated such that relation 25.21 is satisfied.
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In 1959, Davidon [12] introduced the idea of Quasi-Newton methods. In 1965,

Barnes [3] and Broyden [9] independently introduced a method for solving a set of

simultaneous linear equations of the same form as Equation 25.19. Barnes’ equa-

tion is a more general one and includes Broyden’s method as a special case. Equa-

tion 25.22 gives this update,

ΔHk =
(Δxk −HkΔgk)z

T
k

zT
k Δgk

(25.22)

where zk is a direction in which the update to Hk is done.

25.1.3.1 Rank One Updates of the Inverse Hessian

A rank-one update to the inverse Hessian matrix Hk would mean the following,

Hk+1 = Hk +αuuT (25.23)

where u is a direction of update. Setting zk in Equation 25.22 equal to the error of

Equation 25.19, when H is approximated by Hk, will produce Broyden’s rank-one

update, Equation 25.24.

ΔHk =
(Δxk −HkΔgk)(Δxk −HkΔgk)

T

(Δxk −HkΔgk)TΔgk

(25.24)

This update, as applied to Quasi-Newton problems, was introduced by Broy-

den [10], Davidon [13] and others [19, 49] independently. Let N denote the dimen-

sion of the state vector, x. This update has the property that if Δx1,Δx2, · · · ,ΔxN are

linearly independent, then, at k = N + 1, Hk = G−1 for quadratic for any quadratic

function, E(x).

Another important feature of Broyden’s update is that η∗
k of Equation 25.18

does not necessarily have to minimize E in the sk direction. As long as η∗
k is such

that Hk+1 will not become singular and the denominator of Equation 25.24 is not

made zero, any η∗
k could be used in conjunction with the Broyden update. How-

ever, some unattractive features also exist for this update. If the objective function

is non-quadratic, as in the case of general neural networks, the following less than

satisfactory aspects of Broyden update exist,

1. Hk may not retain its positive definiteness in which case it is necessary to use

one of the methods in Section 25.1.2, such as Greenstadt’s method, to force this

matrix to be positive definite.

2. The correction, ΔHk of Equation 25.24 may sometimes become unbounded

(sometimes even for quadratic functions, due to round-off errors).

3. if Δxk, given by Equation 25.18, is by chance in the same direction as Δxk+1,

the, ΔHk+1 becomes singular or undetermined. Therefore, if
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HkΔgk = Δxk (25.25)

or

(HkΔgk −Δxk)
TΔgk = 0 (25.26)

then, Hk+1 should be set to Hk, namely, ΔHk = 0.

25.1.3.2 Pearson’s Updates

Pearson [53] introduced other directions of update for the projection of the error of

Equation 25.19. In his number 2 method, he proposed, zk = Δxk in Equation 25.22,

which in turn generated the following update for Hk,

ΔHk =
(Δxk −HkΔgk)ΔxT

k

ΔxT
k Δgk

(25.27)

His number 3 method used the complementary possibility of, zk = HkΔgk. This

gives the following update,

ΔHk =
(Δxk −HkΔgk)(HkΔgk)

T

(HkΔgk)TΔgk

(25.28)

Pearson’s methods do not guarantee positive definiteness of the inverse Hessian

Matrix and usually lead to ill-conditioned matrices. Therefore, it is a good idea to

reset the inverse Hessian approximation to Identity, every N iterations, i.e., HNt =
I ∀ t = {0,1,2, · · ·}.

25.1.3.3 Rank Two Updates

The rank-one update does not leave much of a freedom for choosing the directions of

update. This motivated the formulation of rank-two updates such that the objective

is still to satisfy Relation 25.21 at every step k. The general rank two updates are of

the following form,

Hk+1 = Hk +αuuT +βvvT (25.29)

where, the directions u and v and scaling factors α and β should be chosen. It would

be a good idea to update these directions relative to Δxk and HkΔgk. This would give

the following general update,

ΔHk = α
ΔxkyT

yTΔgk

+β
HkΔgkzT

ztΔgk

(25.30)
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A natural choice to retain symmetry is to pick α = 1, β = −1, y = Δxk, and z =
HkΔgk. This will generate the Davidon-Fletcher-Powell (DFP) [23] update given

by Equation 25.31.

ΔHk =
ΔxkΔxT

k

ΔxT
k Δg

− HkΔgkΔgT
k HT

k

ΔgT
k HT

k Δgk

(25.31)

This algorithm works properly, in general, if gk is calculated with minimal error

and Hk does not become ill-conditioned. Define,

Ai =
ΔxT

i Δxi

ΔxT
i Δgi

(25.32)

and,

Bi =
HiΔgiΔgT

i HT
i

ΔgT
i HT

i Δgi

(25.33)

Then,

k−1

∑
i=0

Ai → H as k → N (25.34)

and

k−1

∑
i=0

Bi → H0 as k → N (25.35)

which results in

Hk → H as k → N (25.36)

for a quadratic function.

Proof.

Using Equation 25.19, substitute, for Δgi in Equation 25.32,

Ai =
ΔxT

i Δxi

ΔxT
i GΔxi

(25.37)

Compute the summation of Ai over N consecutive steps,



25.1 Gradient-Based Optimization 783

N−1

∑
i=0

Ai =
N−1

∑
i=0

ΔxiΔxT
i

ΔxT
i GΔxi

(25.38)

=
η∗

i sis
T
i η

∗
i

η∗
i sT

i Gsiη∗
i

(25.39)

=
sis

T
i

sT
i Gsi

(25.40)

Therefore, for quadratic functions when si are conjugate about G (see Defini-

tion 23.12),

N−1

∑
i=0

Ai = H (25.41)

The DFP method provides si which are conjugate about G and thus Equation 25.41

holds. Similarly, ∑
N−1
i=0 Bi can be shown to approach H0 and to keep Hk positive

definite as k → N.

Q.E.D.

��
An important property of this update is that if ΔxT

k Δgk > 0 for all k, then the ap-

proximate inverse Hessian matrix will retain its positive definiteness. This condition

can be imposed by using a line search method which satisfies the following relation,

gT
k+1Δxk ≥ σgT

k Δxk (25.42)

The condition of Equation 25.42 stems from two conditions by Wolfe [70] and Pow-

ell [55] which are called the Wolfe-Powell conditions by Fletcher [23].

Eventually, condition 25.42 means that the curvature estimate should be positive

where the updating is done. In Equation 25.42,

σ ∈ [τ,1] , (25.43)

where,

τ ∈
[

0,
1

2

]
, (25.44)

These are parameters of the line search termination. [23]

In 1970, Broyden [11], Fletcher [22], Goldfarb [26], and Shanno [61] suggested

the BFGS update which is dual with the DFP update. This means that if one applies

the DFP method to updating the Hessian matrix from the following,

Gk+1Δxk = Δgk (25.45)
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rather than Equation 25.21, and then apply the Sherman-Morrison inversion formula

(see Section 23.4) to obtain an expression for ΔHk, them the BFGS formula given

by Equation 25.46 will be obtained.

ΔHk =

(
1+

ΔgT
k HkΔgk

ΔxT
k Δgk

)
ΔxT

k Δxk

ΔxkΔgk

− ΔxkΔgT
k Hk +HkΔgkΔxT

k

ΔxT
k Δgk

(25.46)

The BFGS update has all the qualities of the DFP method plus the fact that it

has been noted to work exceptionally well with inexact line searches and a global

convergence proof exists [23] for the BFGS update. No such proof has yet been pre-

sented for the convergence of DFP.

25.1.3.4 Updates Through Variational Means

Greenstadt [29] developed a general updating scheme using variational means by

minimizing the Euclidean norm of the update to the inverse Hessian. This generated

the following general updating formula,

ΔHk =
1

ν

[
ΔxkΔgT

k M+MΔgkΔxT
k −

HkΔgkΔgT
k Hk

1

ν

(
ΔgT

k Δxk −ν
)

MΔgkΔgT
k M

] (25.47)

where,

ν
Δ
= ΔgT

k MΔgk (25.48)

In Equation 25.47, M is a positive definite matrix. Greenstadt, in his paper, pro-

posed two possible values for M,

M = Hk (25.49)

M = I (25.50)

The updates by setting M of Equation 25.47 to those prescribed by Equa-

tions 25.49 and 25.50 do not retain positive a positive definite Hk in general. Gold-

farb [26] proposed the use of M = Hk+1 which does provide a positive definite

approximation to the inverse Hessian matrix. This method is identical to the BFGS

update discussed in the previous section.

25.1.3.5 Self-Scaling Quasi-Newton Methods

Suppose that the objective function E is scaled by a number c and results in a new

objective function,
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E ′ = cE (25.51)

This objective function has the same minimizer as E and its gradient and inverse

Hessian are given in terms of those of E by,

g′ = cg (25.52)

H′ =
1

c
H (25.53)

The Newton step for finding the minimizer of a quadratic function, x∗, is x∗ =
xk −Hgk. Similarly, the Newton update for E ′ is,

x∗ = xk −H′ −g′
k

= xk −
(

1

c

)
c H gk

= xk −Hgk (25.54)

Therefore, the Newton step is invariant under scaling while Quasi-Newton methods

are generally not invariant under such scaling and will give different results.

Take Broyden’s single parameter class of updates described by Equations 25.55

and 25.56, which includes the BFGS and DFP updates as special cases,

Hk+1 = Hk −
HkΔgkΔgT

k HT
k

ΔgT
k HkΔgk

+θkvkvT
k +

ΔxkΔxT
k

ΔxT
k Δgk

(25.55)

where,

vk =
(
ΔgT

k HkΔgk

) 1
2

(
Δxk

ΔxT
k Δgk

− HkΔgk

ΔgT
k HkΔgk

)
(25.56)

Setting θk to 1 in Equation 25.55 produces the BFGS update and setting it to zero

gives the DFP update.

This class of updates is generally not invariant under scaling. This motivated

Oren and Spedicato [51, 52] to modify this Broyden’s single parameter family

(Equations 25.55 and 25.56) by introducing a new parameter muk such that by the

appropriate choice of μk and θk, they could have an update which is invariant under

scaling of Equation 25.51. This is the general update given by Equation 25.57.

Hk+1 = μk

(
Hk −

HkΔgkΔgT
k HT

k

ΔgT
k HkΔgk

+θkvkvT
k

)
+
ΔxkΔxT

k

ΔxT
k Δgk

(25.57)

where vk is given by Equation 25.56.

In addition, Shanno and Phua [63] proposed an initial scaling method which

makes Broyden’s single parameter class of update self-scaling. The two approaches
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to making updates invariant under scaling are discussed in more detail in the follow-

ing two sections.

25.1.3.6 Self-Scaling variable Metric (SSVM) Algorithms

Equation 25.57, when used with exact line searches, will become a member of

Huang’s family [37] where in his notation,

ρk =
1

k

∏
i=0

μi

(25.58)

Equation 25.57, leaves a lot of freedom in choosing the parameters, μk and θk,

such that invariance under scaling is achieved. Oren suggested, in [51], that μk and

θk be picked in the following manner,

μk = φk

gT
k Δxk

gT
k HkΔgk

+(1−φk)
ΔxT

k Δgk

ΔgT
k HkΔgk

(25.59)

where φk,θk ∈ [0,1]. This choice will provide a set of μk such that,

ΔxT
k Δgk

ΔgT
k HkΔgk

≤ μk ≤ ΔxT
k H−1

k Δxk

ΔxT
k Δgk

(25.60)

In another approach, Oren and Spedicato [52] tried picking μk and θk based on

heuristics such that μk is as close as possible to unity and θk is such that it would

offset an estimated estimated bias in the |HkG|. In a third approach, Oren and Spedi-

cato [52] picked those μk and θk that minimize the condition number of
(
H−1

k Hk+1

)
.

This choice will put a bound on the condition number of the inverse Hessian ap-

proximate and therefore will provide numerical stability. Minimizing this condition

number, the following relationship is held between μk and θk,

θk =
b(c−bμk)

μk(ac−b2)
(25.61)

where,

a
Δ
= ΔgT

k HkΔgk (25.62)

b
Δ
= ΔxT

k Δgk (25.63)

and,

c
Δ
= ΔxT

k H−1
k Δxk

= η∗2
gT

k Hkgk (25.64)
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Then, using Fletcher’s concept of duality [23], Oren and Spedicato [52] found

those μk and θk which would make their update self-dual. This set is given by,

θ =
1

1+
√

ac
b2

(25.65)

and,

μk =

√
c

a
(25.66)

Reference [52] gives four sets of switching rules for picking μk and θk. Algo-

rithms based on Oren and Spedicato’s updates are called Self Scaling Variable Met-

ric (SSVM) algorithms. SSVM methods maintain positive definiteness of the approxi-

mation to the inverse Hessian matrix provided that ΔxT
k Δgk > 0 ∀ k. Condition 25.42

is again used in the line searches to impose this inequality. For a general nonlinear

objective function, the SSVM algorithms provide a set of search directions which

are invariant under scaling of the objective function. Also, for a quadratic function,

these algorithms have the property that they monotonically reduce the condition

number of the inverse Hessian approximate.

A draw-back of the SSVM algorithms is that they fail to converge to the inverse

Hessian matrix for a quadratic function.[63] This convergence is especially desirable

for methods employed for minimizing non-quadratic objective functions.[47]

The SSVM algorithms, in general, perform well with objective functions which

depend on lots of variables. This makes them ideal for usage in neural network learn-

ing. These algorithms perform exceptionally well (better than all other updates in

general) for homogeneous objective functions. A homogeneous objective function

E(x) is such that,

E(x) = τ−1(x−x∗)g(x)+E(x∗) (25.67)

where τ is the degree of homogeneity and x∗ is the minimizing state.[38] Differenti-

ating Equation 25.67 gives,

x∗ = x− (τ−1)H(x)g(x) (25.68)

Equation 25.68 suggests that the Newton step should be multiplied by (τ − 1) in

order to get to the minimum. This makes the switch-2 SSVM methods superior to

all other Quasi-Newton methods, when used on homogeneous functions.[51, 52, 63]

The lack of convergence of the approximate inverse Hessian to its true value in

SSVM updates motivated Shanno and Phua to investigate methods which would
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make the Broyden single parameter class self-scaling.[63]

25.1.3.7 Initial Scaling of the Inverse Hessian Approximate

In [65], Spedicato proposes the initialization such that H0 is the inverse of a diagonal

matrix with its diagonal being the diagonal of the true Hessian matrix at x0. This,

however, is not practical since it is very hard to evaluate the Hessian for the objective

function of a multi-layer neural network. Shanno and Phua [63] proposed an initial

scaling such that,

H0 = η∗
0 H′

0 (25.69)

where η∗
0 is the initial linear step given by the line search algorithm and H′

0 is

the initial guess for the inverse Hessian (usually the identity matrix, I). This makes

Broyden’s one parameter class of updates, given by Equations 25.55 and 25.56,

self-scaling and invariant under scaling of the objective function. Initial scaling of

Equation 25.69 will therefor give,

H0 = η∗
0 I (25.70)

as the new initial guess for the inverse Hessian, if no better estimate of H is available.

Another initial scaling, proposed by Shanno and Phua [63], uses Oren-Spedicato’s

SSVM algorithm and finds the μ0 provided by that algorithm which minimizes the

condition number of (H−1
k Hk+1). Then it scales the initial estimate of the inverse

Hessian by that value. For example, consider the BFGS update for which θ0 = 1; μ0

is given by Equation 25.61 to be,

μ0 =
b

a
(25.71)

Since μ should be equal to one for the BFGS method, the initial estimate of H is

scaled by μ0,

H0 =
b

a
H′

0 (25.72)

This initial scaling can be evaluated in the same manner for all the members of the

Broyden single parameter class of updates using 25.61 and the appropriate θ0 for

that update.

These initial scalings were shown by Shanno and Phua [63] to improve the per-

formance of the BFGS method over the SSVM methods of Oren and Spedicato in

all the cases tested but the special case of homogeneous objective functions.
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25.1.3.8 Quasi-Newton Methods with Inexact Line Searches

Quasi-Newton methods which work well with inexact line searches such as the

BFGS and SSVM methods have become very popular due to their reduction of the

computational burden associated with line searches. Hoshino [35] presented, with

his Quasi-Newton algorithm, a correction term which would maintain the orthogo-

nality of the search direction and gradient at the termination point of an inexact line

search.

Davidon also presented a new algorithm which has drawn a lot of attention in

the field of optimization [63, 14] . His algorithm uses no line searches, optimally

conditions the inverse Hessian approximate, and uses the square root of the inverse

Hessian approximate which improves the numerical stability of his algorithm. The

following two sections describe the theoretical details of these two approaches to

weaken or eliminate line searches.

Hoshino’s Method

Hoshino [35] presented a new variable metric update which generally works well

and has properties similar to those of the BFGS and the DFP methods. However, this

method in general has shown to give updates with condition numbers larger than the

BFGS and SSVM methods. Hoshino’s update is given by Equation 25.73.

Hk+1 =Hk +
1

ΔgT
k Δxk +ΔgT

k HkΔgk

([
1+

2ΔgT
k HkΔgk

ΔgT
k Δxk

]
ΔxkΔxT

k −

ΔxkΔgT
k Hk −HkΔgkΔxT

k −HkΔgkΔgT
k H

) (25.73)

An attractive feature of Hoshino’s Quasi-Newton minimization is his theoretical

approach to the use of his update with inexact line searches. Inexact line searches

are desired to reduce the number of function evaluations. These inexact line searches

will sometimes give gradients at their termination point which are not perpendicular

to the search direction. This will slow down the convergence of the minimization

scheme. To evaluate the Quasi-Newton direction of update at any step k+1, Hoshino

uses a modified gradient which is forced to be perpendicular to the search direction.

Consider the line search terminating at xk+1. Also, consider x′
k+1 to be the true

minimum in the direction of search. Furthermore, denote the step from xk to the

minimum x′
k+1 by Δx′

k and define the scalar, εk such that,

Δx′
k = εkΔxk (25.74)

Therefore, the gradient at the true minimum, g′
k+1 will be given by,

g′
k+1 = gk+1 +(gk+1 −gk)εk (25.75)

= gk+1 + εkΔgk (25.76)
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The true minimum would be at the point where the gradient is perpendicular to the

direction of search or,

ΔxT
k g′

k+1 = 0 (25.77)

Solving for the εk which satisfies this condition gives,

εk = −ΔxT
k gk+1

ΔxT
k Δgk

(25.78)

Then, the expression for the modified gradient is given using this scalar factor

by,

g′
k+1 = gk+1 − ΔxT

k gk+1

ΔxT
k Δgk

Δgk (25.79)

This new gradient gives the Quasi-Newton direction at step k +1 to be,

xk+1 = −Hk+1g′
k+1 (25.80)

Hoshino does not use this modified gradient for his update to the inverse Hessian

approximate. This gradient is only used to obtain the Quasi-Newton step. Refer-

ence [35] provides a stability analysis for this scheme.

Davidon’s Optimally Conditioned Quasi-Newton Method with No Line Search

In 1975, Davidon [14] made an important contribution to the improvement of

Quasi-Newton methods by introducing his optimally conditioned method which is

free of line searches. Schnabel [59] has devoted most of his PhD dissertation to

evaluating Davidon’s method. The method conducts updates to the inverse Hes-

sian approximate which are optimally conditioned in the same sense as the optimal

conditioning of Oren and Spedicato. This conditioning is done by minimizing the

condition number of (H−1
k Hk+1) which has been obtained by minimizing λ◦1

λ◦N
in the

Eigenvalue problem,

Hk+1u = λ◦Hku (25.81)

Previously, researchers had been trying to minimize the ratio of the condition num-

ber Hk+1 to the condition number of Hk. However, doing this would generate invari-

ance under orthogonal transformations only, while the optimal conditioning used by

Davidon and Oren and Spedicato is invariant under all invertible linear transforma-

tions.

Davidon’s update to the inverse Hessian approximate is given by Equation 25.84.

This general update includes some updates such as the DFP and BFGS updates as

special cases. In Equation 25.84, the value of θk is chosen such that the condition

number of (H−1
k Hk+1) is minimized. Davidon uses Δx0 as the initial value of w,
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namely,

w0 = Δx0 (25.82)

Following w’s are then obtained by Equation 25.83 for quadratic functions. For non-

quadratic functions the following is used,

wk = Δxk (25.83)

This update is part of Davidon’s algorithm which does not use a line search. How-

ever, if sufficient reduction is not experienced by the objective function, a simple

inexact line search is used to impose sufficient function reduction.

Hk+1 =Hk +
(Δxk −HkΔgk)w

T
k +wk(Δxk −HkΔgk)

T

wT
k Δx

−

(Δxk −HkΔgk)
TΔgkwkwT

k

(wT
k Δgk)2

θkϒϒϒ kϒϒϒ
T
k

(25.84)

where,

wk+1 = wk(Δxk −HkΔgk)
TΔgk − (Δxk −HkΔgk)w

T
k Δgk (25.85)

and

ϒϒϒ k =
Δxk −HkΔgk

(Δxk −HkΔgk)TΔgk

− wk

wT
k Δgk

(25.86)

This method has three important features. First, to improve the numerical stabil-

ity and accuracy of his algorithm, Davidon updates a Jacobian matrix which is the

square root of the inverse Hessian approximate.

Hk = JkJT
k (25.87)

By this factorization, the condition number of the Jacobian matrix Jk is of the

order of the square root of the condition number of the matrix Hk. This smaller

condition number improves the stability of the method in practical applications. An

update in the Jacobian matrix of the following form,

Jk+1 = (1+uvT )Jk (25.88)

translates to the following update in the inverse Hessian approximate,

Hk+1 = (1+uvT )Hk(1+vuT ) (25.89)

This factorization produces positive definite inverse Hessian approximates. Some

rank two updates in the Broyden family such as BFGS, DFP and optimally condi-

tioned updates correspond to rank one updates in the Jacobian matrix. This results
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in fewer computational operations and less round-off error.

A second feature of this algorithm is motivated by the fact that one could approx-

imate the gradient at the minimum of a quadratic function by a linear interpolation

similar to the approach of Hoshino discussed in the previous section.[6] Davidon

does not use the actual change in the gradient and the actual step size, he instead

uses projections of these changes. This allows him to avoid line searches. Shanno

and Phua have devoted a paper to the discussion of these projections.[62] Despite

the use of these projections, Davidon’s method still maintains a positive definite

approximation to the inverse Hessian matrix for quadratic and non-quadratic func-

tions. This ensures quadratic convergence for Davidon’s algorithm.

In the real implementation of his algorithm, Davidon uses an equivalent form of

Equation 25.84 given by Equation 25.90,

Hk+1 =Hk +
e′

kΔx′
k

T +Δx′
ke′

k
T

Δx′
k

TΔg′
k

−

e′
k

TΔg′
kΔx′

kΔx′
k

T

(Δx′
k

TΔg′
k)

2
θ ′

kΔg′
k

T
HkΔg′

kξξξ
′
kξξξ

′
k

T

(25.90)

where

Δx′
k
Δ
= QkΔxk (25.91)

Δg′
k
Δ
= QT

k Δgk (25.92)

ek
Δ
= Δx′

k −HkΔg′
k (25.93)

ξξξ ′
k
Δ
=

Δx′
k

Δx′T
k Δg′

k

− HkΔg′
k

Δg′T
k HkΔg′

k

(25.94)

and Qk are the projection matrices which split the space of Δxk into two parts,

QkΔxk which is a subspace which has already been explored and (I−Qk)Δxk which

is conjugate to the said subspace and which would have been the direction taken if

line searches were conducted in the previous k steps. See Lemmas 2.2 and 2.3 of

Davidon’s paper [14] for a more detailed description of Qk.

The third feature of Davidon’s algorithm is that the directions, wk of Equa-

tion 25.84 need not be orthogonal to the error of the Quasi-Newton step. These

directions are chosen such that the updates and new directions satisfy the following

conditions,

(Hk+1 −Hk)s = 0 ∀ s ∈ SH (25.95)

and

wk ⊥ SH ⊥ Δxk −HkΔgk (25.96)
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where,

SH = {Δg0, · · · ,Δgk−1} (25.97)

This ensures approximate inverse Hessian matrices which satisfy the following con-

dition,

Hk+1Δg j = Δx j ∀ j ≤ k (25.98)

This condition ensures convergence to the minimum of a quadratic function after N

updates to the inverse Hessian approximate when inexact line searches (or even no

line searches) are used.

Figures 25.3, 25.4, and 25.5 give a flow chart of Davidon’s minimization algo-

rithm without any line searches. Davidon’s update, when no projections are used

and the inverse Hessian approximate is updated directly, can be described by Equa-

tions 25.55, 25.56, 25.61, 25.62, 25.63, 25.64, and 25.99.

θ =

{
b(c−b)
ac−b2 f or b ≤ 2 a c

a+c
b

b−a
f or b > 2 a c

a+c

(25.99)

Davidon’s update can also be used in accordance with the scaling of the initial guess

for the inverse Hessian to make the update invariant under scaling of the objective

function. The first method of initial scaling discussed in Section 25.1.3.7, has pro-

duced much improvement on the scheme.[63]

25.1.4 Conjugate Gradient Methods

Consider a quadratic function E(x), x ∈ RN ,

E(x) = a+bT x+
1

2
xT Gx (25.100)

where G is positive definite and has full rank, N.

Take a normalized starting direction s0 ∈ RN such that ‖s0‖E = 1 and an initial

vector x0. Find the step size η∗
0 such that,

x1 = x0 +η∗
0 s0 (25.101)

minimizes E along the direction s0.

Then,
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Fig. 25.3: Flowchart of Davidon’s Quasi-Newton Method – Part 1
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Fig. 25.4: Flowchart of Davidon’s Quasi-Newton Method – Part 2
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Fig. 25.5: Flowchart of Davidon’s Quasi-Newton Method – Part 3
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E(x1) = a+bT (x0 +η∗
0 s0)+

1

2
(x0 +η∗

0 s0)
T

G(x0 +η∗
0 s0) (25.102)

To find the minimum of E in the s0 direction,

∂E

∂η0

∣∣∣∣
η∗

0

= 0 (25.103)

or,

∇T E(x0)s0 + sT
0 Gη∗

0 s0 = 0 (25.104)

Solving for η∗
0 in Equation 25.104,

η∗
0 = − sT

0 ∇E(x0)

sT
0 Gs0

(25.105)

If a unidirectional minimization is done for N times in N directions sk, k ∈
{0,1, · · · ,N − 1} which are mutually conjugate about G, the Hessian (matrix of

the second partial derivatives) of E, then,

xN = x0 +
N−1

∑
k=0

η∗
0 sk

= x0 −
N−1

∑
k=0

sT
k ∇E(xk)

sT
k Gsk

sk (25.106)

However,

∇E(xk) = Gxk +b (25.107)

For simplification, define.

gk
Δ
= ∇xE(xk) (25.108)

then,

sT
k gk = sT

k (Gxk +b)

= sT
k

(
G

(
x0 +

k−1

∑
i=0

η∗
i si

)
+b

)
(25.109)

= sT
k (Gx0 +b) since sT

k Gsi = 0 ∀ i < k due to conjugacy

The expression for xN can be written as,

xN = x0 −
N−1

∑
k=0

sT
k (Gx0 +b)sk

sT
k Gsk

(25.110)

By Theorem 23.1,
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x0 =
N−1

∑
k=0

sT
k Gx0sk

sT
k Gsk

(25.111)

Substituting from Equation 25.111 into Equation 25.110,

xN = −
N−1

∑
k=0

sT
k bsk

sT
k Gsk

=
N−1

∑
k=0

sksT
k b

sT
k Gsk

(25.112)

However, from Theorem 23.2,

G−1 = H =
N−1

∑
k=0

sksT
k

sT
k Gsk

(25.113)

which, after substitution in Equation 25.112 gives,

xN = −G−1b (25.114)

Equation 25.114 is equivalent to the Newton step which minimizes a quadratic

function. Therefore, xN is the minimizer of E. This shows that the minimum of a

quadratic function can be reached in at most N linear minimizations if these mini-

mizations are done along a full set of directions mutually conjugate about the Hes-

sian matrix of the objective function. In general, the method of conjugate directions

provides quadratic convergence. A few different conjugate direction methods are

discussed in the following sections.

25.1.4.1 Fletcher-Reeves Conjugate Gradient Method

The Fletcher-Reeves [24] conjugate gradient method generates a set of search di-

rections si, i ∈ {0,1, · · · ,N − 1} such that sk is a linear combination of gk and

all s j, j ∈ {0,1, · · · ,k − 1} with the combination of weights picked such that sk

is conjugate about the Hessian matrix, G, of a quadratic objective function to all

s j, j ∈ {0,1, · · · ,k − 1}. These weights (coefficients) are chosen such that only the

two most recent gradients are needed for their evaluation at each iteration. This so-

lution was reached by influences from Hestenes and Steifel [31] and Beckman [4]

as noted in [24].

Reference [24] provides a method for finding conjugate directions based on

the two most recent gradients. Here, a derivation is given for the calculation of

these directions, leading to the method of conjugate gradients due to Fletcher and

Reeves [24].
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Write the direction at iteration k +1, sk+1, such that sk+1 is a linear combination

of the gradient gk+1 and direction sk,

sk+1 = −gk+1 +ωksk (25.115)

where ωk is a weight to be chosen. Doing this for all k, sk+1 becomes a linear com-

bination of gk+1 and si, i ∈ {0,1, · · · ,k}.

In Equation 25.115, ωk should be chosen such that sk+1 is conjugate to sk about

the Hessian matrix G of the objective function, E(x), namely,

sT
k Gsk+1 = 0 (25.116)

From Equation 25.7,

sT
k =

ΔsT
k

η∗
k

(25.117)

and from Equations 25.117, 25.25 and the definition of H (Equation 25.20),

sT
k =

ΔgT
k G−1

η∗
k

(25.118)

Substituting from Equation 25.118 and 25.115 into Equation 25.116,

ΔgT
k

η∗
k

G−1G(−gk+1 +ωksk) = 0 (25.119)

or,

ΔgT
k

η∗
k

(−gk+1 +ωksk) = 0 (25.120)

and for any arbitrary η∗
k ,

ΔgT
k (−gk+1 +ωksk) = 0 (25.121)

Let us write out all the terms in Equation 25.121 using the definition of Δgk,

−gT
k+1gk+1 +gT

k gk+1 +ωkgT
k+1sk −ωksT

k sk = 0 (25.122)

The η∗
k s are chosen such that they minimize E(x) in the direction of sk. Writing

Equation 25.105 using 25.107 and 25.108,

(Gxk +b)T
sk + sT

k Gηksk = 0 (25.123)

Using Equation 25.7 in Equation 25.123 and factoring out sT
k ,
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sT
k (Gxk +b+GΔxk) = 0 (25.124)

or,

sT
k (b+G(xk +Δxk)) = sT

k (b+Gxk+1)

= 0 (25.125)

However, from Equation 25.107,

b+Gxk+1 = gk+1 (25.126)

Substituting from Equation 25.126 into Equation 25.126,

sT
k gk+1 = 0 (25.127)

Writing Equation 25.107 for any arbitrary iteration l,

gl = b+Gxl (25.128)

The transition from xk to xl using the argument in the previous section is given

by,

xl = xk +
l−1

∑
j=k

η∗
j s j (25.129)

Substituting from Equation 25.129 into Equation 25.128,

gl = b+G

(
xk +

l−1

∑
j=k

η∗
j s j

)
(25.130)

or,

gl = gk +
l−1

∑
j=k

η∗
j s j (25.131)

Multiply Equation 25.131 from the left by sT
k−1,

sT
k−1gl = sT

k−1gk +
l−1

∑
j=k

η∗
k sT

k−1Gs j (25.132)

For conjugate directions and using Equation 25.127 in 25.132,

sT
k gl = 0 ∀ 0 ≤ k < l −1 (25.133)

and combining Equations 25.127 and 25.133,

sT
k gl = 0 ∀ 0 ≤ k ≤ l −1 (25.134)
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Furthermore, substituting for sk in Equation 25.127 using 25.115,

sT
k gk+1 = (−gk +ωk−1sk−1)

T
gk+1 (25.135)

or,

sT
k gk+1 = −gT

k gk+1 +ωk−1sT
k−1gk+1 (25.136)

Using Equation 25.134 in 25.136,

gT
k gk+1 = 0 (25.137)

Substituting for sk from Equation 25.115 into 25.122,

−gT
k+1gk+1 +gT

k gk+1 −ωkgT
k+1gk+1 +ωkωk−1gT

k+1sk−1+

ωkgT
k gk −ωkωk−1gT

k sk−1 = 0
(25.138)

Using Equation 25.134 and 25.137 in 25.138,

−gT
k+1gk+1 +ωkgT

k gk = 0 (25.139)

Solving for ωk in from Equation 25.139,

ωk =
gT

k+1gk+1

gT
k gk

(25.140)

Substituting for ωk from Equation 25.140 into 25.115,

sk+1 = −gk+1 +
gT

k+1gk+1

gT
k gk

sk (25.141)

Using Equation 25.141, the Fletcher-Reeves conjugate gradient method could be

summarized by the following steps:

1. Set k = 0 and s0 = −g0

2. At the kth iteration, find η∗
k such that xk+1 = xk + η∗

k sk minimizes E in the

direction of sk

3.

sk+1 = −gk+1 +
gT

k+1gk+1

gT
k gk

sk (25.142)

4. If ‖sk‖E < ε , then terminate minimization

5. If k = N then go to step 1, otherwise, go to step 2
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25.1.4.2 Partan’s Iterative Conjugate Gradient Method

Partan’s minimization method [32] is another popular conjugate gradient minimiza-

tion technique which has been used in developing many commercial minimization

software packages. The Iterative Partan method is described by the following pro-

cedure.

1. Set s0 = −g0 at the initial point, x0

2. Find η∗
0 such that x1 = x0 +η∗

0 s0 minimizes E along the direction of s0

3. s1 = −g1

4. Find η∗
1 such that x2 = x1 +η∗

1 s1 minimizes E along the direction of s1

5. Set x2−x0
‖x2−x0‖E

6. Find η∗
2 such that x3 = x2 +η∗

2 s2 minimizes E along the direction of s2

7. If the termination criteria for the minimization are not met, then set x0 = x3 and

go to step 1. Otherwise, terminate minimization.

In practice, the iterative method is not as effective as the following variation

which is called the Continuous Partan method.

25.1.4.3 Continuous Partan Minimization Method

The Continuous Partan method [60] has added a few extra steps to the iterative

Partan method which enhance the performance of the method in practice. These

steps are as follows,

1. Do steps 1 through 6 of the iterative Partan method

2. Set s3 = −g3

3. Find η∗
3 such that x4 = x3 +η∗

3 s3 minimizes E along the direction of s3

4. Set x4−x1
‖x3−x1‖E

5. Find η∗
4 such that x5 = x4 +η∗

4 s4 minimizes E along the direction of s4

6. If the termination criteria for the minimization are not met, then set x3 = x5 and

go to step 2. Otherwise, terminate minimization.

25.1.4.4 The Projected Newton Algorithm

Zoutendijk [74] presented a gradient projection method which is summarized by the

following steps:

1. Let P0 = I and start from the initial state, x0

2. Set

Pk = I−Gk

[
GT

k Gk

]−1
GT

k

= Pk−1 −Pk−1Δgk

[
ΔgT

k Pk−1Δgk

]−1
ΔgT

k Pk−1 (25.143)
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3. If Pkgk �= 0, let sk = −Pgk

4. Minimize E(x) in the direction of sk

5. If Pkgk = 0 and gk = 0, then terminate

6. If Pkgk = 0 and gk �= 0 or k = N, then set k = 0 and x0 = xN and go to step 1

7. Set k = k +1 and go to step 2

For a derivation of the projection matrix of Equation 25.143, see Reference [36].

The above procedure is equivalent to a Quasi-Newton approach with the ini-

tial inverse-Hessian approximation picked as H0 = I and then updated by Equa-

tion 25.144.

Hk+1 = Hk −
ΔgT

k HT
k HkΔgk

ΔgT
k HkΔgk

(25.144)

This update is equivalent to the method of Projected Newton-Raphson given by

Pearson.[53].

25.2 Gradient-Free Optimization

All the minimization methods listed in Section 25.1 require the evaluation of the

gradient vector. For example, in neural network learning, this requirement brings

about the need for knowing the exact structure of the network and all of the con-

nections. For large networks, it is very difficult to analytically evaluate these gra-

dients. To evaluate the gradient of the objective function with respect to weights

and activation function parameters in the lower (close to input) layers, chain rule

requires many derivative evaluations. This difficulty becomes more serious when

the number of layers grows. On the other hand, objective function evaluations can

easily be performed by the neural network, while gradient evaluations cannot gen-

erally be done by the network alone. In neural network learning, this is the main

motivation behind the use of optimization methods which require no gradient eval-

uations. This argument is true with many systems where function evaluations are

a lot cheaper than evaluating gradients. The objective is to minimize the need for

extra hardware/software for gradient evaluations and to have the system (e.g. the

neural network) perform most of the computations. A special advantage of gradient-

free methods is that they do not require regularity (Definition 24.34) and continuity

(Definition 24.12) of the objective function. However, they generally require many

more function evaluations to converge.
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25.2.1 Search Methods

The optimization methods which were described in the previous sections require

analytic evaluation of the gradient of the objective function. In a family of optimiza-

tion methods called search methods, the directions of minimization are evaluated

solely based on the objective function values. In general, gradient based minimiza-

tion methods converge faster than gradient-free methods. However, when many vari-

ables are involved, as in the case of neural-network learning problems, the analytical

evaluation of the gradient becomes complicated. A popular gradient-free minimiza-

tion scheme is discussed by the following.

25.2.1.1 Hooke-Jeeves and Wood Direct Search Method

The direct search method as implemented by Hooke-Jeeves [33] and Wood [71] is

based on exploratory searches in the directions of independent variables one at a

time, while keeping the rest of the variables constant. These methods are known to

work poorly when there are terms in the objective function involving the product of

a few design variables.[32] This makes the direct search method a poor choice for

application to the neural-network learning problem.

25.2.2 Gradient-Free Conjugate Direction Methods

There are a few methods which use only objective function evaluations to predict a

search direction which is conjugate to one or more directions about the Hessian

of the quadratic approximation to the objective function. Among these methods

are Rosenbrock’s method, the Davies-Swann-Campey method (a modified version

of Rosenbrock’s method), Smith’s method and Powell’s first and second methods.

These gradient-free minimization techniques are discussed here, in more detail.

25.2.2.1 Rosenbrock’s Method

Rosenbrock’s method [57] starts with a full set of orthonormal directions si, i ∈
{0,1, · · · ,N −1} which could be the directions corresponding to the N independent

variables of the objective function. It searches along these directions (i.e. starts out

like the Hooke-Jeeves direct search method) for a sufficient reduction in the objec-

tive function. After completing N searches, it takes the final value of the state x and

subtracts from it the initial value of the state. Let us denote the value of the state vec-
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tor after these N searches by x1 and its initial value by x0. Following the previous

nomenclature,

Δx0 = x1 −x0 (25.145)

Δx0 gives the new direction s0 upon normalization and then a Gram-Schmidt or-

thogonalization process as described in Section 23.3 is employed to obtain the rest

of the directions, si, i ∈ {1,2, · · · ,N − 1} which are made orthonormal to s0. The

search through all the new N directions is repeated again and a new direction is

found. These s0 directions at every iteration, k, tend to line up with the principal axes

of the Hessian of the quadratic approximation to the objective function (Eigenvec-

tors of G). This makes Rosenbrock’s method similar to conjugate direction methods

in convergence properties when applied to the minimization of a quadratic objective

function.

This method has a very serious problem with its applicability to practical prob-

lems as the neural network learning problem or Support Vector Machine computa-

tions. The search directions generated by the method could sometimes become zero.

In that case, the scheme fails. Davies, Swann and Campey made a modification to

Rosenbrock’s method to reduce the chances of this type of failure.

25.2.2.2 The Davies-Swann-Campey Method

Davies, Swann and Campey [66] presented a variation of the Rosenbrock gradient-

free minimization method which makes it more practical. This method is named after

them and abbreviated to the DSC method. In the DSC method, a gradient-free linear

minimization method is used to find the minimum of the objective function along

the N directions in contrast to Rosenbrock’s method that makes a mere reduction

in the objective function. Another modification done to Rosenbrock’s method is a

reordering of the directions which allows the retainment of nonzero directions sep-

arate from the zero directions and minimization is done in those nonzero directions

until termination occurs or all the directions become zero.

25.2.2.3 Powell’s Method

In most minimization methods, the state vector is updated in a direction (sk) dictated

by the method and a linear search is used to find the optimum step size of the update

in that direction (η∗
k ). This update will be of the following form at every step of the

minimization,

xk+1 = xk +η∗
k sk (25.146)
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The main purpose of the minimization algorithm is to find a sequence of direc-

tions in which to perform the linear searches. If the objective function is quadratic,

then the best set of directions are in general the set which are mutually conjugate

about the Hessian matrix of that function. However, since a gradient-free minimiza-

tion scheme is intended, the Hessian matrix and even the gradients are not evaluated.

This makes the task of finding a mutually conjugate set of directions very difficult.

Powell [56] states a theorem on conjugacy that helps him develop an algorithm

which tends to line up two consecutive new directions of search with conjugate di-

rections.

Powell [56] devised two methods, in evolution from �Smith’s method [64], which

minimize the objective function E(x) by successive linear searches in directions

which are generated by the methods and tend to become conjugate about the Hes-

sian of the quadratic approximation to the objective function E.

These methods are based on two theorems stated by Powell [56] in the following

manner:

Theorem 25.1 (Powell’s First Theorem). “If q1,q1, · · · ,qm,m ≤ n are mutually

conjugate directions, then the minimum of the quadratic function, E(x), where x

is a general point in the m-dimensional space containing x0 and the directions

q1,q1, · · · ,qm, may be found by searching along each of the directions once only.”

Theorem 25.2 (Powell’s Second Theorem). “If x0 is the minimum in a space con-

taining the direction q, and x1 is also the minimum in such a space, then the direc-

tion (x1 −x0 ) is conjugate to q.”

Powell’s paper [56] provides the proofs to these theorems. Using these two theo-

rems, Powell presented his first method given by the following steps.

Powell’s First Method

Set sk = êk, where êk is the unit vector such that

(êk)[ j]
Δ
=

{
1 ∀ j = k

0 ∀ j �= k
(25.147)

Then,

1. Find η∗
k which minimizes E(xk−1 +ηksk)

and set xk = xk−1 +η∗
k sk,k = {1,2, · · · ,N}

2. Replace xk by sk+1 for k = {1,2, · · · ,N −1}
3. Replace sN by xN −x0

4. Find η∗
N which minimizes E(x0 +ηNsN)

5. Set x0 = x0 +η∗
NsN and go to step 1

This procedure finds points x1, · · · ,xN which minimize the quadratic approxi-

mate of the objective function in the s1, · · · ,sN directions and generates the new

direction,
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sN+1 =
xN −x0

‖xN −x0‖E

(25.148)

This procedure makes up one iteration of Powell’s first method. Through renum-

bering, the procedure is repeated for the new directions s1, · · · ,sN . Powell claims

that after N iterations, the minimum of the quadratic function is reached. However,

this claim has been shown by Zangwill [72] to be false in general. Zangwill provides

a counter example in [72] for which Powell’s method will never converge to the min-

imum. This lack of convergence is due to a mistake in the statement of Powell’s first

theorem. Powell’s methods could sometimes generate linearly dependent directions

which will not span the entire space. To correct for this mistake, Powell states that

sometimes it is not wise to accept any new direction provided by his method. Zang-

will gives a correction for Powell’s first theorem which would solve this problem.

He states that in Theorem 25.1, the directions q1, · · · ,qm, must be such that they

span the entire m-dimensional space. This gives the motivation behind his second

minimization method. This method as simplified by Zangwill [72] is as follows.

Powell’s Second Method

Set s1
k = êk. x1

0 is chosen randomly and ε : 0 < ε ≤ 1 is given as the threshold for

accepting a new direction. Furthermore, δ 1 = 1 and r = 1. Then,

1. Find ηr
k
∗ which minimizes E(xr

k−1sr
k) and set xr

k = xr
k−1 + ηr

k sr
k where k =

{1, · · · ,N}.

2. Define αr Δ
= ‖xr

N −xr
0‖E and sr

N+1 =
xr

N−xr
0

αr .

3. Find ηr
N+1

∗ which minimizes E(xr
N +ηr

N+1sr
N+1)

4. Set xr+1
0 = xr

N+1 = xr
N +ηr

N+1
∗sr

N+1

5. Set ηr
s = maxηr

k ,k = 1, · · · ,N where s is the argmaxkη
r
k

6. If
ηr

s δ
r

αr ≥ ε , then

sr+1
k = sr

k ∀ k �= s

sr+1
s = sr+1

N+1

δ r+1 =
ηr

s δ
r

αr

7. If
ηr

s δ
r

αr < ε , then

sr+1
k = sr

k f or k = 1, · · · ,N
δ r+1 = δ r

8. Set r = r +1 and go to step 1.

Figure 25.6 represents the convergence Powell’s update to form a set of conjugate

directions.

In the above algorithm, δ r is the determinant,

δ r = det([s1,s2, · · · ,sN ]) (25.149)
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Fig. 25.6: Powell’s Convergence to a Set of Conjugate Directions

For r = 1, since the directions, sk,k ∈ {1,2, · · · ,N} coincide with the columns of

the identity matrix, the determinant, δ 1 = 1. As the method proceeds in iterations,

the objective is to find a set of directions which would have the largest determi-

nant, for if the determinant approaches zero, then the set of directions approach a

linearly dependent set. When a new direction, sr
N+1 is found through step 3, if it

replaces any direction sr
s, then the new determinant of the direction set will be given

by δ r+1 = ηr
s δ

r

αr . Since the size of this determinant is largest if the largest ηr
s is used,

then the direction that should be replaced with the new direction should be the one

that corresponds to the largest linear step ηr
s . However, if this new determinant is

seen to be smaller than some computational tolerance ε , then replacing any direc-

tion with this new direction will make the new set of directions linearly dependent.

In this case, the new direction is rejected and minimization takes places again with

the previous set of directions.

In addition, in [21], Fletcher presents a modified version of Smith’s method

which makes it a rival of Powell’s methods.
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25.3 The Line Search Sub-Problem

In the preceding, we have seen many different techniques, each of which at any

iteration gives rise to a direction which tends to point toward the minimum of the

objective function, E(x). For any such direction, we have been prescribing the use

of a line search to be able to evaluate the location of the next state of the minimiza-

tion. This translates to a magnitude η away from the starting point of each of these

sub-problems in optimization where an initial point of xk is provided along with a

direction, sk, in which the value of E(x) should be minimized. This is a search prob-

lem in the sk direction and the resulting state will be denoted as xk+1, which is the

next state of the minimization path. Therefore, the dependent variable of this uni-

directional optimization is some multiplier of the unit length direction, sk, namely,

η . Equation 25.150 shows the relationship between the new state vector xk+1 and

the starting point, xk with respect to parameter η .

xk+1(ηk) = xk +ηksk (25.150)

Since we are interested in that ηk which makes the value of xk+1, the minimizer

of E(x) along sk, we will denote that specific parameter by η∗
k . The line search prob-

lem assumes that ηk is the only variable along the direction sk and tries to minimize

E(ηk). This problem is a special case of the larger problem which we have been

addressing up to now. It is a minimization problem with one dependent variable,

ηk. Therefore, gradient and non-gradient methods also exist for this sub-problem

where the gradient is taken with respect to ηk and since it only has one dimension,

it coincides with the partial derivative, ∂E
∂ηk

.

If this derivative is available, the problem becomes simple. One may set the

derivative equal to zero and solve for that positive ηk which minimizes E(ηk,xk,sk).
The usual second derivative test may be done to make sure the resulting η∗

k is the

minimizer of E and the value of the new state may be written in terms of the newly

found optimal step size, η∗
k , namely,

xk+1 = xk +η∗
k sk (25.151)

Line search problems may be categorized into exact and inexact line searches.

Exact line searches are generally costly and are provided by the underlying struc-

ture of the objective function. However, we usually do not know the exact nature

of an objective function. Normally, the objective function is approximated in a lo-

cality. Therefore, exact line searches are not very practical and in some cases their

solution may not even exist. Modern optimization problems relax the line search

and generally require that one of more mild criteria are met. For example, in the

minimization case, they would require that with each step, the value of the objective

function would decrease. In Section 25.1.3.3 we discussed some such conditions. An

example is the Wolfe-Powell conditions. We saw that in essence, the Wolfe condition

makes assumptions on the curvature and therefore defines certain parameters for
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calculating the line search termination. The condition of Equation 25.42 stemmed

from the Wolfe-Powell conditions [23] and provided us guidelines for the line search

to be able to satisfy the positive curvature criterion.

25.4 Practical Considerations

In this section we will review different practical considerations when it comes to op-

timization. First, we will review large-scale optimization techniques which address

memory shortage, sparsity of the optimization parameters, and separability con-

siderations. Next, we will examine the numerical stability of different techniques

and review techniques for increasing stability by using initial and self-scaling tech-

niques, including the transformation of the problem such that the overall numerical

stability is increased.

25.4.1 Large-Scale Optimization

There are large-scale versions of most of the algorithms listed in this chapter. These

include modifications to the steepest descent and gradient techniques only using the

gradient and most effectively, modifications to Quasi-Newton methods to handle

large-scale problems. Among the modifications to the steepest descent technique,

one may note the process of training a Feedforward Neural Network introduced

by Rumelhart [58]. Please refer to Chapter 14 for the problem definition. In this

optimization problem, the objective function is derived from a sum of squares of

errors between the desired output of the network and its real output with any set of

weights. This sum is over all the output neurons as well as all the different patterns

being tested.

In the true sense, the steepest descent algorithm requires that the sum of squares

of errors is computed over all the training samples and once a single pass is made

through all those samples, the gradient may be updated. Rumelhart, takes the ap-

proach that evaluates the gradient of the error (objective function) over a single

pattern and makes a correction to the weights. This method, then, presents another

pattern and goes through these updates every time a pattern is passed to the network.

Theoretically, this is not the same as applying the steepest descent. It is, however,

an approximation which tries to deal with the fact that if there are many patterns

and that waiting for all the patterns to be presented will delay the optimization pro-

cess. Although, this method approaches the minimum more slowly compared to

processing all the patterns and then computing the gradient, it does achieve faster

intermediate convergence, since the system weights are adjusted more frequently.
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Also, it has shown some resilience toward over-training since it is not as accurate

as the true steepest descent technique. For the same reason, it also has more of a

tendency to end up at the global minimum that the more efficient steepest descent

technique.

This is akin to what happens in the annealing process for crystal generation

in metals, which in the domain of Neural Network training, is called simulated

annealing.[40] Simulated annealing uses statistical perturbations to move the state

out of a local minimum, sometimes in the wrong direction, to reach the global mini-

mum instead of being trapped at a local one. These types of techniques are generally

known as stochastic relaxation methods [73] and have been used in variety of sit-

uations such as the modified k-means algorithm [43]. See Section 11.2.5.2 for more

on the annealing process.

In the same spirit as the approximations made to the steepest descent technique,

but with somewhat different objectives and approaches, the Quasi-Newton methods

discussed earlier in this chapter have been modified to handle large-scale optimiza-

tion problems in a more practical setting. There area number of approaches to re-

ducing the memory and processing intensity of these optimization algorithms. Most

of the effort has been in the handling of systems with a large Hessian matrix. There

are generally three different approaches depending on the problem at hand.[50]

1. Limited Memory Quasi-Newton Methods

2. Sparse Quasi-Newton Methods

3. Partially Separable Quasi-Newton Methods

25.4.1.1 Limited Memory Quasi-Newton Methods

These approaches limit the amount of history which is kept in a Quasi-Newton up-

date of the Hessian matrix. These methods, such as the Limited-Memory BFGS or

L-BFGS, only store the last m pairs of change vectors, Δxk and Δgk, instead of

storing the whole Hk. In these techniques, the said stored set of pairs of vectors are

used to evaluate the new direction in which to perform the line search. The line

search will be identical to the normal Quasi-Newton technique. As a new direction

is computed the mth oldest pair of change vectors is deleted and the most recently

computed pair is stored, keeping the last m change pairs in memory at any time.

The L-BFGS technique operates on the Hessian matrix, Gk, not the inverse Hes-

sian. In this approach, the Hessian matrix approximate, Gk is obtained from its initial

value and the last m differences as follows,

Gk = G0 − [G0Uk Vk

][UT
k G0Uk Lk

LT
k −Dk

]−1 [
UT

k G0

VT
k

]
(25.152)

where, when k ≤ m,
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Uk = [Δx0, · · · ,Δxk−1]

Vk = [Δg0, · · · ,Δgk−1] (25.153)

Lk,Dk : Rk �→ Rk and,

(Lk)i, j =

{
ΔxT

i−1Δg j−1 ∀ i > j

0∀i ≤ j
(25.154)

Dk = diag
[
ΔxT

0 Δg0, · · · ,ΔxT
k−1Δgk−1

]
When k > m,

Uk = [Δxk−m, · · · ,Δxk−1]

Vk = [Δgk−m, · · · ,Δgk−1] (25.155)

Lk,Dk : Rk �→ Rk and,

(Lk)i, j =

{
ΔxT

i+k−m−1Δg j+k−m−1 ∀ i > j

0∀i ≤ j
(25.156)

Dk = diag
[
ΔxT

k−mΔgk−m, · · · ,ΔxT
k−1Δgk−1

]
Depending on the condition number of the inverse Hessian matrix (see sec-

tion 25.4.2) and its density (the opposite sense of sparsity), m will vary. It will be

larger for larger condition numbers and more dense matrices. [50] prescribes a value

between 3 and 20 for most practical purposes, using L-BFGS. The Limited-Memory

techniques, are very easy to implement and are usually quite effective. However,

they lose the quadratic convergence characteristics of Quasi-Newton updates and

lean more toward a linear convergence, but are generally slightly better than lin-

ear – will outperform steepest descent and conjugate gradient techniques. Note that

the general technique of L-BFGS may be applied to any Quasi-Newton technique.

See [50] for a more complete treatment.

25.4.1.2 Sparse Quasi-Newton Methods

The second approach, so called Sparse Quasi-Newton Methods, attracted a lot of at-

tention in the late 1980s and early 1990s. Almost all the researchers involved in the

development of Quasi-Newton techniques in the earlier decades introduced a sparse

version of theirs and their colleagues’ methods. Generally, these techniques tried

to apply the knowledge of sparsity of the Hessian and Inverse Hessian matrices to

their approximations given through Quasi-Newton techniques. These methods have

quite a number of deficiencies including the fact that the approximate Hessian and

Inverse Hessian matrices are no longer guaranteed to be positive definite, the meth-

ods are not scaling invariant, and normally they require at least as many function

evaluations as the Limited-Memory techniques described in Section 25.4.1.1.
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25.4.1.3 Partially Separable Quasi-Newton Methods

These methods are quite effective, but are also complex in nature. Using intimate

knowledge of the objective function and its relationship with the state vector, they

try to decouple the problem into separate problems where,

E(x) =
M

∑
i=1

Ei(x)

∇E(x) =
M

∑
i=1

∇Ei(x)

∇2E(x) =
M

∑
i=1

∇2Ei(x)

If, either the M different problems happen to become decoupled so that each use

a disjoint subset of the variables, or otherwise if there is some specific structure or

sparsity to the Hessian (inverse Hessian) matrices of the M subproblems in contrast

with the original problem, then it makes sense to use the decoupled version. Unfor-

tunately, such techniques are quite problem-specific and are not readily generalized

to apply to any large class of problems. Although, It is important to be aware of the

possibility in case the occasion arises.

25.4.2 Numerical Stability

when it comes to the implementation of most of the Quasi-Newton techniques, Nu-

merical stability is of utmost importance. Some of the self-scaling and initial-scaling

techniques discusses earlier in this chapter try to deal with this specific problem.

Theoretically, their results are not very different from non-scaling techniques. How-

ever, in practice, the scaling helps establish better numerical stability of the updates.

One very important numerical instability problem that usually comes up, is the

case where the condition number ( λ◦1

λ◦N
– λ◦ i is the ith Eigenvalue of the Inverse Hes-

sian approximation, Hk) is very large. Historically, to deal with related problems

in the field of signal processing, methods such as Square-Root filtering have been

used. These methods try to represent the ill-conditioned matrix with its square root,

in the form of a Cholesky factorization [8].

If a matrix Hk is factored into LkLT
k , the condition number of Lk will be equal

to
√

λ◦1

λ◦N
. So, if the updates are done to Lk instead of Hk, they will be much more

numerically stable. [50] covers some such cases for the BFGS method – using the

Hessian Matrix, Gk instead of the inverse Hessian. It reports that usually, the numer-

ical gains are not great. However, they will be substantial if the condition number is
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very large. Still, the self-scaling techniques, may do better even in those conditions.

25.4.3 Nonsmooth Optimization

Most of the developments described in this chapter started with the assumption that

the objective function was a smooth function (see Definition 24.20) of the dependent

variables. In fact, in the beginning of this chapter, we started with the premise that

most smooth functions may be approximated by quadratic functions in small inter-

vals. However, in practice this assumption would fall apart when we deal with prob-

lems such as network scheduling and queuing theory [23], radiation therapy [30]

and other linear programming or integer programming problems. There are many

examples where gradients do not exist and the smoothness criterion is not met.

There are many new techniques which have been developed over the past three

or four decades. One very popular technique for handling nonsmooth optimization

problems is the use of subgradients which are defined and used in the absence of

gradients [30]. Since most of the problems in the speaker recognition field seem to

be easily modeled using smooth functions and quadratic or higher degree objective

functions, we will not treat the nonsmooth case in this book. The interested reader

may refer to [23] for an overview of the nonsmooth optimization problem and [30]

for a good reference on subgradient techniques.

25.5 Constrained Optimization

Up to this point, we have been generally considering the optimization of smooth

functions without any constraints. In a way, it is good to remove complicated fac-

tors, such as constraints and nonsmooth behavior to be able to understand complex

optimization techniques. However, once we enter the world of practice, these fac-

tors start to become important. In Section 25.4.3, we briefly discussed nonsmooth

functions. We also noted that in most cases, related to the problems in speaker recog-

nition, optimization functions may be assumed to be smooth.

Constraints, on the other hand, are important in the practice of speaker recog-

nition. As we shall see, constraints are generally imposed in the form of functions

which should be considered in the optimization problem simultaneously with the

main objective function. Therefore, right at the beginning, we would have to con-

sider the smoothness of the constraints as well. Here, we assume that the functions

presenting the constraints on the value of the state vector (dependent variable) as
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well as the objective function of optimization are smooth (see Definition 24.20).

As we stated in the beginning of this chapter, we may discuss the minimization

problem without any loss of generality. We saw that any local optimization prob-

lem may be reduced into a minimization problem with a change of variables. Let

us call the main objective function of the minimization problem, E0(x), where x∗
is the minimizer of this objective function in a small neighborhood. Again, without

any loss of generality, let us assume that we will always remain in a region where

the local minimum is of interest and that E0(x) is smooth and convex in that region.

This simplifies the problem so that we do not have to worry about global versus

local minima.

Then, we may define the general constrained minimization problem as follows,

x∗ = argmin
x∈Ω

E0(x) (25.157)

where x : R1 �→ RN and Ω is the feasibility region where x meets all the constraints

of the problem and is defined as follows,

Ω = {x : (Ene(x) = 0 ∀ ne ∈ Nne)∧ (Eni
(x) ≥ 0 ∀ ni ∈ Nni

)} (25.158)

The points {ξξξ = x : x ∈ Ω} are known as feasibility points of the constrained opti-

mization problem [23]. Ene(x) and Eni
(x) are the equality and inequality constraints,

respectively.

Consider a set of indices, Nc = {1,2, · · · ,Nc}, for all the constraint equations,

such that Ne is the set of indices related to equality constraints with the number of

elements, |Ne| = Ne, and Ni is the set of indices related to inequality constraints

with |Ni| = Ni. Then, we will have the following relations between the index sets

and their sizes, respectively,

Nc = Ne ∪Ni (25.159)

Nc = Ne +Ni (25.160)

To simplify the discussion of constraints, it makes sense to define a vector rep-

resentation of the constraint functions. Let us define the vector functions, c(e), c(i),

and c, as follows,

c(e)(x) : RN �→ RNe ∧
(

c(e)
)

[ne]
(x) = Ene(x),ne ∈ Ne (25.161)

c(i)(x) : RN �→ RNi ∧
(

c(i)
)

[ni]
(x) = Eni

(x),ni ∈ Ni (25.162)

c(x) : RN �→ RNc ∧ c(x)
Δ
= {c(e)T

(x),c(i)T
(x)}T (25.163)
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Also, to simplify the notation, we may define the Jacobian matrix of the con-

straint vector functions with respect to x as follows,

{J
(e)
x : RNe �→ RN} where

(
J

(e)
x

)
[n][ne]

Δ
=

∂Ene

∂ (x)[n]

{J
(i)
x : RNi �→ RN} where

(
J

(i)
x

)
[n][ni]

Δ
=

∂Eni

∂ (x)[n]

{Jx : RNc �→ RN} where (Jx)[n][nc]
Δ
=

∂Enc

∂ (x)[n]

(25.164)

If the independent variable of the gradient in the definition of the Jacobian matrix

is x, sometimes we will drop the subscript, x, for simplicity of notation. i.e., Jx

will be written as J. Furthermore, column nc of J is denoted by γγγnc . γγγnc is also

called the normal vector [23] of constraint Enc , since it is usually normal to the

surface described by the constraint. For inequality constraints, γγγnc points toward

the feasibility region of the constraint. The normal vectors for the different types of

constraints may be directly defined as follows,

γγγne

Δ
= ∇xEne(x) (25.165)

γγγni

Δ
= ∇xEni

(x) (25.166)

γγγnc

Δ
= ∇xEnc(x) (25.167)

Note that the equality and inequality constraints defined in Equation 25.158 are

quite general, since the functions Ene and Eni
may take on any form as long as they

are smooth such that they would allow the use of the nonlinear optimization tech-

niques discussed in the rest of this chapter. Of course, if they are not smooth, the

same argument as in Section 25.4.3 may be easily extended to them. For example, if

we have a condition where the values of x must take on discrete values, then inte-

ger programming [30] techniques must be utilized. Unfortunately, handling integer

programming would not be feasible in this book. However, Fletcher [23] describes

a technique called branch and bound, which may be used to reduce the discrete

case into a set of smooth optimization problems which may then be solved using the

methods discussed in this section.

One of the most practical, popular, and general methods of handling the con-

strained optimization problem of Equation 25.157 is to use Lagrange multipliers. A

historic use of Lagrange multipliers for handling constraints comes from Hamil-

ton’s principle of classical dynamics in minimizing the Hamiltonian, subject to

holonomic or non-holonomic constraints [20], yielding the Euler-Lagrange equa-

tions of dynamics. Similar techniques have been used to handle the optimization of

nonlinear objective functions with general equality and inequality constraints.
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25.5.1 The Lagrangian and Lagrange Multipliers

We defined the normal vectors, γγγnc , to be the gradient vectors of the constraint func-

tions. Therefore, the Taylor series expansion (Definition 24.42) of any constraint

function, Enc , about the minimizer of E0(x), denoted by x∗, may be written, up to

the first order approximation, as follows,

Enc(x
∗ +Δx) = Enc(x

∗)+γγγT
nc

∣∣∣∣
x∗
Δx+O(‖Δx‖2

E ) (25.168)

We saw in Equation 25.7 that Δx may be decomposed into a magnitude, η > 0, and

a direction, s,

Δx ≡ ηs (25.169)

In Equation 25.169,

‖Δx‖E = |η |‖s‖E (25.170)

Therefore, ‖s‖E may take on any value, since |η | can always correct for the mag-

nitude of Δx. However, it is customary to normalize the direction, s, to have unit

norm,

‖s‖E = 1 (25.171)

Using the identity in Equation 25.169 to plug in for Δx in Equation 25.168, and

using the choice of Equation 25.171, the Taylor series expansion may be written in

terms of s,

Enc(x
∗ +ηs) = Enc(x

∗)+ηγγγT
nc

∣∣∣∣
x∗

s+O(|η |2) (25.172)

Let us consider a sequence (see Section 6.7.2) of deviations in x, away from the

minimizer, x∗, that approaches 0. In other words,

{Δx}k
1 : Δxk → 0 as k → ∞ (25.173)

where

Δxk
Δ
= xk −x∗ (25.174)

= ηksk (25.175)

We may write the sequence of Equation 25.173 in terms of the definition of Equa-

tion 25.175,

{ηs}k
1 : ηk → 0∧ sk → s as k → ∞ (25.176)
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As the sequence in Equation 25.176 converges, sk → s. s is known as the feasible

direction evaluated at point x∗, which is the point of convergence of xk. This se-

quence is known as a directional sequence [23] and may be defined for any point, x.

At x, the set of such feasible directions may be denoted as S f (x). S f (x) is known

as the set of feasible directions at x and we use a special shorthand for this set, at

the minimizer,

S ∗
f

Δ
= S f (x

∗) (25.177)

Note that there may be two different types of constraints described by Equa-

tion 25.168.

In the first scenario, nc ∈ Ne; namely, the constraint of interest is an equality

constraint. For better readability, let us use the index, ne, for this case. Since we

are only interested in moving along a feasible direction, for a small x, the following

would have to hold,

Ene(x
∗ +Δx) = Ene(x

∗)
= 0 (25.178)

Plugging Equation 25.178 into Equation 25.168 and choosing ‖Δx‖ small enough

such that the second order and higher order terms vanish, we will have the following

relation for the linearized equality constraints2,

γγγT
ne

∣∣∣∣
x∗
Δx = γγγ∗T

ne
Δx

= 0 (25.179)

Using Equation 25.169, Equation 25.179 may be rewritten in terms of s, as follows,

γγγ∗T
ne

s = 0 (25.180)

In the second scenario, nc ∈ Ni, in other words, the constraint is an inequality

constraint. Again, we resort to using ni for this case. Since we would like to take a

step in a feasible direction, then by the definition of inequality constraints given in

Equation 25.158, the following relation would have to hold,

Eni
(x∗ +Δx)−Eni

(x∗) ≥ 0 (25.181)

from which, taking ‖Δx‖ to be small enough in order to be left with the first

order approximation, and plugging the inequality of Equation 25.181 into Equa-

tion 25.168, we will have the following, for linearized inequality constraints,

γγγT
ni

∣∣∣∣
x∗
Δx = γγγ∗T

ni
Δx (25.182)

≥ 0 (25.183)

2 In Section 25.5.1.4, we will treat the case when the original constraints are used without lin-
earization.
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As with the case of equality constraints, if we write Δx in terms of a magnitude, η ,

and a direction, s, Equation 25.183 may be rewritten in terms of s, using the identity

in Equation 25.169, as follows,

γγγ∗T
ni

s ≥ 0 (25.184)

The set of feasible directions for the linearized constraints are therefore those di-

rections which conform to Equation 25.180 for the linearized equality constraints

and to the inequality in Equation 25.184 for the linearized inequality constraints.

This set of feasible directions, as a function of x, may then be designated by S f l ,

where the l in the subscript stands for linearized. A formal definition of this set is

as follows,

S f l(x)
Δ
= {s : sTγγγne(x) = 0 ∀ ne ∈ Ne ∧ sTγγγni

(x) ≥ 0 ∀ ni ∈ Ni} (25.185)

For the set of feasible directions associated with the minimizer of Equation 25.157,

x∗, we may use the following shorthand notation,

S ∗
f l

Δ
= S f l(x

∗) (25.186)

Sometimes we need to specify the set of feasible directions associated with the lin-

earized equality constraints, only. Likewise, we may need to specify the set which

is only associated with the linearized inequality constraints. The following two def-

initions allow for this distinction,

S
(e)
f l (x)

Δ
= {s : sTγγγne(x) = 0 ∀ ne ∈ Ne} (25.187)

S
(i)
f l (x)

Δ
= {s : sTγγγni

(x) ≥ 0 ∀ ni ∈ Ni} (25.188)

In the same spirit as in the definition of Equation 25.186, the respective sets for the

minimizer, x∗, would be given by the following two definitions,

S
(e)∗
f l

Δ
= S

(e)
f l (x∗) (25.189)

S
(i)∗
f l

Δ
= S

(i)
f l (x∗) (25.190)

In Section 25.5.1.2, we will modify the definition of S f l(x) to include only ac-

tive constraints. This concept will be discussed in detail.

25.5.1.1 Equality Constraints

Note that for the first scenario, where the constraints are equality constraints, if

direction s in Equation 25.180 is a direction of descent, then we would have the

following relation,
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sT g < 0 (25.191)

where,

g
Δ
= ∇xE0(x) (25.192)

The set of descent directions, Sd , at any point x is, therefore, defined as the set of

directions, s, that obey the inequality of Equation 25.191. Here is this definition in

mathematical notation,

Sd(x)
Δ
= {s : sT ∇xE0(x) < 0} (25.193)

If x = x∗ happens to be the minimizer of the optimization problem of Equa-

tion 25.157, the following shorthand notation is used,

S ∗
d

Δ
= Sd(x

∗) (25.194)

If x∗ is a minimizer of E0(x), while having a feasible direction s, given by Equa-

tion 25.180 (i.e. s ∈ S
(e)∗
f l ), then by definition, Equation 25.191 would never be

satisfied. This is because if x∗ is a minimizer of E0(x), then sT g∗ cannot be nega-

tive. Therefore, s may not be a direction of descent at x∗.

According to the above, the only solution to the constrained minimization prob-

lem with linearized equality constraints would exist if the following would be true,

x∗ = x : S
(e)
f l (x)∩Sd(x) = {∅} (25.195)

We will pursue this idea in its general form in the statement of Lemma 25.1 and

explore the connection between linearized constraints and original constraints in

Section 25.5.1.4.

Following this argument, the only possible solution would be if g∗ is a linear

combination of the normal vectors, γγγ∗ne
[23], namely,

g∗ = J
∗(e)
x λλλ̄

∗(e) (25.196)

where λλλ̄ ∗(e) are the linear combination weights and are known as the Lagrange

multipliers associated with these equality constraints and the minimizer x∗. J
∗(e)
x is

the Jacobian matrix associated with the equality constraints evaluated at the mini-

mizer, x∗. If J
∗(e)
x has full rank, the Lagrange multipliers may be computed by using

the Moore-Pensrose generalized inverse (pseudo-inverse) (Definition 23.16) of the

Jacobian matrix as follows,

λλλ̄
∗(e) =

(
J
∗(e)
x

)†
g∗ (25.197)
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Fletcher [23] proves the linear combination statement in Equation 25.196 by using

contradiction.

Therefore, for a feasible point to be a minimizer of E0(x), the following set of

equations should be valid,

g∗ −J
∗(e)
x λλλ̄

∗(e) = 0 (25.198)

Ene(x
∗) = 0 (25.199)

Equations 25.198 and 25.199 constitute N +Ne equations with the same number of

unknowns (x and λλλ̄ (e)), and may be solved for x∗ and λλλ̄ ∗(e).

Another way of writing Equations 25.198 is in its integral domain and using

Equations 25.199 to arrive at the following definition,

L (x,λλλ̄
(e))

Δ
= E0(x)−λλλ̄

(e)T c(e)(x) (25.200)

where L (x,λλλ̄ (e)) is known as the Lagrangian function associated with the con-

strained minimization problem. Being in the integral form, for the optimal point,

x∗,λλλ̄ ∗(e), the Lagrangian will have to be constant,

L (x∗,λλλ̄ ∗(e)) = Const (25.201)

Therefore, an equivalent form for Equations 25.198 and 25.199 would be given

by setting the gradient of the Lagrangian with respect to its independent variables,

x and λλλ̄ , equal to zero,

∇
x,λλλ̄

(e)L (x,λλλ̄
(e))

∣∣∣∣
x∗,λλλ̄

∗(e)
= 0 (25.202)

In Equation 25.202, the gradient with respect to x and λλλ̄ is defined as follows,

∇x,λλλ̄L
Δ
=

[
∇xL
∇λλλ̄L

]
(25.203)

As we will see later, x∗ and λλλ̄ ∗ designate a saddle point in the Lagrangian.

An intuitive interpretation of Lagrange multipliers is as the measure of sensitivity

of the objective function to changes in the constraint equations. Fletcher [23] shows

this by initially assuming to have only equality constraints and then perturbing each

of the equality constraint functions, Ene ,ne ∈ Ne, by a small amount, εne , such that

the equality constraints become,

Ene(x) = εne (25.204)

In vector form, this perturbation may be denoted by,
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εεε : R1 �→ RNe where (εεε)[ne]
= εne (25.205)

Then, the Lagrangian in Equation 25.200 may be rewritten, using the new con-

straint equations given by Equation 25.204, as follows.

L (x,λλλ̄ ,εεε) = E0(x)−λλλ̄
(e)T

(
c(e)(x)−εεε

)
(25.206)

= E0(x)−λλλ̄
T (c(x)−εεε) (25.207)

Obviously, if εεε = 0, Equation 25.207 reduces to Equation 25.200. However, with

a non-zero value for εεε , the values of x∗ and λλλ̄ ∗(e) would change as functions of εεε ,

namely, the new values would be x∗(εεε) and λλλ̄ ∗(e)(εεε). According to the new con-

straints, Equation 25.204, the second term in Equation 25.206 would vanish at the

new solution evaluated at perturbation εεε . The following equality follows,

L (x∗(εεε),λλλ̄ ∗(e)(εεε),εεε) = E0(x
∗(εεε)) (25.208)

Therefore, the slope of the objective function, E0(x), is equivalent to the slope of

the Lagrangian, L , with respect to the perturbation, εεε , and may be computed using

the chain rule as follows [23],

dE0

dεne

=
dL

dεne

= ∇T
x L

∂x

∂εne

+∇T

λλλ̄
(e)L

∂λλλ̄ (e)

∂εne

+
∂L

∂εne

(25.209)

Using Equation 25.207, this simply reduces to the value of (λλλ̄ )[ne]
, i.e.,

dE0

dεne

=
dL

dεne

= (λλλ̄ )[ne]
(25.210)

Equation 25.210 shows that the Lagrange multipliers are measures of the rate of

change of the value of the objective function with respect to a perturbation in the

equality constraints.

25.5.1.2 Active Constraints

Recall the definition for the feasibility region, Ω , given in Equation 25.158. In that

definition, the constraints were also defined as a set of equality and inequality con-

straints. Let us examine these constraints for any point, x = ξξξ . We may define a new

set of constraint indices, as a function of x, that only include those constraints for

which x = ξξξ is located on the boundary of the the feasibility region associated with

the said constraint. In other words, the set of active constraint indices is defined as

a function of x as follows,

Na(x) : {na = nc : Enc(x) = 0} (25.211)
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Of course, if x = ξξξ is any feasible point, ξξξ ∈ Ω , then all the equality constraints

would be considered active constraints, namely,

Ne ⊂ Na(ξξξ ) ∀ ξξξ ∈Ω (25.212)

However, only those inequality constraints are considered to be part of the set of

active constraints, if the feasible point of interest, x = ξξξ , is on the boundary of

the feasibility region associated with the said inequality constraints, dictating strict

equality, namely, Ena(ξξξ ) = 0. In other words,

N
(i)

a (x)
Δ
= Na(x)∩Ni (25.213)

= {na = ni : Eni
(x) = 0} (25.214)

Given the definition of Equation 25.213 and the statement of Equation 25.212, the

set of active constraints for any feasible point, x = ξξξ , is given by the following

union,

Na(ξξξ ) = N
(i)

a (ξξξ )∪Ne (25.215)

It is important to note the significance of active constraints. These are the only con-

straints which are important in determining the solution to the constrained optimiza-

tion problem. In other words, all inactive inequality constraints will be automatically

met, if all active constraints are met for a set of feasible points. In Chapter 15 we

discuss the geometric interpretation of the active constraints, akin to support vec-

tors which are those feasible points, x, representing all the active constraints for the

optimization problem. In fact,

Ss.v. ≡ Na(x
∗) (25.216)

where x∗ is the solution to the constrained minimization problem – see Equa-

tion 15.27 for a definition of Ss.v..

In the next section, we will use the concepts defined in this and the previous sec-

tion for further treatment of inequality constraints. Since the set of active constraints

is especially important for the solution of the constrained optimization problem, let

us define a shorthand notation for this set as follows,

N ∗
a

Δ
= Na(x

∗) (25.217)

N
∗(i)

a
Δ
= N

(i)
a (x∗) (25.218)

We may write Equation 25.215 for the minimizer, x∗, using the new shorthand no-

tation,

N ∗
a = N

∗(i)
a ∪Ne (25.219)

In Equation 25.188, we defined the set of feasible directions associated with the

linearized inequality constraints. Since only the active inequality constraints affect
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the solution, we may define the set of feasible directions associated with the lin-

earized active inequality constraints as follows,

S
(ai)
f l (x)

Δ
= {s : sTγγγna(x) ≥ 0 ∀ na ∈ N

(i)
a } (25.220)

A new set of feasible directions may now be defined which would include all the

feasible directions associated with the active linear constraints,

S
(a)
f l (x)

Δ
= S

(e)
f l (x)∩S

(ai)
f l (x) (25.221)

In the same manner, the set of feasible directions associated with the original ac-

tive inequality constraints3 may be denoted by S
(ai)
f (x), in which case, the set of

feasible directions associated with all active constraints would be,

S
(a)
f (x)

Δ
= S

(e)
f (x)∩S

(ai)
f (x) (25.222)

25.5.1.3 Inequality Constraints

Since the active inequality constraints, {Ena(x) : na ∈ N
(i)

a (x)}, are the only impor-

tant inequality constraints which govern the solution to the optimization problem,

we may write Equation 25.184 for {na ∈ N
∗(i)

a } as follows,

γγγT
na

∣∣∣∣
x∗

s ≥ 0 ∀ na ∈ N
∗(i)

a (25.223)

where s is the feasible direction associated with inequality constraint Ena . For the

sake of simplicity, let us define the following compact notation,

γγγ
∗(i)
na

Δ
= γγγna

∣∣∣∣
x∗

: na ∈ N
∗(i)

a (25.224)

Using this notation, Equation 25.223 may be written as,

γγγ
∗(i)T
na s ≥ 0 (25.225)

It can be shown, quite the same way as we did at the beginning of Section 25.5.1.1,

that only the minimizers, x∗, which satisfy the equivalent of Equation 25.198 for

na ∈ N
∗(i)

na can be solutions to the constrained optimization problem with the said

linearized inequality constraints. In this case, we need an added non-negativity con-

dition for the Lagrange multipliers associated with the active inequality constraints

which will be justified at the end of this section. It means that for x∗ to be a min-

imizer, there should not be any feasible descent direction at x∗. In mathematical

notation,

3 The constraints are not linearized.
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S
∗(ai)
f l ∩S ∗

d = {∅} (25.226)

Equation 25.226 is true if and only if a separation hyperplane exists that separates

S ∗
d from S

∗(ai)
f l – see Theorem 23.3.

It is quite easy to see that based on Farkas’ Lemma (Lemma 23.1), for Equa-

tion 25.226 to hold, the following would have to be valid for active linearized in-

equality constraints,

g∗ −J
∗(ai)
x λλλ̄

∗(ai) = ∑
na∈N

∗(i)
a

γγγ
∗(i)T
na (λλλ̄

∗)[na] (25.227)

= 0 (25.228)

such that,

(λλλ̄
∗)[na] ≥ 0 ∀ na ∈ N

∗(i)
a (25.229)

The Farkas Lemma (Lemma 23.1) has a number of variations and has been

proven in many different ways [17, 25, 23, 7, 45]. A simple approach [23] for justi-

fying the above statement is to consider a small perturbation in the active inequality

constraints, from 0, associated with the point on the boundary of the feasibility re-

gion (Section 25.5.1.2) to a small value, εna ,na ∈ N
∗(i)

a – see Equation 25.204.

Since the value of the change would have to be positive in order for the point to be

feasible according to the inequality constraint, the derivative of the objective func-

tion with respect to εεεna would have to be non-negative, namely,

dE0(x
∗)

dεna

≥ 0 ∀ na ∈ N
∗(i)

a (25.230)

Therefore, according to Equation 25.209, applied to the active linearized inequality

constraints, Equation 25.229 would have to hold. Note that since the constraint of

Equation 25.229 is valid for all active inequality constraints, it must hold for all

inequality constraints. In other words,

(λλλ̄
∗)[ni]

≥ 0 ∀ ni ∈ Ni (25.231)

In fact, it is not hard to see that the Lagrange multipliers associated with in-

active constraints should be 0. Also, at the active constraints, as defined in Sec-

tion 25.5.1.2, the constraint value is 0 for the feasible minimizers. Therefore, by

combining these two statements, we see that the following statement must hold for

all linearized constraints,

(λλλ̄
∗)[nc]

Enc(x
∗) = 0 (25.232)

In other words, either the Lagrange multiplier or the value of the constraint func-

tion, evaluated at the minimizer would always have to be 0. This condition is called

the complementarity condition [23] and the optimization problem is said to have
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strict complementarity if for every constraint, either the Lagrange multiplier or the

constraint is nonzero. Note that in order to have strict complementarity, the follow-

ing condition must hold,(
λλλ̄

∗(ai)
)

[na]
> 0 ∀ na ∈ N

∗(i)
a (25.233)

25.5.1.4 Regularity Assumption

To recap the past three sections, if a point, x = x∗, is a local minimizer, then the

following would have to hold for linearized constraints,

S
∗(a)
f l ∩S ∗

d = {∅} (25.234)

We will examine the conditions under which this will be true.

For now, let us examine a more general form of the above statement. Consider

the original set of constraints, without linearization. In Section 25.5.1, we defined

the set of feasible directions as a function of x, by S
(a)
f (x), which may be written

for any feasible point, x = ξξξ .

Lemma 25.1 (No Feasible Descent Diretions at the Minimizer). If x = x∗ is a

local minimizer of the objective function, then the following must hold [23],

S
∗(a)
f ∩S ∗

d = {∅} (25.235)

Proof.

The proof of Equation 25.235 is quite simple and may be shown by re-examining the

Taylor series expansion of the objective function, E0(x), about the minimizer, x∗, in

a similar manner as was done for the constraint equations, in Equation 25.172. Let

us assume that the direction s is, in the limit, a feasible direction, namely,

s ∈ S
∗(a)
f (25.236)

This means that Equation 25.176 will hold for the sequence, {ηs}k
1. The Taylor

series expansion of the objective function, about x∗, may then be written as follows,

E0(xk) = E0(x
∗)+ηksT

k g∗ +o(ηk) (25.237)

where o(ηk) is the Landau asymptotic notation [42], referring to terms which

asymptotically vanish relative to ηk. If indeed, x∗ is the local minimizer of E0(x),
then

E0(xk) ≥ E0(x
∗) (25.238)
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Therefore,

ηksT
k g∗ +o(ηk) ≥ 0 (25.239)

According to the definition of the magnitude, η , given in Equation 25.169, η is

always positive,

ηk > 0 (25.240)

so we may divide both sides of Equation 25.239 by ηk to produce the following

inequality,

sT
k g∗ +o(1) ≥ 0 (25.241)

which as k → ∞, it would result in having s ∈ S ∗�
d , proving the statement of Equa-

tion 25.235. Also, see Section 23.7 which shows that there would be a separating

hyperplane between the direction of descent and the feasibility region.

��
As we saw in the past three sections, we need Equation 25.234 to hold in or-

der to be able to find a local minimizer that would meet the active constraints of

the constrained optimization problem. Therefore, we need to make the following

assumption, called the regularity assumption, in order to be able to write the neces-

sary conditions for x∗ to be a local minimizer of the objective function and to satisfy

all the constraints. This statement, as we shall see, will be summarized in two sets

of necessary conditions in Section 25.5.1.5. It will follow with a sufficient condition

in that section – Theorems 25.3, 25.4, and 25.5, respectively.

Regularity Assumption:

We assume that the following equivalence holds, in order to be able to state the

theorems of Section 25.5.1.5,

S
∗(a)
f ∩S ∗

d = S
(a)
f l ∩S ∗

d (25.242)

= {∅} (25.243)

Kühn and Tucker [41] make a stronger assumption for the statement of their theo-

rem on necessary conditions. They assume that the two sets, S
(a)
f l (ξξξ ) and S

(a)
f (ξξξ )

are actually identical at a feasible point, x = ξξξ . They calls this the constraint quali-

fication [41] at a feasible point, ξξξ ,

S
(a)
f l (ξξξ ) = S

(a)
f (ξξξ ) (25.244)

Equation 25.244 amounts to the statement that if there is any linearly feasible direc-

tion, s ∈ S
(a)
f l (ξξξ ) (in relation to the linearized constraints), then a feasible direction,

s ∈ S
(a)
f l (ξξξ ) (in relation to the original constraints) will also exist.
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It is true that if the above constraint qualification holds, then the regularity as-

sumption will also hold. However, the statement is not reciprocal. In other words, it

is not necessary for the constraint qualification of Equation 25.244 to hold, in order

for the regularity assumption to be valid. Since the regularity assumption is what

will be necessary in the statements of the first order necessary conditions (Theo-

rem 25.3), it is important to see when the two above assumptions coincide.

The constraint qualification (Equation 25.244) may be rewritten in the following

form,

S
(a)
f l (ξξξ ) = S

(a)
f (ξξξ ) ⇐⇒ S

(a)
f l (ξξξ ) ⊆ S

(a)
f (ξξξ ) ∧ S

(a)
f l (ξξξ ) ⊇ S

(a)
f (ξξξ )

(25.245)

The second part of Equation 25.245 is true and may be easily proven. Lemma 25.2

presents this statement and its proof. However, the first part is not necessarily true.

In fact, Kühn and Tucker [41] provide a simple example when it does not hold. How-

ever, in most cases, the constraint qualification may be assumed [23]. Lemma 25.3

provides sufficient conditions under which the constraint qualification would hold.

Lemma 25.2 (Feasibility Directions Subset of Linearized Feasibility Direc-

tions).

S
(a)
f (ξξξ ) ⊆ S

(a)
f l (ξξξ ) (25.246)

Proof.

The proof is quite similar to the statements at the beginning of Section 25.5.1, with

the caveat that the Taylor series expansion should be made about any feasible point,

x = ξξξ . Since at x, direction s will be a feasible direction, s ∈ S
(a)
f (ξξξ ), we see that in

the limit, as the directional sequence of sk converges, it converges to s ∈ S
(a)
f l (ξξξ ),

proving the statement of this Lemma.

��
Lemma 25.3 (Constraint Qualification – Sufficient Conditions). If any of the

following conditions hold, then S
(a)
f (ξξξ ) = S

(a)
f l (ξξξ ) for any feasible point, x = ξξξ .

1. All constraints functions, Ena(x) are linear.

2. The normal vectors evaluated at the feasible point, x = ξξξ (columns of J
(a)
x (ξξξ ))

are linearly independent.

Proof.

Proof of sufficient condition 1 is trivial, given the definition of Equation 25.185. See

Lemma 9.2.2 of Fletcher [23] for the proof for the second sufficient conditions.

��
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Note that Farkas’ lemma does not handle equality constraints directly. However,

it is possible to write every equality constraint in terms of two inequality constraints

which would both have to be satisfied. In other words,

Ene = 0 (25.247)

may be rewritten as two the following inequality constraints,

Ene ≥ 0 (25.248)

−Ene ≥ 0 (25.249)

This extension may then be used in order to prove that Equation 25.234 would be

true if and only if Equations 25.228 and 25.229 are valid.

25.5.1.5 Necessary and Sufficient Conditions for an Optimizer

At this point, we have the prerequisite information to quickly review three related

theorems, providing the necessary and sufficient conditions for the existence of the

solution of Equation 25.157.

Theorem 25.3 (Kühn-Tucker Necessary Conditions – First Order Necessary

Conditions for a local minimizer). 4 The necessary condition for x∗ to be a lo-

cal minimizer of Equation 25.157 is that it obeys the regularity assumption (Equa-

tion 25.242) and that there exist Lagrange multipliers, λλλ̄ ∗, that obey the following

Kühn-Tucker conditions,

∇xL (x,λλλ̄ )

∣∣∣∣
x∗,λλλ̄

∗
= 0 (25.250)

Ene(x
∗) = 0 ∀ ne ∈ Ne (25.251)

Eni
(x∗) ≥ 0 ∀ ni ∈ Ni (25.252)

(λλλ̄
∗)[ni]

≥ 0 ∀ ni ∈ Ni (25.253)

(λλλ̄
∗)[nc]

Enc(x
∗) = 0 ∀ nc ∈ Nc (25.254)

Proof.

The proof for each of the statements in the theorem was presented gradually, for the

different conditions, in the past few sections.

��
In Theorem 25.3, we pointed out the necessary conditions for the existence of

the local minimizer of Equation 25.157. The local minimizer, also known as the

4 According to Nocedal and Wright [50], the conditions derived by Kühn and Tucker [41] and
published in 1951 were independently derived by W. Karush [39] in his Master’s thesis in 1939.
For this reason some have called these conditions the Karush-Kühn-Tucker conditions, or KKT in
short.
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Kühn-Tucker point, is based on a stationary point of the Lagrangian according to

the gradient of the Lagrangian being zero, with respect to the state vector x. This

is similar to the Euler-Lagrange [48] equations in dynamics. Before examining the

sufficient conditions for x∗ to be the local minimizer, let us define the Hessian matrix

of the Lagrangian (Equation 25.200) with respect to x as follows,

Gx(x,λλλ̄ )
Δ
= ∇2

xL (x,λλλ̄ ) (25.255)

Note that for a quadratic objective function, the Hessian matrix, Gx(λλλ̄ ), is a func-

tion of λλλ̄ only. Let us define G∗
x as the Hessian matrix with respect to x, of the

Lagrangian, evaluated at the Kühn-Tucker point, x∗, and the vector of Lagrange

multipliers associated with x∗, λλλ̄ ∗. Then, the following theorem provides the second

order necessary condition for x∗ to be the local minimizer of Equation 25.157.

Theorem 25.4 (Second Order Necessary Condition for a local minimizer). The

necessary second order condition for the Kühn-Tucker point, x∗, to be the local

minimizer of Equation 25.157 is that the Hessian matrix of the Lagrangian (Equa-

tion 25.200), evaluated at the Kühn-Tucker point, x∗, be positive semi-definite,

sT G∗
xs ≥ 0 ∀ s (25.256)

Proof.

See [50, 23]. ��
Although the positive semi-definiteness of the Hessian matrix is necessary for a

point which satisfies the KT conditions of Theorem 25.3, it does not guarantee that

point x∗ would be a local minimizer. In fact the point may be a saddle point with

respect to x. To guarantee that such a Kühn-Tucker point is a local minimizer, the

Hessian matrix evaluated at the KT point must be positive definite, hence the follow-

ing theorem on sufficiency.

Theorem 25.5 (Sufficient Condition for a local minimizer). The sufficient con-

dition for the Kühn-Tucker point, x∗, to be the local minimizer of Equation 25.157

is that the Hessian matrix of the Lagrangian (Equation 25.200), evaluated at the

Kühn-Tucker point, x∗, be positive definite,

sT G∗
xs > 0 ∀ s �= 0 (25.257)

Proof.

See [50, 23].

��
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25.5.2 Duality

The concept of duality is used to represent the optimization problem in a simpler

form in the, so called, dual space. The dual form of the problem is usually simpler

to solve, computationally. Generally, there are many different dual transformations

which may be used. The original optimization problem is referred to as the primal

problem and the transformed problem is called the dual problem. The dual problem

is usually represented using the vector of Lagrange multipliers,λλλ̄ as the independent

variable, in contrast to x which is the independent variable of the primal problem.

Depending on the primal problem of interest, there are many different dual

forms: Fenchel’s (Conjugate) duality [68, 18, 67] (using the Legendre-Fenchel

transform [67]), geometric duality [16], inference duality [34], Dorn’s duality [15],

Lagrangian duality [1], LP duality [25], Wolfe’s duality [69], etc. Here, we are con-

cerned with the Wolfe duality [69] which is built on the premise that the primal

problem is convex – see Section 24.1.4.

In Wolfe duality, if the primal problem is not convex (even if it is pseudo-convex),

then generally, the dual problem may not have any solution [45, 23]. As a rule, if the

primal problem is one of minimization, the dual problem becomes a maximization

problem. The Wolfe dual problem [69] is represented in terms of the Lagrangian

function, using the vector of Lagrange multipliers, λλλ̄ , as the independent variable of

the dual problem. The Wolfe dual is built upon the first order necessary conditions

stated in Theorem 25.3, where the constraints are translated to a maximization con-

dition on the Lagrangian function.

The following is the statement of the Wolfe duality theorem [69, 23]:

Theorem 25.6 (Wolfe Duality Theorem). Let x∗ be the solution to the following

convex primal optimization problem,

x∗ = argmin
x∈Ω

E0(x) (25.258)

where

Ω = {x : (Eni
(x) ≥ 0 ∀ ni ∈ Nni

)} (25.259)

Assuming that E0(x) and Eni
(x),ni ∈ Nni

are C1 continuous (see Definition 24.19)

and that the regularity assumption (Equation 25.242) holds, the following Wolfe

dual problem is associated with the above primal problem,

x∗,λλλ̄ ∗ = argmax
x,λλλ̄∈Ω̄

L (x,λλλ̄ ) (25.260)

where
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Ω̄ = {x,λλλ̄ : (∇xL (x,λλλ̄ ) = 0 ∧ λλλ̄  0)} (25.261)

and the minimum value of the primal objective function is equal to the maximum

value of the dual objective function, namely,

E0(x
∗) = L (x∗,λλλ̄ ∗) (25.262)

Proof. Note that the two conditions in Equation 25.261 follow from the first order

Kühn-Tucker necessary conditions given by Equations 25.250 and 25.253. Equa-

tion 25.250 is also known as the dual feasibility condition. Also, according to an-

other one of the first order Kühn-Tucker necessary conditions, Equation 25.254, the

equality of Equation 25.262 follows. In addition, the constraint functions of the pri-

mal problem are included in the construction of the Lagrangian function.

Also, since λλλ̄  0 and c(x)  0, then,

L (x∗,λλλ̄ ∗) = E0(x
∗)

≥ E0(x
∗)−λλλ̄

T c(x∗)
= L (x∗,λλλ̄ ) (25.263)

If we expand the right hand side of Equation 25.263 about x, using a Taylor series

expansion, we will have the following,

L (x∗,λλλ̄ ) = L (x,λλλ̄ )+(x∗ −x)T ∇xL (x,λλλ̄ )

+
1

2
(x∗ −x)T ∇2

xL

∣∣∣∣
x,λλλ̄

(x∗ −x)+O(Δx3) (25.264)

≥ L (x,λλλ̄ )+(x∗ −x)T ∇xL (x,λλλ̄ ) (25.265)

The above inequality stems from the second order necessary conditions, stating that

∇2
xL is positive semi-definite (convexity of the Lagrangian function with respect to

x).

Also note that due to the dual feasibility (Equation 25.250),

L (x,λλλ̄ )+(x∗ −x)T ∇xL (x,λλλ̄ ) = L (x,λλλ̄ ) (25.266)

Combining Equations 25.263, 25.265 and 25.266, we will have the following,

L (x∗,λλλ̄ ∗) ≥ L (x,λλλ̄ ) (25.267)

Equation 25.267 says that x∗ and λλλ̄ ∗ are the maximizers of the Wolfe dual problem

(Equation 25.260).

��
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Note that Theorem 25.6 does not make any direct provision for handling equality

constraints. However, it is very simple to include such constraints in the form of the

intersection of two inequality constraints. For example, take the following equality

constraint,

Ene = 0 (25.268)

It may be rewritten as the following two inequality constraints,

Ene ≥ 0 (25.269)

−Ene ≥ 0 (25.270)

whose intersection would produce the same result as having the original equal-

ity constraint of Equation 25.268, since both constraints of Equations 25.269 and

25.270 would have to hold at the same time.

An interpretation of the maximization of the dual problem is the fact that the

optimizers x∗ and λλλ̄ ∗ actually define a saddle point where the primal variables, x∗,

minimize E0(x). The value of x∗ is then used to find the dual variables, λλλ̄ ∗, which

maximize the Lagrangian for x∗. The pair, {x∗,λλλ̄ ∗}, defines a saddle point.

25.5.2.1 Quadratic Objective Function with Linear Inequality Constraints

In most of this chapter, we have approximated the objective function with a quadratic

function in a local area. In addition, some of the practical constrained optimization

problems in speaker recognition, such as those of support vector machines, work

with simple quadratic objective functions. Let us examine a generic quadratic func-

tion of the form,

Ê0(x) =
1

2
xT Gx+gT x+C (25.271)

where, C is a constant term. Also, since we are interested in convex problems, we

assume that G is positive definite,

xT Gx > 0 ∀ x (25.272)

For the purpose of minimization, we can drop the constant term, C, which is only

an offset. Therefore, we can define,

E0(x)
Δ
= Ê0(x)−C (25.273)

producing the following objective function,

E0(x) =
1

2
xT Gx+gT x (25.274)
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Furthermore, for practical purposes, let us assume that the minimization problem is

subject to linear inequality constraints.

Therefore, for a quadratic objective function, the primal minimization problem

of Equation 25.258 may be written as follows,

x∗ = argmin
x∈Ω

E0(x) (25.275)

= argmin
x∈Ω

1

2
xT Gx+gT x (25.276)

where

Ω = {x : (Eni
(x) ≥ 0 ∀ ni ∈ Nni

)} (25.277)

= {x :
(
JT

x x−b  0
)} (25.278)

where Jx is the Jacobian matrix associated with the inequality constraints and is

defined by Equation 25.164.

The Lagrangian function for the above primal problem will then be,

L (x,λλλ̄ ) = E0(x)−λλλ̄
T c(x) (25.279)

=
1

2
xT Gx+gT x−λλλ̄

T
(
JT

x x−b
)

(25.280)

which leads to the following Wolfe dual problem, according to Theorem 25.6.

x∗,λλλ̄ ∗ = argmax
x,λλλ̄∈Ω̄

L (x,λλλ̄ ) (25.281)

= argmax
x,λλλ̄∈Ω̄

1

2
xT Gx+gT x−λλλ̄

T
(
JT

x x−b
)

(25.282)

where

Ω̄ = {x,λλλ̄ : (∇xL (x,λλλ̄ ) = 0 ∧ λλλ̄  0)} (25.283)

= {x,λλλ̄ : (Gx+g−Jxλλλ̄ = 0 ∧ λλλ̄  0)} (25.284)

The dual feasibility relation of Equation 25.284 (the first expression) may be used

to solve for x in terms of the Lagrange multipliers, λλλ̄ ,

x = G−1(Jxλλλ̄ −g) (25.285)

The expression of Equation 25.285 may be plugged into Equation 25.282 such that

the dual problem is written solely in terms of λλλ̄ . Also, since the dual feasibility ex-

pression has already been used to solve for x, the constraints become much simpler

and reduce to the non-negativity constraint on λλλ̄ . The Lagrangian may be written in

terms of the Lagrange multiplier by plugging in for x,
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L (λλλ̄ ) =
1

2
(Jxλλλ̄ −g)T G−T GG−1(Jxλλλ̄ −g)

+ gT G−1(Jxλλλ̄ −g)

− λλλ̄
T JT

x G−1(Jxλλλ̄ −g)

+ λλλ̄
T b (25.286)

G is assumed to be positive definite and it is symmetric. Also, we may drop the

subscript x from Jx for simplicity of notation. Then Equation 25.286 would simplify

into,

L (λλλ̄ ) =
1

2
(Jλλλ̄ −g)T G−1(Jλλλ̄ −g)

+ gT G−1(Jλλλ̄ −g)

− λλλ̄
T JT G−1Jλλλ̄ +λλλ̄

T JT G−1g+λλλ̄
T b (25.287)

Multiplying out the compound terms in Equation 25.287 and regrouping in terms of

degrees of λλλ̄ , we may write the simplified Wolfe dual problem as the maximization

of a quadratic function of λλλ̄ ,

λλλ̄
∗ = argmax

λλλ̄0

[
−1

2
λλλ̄

T (JT G−1J)λλλ̄ +(gT G−1J+bT )λλλ̄ − 1

2
gT G−1g

]
(25.288)

The maximization problem of Equation 25.288 may easily be solved using the

many techniques discussed in this chapter. The maximizer of the Wolfe dual prob-

lem, λλλ̄ ∗, may then be used to compute the minimizer of the primal problem, x∗, by

using Equation 25.285 as follows,

x∗ = G−1(Jλλλ̄
∗ −g) (25.289)

Note that since the constraints of the primal problem were chosen to be linear, the

sufficient conditions for the constraint qualification according to Lemma 25.3 are

automatically met.

For more on constrained optimization, see [23], [41], [69], [50], and [54].

25.6 Global Convergence

The optimization techniques, discussed in this chapter, made no distinction between

the types of minimizers they sought. They may end up with any local minimum of

the objective function. The true objective of most optimization problems, however,

is to find the global optimum. Although there are no true systematic methods for

reaching a global minimum, there are some algorithms that help in pursuing that

goal.
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Kirkpatrick, et al. [40] borrowed ideas from metallurgy, used for optimal crystal

growth in steel production. In metallurgy, there is a technique for achieving a more

uniform crystalline structure while producing steel. In this process, when the molten

steel is cooled, the cooling is done slowly and, once in a while, the material is heated

again just slightly, to avoid being stuck in sub-optimal crystalline forms. The occa-

sional heating reshapes the crystal and allows it to cool back down into possibly a

more stable form (a form with a lower potential energy). The objective is to create

a crystal that has the lowest potential energy, hence is most stable, i.e., stronger.

Simulated annealing [40] uses the same idea and usually works well with slowly

converging optimization such as steepest descent. In this technique, once the rate of

change of the objective function becomes smaller than a certain threshold, there is a

random perturbation added to the state vector which generally increases the value of

the objective function. This new state may make it possible for the objective func-

tion to take a brand new path toward minimization by possibly taking the system

out of a small ditch. This process has proven quite effective for systems with large

number of variables. Since it is a statistical technique, it is hard to quantify its ef-

fectiveness in general.

Sometimes, depending on the problem at hand, we may have some intrinsic infor-

mation about the global minimizer or the objective function at the global minimum.

In most practical problems this is the case and the information may be utilized to

either reach the global minimum or at least to help us know when we have done so.

One example of such information is when we are faced with a strictly convex func-

tion. In that case, we know that there is only one minimizer and that if a minimizer

is reached, it must be the global minimizer. Of course, life is not always that simple.

With more complex cases, there may be other information that may be used. Some-

times, we may even be able to modify the objective function to aid us in reaching

the global minimizer more readily.

One such example is given by [5] which uses the architecture of neural networks

for global convergence. In essence [5] introduces a method that changes the op-

timization problem to facilitate global convergence. See Section 14.2.5 for more

information.
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Chapter 26

Standards

In this chapter, we will be reviewing some of the standards and developments of

standards, related to speaker recognition. As we will see, there are a few standards

bodies which have made certain efforts in developing standard transmission, stor-

age and control schemes for speech-related applications. Most of these standards are

not directly developed for speaker recognition. A good portion of them are develop-

ments for the telephone communication industry. More recently standards have been

developed to be used with audio transmission over the Internet and other telecom-

munication networks.

Speaker recognition is in essence lucky to have these relevant standards at its

disposal. The same may not be said for most other biometrics. Indeed this is what

we have seen thorough the coverage of different aspects of speaker recognition. It

has the advantage of sharing resources with the telephone communication industry

and is well suited for this vast existing infrastructure.

However, as we will see, speaker recognition suffers from the lack of attention

in the control standards. It will be made clear that there are several efforts in stan-

dardizing such controls for speech recognition and text to speech as well as those

for voice over IP and other multimedia transmission. Some early efforts in such

standardization have ceased and not many new ones are on the way. Another prob-

lem is the difference between speech and other biometric media such as fingerprint,

iris, retina, etc. Speech is a sequential time series style data. However, most other

biometrics, such as the ones note here, deal with single instances of patterns. This

makes the controls inherently different. We will discuss these problems in more de-

tail in the future sections.

In the next section, we will deal with the standardization of audio formats. In

the following main section, we will review some encapsulation techniques which

encompass these formats. Some of these encapsulations are designed for transmis-

sion, while others are more suitable for simple storage of audio.
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26.1 Standard Audio Formats

Standardization of audio formats is of utmost importance to the transmission and

handling of speech. There have been hundreds of different coder/decoder (codec)

definitions which have been utilized in different speech and other audio applica-

tions since the inception of digital audio processing. As we will see, by examining

some of these codecs, there is no ideal algorithm. Each codec has been developed

to deal with specific requirements. The ITU-T (ITU Telecommunication Standard-

ization Sector) is a permanent organ of the International Telecommunication Union

(ITU) which has been instrumental in developing and maintaining some of the most

popular standards. The ITU-T, often publishes its recommendations and sometimes

makes source code available for the implementation of these standards.

In addition to the ITU-T recommendations, there are many different memoranda

published by the Internet Engineering Task Force (IETF). Each of these publica-

tions is in the form of a Request for Comments (RFC). RFCs have unique numbers

and maintain the incremental recommendations of the IETF for standards relating

to the Internet and telecommunication industry. In relation to speech, in most cases,

the ITU-T recommendations are used within the different RFCs. Some of the RFCs

will eventually be published as Internet standards by the IETF. Others may either

be abandoned, incorporated in, or superseded by other Internet standards.

In the following few sections, we will review some of the most relevant audio

standards, in relation with the applications of speaker recognition. It is up to the

vendor and implementer to pick the proper standard format to maintain, transmit

and store data in its raw form. In later sections we will review some of the limited

efforts in standardizing other speaker recognition interactions.

26.1.1 Linear PCM (Uniform PCM)

The linear pulse code modulation (linear PCM or LPCM) format is the simplest

audio format. It is basically a dump of the audio samples resulting from the ideal

sampling process discussed in Section 3.6.1 and implemented in the pulse ampli-

tude modulation manner discussed in Section 3.6. The linear PCM format uses the

amplitude quantization technique discussed in Section 3.2. The linear PCM is dis-

cussed (as uniform PCM) in [13] in order to act as a transition format for converting

between the μ-law and a-law formats which are the main recommendations of the

ITU-T G.711 document [13].

The main parameters that need to be specified for the linear PCM format are the

sampling frequency and the number of bits of amplitude quantization. The linear

PCM or uniform PCM format only specifies the computation of the stream of sam-
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ples, but it does not include any specification for the quantization level and sampling

frequency information. Therefore, it is always necessary to use the raw linear PCM

data inside an encapsulation format such as WAV (Section 26.2.1) or SAFE (Sec-

tion 26.2.3).

26.1.2 μ-Law PCM (PCMU)

The most popular landline telephony audio format in the United States is the μ-

law PCM (PCMU) format which was introduced by the International Telecommu-

nication Union (ITU-T) recommendation, ITU-T G.711 [13] in 1972 at Geneva,

Switzerland. It is one of the two different logarithmic-style encoding techniques

recommended by this document for the amplitudes of the PCM data to be able to

adopt an 8-bit representation of the audio signal used in international telephone

communication.

The original ITU-T G.711 document [13] also prescribes the standard sampling

rate of 8000Hz with a tolerance of ±50 parts per million (ppm). This translates to

a transmission rate of 64-kbps. In an extension of the recommendation, presented

in the ITU-T G.711.1 document [30], higher transmission rates of 80 and 96 kbps

were added to the recommendation for allowing a better audio quality.

26.1.3 A-Law (PCMA)

A-law PCM is generally similar to μ-law, with the exception of the logarithmic

style look-up table which maps the 13 − 14 bits per sample to an 8 bit sample. It

is important to note that the tables have been adjusted to be slightly suboptimal

in order to minimize the μ −A− μ and A− μ −A conversion such that the signal

is more or less similar to the original signal before conversion. Of course, these

two conversions are not entirely reversible. Slight changes will happen to the signal

when the above conversions take place. Most telephony systems allow for a choice

between A-law or μ-law PCM encoding.

26.1.4 MP3

MP3 is really the Moving Picture Experts Group (MPEG) audio level 3 encoding

used in MPEG-1 and MPEG-2 video encapsulation standards. MP3 is a patented

lossy compression technique which uses audio perception approximations to reduce
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the coding requirements of the audio signal – see Section 5.1. Its original MPEG-1

implementation introduced limited bit rates and was standardized in 1993 (MPEG-1

Part 3) [9]. It was later supplemented with additional bit rates through the MPEG-2

implementation, known as MPEG-2 part 3 [10]. In total, MP3 has been defined such

that the standard is capable of coding the audio from 8kbps to 320-kbps. It encodes

original audio from 16 kHz to 48 kHz. The performance of MP3 is best at over 80

kbps. Other codecs with superior quality and compression are available, some of

which are royalty-free. However, MP3 has established itself in the music industry,

not necessarily due to its quality.

26.1.5 HE-AAC

High Efficiency Advanced Audio Coding (HE-AAC) is a very aggressive, lossy and

low-bit-rate audio compression technique used in popular applications with stream-

ing in mind such as the flash animation format. It was introduced by the MPEG

community as a part of MPEG-4. [20] HE-AAC presents superior quality when com-

pared to MP3 at low to medium bit rates.

The current version of the HE-AAC, used in MPEG-4, is version 2. Version 1 was

standardized in 2003. Version 2 includes the use of parametric stereo coding which

allows for more efficient coding of stereo signals in low-bandwidth situations. At

higher bit rates, there is not much of a difference between version 1 and version

2. Only low bitrate stereo is enhanced by the additional parametric stereo coding

which is present in version 2.

26.1.6 OGG Vorbis

OGG Vorbis [1] is an open-source, variable bit-rate codec which, in most cases,

performs as well as or better than MP3. In fact at the higher quality levels, it is con-

sidered to be similar to MPEG-4 AAC [1] (see Section 26.1.5). Vorbis is the codec

and OGG [23, 6] is the encapsulating mean for delivering the Vorbis codec.[38]

There are also many open-source tools available including a library called LibAO

which is available from the XIPH Open-Source Community for free.[39]

Vorbis is optimal for a wide range of applications, from 8 kHz telephony to 192

kHz high-end recordings and with many different channel configurations such as

monaural, polyphonic (stereophonic, quadraphonic, 5.1 surround sound, ambisonic,

or up to 255 discrete channels) [1]. Vorbis usually encapsulated by the OGG for-

mat [23], however, it may also be used by itself in an RTP payload (Section 26.3.5),
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for streaming, or by any other encapsulation, such as SAFE (see Section 26.2.3).

26.1.7 ADPCM (G.726)

Adaptive differential pulse code modulation ADPCM comes in several different fla-

vors depending on the vendor implementation of interest. Some of these imple-

mentation such as the Dialogic and OKI implementations are not really well docu-

mented. They are available in middleware form which is present in hardware such

as the Dialogic telephony cards. However, if one needs to code or decode specific

flavors of the implementation, once would have to rely on reverse engineered source

codes which are mostly accurate, but do provide some surprises here and there.

The general idea is to start with a differential pulse code modulation (DPCM) rep-

resentation of the signal. This is in essence a difference coding applied to the LPCM

representation discussed in Section 26.1.1. Difference coding assumes that for high

enough sampling rates, the difference between the values of adjacent samples can-

not be too great. This idea stems from the fact that the signal is being produced

by an inertial system incapable of having large accelerations. Since the difference

between adjacent samples in the signal is limited, much less number of bits would

be needed to transmit this difference than it would be needed to transmit the origi-

nal signal. Therefore, keeping the first sample value of the PCM representation, the

consequent values are transmitted in the form of the difference between the previous

sample and current sample. Different ADPCM techniques have been developed to

produce log-like tables for coding these differences.

The ITU-T standard of G.726 [16] is a combination of a 16-kbps ADPCM codec

added to the existing G.721 ADPCM [14] which operated at 32 kbps and G.723 [15]

which described the 24 and 40 kbps ADPCM. Therefore, the combined codec,

G.726, supports 16, 24, 32, and 40-kbps ADPCM formats.

26.1.8 GSM

Groupe Spécial Mobile (GSM) is the most popular complete network architecture

for mobile (cellular) devices. It includes a few different audio codecs [26] which

are based on linear predictive coding and depending on their version, operate at

6.5 kbps (half rate), 13.2 kbps (full rate – GSM 06.10), and most recently, 12.2
kbps (enhanced full rate – GSM 06.60) which is used in the third generation GSM

networks known as 3G. New 4G versions of the network are under development,
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internationally.

The original GSM codecs (full rate and half rate) were based on residual pulse

excitation/long term prediction [26]. The full rate codec would take blocks of 160

samples and encode them into a 33-byte code. Essentially this would translate to

the transmission of 8000 single byte samples in a 13,200 bits, hence a 13.2 kbps

transmission rate. These standard codes are a part of the ETS 300 961 standard from

the European Telecommunications Standards Institute (ETSI).

The GSM enhanced full rate (GSM-EFR or GSM 06.60) codec has a reduced

frame length of 244 bits representing each 160-sample block. This means that 8000

single byte samples would be encoded into a stream of 12,200 bits, producing a

12.2 kbps stream. The GSM-EFR is part of the ETS 300 726 standard from ETSI.

When GSM-EFR is used with RTP (see Section 26.3.5), an additional 4 bit header

(0xC) is attached to each frame, making the frame 248 bits or 31 bytes long [26].

In Section 26.1.9.3 we will discuss the QCELP codec which is used in CDMAOne

and CDMA2000 mobile networks. Table 26.1 shows the distribution of the sub-

scribers to the different mobile technologies according to GSMA. It makes up more

than 80% of the total mobile subscribers around the world (almost 3.5 billion sub-

scribers). Therefore, there is a high probability that any mobile audio data would

have been coded using one of the GSM codec discussed in this section.

Mobile Technology No. of Subscribers Percentage

CDMAOne 2,449,937 0.0568%

CDMA2000 1X 309,907,068 7.1899%

CDMA2000 1xEV-DO 118,688,849 2.7536%

CDMA2000 1xEV-DO Rev. A 12,644,062 0.2933%

GSM 3,450,410,548 80.0504%

WCDMA 255,630,141 5.9307%

WCDMA HSPA 133,286,097 3.0923%

TD-SCDMA 825,044 0.0191%

TDMA 1,480,766 0.0344%

PDC 2,740,320 0.0636%

iDEN 22,172,858 0.5144%

Analog 9,593 0.0002%

Table 26.1: Mobile technology subscribers, worldwide, in the second quarter of 2009 ac-
cording to GSMA [8]
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26.1.9 CELP

Code excited linear prediction is a method which uses linear predictive coding (Sec-

tion 5.4) in conjunction with a fixed codebook and an adaptive one, used with the

introduction of a delay, as the excitation input to the LP model to generate the ap-

proximation to the original signal [32]. It is the basis for a variety of different tech-

niques which will be described in the following few sections.

26.1.9.1 OGG Speex

OGG Speex [32] is another royalty-free audio format, from the XIPH community,

which is based on CELP (see Section 26.1.9). It is aimed at producing higher per-

formance for lower bit rates when applied to human speech. The Speex codec has

generally been designed with Voice over IP (VoIP) in mind. It may be defined in

a the OGG container and transmitted through protocols such as the RTP (see Sec-

tion 26.3.5).

Speex has been optimized for 8, 16 and 32 kHz sampling rates. It provides a con-

stant bitrate as well as a variable bitrate coding scenario. The variable bitrate has

been designed to handle fricatives (see Section 3.6.5) at low bit rates.

26.1.9.2 G.729

Conjugate structure algebraic code excited linear prediction (CS-ACELP) is a stan-

dard low bit rate codec which produces an 8-kbps stream of audio. The ITU-T pro-

vides its full recommendations [17] for this codec as well as open-source C code

for its implementation. In addition, RFC-4749 [29] defines the payload for an ex-

tension of this codec (G.729.1) for the real-time transport protocol (RTP) – see

Section 26.3.5. This codec is generally used in voice over IP systems for its low bit

rate and relative high quality.

26.1.9.3 QCELP

Qualcomm code excited linear prediction (QCELP) [5] is a variable bit-rate speech

codec developed by Qualcomm1 in the mid 1990s. It is another CELP technique

(see Section 26.1.9) in the same class as the CS-ACELP codec discussed in Sec-

tion 26.1.9.2. It is embedded in the code division multiple access (CDMA) which is

1 Qualcomm is a registered trademark of Qualcomm Incorporated.
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a spread spectrum method used by the cellular telephone networks (CDMAOne and

later by CDMA2000) as the speech codec of choice. CDMAOne and CDMA2000

mobile networks, according to GSMA, make up less than 11% of the total mo-

bile network subscriptions. If we include all other flavors of networks derived from

CDMA, they would still make up less than 19% of the total world subscribers – see

Table 26.1. As we saw in Section 26.1.8, more than 80% are GSM users which use

one of the GSM audio codecs of Section 26.1.8.

However, it is important to note that they all use linear predictive coding in some

manner. The QCELP codec uses a variable transmission rate by adjusting the frame

rate with the pitch and loudness (see Section 5.1) of the audio being transmitted.

Effectively, the transmission rate will be higher for higher pitched audio and

lower for low-pitched audio. There is also a built-in silence detection to reduce the

transmission of audio on silent portions of the input signal. The codec uses a feature

extraction technique and transmits the features, instead of the sample points them-

selves. The features are then used to reconstruct the audio. As the name suggests,

a linear predictive coding technique (see Section 5.4) is used for feature extraction.

The source code for QCELP is available from the Qualcomm FTP site [25].

26.1.10 DTMF

Dual tone multi-frequency (DTMF) is a simple standard for transmitting tones which

represent the numbers and special characters on a dial pad of a telephone system.

The DTMF is only used for transmitting simple frequencies. It is designed to use two

simple tones being transmitted at once to represent each number on a keypad, with

the additional support of the asterisk (∗) and the pound or hash sign (#). These tone

combinations have been designed to reduce the chance of occurrence in a natural

speech and audio transmission setting so that errors are reduced in the recognition

of the intended codes. In Section 24.13.1 we discussed Goertzel’s algorithm which

is used to detect DTMF signals by producing efficient means for computing the dis-

crete cosine transform (DCT).

26.1.11 Others Audio Formats

As we shall see in Section 26.2.1, the WAV encapsulation format alone, at the time

of writing this textbook, supports 104 different codecs. Therefore, it is easy to see

that there are many different codec which may be utilized to encode and decode au-

dio and specifically speech. As we will see in the motivations of the Standard Audio
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Encapsulation Format (SAFE), discussed in Section 26.2.3, the need existed for try-

ing to consolidate the use of these formats. SAFE tries to simplify and standardize

the sharing of speech data by trying to focus on a handful of standard codecs based

on certain criteria, the most important of which are being royalty-free and simple to

implement.

26.2 Standard Audio Encapsulation Formats

There are several audio encapsulation formats which are basically wrappers, spec-

ifying the information about the actual audio formats they encompass. Of these

encapsulations, WAV is the most well-known. However, due to its ever-growing sup-

ported coder/decoders (codecs) sometimes it makes sense to choose an encapsu-

lation format with a more limited and controlled set of codecs. In the next few

sections, in addition to WAV, some other specialized encapsulation formats are dis-

cussed.

26.2.1 WAV

Waveform audio encapsulation format (WAV) was developed jointly by Microsoft

and IBM. 2 Of course WAV is really not an audio format, but an audio encapsulation

format. At the time of the writing of this textbook, it supports more than 104 au-

dio formats including the linear pulse code modulation (LPCM) format. The wave

header starts with the keyword, RIFF which stands for Resource Interchange File

Format, and continues with information about the size of the raw audio and the

codec being used, plus some extra information which may be written by the owner

of the audio. It allows for the specification of the number of channels. If there is

more than one channel, then the data alternates for the different channels along the

length of the audio stream. There are other pieces of information about byte align-

ment as well as sample size in bits.

Some vendors have bastardized the wave encapsulation to fit their own needs.

Therefore, it is not that uncommon to see wave files which do not decode properly.

In practice, it probably contains the most number of variations by vendors among

encapsulation standards.

2 Each of the company names listed is a trademark of its respective corporation.
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26.2.2 SPHERE

SPeech HEader REsources (SPHERE) is a standard audio header used by the Na-

tional Institute of Standards and Technology (NIST), in its speaker, speech and lan-

guage recognition evaluations. The SPHERE audio encapsulation generally starts

with a 1024 byte header and follows with raw audio samples. The SPHERE 2.6a

software package may be downloaded from the NIST site [21].

26.2.3 Standard Audio Format Encapsulation (SAFE)

One characteristic that distinguishes speaker recognition (identification, verifica-

tion, classification, tracking, etc.) from other biometrics is that it is designed to

operate with devices and over channels that were created for other technologies and

functions. That characteristic supports broad, inexpensive, and speedy deployments.

The explosion of mobile devices has exacerbated the mismatch problem and the

challenges for interoperability. Standard Audio Format Encapsulation (SAFE) [2]

was proposed to handle interoperability that supports all types of audio interchange

operations while, at the same time, limiting the audio formats to a small set of

widely-used, open standards.

The SAFE proposal has been incorporated into an ANSI standard for audio for-

mat of raw data interchange for use in speaker recognition3. Also, it has been incor-

porated in the speaker recognition data interchange draft standards by the ISO/IEC

JTC1/SC37 project 19794-13 (voice data) [12].

In this section we will discuss an audio format encapsulation which has been pro-

posed by the author of this book as a part of a draft standard developed by the M1

(biometrics) committee of the computing technology sector (InterNational Com-

mittee for Information Technology Standards) of the American National Standards

Institute (ANSI/INCITS) that is undergoing the public review process.[18] It was

also submitted to ISO/JTC1 SC37 (biometrics) as a U.S. contribution to the Data

Interchange Format for Voice.[12]

The main idea of this proposal was to be able to use exciting audio formats by

bringing them under one cover so that different needs of the speaker biometrics

community were met without having to resort to using proprietary formats. Con-

sidering the various scenarios for audio interchange, three different goals are most

3 Proposed by Homayoon Beigi and Judith Markowitz [2] and incorporated in whole, by the M1
(biometrics) committee of ANSI/INCITS, as part of INCITS 456: Speaker Recognition Format for

Raw Data Interchange (SIVR-1), announced in 2010 [18].



26.2 Standard Audio Encapsulation Formats 851

prevalent. Table 26.2 presents these scenarios and the proposed audio format(s) for

each case. This section describes the different cases in more detail.

Quality Format

Lossless Linear PCM (LPCM)

Amplitude Compression μ-law (PCMU) and A-law (PCMA)

Aggressive variable OGG Vorbis
bit-rate compression

Streaming OGG Media Stream

Table 26.2: Audio Interchange Scenarios

Macro Value

AF FORMAT UNKNOWN 0x0000

AF FORMAT LINEAR PCM 0x0001

AF FORMAT MULAW 0x0002

AF FORMAT ALAW 0x0003

AF FORMAT OGG VORBIS 0x0004

AF FORMAT OGG STREAM 0x1000

Table 26.3: Macros

26.2.3.1 The Uncompressed Non-Streaming Case

Linear Pulse Code Modulation (LPCM) is the method of choice for this kind of au-

dio representation. There is no compression involved in either the amplitude domain

or the frequency domain. The bare-minimum information needed in the header for

this format is the number of channels, the sampling rate and the sample size (in bits).

Table 26.4 includes this header data and some additional information. Microsoft

WAV is not included because it is not a format; it is more of an encapsulation. WAV

supports Linear PCM plus more than 104 other audio formats, most of which are

proprietary coder/decoders (codecs) and many of which use some method of com-

pression. Supporting WAV is tantamount to supporting all the codecs which WAV

supports. That is not in line with the basic goals of the encapsulation proposed here.

26.2.3.2 Amplitude Compression with No Streaming

Logarithmic PCM includes two algorithms which were proposed in the G.711 ITU-

T Recommendations of 1988 [13] operating at a sampling rate of 8-kHz with 8-bits
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per sample (64-kbps) with extensions to 80-kbps and 96-kbps as prescribed by the

wide-band extension of G.711.1 [30]. In this scenario, the amplitude of the signal

goes through some logarithmic transformation to increase the dynamic range of the

signal. This conserves the number of bits needed to represent a sample. These two

algorithms have been very effective techniques and have been used in telephony ap-

plications for many years. In the G.711 μ-law (PCMU) and A-law (PCMA) coding

algorithms, each sample is coded to be represented by 8 bits with an 8-kHz sam-

pling rate which amounts to a bit rate of 64 kbps. These two algorithms are known

as PCMU and PCMA, respectively. Most telephony products use either PCMU or

PCMA for capturing or recording audio. Supporting these algorithms should cover

a wide variety of applications.

26.2.3.3 Variable Bit-Rate

These days, the first format that may come to mind is MP3. Unfortunately, MP3 is

a proprietary format with many patents attached to it. In contrast, OGG Vorbis is an

open-source, variable bitrate format which, in most cases, performs as well as or

better than MP3, see section 26.1.6.

26.2.3.4 The Streaming Case

The OGG media stream [23, 6] may be used to stream audio (and video). It is in-

cluded here as the streaming encapsulation technique. It is completely open-source

and can be used with many codecs including MP3. It is, however, recommended

that OGG Vorbis be used in conjunction with the OGG media stream to achieve a

streaming objective.

26.2.3.5 Audio Encapsulation Header

Table 26.4 contains the fields of the proposed data header. It (in conjunction with

Table 26.3) constitutes the core of this proposal. After the proposed header, the data

format will follow, either as a whole or in the form of a stream which is handled by

the OGG header immediately following the proposed header.

In a typical speaker recognition session there may be different Instances of audio

which may have common information such as the sampling rate, the sample size,

the number of channels, etc. This proposal assumes that any such feature will be

set once as a default value and that it may be overridden later on, per instance, as

the local instance information may change from the overall SIV session information.
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Type Variable Description

U16 ByteOrder Is set to 0xFF00 by the audio file producer

U16 HeaderSize Size of the header in bytes

Boolean Streaming This will 0 for non-streaming and 1 for streaming. This
boolean variable is redundant since the AF FORMAT
for streaming audio is greater than 0x0FFF. However,
it is used for convenience.

U64 FileLengthInBytes In Bytes not including the header

U64 FileLengthInSamples In Number of samples

U16 AudioFormat See AF FORMAT macros

U16 NumberOfChannels Number of channels, N.B., Channel data alternates

U32 SamplingRate Sampling rate in samples per second – This is the audio
sampling rate and not necessarily the sampling rate of the
carrier which may be variable.

U64 AudioFullSecondsOf It is the truncated number of seconds of audio

U32 AudioRemainderSamples This is the number of samples of audio in the remainder
which was truncated by the above variable

U16 BitsPerSample Number of bits per sample, may be 0 for formats which
use variable bits

Table 26.4: Audio Format Header

ByteOrder is a two-byte, binary code which is written at the time of the creation

of the data. It is written as 0xFF00. When the data is read, if it is read as 0xFF00,

it means that the machine reading the data has the same byte order as the machine

writing the data. If it is read as 0x00FF, it means that the machine reading the data

has a different byte order than the machine writing the data and that triggers a byte-

swap which is applied to all subsequent information over one-byte in length.

FileLengthInSamples is a convenience measure for using LPCM, PCMU and

PCMA. For these cases, FileLengthInSamples may be deduced from the FileLength-

InBytes, NumberOfChannels, SamplingRate and BitsPerSample. It is not, however,

readily computable for formats with a variable bit-rate compression. In order for it

to be independent of the information which may be embedded in the encapsulated

headers of OGG Vorbis, OGG Media Stream or any other format which may be

added in the future, this value is included in the proposed header. Since FileLength-

InSamples is designed for convenience, it may be set to 0.

AudioFullSecondsOf and AudioRemainderSamples define FileLengthInSamples

when the number of samples is so large that an overflow may occur. AudioFullSec-

ondsOf is the total number of seconds (in integer form) where the fractional remain-

der has been truncated. AudioRemainderSamples denotes the number of samples

remaining in that truncated remainder. For example, if the total audio is 16.5 sec-

onds long and if the sampling rate is 8-kHz, then AudioFullSecondsOf will be 16.

The truncated remainder will then be 0.5 seconds which multiplied by 8000-Hz will

produce 4000 samples which means the value of AudioRemainderSamples is 4000.

This method of handling of the total number of seconds of audio avoids the use of
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floating point numbers which are most problematic in cross-platform interchanges.

It also supports very long files where specifying the total number of samples can

lead to an overflow.

26.2.3.6 Comments on Format Choices

It is important to note that Standard Audio Format Encapsulation (SAFE) includes

a number of lossless alternatives, including no compression through LPCM, am-

plitude compression through μ-law and a-law, and overall lossless compression

through FLAC. In addition, however, it allows for those who want aggressive com-

pression, to have access to it.

In its recommendations, SAFE does not single out Vorbis for lossless compres-

sion. It uses OGG Media which can carry Vorbis as well as Speex, etc. However, it

is true that a recommendation is in place for using Vorbis for the following reason:

As we saw in Section 26.1.9.1, Speex is a CELP-based compression algorithm. It

basically uses linear prediction to achieve its compression, much like many cellu-

lar compression algorithms such as QCELP and G.729. Since these algorithms are

designed to utilize human speech features picked by a specific coding technique

(namely CELP) to compress the audio, the decompressed audio only portrays what

these features leave allow. This promotes a bias toward a speech feature. Vorbis, on

the other hand, has been designed to handle a wider range of audio content (namely

HiFi music). This allows for less bias toward a specific set of speech models. In

addition, although the domain of SAFE is speaker recognition, we would have to

allow for event classification which is also a part of the speaker recognition arena.

Speex would degrade non-speech audio.

With all of the above said, one can still use Speex or other audio formats supp

supported by OGG media. The SAFE ANSI standard only specifies OGG Media

and not Vorbis specifically. It does, however, recommend Vorbis for the format used

within the OGG Media wrapper for a greater interoperability standardization and

less inherent bias in the compression. The specific details of the SAFE standard may

be found in a recent paper by Beigi and Markowitz [2].

26.3 APIs and Protocols

Despite the importance of these operations, there is remarkably little work on SIV

standards.[19] There have been a handful of Application Programming Interfaces

(APIs) which were either specifically created to apply to speaker recognition or

have some connection with the field, such as general biometric APIs. There have

also been certain protocols which were mainly developed for speech recognition
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and text to speech (TTS) applications, but have added a few anchors to give minimal

treatment of speaker recognition. These anchors are unfortunately very incomplete

and are mostly directed toward the partial treatment of specific branches of speaker

recognition – mainly speaker verification.

26.3.1 SVAPI

Speaker Verification Application Programming Interface (SVAPI) was developed

by a consortium of companies interested in doing speaker verification. Some of

these the same companies which were involved in the core development of another

doomed API, namely, the Speaker Recognition API (SRAPI). The work on SVAPI

started in 1996 and SVAPI 1.0 was made available in June, 1997. Version 2.0 which

was completed in 1999 was finally abandoned in 2003. The core members of the

consortium were Novell, which handled the administrative and distribution work,

and IBM, Dialogic, ITT Industries, Motorola, Texas Instruments, and T-NETIX Inc. 4

Some U.S. government organizations were also involved.

The idea behind this API was to allow Value Added Resellers (VARs) and In-

dependent Software Vendors (ISVs) to integrate products with speaker verification

technology without being tied to a proprietary API. The main language of the SVAPI

was C ++. It tackled all aspects of speaker verification including the data manip-

ulation and storage. Of course, it allowed enough flexibility for glue codes to be

written so that each vendor’s proprietary information would still be carried along in

the predefined structures of the API. The API was very well designed, but was quite

complicated and the complication may have been what lead to its final demise. It

added quite a large baggage to very simple operations and the companies that devel-

oped it finally abandoned it. Although SVAPI stands for Speaker Verification API,

but it was quite capable of handling Speaker Identification, Classification and other

modalities of Speaker Recognition.

26.3.2 BioAPI

The ISO/IEC Joint Technical Committee, JTC1 SC37, has been developing another

API which is aimed at handling a high-level generic biometric authentication model

which would be suitable for any form of biometric technology. At the time of the

writing of this book, version 1.1 of the BioAPI was available.[11] It covers enroll-

ment, identification, and verification for generic biometrics. However, since the con-

4 Each of the company names listed is a trademark of its respective corporation.
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sortium was formed mostly by fingerprint recognition organizations and since they

tried to cover similar biometrics, temporal associations were not considered. So,

although BioAPI claims to be compatible with any generic biometric, it is really

not suitable for Speaker Recognition. For example, it contains no streaming capa-

bilities. Also, it is not apparent if any work is being done to extend it to handle

temporal events or not.

At the present, speaker recognition is not very high on the list of this consor-

tium. Section 26.2.3 shows that there is some preliminary interest in audio by the

same technical committee, however, this interest is quite minimal. BioAPI uses

Common Biometric Exchanged Formats Framework (CBEFF) which is going to

be extended to handle speaker recognition. Work is on the way in collaboration with

the VoiceXML forum to make this extension. Section 26.2.3 discusses the audio en-

capsulation proposal which is being considered as a part of CBEFF. There is hope

that once CBEFF is extended to handle speaker recognition specific data at which

time BioAPI will be closer to handling biometrics.

26.3.3 VoiceXML

Voice Extensive Markup Language (VoiceXML) is a markup language which was

basically conceived around 1999 for creating ASR and TTS applications. It has been

developed and maintained by the World Wide Web Consortium (W3C) and the Inter-

net Engineering Task Force (IETF).

Already, myriads of speech applications have been developed using VoiceXML

and it has been adopted by a great number of vendors, VARs and SIVs.[33] Since the

middle of 2006, a the VoiceXML Forum Speaker Biometrics Committee has been

working on the inclusion of SIV in the next version of VoiceXML. VoiceXML ver-

sion 3.0 has included the recommendations of this committee.[4] The SIV module of

VoiceXML 3.0 [37] possesses the three minimal functionalities of enrollment, ver-

ification, and identification. Unfortunately, it does not include any more advanced

functionalities such as classification, segmentation, etc. It is hoped that the standards

in this arena would be combined with the ANSI, ISO, and BioAPI. If that happens,

it will highly increase the spreading of speaker recognition in the industry.

There is some collaboration among the VoiceXML Forum, BioAPI, ANSI, and ISO

activities. At the present, the inclusion of SIV capabilities in CBEFF, discussed in

sections 26.3.2 and 26.2.3, seems to provide the best chance in establishing speaker

recognition support for the discussed protocols, APIs, and languages.
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26.3.4 MRCP

Media resources control protocol (MRCP) started as a control protocol for handling

text to speech and speech recognition. In fact version 1.0 [28] does not touch upon

speaker recognition at all. At the time of writing this book, version 2.0 of MRCP

was at its final development stages. MRCP 2.0 has been designed by a public fo-

rum. It has capabilities for doing text to speech (TTS), automatic speech recognition

(ASR), recording and a limited capability for doing speaker identification and ver-

ification (SIV). It uses information from Section 6 of RFC-4313 [22], as reference,

for developing the SIV part of the protocol. Since version 2 is not complete, only a

draft is available at [3].

MRCP communicates by sending messages using the transmission control pro-

tocol (TCP) or alternatively through transport layer security (TLS) for secure in-

teractions. In fact, MRCPv2 borrows functionalities from HTTP headers. It sup-

ports independent and simultaneous ASR and SIV sessions. Text-dependent and text-

independent modalities are supported by this version. The verification module has

enrollment and verification controls. The speaker identification part of the controls

is quite limited. In fact, it is treated as a special case of speaker verification. Un-

fortunately this is the exact opposite of the true nature of the two functionalities.

Indeed speaker verification should be a special case of identification. However, in

the perspective of MRCPv2, identification is treated as verification where the ID to

be matched is a group ID including all the speakers to be used as potential targets!

MRCPv2 expects cookies to be used for server authentication. It does not handle

anything related to the security of the audio. It is considered to be handled by the

user. Also, speaker models are never handled by the client or the server.

The protocol is compatible with VoiceXML (see section 26.3.3). VoiceXML may

be built on top of the MRCP client to be able to use higher level control of the MRCP

resources. There are 4 main categories of resources in MRCP, “synthesizer resource,

recognizer resource, recorder resource, and speaker identification and verification

resource.” The resource for SIV is called speakverify and it has the following capa-

bilities, “SIV using one or multiple utterances, simultaneous recognition and record-

ing, using live or buffered utterances, voiceprint manipulation: creation, querying,

and deletion.” MRCP also supports the natural language semantics markup lan-

guage (NLSML) which is an extensible markup language (XML) data format capa-

ble of storing enrollment information as well as verification results. There are plans

to support extensible multimodal annotation (EMMA) in the future either as an al-

ternative to NLSML or in lieu of it.

Unfortunately, the SIV feature of MRCP is quite limited and does not seem to be

a priority for the community, developing the protocol. Still, most of the efforts of the

forum is focused on the TTS and ASR portion of the protocol. For TTS, the speech

synthetic markup language (SSML) [36] is used, which is an XML based language

standardized by the W3C. In the same spirit, the W3C Grammar XML (GrXML) [35]
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is used to configure the speech recognition grammars. Future versions of MRCP will

be probably use VoiceXML 3.0 and higher which have some speaker recognition ca-

pabilities built-in. UniMRCP [31] is an open source implementations of MRCP.

26.3.5 Real-time Transport Protocol (RTP)

RTP was first introduced by RFC-1889 [7] in 1996 and later superseded by a stan-

dard described in RFC-3550 [27]. It is a transport protocol for real-time applications

interested in streaming multimedia. RFC-3550 [27] describes two parts. The first is

the RTP data transfer protocol and the second is the RTP control protocol. Some

applications may use both protocols, while others may only be interested in the data

transfer protocol. For example, MRCP (Section 26.3.4) replaces the RTP control

protocol with its own control protocol and only uses the RTP data protocol.

In defining the RTP data, we are concerned with payload type identification, se-

quence numbering, timestamping and delivery monitoring. Generally, since RTP is

concerned with transporting multimedia data such as audio and video, applications

run in conjunction with the user datagram protocol (UDP) [24] to be able to utilize

the checksum and multiplexing features of UDP.

RTP is quite powerful and versatile and was designed with multi-destination

conferencing applications in mind and it allows for multicasting to several desti-

nations [27]. However, it is important to note that RTP, by itself, does not have any

quality of service (QOS) capabilities. It utilizes the services of the lower-level layer

on which it is built, such as UDP.

26.3.6 Extensible MultiModal Annotation (EMMA)

Extensible multimodal annotation (EMMA) [34] is a markup language which has

been introduced as a recommendation of the multimodal interaction working group

of the World Wide Web Consortium (W3C) to facilitate web access using multimodal

interaction. EMMA includes hooks in order to be able to use audio transmission

mechanisms such as the use of the session initiation protocol (SIP) voice over IP

protocol utilizing the Real-time Transport Protocol (RTP) for audio transmission. It

does not define any audio transmission protocol. As it is apparent from the use of

RTP within SIP, EMMA only wraps other standards which themselves are usually

wrappers for transmitting audio and not the actual audio format itself. However, it

does allow for the TCP configuration information and the indication of the sampling

rate and other data specific information. The work on EMMA is ongoing and by no
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means complete.
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Problems of Chapter 7

Problem 7.1

Show that

H (X ,Y |Z) = H (X |Z)+H (Y |X ,Z) (S.1)

Solution:

If we apply the chain rule for conditional entropy, given by Equation 7.35, to Equa-

tion S.1, then the left side of Equation S.1 may be written as,

H (X ,Y |Z) = H (X ,Y,Z)−H(Z) (S.2)

and the right hand size as,

H (X |Z)+H (Y |X ,Z) = ����H (X ,Z)−H (Z) (S.3)

+ H (X ,Y,Z)−����H (X ,Z) (S.4)

Equations S.2 and S.4 are equal, confirming the identity in Equation S.1.

Problem 7.2

If I (X ;Y ) is the mutual information between X and Y , show that,

I (X ;Y ) = H (X)−H (X |Y ) (S.5)

= H (Y )−H (Y |X) (S.6)

Solution:

Let us start with the definition of mutual information, given by Equation 7.108 and

repeated here for convenience,

I (X ;Y ) = I (Y ;X)

=
n

∑
i=1

m

∑
j=1

p(Xi,Yj) ln
p(Xi,Yj)

p(Xi)p(Yj)
(S.7)
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Using the identity in Equation 6.51, we may rewrite Equation S.7 as follows,

I (X ;Y ) = I (Y ;X)

=
n

∑
i=1

m

∑
j=1

p(Xi,Yj) ln
p(Xi|Yj)���p(Yj)

p(Xi)���p(Yj)
(S.8)

=
n

∑
i=1

m

∑
j=1

p(Xi,Yj) ln p(Xi|Yj)−
n

∑
i=1

(
m

∑
j=1

p(Xi,Yj) ln p(Xi)

)
(S.9)

Using the fact that ∑
m
j=1 p(Xi,Yj) = p(Xi) and rearranging the two main parts of

Equation S.9, we have,

I (X ;Y ) = I (Y ;X)

= −
m

∑
j=1

p(Xi) ln p(Xi)−
(

−
n

∑
i=1

m

∑
j=1

p(Xi,Yj) ln p(Xi|Yj)

)
(S.10)

= H (X)−H (X |Y ) (S.11)

Similarly, if we use the identity, p(Xi,Yj) = p(Yj|Xi)p(Xi) instead of p(Xi,Yj) =
p(Xi|Yj)p(Yj), in Equation S.7, we shall have,

I (X ;Y ) = I (Y ;X)

= H (Y )−H (Y |X) (S.12)

Problems of Chapter 14

Problem 14.1

neural network used to produce an exclusive OR logic. Table 14.1 shows the in-

put/output relationship for a two-input exclusive OR unit for the four possible com-

binations of patterns. Write the expression for the objective function in terms of true

output and the expected output of the system. Also, write the expressions for the

state vector and the gradient of the objective function with respect to the state vec-

tor.

Solution:

The objective function of the minimization problem is given by,

E =
4

∑
p=1

(
o2

p1 − tp1

)2
(S.13)

and the state super vector is constructed by the following,

φφφ 1 =
[
φ 1

1 ,φ 1
2

]T
(S.14)

φφφ 2 =
[
φ 2

1

]
(S.15)
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ωωω1 =
[
ω1

11,ω
1
12,ω

1
21,ω

1
22

]T
(S.16)

ωωω2 =
[
ω2

11,ω
2
12

]T
(S.17)

x =
[
φ 1

1 ,φ 1
2 ,ω1

11,ω
1
12,ω

1
21,ω

1
22,φ

2
1 ,ω2

11,ω
2
12

]T
(S.18)

From Equation 14.10,

∂Ep

∂ (x)[ j]

= 2
(
o2

p1 − tp1

) ∂o2
p1

∂ (x)[ j]

(S.19)

and from Equations 14.24- 14.26,

∂o2
p1

∂φ 2
1

= o2
p1

(
1−o2

p1

)
(S.20)

∂o2
p1

∂ω2
11

= o1
p1 o2

p1

(
1−o2

p1

)
(S.21)

∂o2
p1

∂ω2
12

= o1
p2 o2

p1

(
1−o2

p1

)
(S.22)

∂o2
p1

∂φ 1
1

=
∂o2

p1

∂o1
p1

∂o1
p1

∂φ 1
1

= ω2
11 o2

p1

(
1−o2

p1

)
o1

p1

(
1−o1

p1

)
(S.23)

∂o2
p1

∂φ 1
2

=
∂o2

p1

∂o1
p2

∂o1
p2

∂φ 1
2

= ω2
12 o2

p1

(
1−o2

p1

)
o1

p2

(
1−o1

p2

)
(S.24)

∂o2
p1

∂ω1
11

=
∂o2

p1

∂o1
p1

∂o1
p1

∂ω1
11

= ω2
11 o2

p1

(
1−o2

p1

)
ip1 o1

p1

(
1−o1

p1

)
(S.25)

∂o2
p1

∂ω1
12

=
∂o2

p1

∂o1
p1

∂o1
p1

∂ω1
12

= ω2
11 o2

p1

(
1−o2

p1

)
ip2 o1

p1

(
1−o1

p1

)
(S.26)

∂o2
p1

∂ω1
21

=
∂o2

p1

∂o1
p2

∂o1
p2

∂ω1
21

= ω2
12 o2

p1

(
1−o2

p1

)
ip1 o1

p2

(
1−o1

p2

)
(S.27)
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∂o2
p1

∂ω1
22

=
∂o2

p1

∂o1
p2

∂o1
p2

∂ω1
22

= ω2
12 o2

p1

(
1−o2

p1

)
ip2 o1

p2

(
1−o1

p2

)
(S.28)

The above equations may be used to construct ∇xE.

Problems of Chapter 24

Problem 24.1

Prove Theorem 24.1, namely, show that,

|s1s2| = |s1| |s2| (S.29)

Solution:

Write the left side of Equation S.29 in terms of the real and imaginary parts of the

variables involved,

|s1s2| = |(σ1 + iω1)(σ2 + iω2)|
= |σ1σ2 + iσ1ω2 + iω1σ2 −ω1ω2|
= |(σ1σ2 −ω1ω2)+ i(σ1ω2 +ω1σ2)|
=
√

(σ1σ2 −ω1ω2)2 +(σ1ω2 +ω1σ2)2

=
√
σ2

1σ
2
2 +ω2

1ω
2
2 −�����

2σ1σ2ω1ω2 +σ2
1ω

2
2 +ω2

1σ
2
2 +�����

2σ1ω2ω1σ2

=
√
σ2

1σ
2
2 +ω2

1ω
2
2 +σ2

1ω
2
2 +ω2

1σ
2
2 (S.30)

Now do the same for the right hand side of Equation S.29,

|s1| |s2| = |σ1 + iω1| |σ2 + iω2|
=
√

(σ2
1 +ω2

1 )
√

(σ2
2 +ω2

2 )

=
√
σ2

1σ
2
2 +σ2

1ω
2
2 +σ2

2ω
2
1 +ω2

1ω
2
2

=
√
σ2

1σ
2
2 +ω2

1ω
2
2 −�����

2σ1σ2ω1ω2 +σ2
1ω

2
2 +ω2

1σ
2
2 +�����

2σ1ω2ω1σ2

=
√
σ2

1σ
2
2 +σ2

1ω
2
2 +ω2

1σ
2
2 +ω2

1ω
2
2 (S.31)

We have arrived at the same expression in Equations S.30 and S.31, proving Equa-

tion S.29, hence proving Theorem 24.1.

Problem 24.2

Consider,

H(s) = U(σ ,ω)+ iV (σ ,ω) (S.32)
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where

U(σ ,ω) =
σ3 −ω3

σ2 +ω2

V (σ ,ω) =
σ3 +ω3

σ2 +ω2

and show that meeting the Cauchy-Riemann Conditions is not sufficient for a func-

tion, H(s), to be analytic. This problem relates to Theorem 24.5.

Solution:

First, let us write the limit versions of the partial derivatives, Uσ ,Uω ,vσ , and Vω :

Uσ = lim
Δσ→0

(σ +Δσ)3 −ω3

(σ +Δσ)2 +ω2
− (σ3 −ω3)

(σ2 +ω2)
(S.33)

Uω = lim
Δω→0

σ3 − (ω +Δω)3

σ2 +(ω +Δω)2
− (σ3 −ω3)

(σ2 +ω2)
(S.34)

Vσ = lim
Δσ→0

(σ +Δσ)3 +ω3

(σ +Δσ)2 +ω2
− (σ3 +ω3)

(σ2 +ω2)
(S.35)

Vω = lim
Δω→0

σ3 +(ω +Δω)3

σ2 +(ω +Δω)2
− (σ3 +ω3)

(σ2 +ω2)
(S.36)

First, let us consider the point at the origin of the complex plane, namely, s = 0,

Uσ

∣∣
σ=0,ω=0

= lim
Δσ→0

−(Δσ)3

(Δσ)3
= 1 (S.37)

Uω

∣∣
σ=0,ω=0

= lim
Δω→0

−(Δω)3

(Δω)3
= −1 (S.38)

Vσ
∣∣
σ=0,ω=0

= lim
Δσ→0

−(Δσ)3

(Δσ)3
= 1 (S.39)

Vω
∣∣
σ=0,ω=0

= lim
Δω→0

(Δω)3

(Δω)3
= 1 (S.40)

Therefore, since at s = 0, Uσ = Uω and Uω = −Vσ , the Cauchy-Riemann condi-

tions are satisfied. Now, let us take s → 0 along two different paths in the complex

plane,

1. s → 0 along the line, ω = σ ,

s = σ + iω = σ + iσ = σ(1+ i) (S.41)
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By setting ω = σ in Equation S.32,

H(s)

∣∣∣∣
ω=σ

= iσ (S.42)

and the derivative,

H(s)

ds

∣∣∣∣∣
s→0,ω=σ

= lim
s→0

H(s)−H(0)

s−0

= lim
s→0
ω=σ

iσ −0

σ(1+ i)−0

=
i

1+ i
(S.43)

2. s → 0 along the line, ω = 0, namely, the�-axis,

s = σ + iω = σ + i0 = σ (S.44)

The function,

H(s)

∣∣∣∣
ω=0

= σ + iσ

= σ(1+ i)

and the derivative,

H(s)

ds

∣∣∣∣∣
s→0,ω=0

= lim
s→0

H(s)−H(0)

s−0

= lim
s→0
ω=0

σ(1+ i)−0

σ −0

= 1+ i (S.45)

We see from Equations S.43 and S.45 that the
dH(s)

ds
|s=0 does not exist while the

Cauchy-Riemann conditions are satisfied at s = 0. Therefore, satisfying the Cauchy-

Riemann conditions is not sufficient for a function to be analytic.

Problem 24.3

Given U(σ ,ω) = eσ cos(ω), find the harmonic conjugate V (σ ,ω). This problem is

related to Definition 24.37

Solution:

U = eσ cos(ω)

Uσ = eσ cos(ω)

Uω = −eσ sin(ω)

Uσσ = eσ cos(ω)

Uωω = −eσ cos(ω)



Solutions 907

∇2U = Uσσ +Uωω

= eσ cos(ω)− eσ cos(ω)

= 0

Therefore, the function may be analytic, see Theorem 24.6.

So the Cauchy-Riemann conditions are satisfied, namely,

Uσ = Vω

Uω = −Vσ

Vω = eσ cos(ω) =⇒ V = eσ sin(ω)+ f (σ)

Vσ = eσ sin(ω) =⇒ V = eσ sin(ω)+g(ω)

eσ sin(ω)+ f (σ) = eσ sin(ω)+g(ω) =⇒ f (σ) = g(ω) ∀ σ ,ω

(S.46)

∴ f (σ) = g(ω) = C =⇒ V (σ ,ω) = eσ sin(ω)+ c

H(s) = eσ cos(ω)+ ieσ sin(ω)+ iC

= eσ (cos(ω)+ isin(ω))+ iC

= eσeiω + iC

= eσ+iω + iC

= es + iC

∴ H(s) = es = eσ [cos(ω)+ isin(ω)]

This has the interesting consequence that sin(s) and cos(s) where s ∈ �, could

become ∞.

Problem 24.4

What is the period of the exponential function,

H(s) = es (S.47)

Solution:

cos and sin have a period of 2π . Also,

cos(2kπ)+ isin(2kπ) = 1 (S.48)

where k in any integer.

Writing Equation S.48 in polar coordinates, we have, ei2kπ = 1. Therefore, since

we may multiply 1 by es without changing its value, we may write,
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esei2kπ = es = es+i2kπ (S.49)

Equation S.49 establishes that the period of es is i2π .

Problem 24.5

Show that the only zeros of complex functions sin(s) and cos(s) are the zeros of the

real sine and cosine functions.

Solution:

If sin(s) = 0 then eis − e−is = 0 or ei2s = 1.

So, 2is = 2ikπ =⇒ s = kπ,k = {0,±1,±2, · · ·}.

If cos(s) = 0 then ei2s = −1 or s = π
2 + kπ,k = {0,±1,±2, · · ·}.

Problem 24.6

Find the z-transform of,

h(t) = cos(ωt) (S.50)

Solution:

Write the expression for z-transform of the output of an ideal sampler,

H(z) =
∞

∑
n=0

cos(ωnT )z−n

=
∞

∑
n=0

eiωnT + e−iωnT

2
z−n

=
1

2

[
z

z− eiωT
+

z

z− e−iωT

]
=

q

2

[
z

z− (cos(ωT )+ isin(ωT ))
+

z

z− (cos(ωT )− isin(ωT ))

]
=

1

2

[
z2 − zcos(ωT )+�����

zisin(ωT )+ z2 − zcos(ωT )−�����
zisin(ωT )

z2 −2zcos(ωT )+1

]
=

1

�2

[
�2z2 −�2zcos(ωT )

z2 −2zcos(ωT )+1

]
=

z(z− cos(ωT ))

z2 −2zcos(ωT )+1
(S.51)
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L1 Soft Margin SVM, 501

L2 Soft Margin SVM, 502

Lp

Distance, 303

Norm, 637

Lp Distance, 237

N-class

Problem, 518

Γ -class

Problem, 518

α Order Entropy, 279

χ2 Directed Divergence, 310

χα Divergence, 310

δ Divergence, 309

μ-Law, 851

PCM, 843

Lp Class of Functions, 236

Lp Space, 236

σ -Algebra, 214

σ -Field, 214

2-Wire Telephone Channel, 532

2-class

Problems, 493

3G, 845

4-Wire Telephone Channel, 532

4G, 845

A-Law, 851

A-Law PCM, 843

a.s.

Convergence, 251

AANN, 469

abbreviations, list of, xxvii

Absolute

Integral

Bound, 678

Absolute Continuity of Measures, 229

Absolutely Integrable, 673

acronyms, list of, xxvii

Activation Function, 466

Nonlinear, 465

Adaptation

MAP, 603

MAPLR, 607

MCE, 605

Over Time, 601

Speaker, 530

WMLLR, 607

Adaptive

Differential

PCM, 845

Learning Control, 465

Adaptive Test Normalization, 582

Adenine, see DNA Adenine

Adjoint Matrix, 636

ADPCM, 845

AEP, 274

Age

Classification, 8

Aging, 595

AIC, 350

Akaike

Information Criterion, see AIC

Alarm, 313

Algebra, 212

Boolean, 212

Algorithm

Baum-Welch, 433

Clustering

Efficient k-Means, 368

EM, 381

Expectation Maximization, see EM

Fuzzy k-Means, 377

GEM, 387
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Generalized Expectation Maximization,
see GEM

Global k-Means, 368

Hybrid, 380

K-Harmonic Means, 378

k-Means, 360

k-Means Overpartitioning, 364

k-Means Wrappers, 368

k-Means++, 371

Kernel k-Means, 369

LBG, 372

Linde-Buzo-Gray, 372

Modified k-Means, 365, 366

Rough k-Means, 375

x-Means, 372

Fast

Fourier Transform, 736

FFT, 736

Forward Pass, 430

Forward-Backward, The, 433

Goertzel, 749

Goertzel’s, 848

Levinson-Durbin, 183

Match, 430

Schür Recursion, 183

Viterbi, 432

Ali-Silvey

Divergence, 308

Aliasing, 99

All Pole, 176

All-Pole, 178, 183

All-Zero, 178

Allophone, 108

Almost Everywhere, 229

Almost Surely

Convergence, 251

Alternative Hypothesis, 313

Alveolar

Sounds, 117

Plato-Alveolar, 117

Post Alveolar, 118

Alveolar Ridge, 48

Amerindian Languages, 112

Amplitude

Compression, 851

Finite, 655

Infinite, 655

Quantization

Error, 85

Analysis

Factor, 404, 530

Latent, 530

FFT, 736

Goertzel, 749

LPC, 176

Cepstral Features, 176

Perceptual Linear Predictive, 190, 191

PLP, 190

Principal Component, 394

Nonlinear, 399

Spectral, 157, 168

Analytic

Function, 665

Analyticity, 665

Exponential

Function, 671

Pointwise, 665

Trigonometric

Functions, 672

Anatomy, 43

Auditory Cortex, 66

Primary, 66

Secondary, 66

Tertiary, 66

Auditory System, 49

Brain, 66

Ear, 49

Ear, 49

Language Production, 64

Language Understanding, 69

Neural, 65

Speech, 43

Speech Perception, 69

Vocal System, 44

Angola, 123

Annealing, 811

of Steel, 367

Process, 367

Simulated, 367, 474, 811

Anti-Aliasing, 99, 153

Aphasia, 59

Aconduction, 69

Leborgne, 60

API, 854, 855

Applications, 16

Access Control, 19

Audio Indexing, 19

Conferencing, 21

Financial, 16

Forensic, 18

Health, 16

Indexing, 19

Lawful Intercept, 20

Legal, 18

Other, 23

Proctorless Oral Testing, 21

Security, 19

Speaker Diarization, 19
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Speaker Indexing, 19

Surveillance, 20

Teleconferencing, 21

Video Indexing, 19

AR, 176, 179

Arimoto

Divergence, 308

Arithmetic

Mean, 257

ARMA, 178

Articulation, see Phone

Associativity

Convolution, 689

Scaling, 689

Assumption

Regularity, see Regularity Assumption

Asymptotic

Equipartition

Property, 274

Atoms of a Sample Space, 270, 282

ATP, 52

Audio

Encapsulation, 849

Header, 852

WAV, 849

Format, 842

Other, 848

Level, 564

Sampling, 77

Segmentation, 532

Volume, 564

Audio Format

HE-AAC, 844

Audio Indexing, 19

Auditory Cortex, 49, 66, 69

Primary, 66

Secondary, 66, 68

Tertiary, 66, 68

Auditory Nerve Bundle, 49

Auditory Perception, 144

Auditory System, 43

Auricle, 25

Authentication, 3

Auto Associative

Neural Networks, see AANN

Autocorrelation Matrix, 182

Autoregression, 176

Autoregressive Model, see AR

Autoregressive Moving Average, see ARMA

Axon, 51

Myelin Layer, 53

Myelin Sheath, 53

Ranvier Node, 53

Schwann Cell, 53

Sheath, 53

Background

Model, 527

Universal, 527

Background Model, 6

Background Models, 528

Bacteria

Pathogenic, 25

Banach Space, 218

Bandlimited, 79

Bandwidth, 79

Bark Frequency Warping, 191

Bark Scale, 148

Bark Warping, 169

Bartlett Window, 163, 165

Base

Countable, 207

Basic

Clustering, 359

Basis

Orthonormal, 396

Baum-Welch, 433

Bayes

Thomas, 225

Bayes Theorem, 225

Bayesian

Classifier, 322

Decision Theory, 316

Binary, 320

Information Criterion, see BIC

Beckman, 798

Bell Laboratories, 486

Beltrami, E., 639

Bernoulli

Random

Process, 414

Random Variable, 247

Bessel

Function, 85

Identity, see Identity

Inequality, see Inequality

Bessel’s Inequality, see Inequality

BFGS, 474, 783–785, 789

Bhattacharyya

Divergence, 307

Bhattacharyya Distance, 306

Bibliography, 861

BIC, 353

Bilabial

Sounds, 118

Binary

Channel

Symmetric, 284
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Hypothesis

Bayesian Decision, 320

Symmetric Channel, 284

Biometric

Encryption, 625

Menagerie, 537

Privacy, 624

Biometrics, 3, 23

Ear, 25

Face, 27

Finger Geometry, 30

Fingerprint, 28

Gait, 33

Hand Geometry, 30

Handwriting, 34

Iris, 30

Keystroke Recognition, 35

Multimodal, 26, 35

Palm, 28

Retina, 31

Signature, 34

Thermographic Imaging, 32

Vein, 32

Bit

Rate

Variable, 852

Blackman Window, 165

Boolean Algebra, 212

Borel σ -Field, 214

Borel Field, 214

Borel Sets, 214

Bound

Absolute

Integral, 678

Boundedness, 657

Continuous

Function, 657

Bounds

Risk, 493

Brain, 51

Arcuate Fasciculus, 69

Auditory Cortex, 66

Broca’s Area, 59, 64

Brodmann Areas, 57

Cerebrum, 54

Corpus Callosum, 69

Diencephalon, 54

Epithalamus, 54

Fissure

Sylvian, 66

Forebrain, 54

Frontal Lobe, 55

Function Localization, 58

Geschwind’s Territory, 69

Hindbrain, 54

Hypothalamus, 54

Lateral Sulcus, 56, 66

Lobe

Frontal, 66

Occipital, 66

Parietal, 66

Temporal, 66

Medulla Oblongata, 54

Mesencephalon, 54

Midbrain, 54

Occipital Lobe, 55

Parietal Lobe, 55

Pons, 54

Prosencephalon, 54

Rhombencephalon, 54

Stem, 54

Sylvian Fissure, 56

Telencephalon, 54

Temporal Lobe, 55

Thalamus, 54

Ventriculus Tertius, 54

Wernicke’s Area, 69

Branch and Bound, 816

Branches, 5

Broca, 59

Broca’s Area, see Brain

Brodmann Areas, see Brain

Brodmann Cytoarchitectonic Areas, 57

Broyden, 474, 783, 787

Family, 791

Broyden-Fletcher-Goldfarb-Shanno, see BFGS

Cadence, 33

Canary Islands, 63, 119, 137

Cancellation

Echo, 564

Capacity

Learning, 350, 486, 489, 493

Carbon Button Microphone, 613

Carbon Microphone, 613

Caret, 55

Cartesian

Product, 216

Space, 232

Product Space, 488

Categories, 5

Cauchy

Integral

Formula, 679

Theorem, 676, 683

Sequence, 251

Cauchy-Riemann

Conditions, 667
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Theorem, 667–669

CDMA

CDMA2000, 847

CDMAOne, 847

CDMA2000, 847

CDMAOne, 847

CELP, 847

CS-ACELP, 847

QCELP, 847

Qualcomm, 847

Central Asia, 129

Cepstra, 173

Cepstral

Mean

Normalization, 569

Mean and Variance Subtraction, 569

Mean Subtraction, 567, 569

Cepstral Coefficients, 173

Cepstral Features, 173

Cepstrum, 173, 580

Cerebral Cortex, 55

Cerebrum, 54

Chain

Markov, 415, 643

Rule, 471, 664

Chameleons, 537

Channel

Binary

Symmetric, 284

Discrete, 282

Memoryless, 283

Memoryless, 432

Symmetric

Binary, 284

Characteristic Function, 696

Choice, 269

Cholesky

Decomposition, see Cholesky Factorization

Factorization, 623, 813

Circle

Complex

Plane, 650

Class, 205, 207

Lp, 236

Closure, 208

Equivalence, 208

Regression, 606

Class Normalization, 582

Classification, 3

Age, 8

Event, 8, 550

Gender, 8

Sequences, 328

Sex, 8

Speaker, 8, 550

Classifier

Bayesian, 322

Clicks

Consonants, 120

Closed, 208

Closet-Set Identification, 7

Cloud Detection, 486

Cluster Normalization, 582

Clustering

Agglomerative, 389

Basic Techniques, 359

Bottom-Up, 389

Divisive, 389

Hierarchical, 388

Merging, 364

Supervised, 357

Top-Down, 389

Unsupervised, 341, 357, 359

CMA, 580

CNG, 563

Cochlea, 145, 146

Cochlear Fenestra Ovalis, 145

Code

Convolutional, 432

Code Excited

Linear Prediction, see CELP

Codebook, 553

CoDec, 842

Coder/Decoder, see CoDec

Coding

Difference, 845

Linear Predictive, 176

Coefficient

Correlation, 245

Integral

Equation, 695

Coefficients

Cepstral, 176

LAR, 176

Linear Predictive

Cepstral, 176

Coding, 176

Log Are Ratio, 176

LPC, 176

PARCOR, 176

Partial Correlation, 176

Reflection, 186

Cohort, 6, 529

Coin Toss

Example, 414

Comfort Noise Generation, 563

Commutativity

Convolution, 689
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Comparison

Model Performance, 453

Compensation, 561

Complementarity

Condition, 825

Strict, 825

Complete

Metric Space, 218

Space, 216, 220, 693

Completeness, 216, 218, 220

Relation, 694

Strong, 218

Weak, 218

Complex

Function

Differentiation, 663

Number

Magnitude, 648

Modulus, 648

Numbers

Modulus of Product, 650

Plane

Circle, 650

Triangular Inequality, 649

Variables, 648

Distance, 650

Product, 649

Properties, 649

Quotient, 649

Compression

Amplitude, 851

Computer

Von Neumann, 465

Concave, 773

Function, 661, 773

Strictly, 661

Concavity

of Functions, 658

Condition

Complementarity, see Complementarity
Condition

Mercer, 506

Quasi-Newton, 779

Condition Number, 791

Conditional

Expectation, 240

Expected

Value, 240

Probability, 224

Conditional Entropy, 277

Conditions

Cauchy-Riemann, 667

Dirichlet, 709, 710

Regularity, see Regularity Conditions

Wolfe-Powell, 783

Conferencing, 21

Confluent State, 458

Conjugacy, 638

Conjugate

Direction

Gradient-Free, 804

Directions, 800

Gradient, 474

Continuous Partan, 802

Fletcher-Reeves, 798

Iterative Partan, 802

Harmonic, 671

Conjugate Duality, 831

Conjugate Gradient, 793

Conjugate Vectors, 638

Consistent

Estimate, 253

Statistic, 253

Consonant, 119

Consonants

Clicks, 120

Nasal, 139

Non-Pulmonic, 120

Clicks, 120

Ejectives, 121

Voiced Implosives, 120

Pulmonic, 115

Constant Modulus Algorithm, see CMA

Constrained

Minimization, 820

Optimization, 814, 820, 835

Constraint

Qualification, 827, 835

Constraints

Active, 495, 822, 825

Equality, 815, 819–822, 833

Linearized, 818

Holonomic, 816

Inactive, 825

Inequality, 815, 816, 822, 824, 834

Linearized, 818

Linearized, 819

Non-Holonomic, 816

Continuity, 652

Class, 657

Continuity, 657

Degree of, 657

Equivalent, 229

Function, 653

In an Interval, 657

Piecewise, 658

Relative Absolute

of Measures, 229
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Continuous

Entropy, 284

Function, 657, 665

Random Variable, 226, 227

Source, 269

Continuous Variable

Limit

Function, 651

Contour

Length, 677

Convergence

a.s., 251

Almost Surely, 251

Global, 835

in Probability, 250, 251

in the Mean, 694

Pointwise, 713

Quadratic, 792

Random Variable, 250

Sampling Theorem

Criteria, 84

Sequence, 250

Strong, 251

Uniform, 713

Weak, 250

with Probability 1, 251

Conversion

Intensity to Loudness, 193

Convex, 773

Function, 241, 658, 773

Strictly, 658, 661

Metric

Space, 218

Pseudo, 831

Set, 218

Subset, 218

Convexity

of Functions, 658

Convolution

Associativity, 689

Commutativity, 689

Distributibity, 689

Probability Density, 234, 250

Scaling Associativity, 689

Convolutional

Code, 432

Coordination, see Phone

Correlation, 689

Coefficient, 245

Probability Density, 234

Cosine Kernel, see Kernel

Cosine Transform

Discrete

Goertzel Algorithm, 749

Countable Base, 207

Countable Space, 207

Countably Infinite, 207

Covariance, 245

Matrix, 394, 395

Covariance Function, see Kernel Function

Covariance Matrix, 260

Crisp

Logic, 209

Critical Band, 169

Critical Frequencies, 169

Cross

Entropy, 290

Differential, 290

Minimum, 346

Cross-Validation, 461, 492

k-Fold, 461, 492

Leave-One-Out, 462, 492

LOO, 462, 492

CS-ACELP, 847

Csiszár

Divergence, 308

Cumulative

Distribution

Function, 235

Probability

Distribution, 247

Curve

DET, 592

Detection Error Trade-Off, 592

Receiver Operating Characteristic, 590

Relative Operating Characteristic, 590

ROC, 590

Cycle

Pitch, 195

Cyrus the Great, 129

Cytoarchitectonic Areas, 57

Cytoarchitecture, 65

Cytoplasm, 52

Cytosine, see DNA Cytosine

Data

Held-Out, 453

Pooling, 529

Data Quality, 627

dATP, see DNA dATP

Davidon, 474, 783, 789, 792

No Line Search, 790

Davidon-Fletcher-Powell, see DFP

Davies-Swann-Campey Method, 805

DCT, 848

Goertzel

Algorithm, 749

dCTP, see DNA dCTP
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de Moivre’s Theorem, 650

De Morgan’s law, 206

Deci Bell, see dB

Decision

Trees, 331

Decision Theory

Bayesian, 316

Binary, 320

Declination, 134

Decoding

HMM, 423

Decomposition

Singular Value, 639

Definite

Integral, 673

Properties, 673

Degenerate Kernel, see Kernel

Deleted

Estimation, 461, 492

Interpolation, 461, 492

Deleted Estimation

Leave-One-Out, 462, 492

LOO, 462, 492

Delta Cepstral Coefficient, 175

Delta-Delta Cepstral Coefficient, 175

Dendrite, 51

Density

Normal, 326

Density Function

Normal, 285

Uniform, 285

Dental

Sounds, 118

Deoxyribonucleic Acid, see DNA

Dependence

Linear, 637

Derivative

Radon-Nikodým, 230

Design

Model, 421

DET Curve, 592

Detection

Silence, 561

Speaker, 11

Speech, 561

Voice Activity, 561

Determinant, 395

DFP, 474, 782–785

DFT, 167

dGTP, see DNA dGTP

Diagram

Trellis, 428

Venn, 205

Dialogic, 855

Diarization, 19

Diencephalon, 54

Difference

Coding, 845

Differential

Cross

Entropy, 290

Entropy

Cross, 290

Gaussian, 285

Normal, 285

Uniform, 285

Differential Entropy, 284

Differential Probability Measure, 488

Differentiation, 663

Function

Complex, 663

Partial

Notation, 664

Dimension

Vapnik-Chervonenkis, see VC Dimension

VC, see VC Dimension

Diphthong, 123

Direct

Search

Hooke-Jeeves, 804

Wood, 804

Direct Method, 184

Direct Model, 157

Directed Divergence, see Divergence, 301

Directions

Conjugate, 800

Dirichlet

Conditions, 709

Dirichlet Conditions, 710

Discontinuity, 652

Infinite, 655

Ordinary, 653

Oscillatory, 655

Discontinuous

Functions, 653

Discourse

Musical, 64

Discrete

Channel, 282

Cosine Transform

Goertzel Algorithm, 749

Expectation, 248

Expected

Value, 248

Fourier Transform, 731

FFT, 736

Inverse, 732

Parseval’s Theorem, 734
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Periodicity, 734

Power Spectral Density, 735, 739

PSD, 735, 739

Markov

Process, 268

Source, 268

Random Variable, 247

Variance, 249

Variance Scaling, 249

Discrete Fourier Transform, 167

Discrete Source, 267

Discrete Wavelet Transform, 194

Discrete-Time

Fourier Transform, 738, 751

Discriminability

Minimum

Principle of, 346

Discriminant Analysis

Linear, 401

Integrated Mel, 404

Distance, 217, 301

Lp, 237, 303

between Sequences, 302

between Subsets, 217

Bhattacharyya, 306

Complex

Variables, 650

Euclidean, 302

Hamming, 302

Hellinger, 304

Mahalanobis, 303

Weighted Euclidean, 303

Distortion

Measure, 301

Distribution

Gaussian, 285

Normal, 259

Multi-Variate, 259

Probability, 247

Cumulative, 247

Distribution Function

Cumulative, 235

Distributivity

Convolution, 689

Divergence, 301

χ2, 310

δ , 309

Ali-Silvey, 308

Arimoto, 308

between Distributions, 304

Bhattacharyya, 307

Csiszár, 308

Directed, 288, 291, 301

χα , 310

Kullback-Leibler, 274, 286, 288, 291, 294,
298

F, 308

General, 309

Jeffreys, 291, 305

Kullback-Leibler, 273, 274, 286, 288, 291,
294, 296–298, 305

Matsushita, 307

Divergence Normalization, 583

Divergence, The, 305

DNA, 24, 25

Adenine, 25

Cytosine, 25

dATP, 25

dCTP, 25

dGTP, 25

dTTP, 25

Guanine, 25

Nucleotides, 24, 25

Recognition, 24, 25

Single Strand, 25

Strand, 24

Thymine, 25

Triphosphate, 25

Domain

Multiply Connected, 676

Simply Connected, 676

Dorn’s Duality, 831

Dot Product

Space, 220

Doves, 537

DTFT, 738, 751

DTMF, 749, 848

dTTP, see DNA dTTP

Dual

Feasibility, 832, 834

Space, see Dual Representation

Variables, 497, 816, 833

Dual Representation

Wolfe, 497

Dual Tone Multi-Frequency, see DTMF

Duality, 831, 833

Conjugate, 831

Dorn, 831

Fenchel, 831

Geometric, 831

Inference, 831

LP, 831

Self-Dual, 786

Wolfe, 497, 831, 834, 835

Durbin, J., 183

Dynamic

Programming, 432

Dynamic Range, 155



918 Index

Dynamics

Mel Cepstra, 175

Ear, 49

Auricle, 25

Canal, 25, 26, 49

Cochlear Fenestra Ovalis, 49

Drum, 49

External, 49

Inner, 50

Anterior Ampulla, 50

Cilia, 50

Cochlea, 50

Posterior Ampulla, 50

Scala Tympani, 50

Superior Ampulla, 50

Middle, 49

Incus, 49

Malleus, 49

Stapes, 49

Pinna, 25, 26

Recognition

Acoustic Method, 25

Visual Method, 25

Echo

Cancellation, 564

Effects

Nonlinear, 397

Efficiency

Criterion

Statistical, 252

of Statistic, 252

Efficient

Estimate, 252

k-Means, 368

Statistic, 252

Eigenfaces, 397

Eigenfunction, 696, 700

Expansion, 698

Eigensystem

Decomposition, 394

Eigenvalue, 394, 696, 700, 773

Problem, 394

Generalized, 397

Eigenvalues

Degenerate, 396

Multiple, 396

Repeated, 396

Eigenvector, 394

Ejectives, 121

Electret Microphone, 613

Electrostatic Magnet, 613

ELRA, 619

EM, 381, 387, 479

MAP, 387

EMD, 197, 198

EMMA, 858

Empirical Mode Decomposition, 197, see

EMD

Empirical Risk Minimization, 492

Encapsulation

Audio, 849

Audio Format

Standard, see SAFE

Encryption, 625

Energy

Normalization, 565

Enhancement

Signal, 199, 561

Enrollment, 543

Quality Control of Utterances, 534

Entropy, 269, 271, 272, 280, 345

Conditional, 277

Continuous, 284

Continuous Sources, 284

Cross, 290

Minimum, 346

Differential, 284

Gaussian, 285

Normal, 285

Uniform, 285

Discrete Sources, 269, 270

Generalized, 278

Generalized, 278, 279

Joint, 275

Maximum, 273

of order α , 279

Réyni, 278, 279

Relative, 273, 286, 288, 291

Minimum, 346

Zero, 272

Envelope

Spectral, 8

Enzyme, 52

Epiglottal

Sounds, 116

Epiglottis, 47

Epithalamus, 54

Equal Loudness

Pre-Emphasis, 192, 193

Equal Loudness Curves, 151, 192

Equal Loudness Pre-Emphasis, 192, 193

Equal-Error Rate, 589

Equality

Constraints, see Constraints

Equation

Integral

Linear, 694, 695



Index 919

Laplace, 665

Equivalence, 208

Class, 208

Relation, 208

Equivalent, 229

Ergodic

Source, 269

Ergodicity, 269

Error

Amplitude

Quantization, 85

Truncation, 102

Error Correcting Code, 518

Estimate

Consistent, 253

Efficient, 252

Periodogram, 735

Estimation

Audio

Volume, 564

Deleted, 461, 492

Held-Out, 453

Maximum

Mutual Information, 348

of the Mean, 253

of the Variance, 258

Parameter, 341

Power

Spectral Density, 735

Power Spectral Density, 739

PSD, 735, 739

Periodogram, 735, 739

Estimator

Biased, 258

Euclidean

Norm, 470

Matrix, 637

Vector, 636

Euclidean Distance, 302

Euler

Identities, 650

Euler-Lagrange, 829

Euler-Lagrange Equations, 816

European Language Resources Association,
619

Evaluation

Results, 589

Even

Function, 662

Properties, 663

Event, 205

Blast, 8

Classification, 8

Gun Shot, 8

Horn, 8

Music, 8

Scream, 8

Whistle, 8

Event Classification, 8, 550

Evolution of Languages, see Languages

Excess Kurtosis, 246

Exclusive OR, 481

Expansion

Series

Laurent, 683

Power, 683

Taylor, 683

Expansion Theorem

Hilbert, see Theorem

Mercer, see Theorem

Schmidt, see Theorem

Expectation, 239

Conditional, 240

Discrete, 248

Function, 248

Maximization, see EM

Generalized, see GEM

Expected

Log

Likelihood, 454

Value, 239

Conditional, 240

Discrete, 248

Function, 248

Extended

Function

Real Valued, 228

Real Valued

Function, 228

Sampling Theorem, 84

Extended Real Number, 215

Extensible

Multimodal Annotation, see EMMA

Extensions

Sampling Theorem, 84

Extraction

Feature, 143

F-Divergence, 308

FA, 404

Factor

Analysis

Joint, 531

Factor, 733

Total, 532

Factor Analysis, 404, 530

Factorization, 791

Cholesky, 623, 813
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False Acceptance Rate, see FAR

False Alarm Probability, 315

False Rejection Rate, see FRR

FAR, 315

Farkas

Lemma, 825, 829

Farkas’

Lemma, 645

Farsi, see Languages, Persian

Fast

Fourier Transform, 736

Fast Fourier Transform, 167

Fault Detection, 486

Feasibility

Direction, 826

Points, 815

Region, 815, 816, 822, 825

Feasible

Directions, 818–820, 823

Point, 822, 828

Feature

Extraction, 143, 157

Jitter, 8

Mapping, 578

Shimmer, 8

Vector, 394, 469

Warping, 576

Features

Cepstral, 133

Mel Cepstral, 173

Metrical, 138

Modulation, 197

Other, 193

Prosodic, 132

Suprasegmental, 107

Temporal, 131

Vocal Source, 195

Wavelet Filterbanks, 194

Feedforward

Learning, 470, 473

Neural Networks, 466

Training, 470, 473

Feedforward Neural Network, see FFNN

Fenchel’s Duality, 831

FEPSTRUM, 197

FFNN, 477

FFT, 167, 736

Field, 212, 213

σ , 214

Borel, 214

Lebesgue, 215

Filter

Anti-Aliasing, 153

Hi-Pass, 153

Hi-pass, 176

High-Pass, 153

Kalman, 579

Notch, 579, 580

Wiener, 580

Filtering

J-RASTA, 571

RASTA, 571

Relative Spectral (J-RASTA), 571

Relative Spectral (RASTA), 571

Square-root, see Cholesky Factorization

Finance, 465

Finite

Amplitude, 655

Fisher

Information, 294

Matrix, 343

Score, 342

Flanagan, J.L., 129

Flatness

Spectral, 168

Fletcher, 474, 783, 798, 808

Fletcher, R., 816

Fletcher-Reeves, 798

Folding

Frequency, 87

Forebrain, 54

Formant, 8

Format

Audio, 842

Other, 848

Formats

Audio

Encapsulation, 849

Fortmann, T. E., 399

Forward Pass Algorithm, 430

Forward-Backward Algorithm, The, 433

Four-Wire Telephone Channel, 532

Fourier, 722

Coefficients

Real, 712

Complex Expansion, 82

Generic Descriptor, see GFD

Series

Complex, 95

Transform, 580

Complex, 80, 98

Fourier Transform

Discrete, 731

Parseval’s Theorem, 734

Periodicity, 734

Discrete-Time, 738, 751

Fast, 736

Inverse Discrete, 732
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Fourth

Moment, 246

FOXP2 Gene, 65

Frame, 160

Overlapping, 176

Framing, 160

Frequencies

Fundamental, 195

Frequency

Folding, 87

Fundamental, 8

Nyquist Critical, 87

Frequency Warping, 169

Fricative, 8

Frobenius Norm, 637

FRR, 315

Full Rank

seeRank, 638

Function

Analytic, 665

Bandlimited, 79

Bessel, 85

Complex

Differentiation, 663

Concave, 773

Continuity, 653

In an Interval, 657

Convex, 773

Cumulative

Distribution, 235

Discontinuous, 653

Even, 662

Exponential

Analyticity, 671

Hermitian, 651

Holomorphic, 665

Kernel, see Kernel Function

Lagrangian, see Lagrangian

Limit

One-Sided: Continuous, 651

One-Sided: Left-Hand, 651

One-Sided: Right-Hand, 651

Logistic, see Logistic Function

Loss, 318

Normal

Density, 285

Objective, 474

Odd, 662

One-Sided Limit

Continuous, 651

Left-Hand, 651

Right-Hand, 651

Orthogonality, 690

Penalty, 318

Periodic, 95, 663

Poles of, 686

Probability

Mass, 247

Probability Density, 229, 231

Joint, 233

Marginal, 233

Quadratic, 773

Random Variable

Discrete, 248

Regular, 665

Smooth, 814

Trigonometric

Analyticity, 672

Uniform

Density, 285

Zeros of, 685

Function Spaces, 236

Functions

Analyticity

Pointwise, 665

Concave, 658, 661

Strictly, 661

Continuous, 657, 665

Convex, 241, 658

Strictly, 658, 661

Inner Product, 690

Orthogonal Set, 690, 712

Orthonormal Set, 691

Pointwise

Analyticity, 665

Probability, 228

Smooth, 773

Fundamental

Frequencies, 195

Fundamental Frequency, 8

Fundamental Sequence, 251

Fusion, 15, 26, 35

fusion, 612

Fuzzy

k-Means, 377

Set

Theory, 211

G.721, 845

G.723, 845

G.726, 845

G.729, 847

Gabor Transform, 167

Gall, F.J., 58, 59

Gauss Window, 167

Gaussian

Distribution, 285

Multi-Dimensional, 326
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k-Means, 365

Mixture Models, 442

Radial Basis Function, see GRBF

Gaussian Radial Basis Function

Kernel, see Kernel

Gaussianization

Short-Time, 578

GEM, 387

Gender

Classification, 8

Gender Normalization, 582

Gene, 52

FOXP2, 65

General

Divergence, 309

Generalized

Eigenvalue

Problem, 397

Entropy, 279

Generalized Inverse

Moore-Penrose, see Pseudo-Inverse

Generalized Linear Discriminant Sequence
Kernel, see GLDS Kernel

Generic Fourier Descriptor, see GFD

Geometric

Mean, 257

Geometric Duality, 831

Geschwind’s Territory, see Brain

GFD, 26

GLDS Kernel, see Kernel

Global

Convergence, 835

k-Means, 368

Minimizer, 774

Minimum, 475

Optimum, 773

Solution, 474

System

for Mobile Communications, see GSM

Glottal

Sounds, 116

Glottis, 47

GMM, 465

Mixture

Coefficients, 460

Practical Issues, 451

Training, 451

Goats, 536

Goertzel

Algorithm, 749

Goertzel’s

Algorithm, 848

Goldfarb, 783

Golgi, C., 52, 53

Gradient

Conjugate, 474, 793

Vector, 473

Gradient-Free

Conjugate Direction, 804

Davies-Swann-Campey, 805

Powell, 805

Rosenbrock, 804

Optimization, 803

Gram Matrix, see Matrix

Gram-Schmidt Orthogonalization, 641

Modified, 641

Gray Matter, 54

Gray’s Anatomy, 44, 57

GRBF, 470

Greenstadt, 474

Groupe Spécial Mobile, see GSM

GSM, 185, 845

06.10, 845

06.60, 845

EFR, 845

Enhanced

Full Rate, see GSM EFR

Full rate, 845

Enhanced, 845

Half Rate, 845

GSMA, 847

Guanine, see DNA Guanine

Guyon, Isabelle, 486

Gyri, 54

Gyrus, 54

Hölder’s Inequality, see Inequality

Half Total Error Rate, 590

Hamilton’s Principle, 816

Hamiltonian, 816

Hamming

Distance, 302

Window, 580

Hamming Window, 162

Handset Normalization, 582

Handset Test Normalization, 582

Handwriting

Recognition, 486

Handwriting Recognition, 397

Hann Window, 163

Hard Palate, 48

Harmonic, 8

Conjugate, 671

Higher, 8

Mean, 257

Hawaiian, see Languages

HE-AAC, 844

Header
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Audio

Encapsulation, 852

Hearing, 49, 66

Psychophysical Power Law, 193

Held-Out

Data, 453

Estimation, 453, 456, 461

Hellinger Distance, 304

Hermansky, H., 193

Hermitian

Function, 651

Kernel, see Kernel

Hermitian Matrix, 636

Hermitian Transpose, 635

Hessian, 773, 787

Inverse, 787

Matrix, 473, 829

Hestenes, 798

Hi-Pass Filter, 153

Hi-pass Filter, 176

Hidden

Markov

Model, 411, 418, 643

Toolkit, see HTK

Hierarchical

Mixture of Experts, see HME

Mixtures of Experts, see HME

High-Pass Filter, 153

Higher Order

Statistics, 381

Hilbert Space, 220

Hilbert’s Expansion Theorem, see Theorem

Hilbert, David, 486

Hindbrain, 54

Histogram

Equalization, 570

HME, 465, 479

HMM, 411, 418, 465, 479, 480

Decoding, 423

Practical Issues, 451

Training, 423, 451

Holmgren, E., 700

Holomorphic

Function, 665

Holonomic

Constraints, 816

Homogeneous

Objective Function, 787

Homomorphic

Deconvolution, 766

System Theory, 763

Hooke-Jeeves

Direct Search, 804

Hoshino, 474, 789

Hoshino’s Method, 789

HTER, 590

HTK, 628

Hybrid

Clustering

Algorithm, 380

Hybridization Process, 24, 25

Hypothalamus, 54

Hypothesis

Alternative, 313

Null, 313

Testing, 313

Hypothetical Menagerie, 536

i-Vector, 532

i-Vectors, 532

i.i.d. Random Variables, 255, 256

IBM, 855

Ideal Sampler, see Sampler

Identification, 3, 548

Closed-Set, 7

Open-Set, 7

Identification Results, 593

Identity

Bessel, 693

Identity Matrix, 635

Illumination Variations, 26

Image

Processing, 465

Recognition, 486

Image Recognition, 397

Imaginary

Number, 648

IMELDA, 404

IMF, 198

Impedance

Specific Acoustic, 149, 150

Implosives

Voiced, 120

Impostor, 314

Incomplete

Data

Estimation, 381

Independence

Linear, 637

Statistical, 226

Index

Notation, 471, 472

Indexing, 19

Audio, 19

Speaker, 19

Video, 19

Indiscernibility

Relation, 208
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Individual

Speaker Model, 526

Inequality

Bessel, 691, 692, 694

Constraints, see Constraints, see Constraints

Hölder, 236, 237, 242, 690

Jensen, 241, 242, 248

Minkowski, 236, 237

Schwarz, 237, 242, 244, 690, 697

Triangular, 217, 237

Inexact

Line Search, 789

Inference Duality, 831

Infinite

Amplitude, 655

Countably, 207

Dimensional Space, 219

Discontinuity, 655

Information, 269, 279, 280

Criterion

Akaike, see AIC

Bayesian, see BIC

Residual, see RIC

Discrete Sources, 279

Fisher, 294, 343

Loss, 104

Mutual, 291

Relative, 321

Information Source, 266

Information Theory, 265

Initial Scaling Quasi-Newton, 788

Initiation, see Phone

Inner Product

of Functions, 690

Space, 220

Inner Product Space, 219

Inseparable

Linearly, 500

Integer

Programming, 816

Integrable

Absolutely, 673

Integral, 227

Bound

Absolute, 678

Definite, 673

Equation

Coefficient, 695

Linear, 694, 695

Formula

Cauchy, 679

Riemann, 673

Theorem

Cauchy, 676

Transform

General, 695

Integral Equation

Linear

Second Kind, 486

Integral Transform, 647

Integrated Mel Linear Discriminant Analysis,
404

Integration, 672

Measure, 227

Intensity, 149, 172

Relative, 150

Intensity to Loudness Conversion, 193

International Phonetic Alphabet, see IPA

Internet, 509

Interpolation

Deleted, 461, 492

Intonation, 132

Intrinsic Mode Function, 198

Inverse, 636

Discrete

Fourier Transform, 732

Hessian, 787

Image

Transformations, 238

Kernel, 695

IPA, 112

Isolated

Singularities, 686

Issues

Practical

GMM, 451

HMM, 451

Neural Networks, 479

ITT, 855

ITU-T, 842

Jackel, Larry, 486

Jacobian

Matrix, 791, 815, 820, 834

Jaw, 64

Jeffreys, 291

Jeffreys Divergence, see Divergence, 305

Jensen’s Inequality, see Inequality

Jerri, A.J., 85

JFA, 450, 583

Jitter, 8

Macro, 103

Micro, 103

Joint

Factor

Analysis, 531

Joint Entropy, 275

Joint Factor Analysis, see JFA
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Joint Probability Density Function, 233

Jordan, M. Camille, 639

k-d Tree, 368, 375

k-dimensional

Tree, see k-d tree

K-Harmonic Means Algorithm, 378

K-Means, 360

k-Means, 365

Efficient, 368

Fuzzy, 377

Gaussian, 365

Global, 368

Kernel, see Kernel k-Means

Modified, 366, 367, 811

Overpartitioning, 364

Rough, 375

Wrappers, 368

k-Means++, 371

Kühn-Tucker

Conditions, 829

Constraint

Qualification, see Constraint Qualification

Point, 829, 830

Regularity Assumption, see Regularity
Assumption

Kalman Filter, 579

Karhunen Loève Transformation, see KLT

Karhunen-Loève Transformation, 394

Karush-Kühn-Tucker, see -Kühn-Tucker

Kernel, 85, 695

Cosine, 508

Definite, 697

Degenerate, 699, 701

Eigenfunction, 700

Eigenvalue, 700

Expansion, 698

Function, 485, 696

Fuzzy tanh, 512

Fuzzy Hyperbolic Tangent, 512

Gaussian Radial Basis Function, 507

GLDS, 509

Hermitian, 696

Indefinite, 697

Inverse, 695

Jeffreys Divergence, 511

k-Means, 369, 695

Kullback-Leibler Divergence, 511

Linear, 506

Mapping, 503

Mercer, 506

Negative Semidefinite, 697

Neural Network, 513

Non Positive Semi-Definite, 511

Non-Positive Semidefinite, 511, 512

Normalization, 513

PCA, 400, 514, 695

Positive Semidefinite, 697

Radial Basis Function, 507

Reproducing, 707

Symmetric, 696, 698

Trick, 504, 506

Khoisan, see Languages

KING, 617

KLT, 397

Knowledge-Based, 15, 548

Kotel’nikov, V.A., 80

Kramer, H.P., 85

Kronecker

Product, 636

Kullback, 291

Kullback-Leibler

Kernel, see Kernel

Kullback-Leibler Divergence, see Divergence,
305

Kurtosis, 246

Excess, 246

La Gomera, 63, 119, 137

Labiodental

Sounds, 118

Ladefoged, P., 136

Lagrange

Euler-Lagrange Equations, 816

Multiplier, 816, 817, 820–822

Multipliers, 497, 825, 831, 834

Lagrangian, 817, 821, 822, 829, 831, 833

Lambs, 536

Landau Asymptotic Notation, 826

Language

Modeling, 411, 477

Production, 64

Recognition, 411

Silbo, 63, 137

Understanding, 69, 411

Whistled

Silbo Gomero, 119

Languages

Amerindian, see Amerindian Languages

Arabic, 129

Canary Islands, 137

Chinese

Cantonese, 136

Mandarin, 135

Dravidian, 139

Dutch, 139

Evolution, 129

French, 116, 129
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German, 129

Hausa, 120

Hawaiian, 122

Indian, 139

Indo-European, 207

Japanese, 139

Khoisan, 123

Margi, 120

Persian, 116, 124, 129, 130, 135, 139, 140

Modern, 129

Old, 129

Rotokas, 122

Silbo Gomero, 137

South African, 120

Spanish

Silbo, 137

Telugu, 139

Tonal, 132

Turkish, 138, 139

Zulu, 120

Laplace, 717

Equation, 665

Inversion, 720

LAR, 176, 189

LAR Coefficients, 176

Large

Numbers

Law of, 254

Strong Law of, 255, 256

Weak Law of, 255

Large-Scale

Optimization, 810

Large-Scale Systems, 628

Laryngealization, 109

Larynx, 44, 64

Latent

Factor Analysis, 530

Latent Factor Analysis, see LFA

Laurent

Series, 684

Laver, J., 47, 108, 122

Law

De Morgan, 206

Large Numbers, 254

Strong, 255

of Large Numbers, 254

Strong, 256

Weak, 255

LBG, 372

LDA, 401

Learning, 341, 357

Capacity, 493

Neural Network, 473

Semi-Supervised, 390

Learning Control

Adaptive, 465

Iterative, 465

Leave-One-Out Cross-Validation, 462, 492

Lebesgue

Field, 215

Measurable Space, 216

Measurable Subsets, 215

Measure, 215

Space, 236

Leibler, 291

Lemma

Farkas, see Farkas’ Lemma

Riemann, 673

Length

Contour, 677

Levinson, N., 183

Levinson-Durbin, 193

Levinson-Durbin Algorithm, 183

LFA, 583

Likelihood, 288

Estimation

Maximum, see MLE

Expected, 454

Maximum, 381

Unit, 453

Limit

Function

One-Sided: Continuous, 651

One-Sided: Left-Hand, 651

Infinite

Negative, 652

Positive, 652

Negative

Infinite, 652

One-Sided Function

Right-Hand, 651

Positive Infinite, 652

Sequence, 651

Limits, 651

Linde-Buzo-Gray, 372

Line Search, 776, 778, 779, 783, 786, 787,
791, 792, 809

Exact, 474

Inexact, 474, 784, 789

No, 789, 790

Line Search Free Learning, see LSFL

Linear

Equations, 643

Optimization, 773

PCM, 842

Prediction

Code Excited, see CELP

Predictive
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Coding, see LPC, see LPC

Perceptual, 190, 191

Pulse Code Modulation, see Linear PCM

Regression, 606

Separability, 493

Transformation, 403

Linear Dependence, 637

Linear Discriminant Analysis, 401

Linear Independence, 637

Linear Integral Equation

Second Kind, 486

Linear Predictive Cepstral Coefficients, 176

Linear Predictive Coding, see LPC, 176

Linearly

Inseparable, 500

Linguistic

Pitch Range, 132

Stress, 135

Linguistic Temporal Features, 140

Linguistics, 107

Lips, 48, 64

Liveness, 548

LLR, 321

Local

Minimizer

Strict, 774

Minimum, 475

Log

Likelihood

Expected, 454

Log Are Ratio Coefficients, 176

Log Area Ratio, 176, 189

Log Short-Term Memory, see LSTM

Log-Likelihood, 288

Ratio, 288, 321

Logic

Crisp, 209

Logical And, 205

Logistic Function, 472, 513

Long

Short-Term Memory, 477

LOO-Cross-Validation, see Leave-One-Out
Cross-Validation

Loss

Information, 104

Loss Function, 318

Loudness, 137, 144, 149, 150, 172, 848

LP Duality, 831

LPC, 157, 176, 847, 848

LPCC, 176

LPCM, 842, 851

LSFL, 475

LSTM, 477

MA, 157

Maddieson, I., 122

Magnetic Resonance Image, see MRI

Magnitude

Complex Number, 648

Magnitude Warping, 172

Mahalanobis Distance, 303

Makhoul, J., 181

MAP, 344

Adaptation, 603

using EM, 387

World, 583

MAPLR

Adaptation, 607

Mapping

Feature, 578

Kernel, 503

Marginal Probability Density Function, 233

Markoff, see Markov

Markov

Chain, 415, 643

Model, 643

Process, 268

Mass Function

Probability, 247

Match Algorithm, 430

Matrices

Orthogonal, 638

Unitary, 638

Matrix

Adjoint, 636

Autocorrelation, 182

Covariance, 394, 395

Euclidean Norm, 637

Frobenius Norm, 637

Full Rank

seeRank, 638

Gram, 697

Hermitian, 636

Hermitian Transpose, 635

Identity, 635

Inverse, 636

Inversion

Sherman-Morrison, 642

Jacobian, 791

Norm, 636, 637

Positive Definiteness, 640

Pseudo-Inverse, see Pseudo-Inverse

Rank, 639

Scatter, 402

Singular Values, 639

Stochastic, 643

Toeplitz, 183

Transpose, 635
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Matsushita

Divergence, 307

Maximum

A-Posteriori

Estimation, see MAP

a-Posteriori

Adaptation, see MAP Adaptation

Entropy, 345

Principle of, 346

Likelihood

Estimation, see MLE

Linear Regression, 606

Techniques, 381

Mutual Information

Estimation, 348

Maximum Entropy, 273

MCE

Adaptation, 605

McLauren

Series, 684

Mean, 239, 240, 257, 259

Arithmetic, 257

Discrete, 248

Estimation, 253

Geometric, 257

Harmonic, 257

Quadratic, 257

Sample, 259

Value

Theorem, 669, 670, 676

Measurable

Space, 209

Subsets, 205

Transformations, 238

Measurable Space, 214

Product, 216

Measure, 205, 207, 209, 211, 212, 215

Integration, 227

Lebesgue, 215

Probability, 221

Measure Theory, 205, 211

Measures

Relative Absolute Continuity, 229

Medulla Oblongata, 54

Mel

Cepstral

Dynamics, 175

Features, 173

Mel Cepstrum Modulation Spectrum, see

MCMS

Mel Frequency Cepstral Coefficients, 173

Mel Scale, 146, 147, 169

Mel Warping, 169

Mel-Frequency Discrete Wavelet Coefficient,
194

Melody Scale, see Mel Scale, 169

Memory

Long Short-Term, 477

Memoryless

Channel, 432

Model, 413

Source, 267, 413

Menagerie

Biometric, 537

Hypothetical, 536

Speaker, 536

Mercer

Condition, 506

Kernel, 506

Mercer’s Expansion Theorem, see Theorem

Mercer, J., 697

Merging

of Clusters, 364

Mesencephalon, 54

Method

Davies-Swann-Campey, 805

Hoshino, 789

Powell, 805

Rosenbrock, 804

Methods

Search, 804

Variable Metric, 779

Metric, 301

Metric Space, 217

Complete, 218

Metrical Features, 138

MFCC, 173

MFDWC, 194

Microbolometer, 32

Microphone, 26, 580

Carbon, 613

Electret, 613

Microphones, 613

Midbrain, 54

Minimization, 473, 789

Minimizer

Global, 774

Local Strict, 774

Minimum

Cross

Entropy, 346

Discriminability

Principle of, 346

Global, 475

Minimum, 475

Relative

Entropy, 346
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Tolerated

Ratio, 396

Minkowski’s Inequality, see Inequality

Miss Probability, 315

Missing

Data

Estimation, 381

MIT, 580

Mixture

Coefficients

GMM, 460

Models

Gaussian, 442

MLE, 296, 342

MLLR, 606

MMIE, 348

Modalities, 12

Model, 421

Background, 6, 527, 528

Cohort, 6

Hidden Markov, 411

Markov, 643

Hidden, 643

Memoryless, 413

Performance Comparison, 453

Quality, 534

Selection, 349

Speaker

Independent, 529

Individual, 526

Tractability, 449

Universal Background, 6

Model Quality, 534

Modeling

Hidden Markov, 411

Language, 411, 477

Speaker, 43, 525

Modified

k-Means, 366, 367, 811

x-Means, 372

Modulo of a Measure, 229

Modulus

Complex Number, 648

Complex Numbers

Product, 650

Moment

Fourth, 246

Second, 242

Statistical

Estimation, 253

First, 248

Third, 245

Moments

First, 239, 240

Statistical, 239

Moore-Penrose

Generalized Inverse, see Pseudo-Inverse

Mora, 133

Morera’s Theorem, 683

Morphology, 107, 129

Motor Control, 64

Motorola, 855

Moving Average, see MA

Moving Picture Experts Group, see MPEG

MP3, 843

MPEG, 843

MPEG-1, 843

MPEG-2, 843

MPEG-4, 843

MRI, 55

Mu-Law

PCM, 843

Multi-Dimensional

Gaussian

Distribution, 326

Multi-Layer

Neural Network, 465

Multidimensional

Space, 232

Multimodal

Annotation

Extensible, see EMMA

Biometrics, 26, 35

Multiplier

Lagrange, 816

Multiply Connected

Domain, 676

Musical Discourse, 64

Mutual

Statistical Independence, 226

Mutual Information, 291

Estimation

Maximum, 348

Myelin Layer, 53

Myelin Sheath, 53

Namibia, 123

NAP, 450, 583

Narrowband Spectrogram, 88

Nasal

Cavity, 47

System, 47

National

Institute of Standards and Technology, 850

Natural Language Understanding, see NLU

Necessary Conditions

Local Minimizer, 829

Nerve
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Auditory Bundle, 49

Ending

Postsynaptic, 53

Presynaptic, 53

Vestibulocochlear Bundle, 49

Nervous System, 51

Network

Feedforward, 466

Neural, 465

Time-Delay, 477

Neural

Anatomy, 65

Neural Network

Feedforward, 466, see FFNN

Learning, 473

Multi-Layer, 465

Perceptron, 466

Recurrent, 477

Time-Delay, see TDNN, 477

Training, 473

Neural Networks, 465

Architecture, 465

Auto Associative, see AANN

Hierarchical Mixtures of Experts, see HME

HME, 479

Kernel, see Kernel

Practical Issues, 479

Radial Basis Function, see RBFN

Recurrent, 476

TDNN, see TDNN

Neuron, 51

Axon, 51, 52

Myelin Layer, 53

Myelin Sheath, 53

Ranvier Node, 53

Schwann Cell, 53

Sheath, 53

Terminal Buttons, 53

Dendrite, 51

Dendrites, 52

Gogli Apparatuses, 52

Mitochondria, 52

Myelin Layer, 53

Nissl Granules, 52

Nucleolus, 52

Perikaryon, 51

Ribosome, 52

Soma, 53

Synapse, 51

Synaptic Cleft, 53

Terminal Buttons, 53

Type I, 53

Type II, 53

Vesicles, 52

Neurotransmitter, 53

Serotonin, 53

Newton

Minimization, 777

Projected, 802

Quasi, 474

Newton-Raphson, 474

NIST, 580, 850

NN, see Neural Networks

No Line Search, 789, 790

Noise

Compensation, 561

Generation

Comfort, 563

Reduction

Narrowband, 579

Nomenclature, xxxi

Non Positive Semi-Definite

Kernel, 511

Non-Holonomic

Constraints, 816

Non-Pulmonic

Consonants, 120

Clicks, 120

Ejectives, 121

Implosives

Voiced, 120

Voiced

Implosives, 120

Non-Stationary Signal, 76

non-streaming, 851

Non-Unifilar, 268, 416, 418

Source, 420

Nonlinear

Activation Function, 465

Effects, 397

Optimization, 773

PCA, 399, 469

Nonsmooth

Optimization, 814

Norm, 636

Euclidean, 470

Matrix, 637

Vector, 636

Normal

Density, 326

Density Function, 285

Vector, 815, 816

Vectors, 817, 820, 828

Normalization, 576, 581

AT-Norm, 582

C-Norm, 582

Cepstral

Histogram, 570
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Mean and Variance Subtraction, 569

Mean Subtraction, 569

Cepstral Mean Subtraction, 567

D-Norm, 583

Energy, 565

F-Norm, 583

F-Ratio, 583

H-Norm, 582

HT-Norm, 582

MAP

World, 583

Speaker, 581

T-Norm, 582

Test Norm, 582

Vocal Tract Length, 573

VTLN, 573

World MAP, 583

World Maximum A-Posteriori, 583

Z-Norm, 581

Normed Vector Space, 218

Notation

Index, 471, 472

Notch Filter, 579, 580

Novell, 855

NTIMIT, 617

Nucleotides, see DNA Nucleotides

Nuisance Attribute Projection, see NAP

Null Hypothesis, 313

Number

Imaginary, 648

Numerical

Stability, 813

Numerical Stability, 623

Nyquist

Critical

Angular Frequency, 99

Critical Frequency, 79, 87

Rate, 79

Nyquist, H., 79

Objective

Function, 474

Objective Function

Homogeneous, 787

Odd

Function, 662

Properties, 663

OGG, 852

Speex, 847

Vorbis, 844, 847

One-to-one

Transformation, 238

Online

Handwriting Recognition, 397

Open-Set Identification, 7

Optimization, 473

Constrained, 814

Gradient-Free, 803

Large-Scale, 810

Linear, 773

Methods

Search, 804

Nonlinear, 773

Nonsmooth, 814

Practical, 810

Search

Methods, 804

Optimum

Global, 773

Oral

Cavity, 48

Ordinary

Discontinuity, 653

Oren, 787

Oren-Spedicato, 788

Organic Pitch Range, 132

Orthogonal

Set of Functions, 690, 712

Orthogonal Matrices, 638

Orthogonal Vectors, 638

Orthogonality, 638

Function, 690

of Functions, 690

Orthogonalization

Gram-Schmidt, 641

Modified, 641

Ordinary, 641

Orthonormal

Basis, 396

Set of Functions, 691

Set of Vectors, 639

Orthonormal Vectors, 638

Orthonormality, 638

Oscillatory

Discontinuity, 655

Overfitting, 479

Overpartitioning

k-Means, 364

Overtraining, 479

palatal

Sounds, 117

Palate

Hard, 48

Soft, 44, 47

Palato-Alveolar

Sounds, 117

Papoulis, A., 85
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Papuan Language, 122

Paralinguistic Pitch Range, 132

PARCOR, 185

PARCOR Coefficients, 176

Parseval’s

Theorem, 734

Parseval’s Theorem, 714

Parsimony

Principle of, 350, 393

Partan

Continuous, 802

Iterative Conjugate Gradient, 802

Partial

Differentiation

Notation, 664

Partial Correlation, see PARCOR

Partial Correlation Coefficients, 176

Partition, 208, 209

Pathogenic Bacteria, 25

Pattern

Recognition, 465

PCA, 26, 394, 469

Kernel, see Kernel PCA

Nonlinear, 399

PCM

μ-Law, 843

A-Law, 843

Adaptive Differential, 845

Linear, 842

Mu-Law, 843

PCMA, 843

PCMU, 843

Uniform, 842

PCMA, 851

PCMU, 851

PCR, 24, 25

Pearson, 474

Updates, 781

Penalty Function, 318, 488

Perception, 397

Auditory, 144

Perceptual Linear Prediction, see PLP

Perceptual Linear Predictive Analysis, 191

Perikaryon, 51

Periodic

Function, 663

Extension, 663

Periodicity, 661

Periodogram, 177, 735, 739

Estimate, 735

Persian, see Languages

Empire, 129

Phantoms, 537

Pharyngeal

Sounds, 116

Pharynx, 44, 47, 64

Phon, 151

Phonation, see Phone

Affricates, 110

Approximants, 110

Fricatives, 110

Lateral Resonant Contoids, 110

Nasal, 110

Nonsyllabic, 110

Normal, 110

Oral, 110

Resonants, 110

Rolls, 110

Sibilant, 110

Stops, 110

Syllabic, 110

Trills, 110

Vocoids, 110

Phone, 76, 107, 108

Approximants, 124

Articulation, 108, 110

Place of, 110

Coordination, 108, 111

Diphthong, 124

Glide, 124

Glottal Stop, 124

Initiation, 108, 109

Liquid, 124

Offset, 161

Onset, 161

Phonation, 108

Unvoiced, 109

Voiced, 109

Standard Consonants, 124

Syllabic Consonants, 124

Triphthong, 124

Phoneme, 107, 108

Affricate, 124

Diphthong, 124

Fricative, 124

Glide, 124

Liquid, 124

Semi-Vowel, 124

Whisper, 124

Phonetic

Continuity, 138

Intonation, 132

Pitch, 132

Rate, 138

Rhythm, 138

Stress, 138

Tonality, 132

Tone, 132
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Vowels, 112

Phonetics, 107

Phonology, 107, 122, 129

Phua, 787, 788

Physiology, 397

Piecewise

Continuity, 658

Smoothness, 658

Pinna, 25

Pitch, 50, 132, 144, 146, 149, 848

Cycle, 195

Linguistic Range, 132

Organic Range, 132

Paralinguistic Range, 132

Pitch Scale, 169

Pitch Variations, 138

Place Theory, 145

Plancherel’s

Theorem, 734

PLP, 157, 190, 191

Cepstra, 193

Points

Stationary, 773

Pointwise

Analyticity, 665

Pointwise Convergence, see Convergence

Poles

of Function, 686

Polymerase Chain Reaction, see PCR

POLYVAR, 620

Pons, 54

Positive

Definite, 787

Positive Definite, 640

Positive Definiteness, 640

Post Alveolar

Sounds, 118

Powell, 474, 783, 806, 808

Powell’s Method, 805

Power

Spectral Density, 735, 739

Estimation, 735, 739

Power Series, see Series

Power Series Expansion, 683

Praat, 628

Practical

Issues

GMM, 451

HMM, 451

Neural Networks, 479

Sampling, 92

Errors, 92

Pragmatics, 107

pRAM, 465

Pre-Emphasis, 153

Equal Loudness, 192, 193

Pre-emphasis, 176

Pre-Hilbert Space, 220

Pre-Processing, 199, 561

Primal

Problem, 835

Primary Auditory Cortex, 66

Principal Component Analysis, 394, see PCA

Principle

Maximum

Entropy, 346

Minimum

Discriminability, 346

Parsimony, of, 350, 393

Privacy, 624

Probabilistic Random Access Memory, see

pRAM

Probability

Conditional, 224

Density Function, 229, 231

Joint, 233

Marginal, 233

Distribution, 247

Cumulative, 247

Cumulative Function, 235

Functions, 228

Integration, 227

Mass Function, 247

Measure, 221

Total, 225

Probability Theory, 205

Problem

Coin Toss, 414

Eigenvalue, 394

Generalized, 397

Sturm-Liouville, 85

Problems

N-class, 518

Γ -class, 518

2-class, 493

Process

Hybridization, 24, 25

Markov, 268

Discrete, 268

Processing

Image, 465

Signal, 143

Product

Cartesian, 216

Complex

Variables, 649

Kronecker, 636

Space, 232
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Transformations, 238

Product Space, 216

Programming

Dynamic, 432

Integer, see Integer Programming

Projected

Newton, 802

Pronunciation

Vowels, 113

Properties

Complex

Variables, 649

Definite

Integral, 673

Even

Function, 663

Integral

Definite, 673

Riemann, 673

Odd

Function, 663

Riemann

Integral, 673

Property

Asymptotic

Equipartition, 274

Prosencephalon, 54

Prosodic

Features, 132

Prosody, 107, 131, 132

Protein, 52

Protocol, 854

Transport

Real-time, see RTP

PSD, 735, 739

Estimation, 735, 739

Pseudo-Convex, 831

Pseudo-Inverse, 640, 820

PSTN, 617

Psychophysical Power Law of Hearing, 193

Pulmonic

Consonants, 115

QCELP, 847

Quadratic

Convergence, 792

Function, 773

Mean, 257

Qualcomm, 847

Quality

Audio, 627

Data, 627

Model, 534

Quality Control

of Enrollment Utterances, 534

Quantization, 155

Error

Amplitude, 85

Quasi Newton, 474

Quasi-Newton

BFGS, see BFGS

Condition, 779

Davidon

No Line Search, 790

DFP, see DFP

Hoshino, 789

Inexact

Line Search, 789

Initial Scaling, 788

Limited Memory, 811

Partially Separable, 811, 813

Pearson

Updates, 781

Sparse, 811, 812

Quotient

Complex

Variables, 649

Set, 209

Réyni

Entropy, 278, 279

Rabiner, L.R., 124

Radial Basis Function

Gaussian, see GRBF

Kernel, see Kernel

Neural Networks, see RBFN

RBF, 469

Radon-Nikodým

Derivative, 230

Theorem, 229

Random

Process

Bernoulli, 414

Variable

Bernoulli, 247

Combination, 234

Continuous, 227

Convergence, 250

Discrete, 247

i.i.d., 255, 256

Random Variable

Continuous, 226

Random Variables, 207

Rank, 639

Full, 638, 820

Ranvier Node, 53

Ranvier Nodes, 53

RASTA, 193, 571
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Rate

Equal Error, 589

Half Total Error, 590

Total Error, 590

Ratio

Log-Likelihood, 288, 321

Minimum Tolerated, 396

RBF, 469

RBFN, 469

Real Number

Extended, 215

Real-time

Transport

Protocol, see RTP

Recognition

Handwriting, 486

Online, 397

Image, 397, 486

Language, 411

Modalities, 12

Pattern, 465

Signature, 465

Speaker, see Speaker Recognition, 411, 479,
486

Speech, see Speech Recognition, 411, 465,
479, 486

Recurrent

Neural Network, 477

Neural Networks, 476

Redundancy, 274

Reeves, 798

Reflection Coefficients, 176, 186

Region

Feasibility, see Feasibility Region

Regression

Class, 606

Regular

Function, 665

Regularity

Assumption, 297, 826, 827, 831

Conditions, 296

Relation

Completeness, 694

Equivalence, 208

Indiscernibility, 208

Relative

Absolute Continuity of Measures, 229

Entropy, 286, 288, 291

Minimum, 346

Information, 321

Intensity, 150

Relative Entropy, 273

RelAtive SpecTrAl, see RASTA

Relaxation

Stochastic, 367, 811

Relevance Vector Machines, 553

Representation

Results, 589

Reproducing Kernel, see Kernel

Residual

Information Criterion, see RIC

Residues, 686

Resolution, 155

Results

Evaluation, 589

Identification, 593

Representation, 589

Verification, 589

Retroflex

Sounds, 117

Reverberation Compensation, 554

Rhombencephalon, 54

Rhythm, 138

RIC, 349

Riemann

Cauchy-Riemann

Conditions, 667

Theorem, 667–669

Integral, 673

Properties, 673

Lemma, 673

Risk

Bayes, 488

Bounds, 493

Minimization, 488

Empirical, 492

Structural, 493

RMS, 257

RNN, 476, 477

ROC Curve, 590

Root Mean Square, 257

Rosenbrock’s Method, 804

Rotokas, see Languages

Rough

k-Means, 375

Set

Theory, 210

RTP, 858

RVM, 553

Saddle Point, 773, 830

SAFE, 849, 850

Sample

Mean, 259

Space, 205

Variance, 253, 254, 256, 258

Sample Space, 205

Atoms, 270, 282
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Sampler

Ideal, 98

Sampling, 76, 152, 176

Audio, 77

Cyclic-Rate, 77

Multirate, 77

Periodic, 77

Pulse Width Modulated, 77

Random, 77

Theorem, 77

Convergence Criteria, 84

Sampling Theorem, 79

Extended, 84

Extensions, 84

Generalized, 85

Whittaker-Kotelnikov-Shannon-Kramer, 85

WKS, 80

WKSK, 85

Sampling Theorem, The, 78

Satellite Imaging, 486

Scala, 145

Scaling, 248

Variance

Discrete Random Variable, 249

Scaling Associativity

Convolution, 689

Scatter

Matrix, 402

Schür Algorithm, 183

Schür Recursion, 183

Schmidt’s Expansion Theorem, see Theorem

Schwann Cell, 53

Schwarz’s Inequality, see Inequality

Score

Fisher, 342

Statistic, 342

Search

Methods, 804

Second

Moment, 242

Secondary Auditory Cortex, 68

Segmentation, 3

Audio, 532

Speaker, 9, 549

Selection

Model, 349

Self Scaling Variable Metric, see SSVM

Self-Dual, see Duality

Self-Scaling Variable Metric, see SSVM

Semantics, 107

Semi-Supervised Learning, 390

Separability

Linear, 493

Sequence

Cauchy, 251

Classification, 328

Convergence, 250

Directional, 818, 828

Fundamental, 251

Limit, 651

Sequential Interacting Multiple Models, 579

Series

Fourier

convergence, 713

Laurent, 684

McLauren, 684

Power

Addition, 685

Division, 685

Multiplication, 685

Uniqueness, 685

Taylor, 683

Wavelet, 716

Serotonin, 53

Set, 205

Convex, 218

Fuzzy

Theory, 211

Quotient, 209

Rough

Theory, 210

Theory

Fuzzy, 211

Rough, 210

Set Theory, 205, 207

Sets

Borel, 214

Settings, 131

Sex

Classification, 8

Shanno, 783, 787, 788

Shannon, C.E., 80

Shattering, 493

Sheath, 53

Sheep, 536

Sherman-Morrison Inversion Formula, 642

Shimmer, 8

Short-Time

Gaussianization, 578

Signal, 75

Enhancement, 199, 561

Non-Stationary, 76

Processing, 143

Stationary, 76

Time-Dependent, 75

Signal Representation, 75

Signature

Recognition, 465
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Verification, 486

Silbo, 63, 137

Silbo Gomero, 119

Silence

Detection, 561

SIMM, 579

Simply Connected

Domain, 676

Simulated

Annealing, 367, 474, 811

Singular Value, 696

Singular Value Decomposition, see SVD, 639

Singular Values, 639

Singularities

Isolated, 686

SIVA, 620

Skew, 245

Skewness, 245

Slack Variable, 500

Smith, 806, 808

Smooth

Functions, 773, 814

Smoothness, 657

Piecewise, 658

Soft Margin SVM, 501, 502

Soft Palate, 44, 47

Solution

Global, 474

Solutions

Information Theory, 901

Integral Transforms, 904

Neural Networks, 902

Sone, 151

Sonority, 137

Sound

Level, 564

Sounds

Alveolar, 117

Plato-Alveolar, 117

Post Alveolar, 118

Bilabial, 118

Dental, 118

Epiglottal, 116

Glottal, 116

Labiodental, 118

palatal, 117

Pharyngeal, 116

Plato-Alveolar, 117

Post Alveolar, 118

Retroflex, 117

Uvular, 116

Velar, 116

Whisper, 119

Whistle, 119

Source

Continuous, 269

Discrete, 267

Ergodic, 269

Information, 266

Markov, 268

Discrete, 268

Memoryless, 267, 413

Zero-Memory, 267

Sources

Non-Unifilar, 268, 416, 420

Unifilar, 268, 416, 419

Space

Banach, 218

Complete, 216, 220, 693

Countable, 207

Dot Product, 219, 220

Dual, see Dual Representation

Function, 236

Hilbert, 220

Infinite Dimensional, 219

Inner Product, 219, 220

Lebesgue, 236

Lebesgue Measurable, 216

Measurable, 209, 214

Metric, 217

Complete, 218

Multidimensional, 232

Normed Vector, 218

Pre-Hilbert, 220

Product, 216

Sample, 205

Atoms, 282

Spanish Silbo, 119

Speaker

Adaptation, 530

Over time, 601

Authentication, 3, 5

Biometrics, 3

Classification, 3, 8, 550

Detection, 11

Enrollment, 543

i-Vectors, see i-Vectors

Identification, 3, 7, 465, 548

Closed-Set, 7, 548

Open-Set, 7, 549

Independent Model, 529

Menagerie, 536

Model

Individual, 526

Modeling, 525

Recognition, 3, 411, 479, 486, 543

Branches, 5, 543

History, 3
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Knowledge-Based, 15, 548

Manifestations, 5, 543

Modalities, 12

Text-Dependent, 12, 546

Text-Independent, 13

Text-Prompted, 14, 546

Segmentation, 3, 9, 549

Target, 5, 313, 314

Test, 5, 313, 314

Tracking, 3, 11

Verification, 3, 5, 506, 508, 544

Speaker Diarization, 19

Speaker Factors, 532

Speaker Indexing, 19

Speaker Model Synthesis, 578

Speaker Normalization, 581, 583

Speaker Recognition, 69

Branches

Compound, 5

Simple, 5

Speaker Space, 532

Specific Acoustic Impedance, 149, 150

Spectral

Filtering, 571

Flatness, 168

Representation, 79

Spectral Analysis, 157, 168, 191

Spectral Envelope, 8

Spectrogram, 87

Narrowband, 88

Wideband, 88

Spedicato, 788

Speech

Anatomy, 43

Co-Articulation, 140

Detection, 561

Features

Temporal, 140

Header

Resources, see SPHERE

Perception, 69

Recognition, 3, 411, 465, 479, 486

Signal Representation, 75

Synthesis, 411

Temporal Features, 140

Waveform, 87

Speech Production, 43

Speex, 847

SPHERE, 849, 850

SPIDRE, 618

Spoofing, 4, 13, 547, 625

Square-root Filtering, see Cholesky
Factorization

SRAPI, 855

ssDNA, see DNA Single Strand

SSVM, 474, 787–789

Stability

Numerical, 623, 813

Standard

Audio

Encapsulation Formats, 849

Format Encapsulation, see SAFE

Standard Intensity Threshold, 150, 172

State

Confluent, 458

State-Space, 479

States, 421, 774

Stationary

Points, 773

Stationary Signal, 76

Statistic, 251

Consistent, 253

Efficiency of, 252

Efficient, 252

Score, 342

Sufficient, 252

Statistical

Independence, 226

Mutual, 226

Moment

Estimation, 253

First, 248

Statistical Moments, 239

Statistics

High Order, 381

Sufficient, 251

Steifel, 798

Steinberg, J.C., 146

Stevens, S.S., 146

Stochastic

Matrix, 643

Relaxation, 367, 811

Streaming, 852

Stress, 138

Linguistic, 135

Strict

Minimizer

Local, 774

Strictly

Concave

Function, 661

Convex

Function, 658, 661

Stricture

Degree of, 110

Stride, 33

Strong

Completeness, 218
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Convergence, 251

Strong Law of Large Numbers, 255, 256

Structural Risk Minimization, 493

Sturm-Liouville Problem, 85, 709, 712

Subgradients, 814

Subset, 205

Convex, 218

Distance, 217

Subsets

Lebesgue Measurable, 215

Sufficient

Statistics, 251

Sulci, 54

Sulcus, 54

Superset, 205

Supervised

Clustering, 357

Support Vector Machines, see SVM

Support Vectors, 495, 823

Definition, 485

Suprasegmental, 131

Suprasegmental Features, 107

SVAPI, 855

SVD, 579, 639

SVM, 348, 479, 485, 503, 583, 695, 823

L1 Soft Margin, 501

L2 Soft Margin, 502

Definition, 485

Switchboard I, 618

Switchboard II, 618

Syllable

Coda, 133

Nucleus, 133

Onset, 133

Sylvian Fissure, 66

Symmetric

Channel

Binary, 284

Kernel, see Kernel

Degenerate, see Kernel

Synapse, 51

Syntax, 107, 129

Synthesis

Speech, 411

Systems

Auditory, 49

Ear, 49

Auditory Cortex, 66

Large-Scale, 628

Speech Production, 43

Vocal, 44

T-NETIX, 855

Tactical Speaker Identification, 619

Target

Speaker, 5, 313, 314

Taylor

Series, 683, 777, 817, 828

TDNN, 465, 477, 479

Teeth, 48

Teleconferencing, 21

Telencephalon, 54

Tempo, 140

Temporal Features, 140

Tensor, 472

TER, 590

Terminal Buttons, 53

Tertiary Auditory Cortex, 68

Test

Speaker, 5, 313, 314

Testing

Hypothesis, 313

Texas Instruments, 855

Text-Dependent, 12, 546

Text-Independent, 13

Speaker Identification, 479

Text-Prompted, 14, 546

Thalamus, 54

Theorem

Bayes, 225

Cauchy

Integral, 676, 683

Cauchy-Riemann, 667–669

de Moivre, 650

Hilbert’s Expansion, 504, 698

Mean Value, 669, 670, 676

Mercer’s Expansion, 504, 698

Morera, 683

Parseval, 714

Fourier Series, 714

Radon-Nikodým, 229

Sampling, 79

Extended, 84

Extensions, 84

Sampling, The, 78

Schmidt’s Expansion, 504, 698

Whittaker-Kotelnikov-Shannon, 80

WKS, 80

Theory

Information, 265

Place, 145

Set

Fuzzy, 211

Rough, 210

VC, see VC Theory

Third

Moments, 245

Thomas Bayes, 225
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Thymine, see DNA Thymine

Timbre, 144, 151

Time Lapse Effects, 595

Time-Delay

Neural Network, 477

Time-Delay Neural Network, see TDNN

Time-Dependent Signal, 75

TIMIT, 617

Toeplitz Matrix, 183

Tonality, 132

Tone

Removal, 579, 580

Tongue, 44, 64

Tools

HTK, 628

Praat, 628

Voicebox Toolkit, 628

Total

Factors, 532

Variability, 532

Space, 532

Total Error Rate, 590

Total Probability, 225

Trachea, 44

Tracking, 3

Speaker, 11

Tractability

Model, 449

Training

GMM, 451

HMM, 423, 451

Neural Network, 473

Transform

Complex Fourier, 722

Complex Short-Time Fourier, 740

Discrete Cosine, 748

Discrete Fourier

Inverse, 732

Discrete Short-Time Fourier, 746

Discrete-Term Short-Time Fourier, 744

Discrete-Time Short-Time Fourier, 744

Fourier, 580, 717, 722

Complex, 80

Cosine Discrete, 748

Discrete, 731

Discrete Cosine, 748

Short-Term, 740

Short-Term Discrete, 746

Short-Term: Discrete-Time, 744

Short-Time, 740

Short-Time Discrete, 746

Short-Time: Discrete-Time, 744

Fourier Integral, 722

Gabor, 167, 740

Integral, 647, 717

Fourier, 722

General, 695

Laplace, 717

Inverse

Laplace, 720

Laplace, 717

Inversion, 720

z, 717, 750

Transformation, 238

Inverse Image, 238

Karhunen Loève, see KLT

Karhunen-Loève, 394

Linear, 403

Measurable, 238

One-to-one, 238

Orthogonal

Linear, 394

Product of, 238

Transformations, 238, 393

Translation, 248

Transpose, 635

Tree

k-d, 368, 375

k-dimensional, see k-d tree

Trees

Decision, 331

Trellis Diagram, 428

Tremolo, 151

Triangular

Inequality

Complex Plane, 649

Triangular Inequality, see Inequality

Triangular Window, 165

Trick

Kernel, 506

Trigonometric

Function

Analyticity, 672

Triphosphate, see DNA Triphosphate

Truncation

Error, 102

TSID, 619

Twiddle

Factor, 733

Two-Wire Telephone Channel, 532

Tympanic Membrane, 49

UBM, 6

Uncertainty, 269

Continuous Sources, 284

Discrete Sources, 269, 270

uncompressed, 851

Underflow, 414
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Understanding

Language, 411

Unifilar, 268, 416

Source, 419

Uniform

Density Function, 285

PCM, 842

Uniform Convergence, see Convergence

Unit

Likelihood, 453

Unitary Matrices, 638

Universal

Background

Model, 527

Universal Background Model, 6

Unsupervised

Clustering, 341, 357, 359

Updates

Pearson, 781

Uvula, 44

Uvular

Sounds, 116

VAD, 561

Validation

Cross, see Cross-Validation

van Essen, D., 55

Vapnik, Vladimir, 486

Vapnik-Chervonenkis

Dimension, see VC Dimension

Theory, see VC Theory

Variable

Bit Rate, 852

Continuous

Limit: Function, 651

Variable Metric, 474

Methods, 779

Self Scaling, see SSVM

Self-Scaling, see SSVM

Variables

Dual, 816

Variance, 242

Estimation, 258

Random Variable

Discrete, 249

Sample, 258

Variance Matrix, 260

Variance-Covariance Matrix, 260

Variations

Illumination, 26

VC

Dimension, 350, 485, 486, 493

Theory, 493

Vector

Euclidean Norm, 636

Norm, 636

Normal, see Normal Vector

Representation, 642

Vector Quantization, 358

Vectors

Conjugate, 638

Orthogonal, 638

Orthonormal, 638, 639

Velar

Sounds, 116

Velum, 44

Venn Diagram, 205

Ventriculus Tertius, 54

Verification, 3, 5, 544

Signature, 486

Verification Results, 589

Vestibulocochlear Nerve Bundle, 49

Vibrato, 151

Video Indexing, 19

Viterbi, 432

Vocal Chords, 44

Vocal Folds, 44

Vocal Source Features, 195

Vocal System, 43

Vocal Tract, 64

Length, 8

Normalization, 573

Shape, 8

Vocal Tracy, 44

Voice

Activity Detection, 561

Creaky, see Laryngealization

Recognition, 3

Voicebox Toolkit, 628

Voiced

Implosives, 120

Volume, 564

Von Neumann Computer, 465

Vorbis

OGG, 844

Vowel, 8, 119, 127

Vowels, 112

Pronunciation, 113

VQ, 358

VTLN, 573

Warping

Bark Frequency, 191

Feature, 576

Frequency, 169

Magnitude, 172

WAV, 849

Audio
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Encapsulation, 849
Waveform

Speech, 87
Wavelet

Biorthogonal, 194
Coiflets, 194
Daubechies, 194
DMeyer, 194
Haar, 194
Octave Coefficients Of Residues, 195
Reverse Biorthogonal, 194
Series, 716
Symlets, 194

WCCN, 583
Weak

Completeness, 218
Convergence, 250

Weak Law of Large Numbers, 255
Weighted Euclidean Distance, 303
Welch Window, 163
Wernicke’s Area, 60, see Brain
Whisper, 109, 119
whisper, 125
Whistle, 63, 119, 137
White Matter, 54
Whittaker, E.T., 80
Whittaker, J.M., 80
Wideband Spectrogram, 88
Wiener Filter, 580
Window

Bartlett, 163, 165
Blackman, 165
Gauss, 167
Hamming, 162, 580
Hann, 163
Low-pass, 176
Triangular, 165
Welch, 163

Windowing, 161
Within Class Covariance Normalization, 583

WKS
Sampling Theorem, 80

WKSK
Sampling Theorem, 80

WMAP, 583
WMLLR

Adaptation, 607
WOCOR, 195
Wolfe, 783

Dual Representation, see Duality
Duality Theorem, 831

Wolfe’s Duality, see Duality
Wolfe-Powell

Conditions, 783
Wolves, 536
Wood

Direct Search, 804
World MAP, 583
World Maximum A-Posteriori, 583
World Wide Web, see WWW
Worms, 537
Wrappers

k-Means, 368
WWW, 509

x-Means
Modified, 372

XOR, 481

YOHO, 618
Yule-Walker Equations, 183

z-Transform, 750
Zero Entropy, 272
Zero Normalization, 581
Zero-Memory, see Memoryless
Zero-Memory Source, 267
Zeros

of a Function, 685
Zoutendijk, 802
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