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Introduction – What are we trying to accomplish?

The aim of this project is to explore the potential benefits of GPU 

computing in its various forms.  By laying the groundwork through 

working examples and exposition, various speed benefits will be 

demonstrated and also shown to be surmountable by the average 

practitioner.  This subject should not be daunting or deemed 

necessarily out-of-reach by the typical person.  If certain rules can be 

kept straight, code samples of increasing complexity are attainable.  

Hopefully, this demonstration is persuasive and can induce others into 

scientific computing, especially, younger generations.

What is HPC Hybrid GPU Computing? Matrices, 

vectors and more…

“HPC” stands for high-performance computing.  “Hybrid” means 

that both the CPU and GPU are being targeted for various calculations 

in order to share the workload.  Previously, pools of “workers” or CPU’s 

(e.g., AMD/INTEL chips) were coordinated together to perform vast 

numerical computations in a distributed fashion.  These are often 

referred to as “clusters” or “farms”.  However, in the late 1990’s, 

academics on the West Coast along with companies like Nvidia began 

to explore libraries to take advantage of the GPU – ‘GPU’ here means 

nothing more than the chip on a video card typically used to render 



graphics on a computer screen – when several of these are encased in 

a server, then we have a cluster.  As GPU technology became more 

advanced by 19991, practitioners in the science and finance fields 

began to incorporate GPU clusters into their operations.  Remember 

that graphics rendering typically involves mathematical vector or 

matrix operations to draw lines and curves.  This word ‘matrix’ (e.g., a 

bunch of columns or vectors) is important because many computations

in various fields involve matrices, so, it is a natural extension to then 

use these video cards for other purposes besides graphics.  In fact, 

portfolio theory in finance is nothing more than a series of matrix 

operations and manipulations though we tend to forget this 

coincidence.  

To see matrices in action, let’s remember back to some simple 

algebra from high school.  Recall the formula for covariance in 

statistics of two variables:  

σ(a, u) = (a – ā)(u – ū) algebraic representation of formula

Now, let’s represent the same formula in matrix notation2:

1Feb. 2012 < http://www.nvidia.com/object/cuda_home_new.html >.
2John Cochrane, “Time Series for Macroeconomics and Finance,” University of Chicago 
January 2005: 262.
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This type of inverse matrix operation, QΛQ’, is actually called 

“Eigenvalue Decomposition” and is nothing more than the 

transposition of a matrices forming, Λ, to produce the covariance or 

lambda, λ, along the diagonal axis.  These types of operations are used

frequently in finance and science so we can see the parallel between 

simple algebra and matrix algebra.  Just like in graphics rendering, the 

GPU is all about matrices so there is a natural intersection here though 

not apparent at first glance.  So, in hybrid computing, the computer is 

simply doing some of the calculations on the CPU (with larger cores) 

and others on the GPU (with smaller cores) – by incorporating pointers 

and arrays, code can typically be “vectorized” in terms of executing 

memory and math operations in “blocks” (versus single elements) - 

here is a nice picture:



Figure 1 – Hybrid Computing in a Picture Nvidia, “uchicago_intro_apps_libs.pdf,” 

2012: 21.

Here is a better layout of one of the most powerful GPU setups in the 

world at Oak Ridge National Laboratory, the Titan:
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Figure 2 – Robust GPU Server Cluster Oak Ridge, “SC10_Booth_Talk_Bland.pdf,” 

2010: 5.

Distributed System Summary of GPU Server:
Scale:  Large      
        
Heterogenei
ty:  

Radically 
Diverse     

        

Openness:  
Mixed/Challenging - SSH/Tunneling 
(secure)  

        

QOS:  
Mixed/Challe
nging     

        

Storage:  
Distributed File System; DSM (Shared 
Memory) Async/Sync

        
Communicat
ion:  

IPC - Message 
Passing    

        

Network:  
Physical Servers; WAN - 
SSH/Tunneling Access  

Why do we need GPU Computing?  Hitting the wall…

As modern scientific research becomes more complex 

incorporating ever larger data sets, the classic CPU-centric paradigm 

runs out of computing resources.  Before GPU computing, programs 

using intensive computation might take several days to finish running 

and calculating the results.  If we were dependent on those results 

before specifying the next iteration of a model for testing purposes, we

literally had to wait until proceeding further with research.  Think about

the wasted time of such a process.  With hybrid computing, we can 



now get results back in a matter of hours or even minutes – some firms

are even calculating and executing complex operations in 

milliseconds/microseconds.  These firms were literally hitting a wall in 

terms of speed and so needed other alternatives.  GPU computing is 

massively parallel and scalable and can speed up applications by 2X to

100X.  If you have enough resources and hardware, you can keep 

reducing computation time by adding more GPU’s.  This does cost a lot 

of money, however, and some firms spend tens of millions of dollars on

hardware including both CPU and GPU clusters (e.g., collocated 

servers).  Remember that a GPU is full of thousands of smaller cores 

whereas the CPU has fewer, but larger cores.  Think of it as many little 

bicycles versus fewer large trucks.  However, for certain tasks, the CPU

simply cannot keep up with the GPU.  Typically, relative performance 

between the CPU and GPU is measured in the amount of single-and-

double precision operations per second (FLOPS).  The next chart shows 

how fast the divergence in speed is progressing towards a 100X 

advantage by 2021: 
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Figure 3 – GPU versus CPU Nvidia, 2012: 6.

Figure 4 – Organizations Using GPU for Speed Nvidia, 2012: 7.



Figure 5 – Single versus Double Precision Yields More Gains in Speed Nvidia, 
2012: 8.

Figure 6 – Evolution of HPC Networks from CPU to GPU Oak Ridge, 
“SC10_Booth_Talk_Bland.pdf,” 2010: 6.
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Testing Approach, Setup & Hypothesis

The goal is prove out the speed gains from GPU computing by 

designing and running a complex program across several platforms.  

This program will involve large data sets and complex math operations 

(see financial modelling section below for the exact test design).  Since

this study involves distributed systems, the program MUST compile 

and run on a non-local GPU server cluster (and not simply at home on 

a single GPU setup) – getting code to run on foreign, unfamiliar 

hardware is a difficult challenge.  We will then employ heuristics like 

timers to measure the speed across various platforms.  To recap, here 

is a brief overview of the test:

1. Design a complex program (multi-streams, threads and GPUs) in 

C/C++ and make it run on CPU and GPU server (LUC TESLA)
2. Then test variations of the this same program in other 

languages/platforms such as JCUDA, OpenACC/MP & MATLAB 
3. Keep track of ALL CPU-only and GPU results to determine conclusion 

Getting Setup for GPU Computing – CUDA C & Independent
Tasks

Because the early pioneers of GPU computing worked in C/C++, 

this means that we need to use either C/C++ for the most robust 

programming in order to take full advantage of the GPU’s capabilities.  

C++ is an object-oriented extension of the C language – they are 

similar though C is probably used more often in GPU programming.  

There are several typed of libraries (or DLL’s) that are full of GPU 

functionality, but the oldest and most powerful one is made by Nvidia 



and is referred to as “CUDA”.  Because Nvidia maintains this library, 

they also require that an Nvidia video card be used to take advantage 

of CUDA.  It does not have to be this way, but they made it this way for

business reasons so that they can sell more product.  There are some 

other alternatives that will be explored later on such as “Open ACC” 

and various “wrappers” like JCUDA, but let’s start with CUDA since it 

has the most developed functionality.  So, we will need the following to 

explore CUDA C GPU programming:

 A laptop or desktop with an Nvidia video card or GPU – powerful desktops are 

typically easier to work with here
 Install Nvidia SDK Toolkit and Drivers – available here: 

https://developer.nvidia.com/cuda-downloads – choose either a Windows 

(Visual Studio IDE) or Linux (Eclipse IDE) setup
 To see the “trade-of” between regular (CPU) computing and hybrid GPU 

computing, we’ll need to code up several examples in C/C++.  This means 

we’ll have to “port” over programs into C/C++ from other languages with 

which we are more familiar.  For example, programs in statistics packages like 

MATLAB, R and MATHEMATICA will have to be redone in C which is a lot of 

work – we will have to make a CPU-only version as well as a GPU hybrid 

version
o Specifically, we will be targeting “FOR NEXT” loops inside code to 

make operations run in parallel on the GPU.  This means operations 

must be independent – no recursive functions or array indexing of 

[i-1].  If we need to “look back”, then we must use other functions to 

offset arrays by [i-1] in order to “trick” the computer in thinking that it 

is looking at today’s value or element [i].  It’s also good to use single 
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versus double precision whenever possible since the CPU is optimized 

for double while the GPU is optimized for single (or float)

A Quick Primer in C:  A Boxing Metaphor – Mike Tyson vs. 
Sugar Ray

Some of the younger generations can get anxious when they 

hear “C/C++”.  This might be due to the perception that C/C++ can be

harder to learn due to “pointers”.  Pointers and more specifically, 

pointers-to-arrays, are very powerful tools that allow for rapid 

processing via vectorization.  Let’s focus on C here since this is what 

we’ll predominantly use for this study.  With its pointers, C is a 

minimalist and “muscle-bound” programming language.  In boxing 

terms, C is a lot like the former boxer, Mike Tyson.  Tyson did not have 

a “pretty” boxing style, but was a short, powerful man that wasted no 

energy in his punching technique – he had a brutally direct technique 

that was centered right at his opponents.  The C language is a lot like 

this and is procedural rather than “OOP”.  There are not a lot of extras 

or “frills” in C or even pre-made libraries.  When you use C, you have to

manage the dynamic memory of pointers and code up most of your 

own functions even for simple calculations such as variance and 

moving averages.  This can seem like a pain in the neck, but this 

process ensures that you really understand what you are trying to do 

as well as the tools you are using to accomplish the task at hand.  

Many users use pre-built functions like “variance” in statistics 

programs without even knowing they are using “sample variance” 



(which has “N-1” in the denominator) – when you’re forced to code this

up yourself, you’ll quickly find out something is wrong if you don’t 

make this adjustment in the denominator.  So, in the right hands, C is a

lethal weapon.  Let’s also remember that many engineering programs 

in aerospace still run on C which is over 50 years old at this point in 

time.  That’s right – many missile and radar systems still run on C and 

it is still widely used in the defense industry.  In fact, Boeing has its 

own version/extension of C.  

On the other hand, .NET and scripting languages are probably 

more popular with younger folks.  For example, let’s consider C#/.NET 

in which various operations like memory management are taken care 

of “behind the scenes” via “garbage collection”.  There are also many 

libraries that can be easily referenced in C#.  C# is an intermediate-

level language with “JIT” compilation versus C.  In C, very little is done 

‘behind the scenes’ for us, so we must specify what we want and also 

pass by reference.  But because of this as well as it being a “native” 

language, C can run very fast.  So, C#/.NET is more like the graceful 

former boxer, Sugar Ray Leonard, who used to bob-and-weave and 

dancing around his opponents. OOP languages like C# also allow us to 

be very organized since we can create our own classes and group 

functions by classes.  In C, we cannot create our own classes, but are 

bound by “built-in” classes like structures, instead.  So, there is 

certainly a kind of beauty or creativity which we cannot really capture 
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in C.  All these classes take up space and resources at some point, 

however, which is another reason why C runs quickly due to limited 

overhead.  As with things, there are trade-offs between programming 

languages, but here C is really useful since we are concerned with 

maximizing speed in GPU computing via vectorization.

Let’s work through a simple example using pointers so we can 

see the true power of C.  When doing computation, we typically have 

variables of varying size which are like columns in an Excel 

spreadsheet.  Thinking back to matrices, think of these variables as 

“vectors” – a matrix is nothing more than a bunch of columns or 

vectors (e.g., a “grid” in Excel).  Here is typically what happens in C 

computation:

 Declare a pointer to an array for an unknown variable (of varying size) or 

‘vector’ in the main program – it is proper syntax to use the “indirection” 

operator or asterisk “*” here like “double *var” – by doing this, we are 

allowing for “vectorization” of code so that memory and math operations 

can be done in blocks rather than element-by-element
 Allocate space in memory for the variable via MALLOC or CALLOC like 

“var=(double*) calloc(length,sizeof(double))”
 Pass this variable by reference to the function call like “function(var)” – 

there is no “*” here since we are passing by reference
o In the formal declaration and definition of the function, we must use 

“*” like “void function(double *var)”
o Once within the function definition, we can then refer to an instance of

the variable as var[i] using the typical index notation since the C-

compiler makes no distinction between a pointer pointing to the first 



element of an array versus an array, itself3 – that is, the C-compiler will

always convert an array to a pointer of the same type for a function 

[array] variable (without you knowing about it)
 Since C does not check “bounds” before running (like in 

C#/.NET), we must be careful to not to loop past the end of the 

length of the variable
 Finally, after calling the function and getting the results back, we must “free 

up” the memory we allocated using “free var” – there is no “*” here since we

are referring to the address like in all memory operations - if we forget to do 

this, our computer will start running out of memory as it eats into more-and-

more virtual “soft” memory and so other programs/applications will slow down

in performance (e.g., a memory “leak”) – it’s best to run a C-program in 

“debug” mode so that we eventually get a warning here, instead
 That’s it – we just keep repeating this process over-and-over for each variable 

– not so bad as long as we can remember when to use “*” before the pointer 

(e.g., dereference)

So, we can intuit the powerful 2-way communication here between 

the main calling routine/program and the specific function – this 

happens very quickly in C since we are using pointers and passing by 

reference.  Here is a specific example:

Exhibit 1 – C-Code Pointer & Function Example  Author, 2013.
#include <stdio.h>
#include <math.h>
#include <io.h>
#include <stdlib.h>
#include <string.h> 
#include <float.h>

//forward declaration of function up here before main program
void s_tr(double *tr,double *hi, double *lo, double *cl, int n);

//start main program
void main (int argc, char *argv[]){
int i=0;

long numlin;

3Stephen G. Kochan, “Programming in C, Third Edition,” Sams Publishing July 2005: 
264.
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Declare function before MAIN 
program



//declare pointer array variables
double *hi,*lo,*cl,*tr;

char source[60],line[100];
 FILE *fin;

//open file of market data
sprintf(source,"c:\\data\\%s.dat",argv[1]);
fin=f_openr(source);
numlin=f_line(fin); 

//allocate memory for pointer array variables
hi=(double*) calloc(numlin+1,sizeof(double));
lo=(double*) calloc(numlin+1,sizeof(double));
cl=(double*) calloc(numlin+1,sizeof(double));
tr=(double*) calloc(numlin+1,sizeof(double));

//read in data from file
while(fgets(line,100,fin)>0){

sscanf(line,"%*s %*s %lf %lf %lf",&hi[i],&lo[i],&cl[i++]);}

//close file
f_close(source,fin); 

//call function - pass by reference
s_tr(tr,hi,lo,cl,i);

//free memory of pointer array variables
free (hi); free (lo); free (cl); free (tr); }

//define function down here
void s_tr(double *tr,double *hi, double *lo, double *cl, int nday){
 double m1,m2,m3,m4; int i;

for(i=1;i<nday;i++){
m1=abs(hi[i]-lo[i]);
m2=abs(hi[i]-cl[i-1]);
m3=abs(cl[i-1]-lo[i]);
m4=max(m1,m2);
tr[i]=max(m4,m3);} 

return; }

https://bitbucket.org/adrew/gpu/commits/527fc01520b6fb16c5a27053ccea
6739   

Description of GPU Server Operations & Architecture

A CPU Task versus a GPU Task:  Pizza Delivery

CPU cores resemble large trucks compared to smaller GPU cores. 

Again, it is helpful to think this dichotomy as trucks versus 

motorcycles.  The CPU is good for large, sequential operations.  Most 

programs are not programmed to enable multi-threading on the CPU so

it is fair to say that the CPU goes about its work in non-parallel fashion 

bouncing around from task-to-task.  On the other hand, the GPU is 

Must use * here for 
declaration of pointers and 
memory allocation

Do not need * when freeing memory 
or passing by reference to function

Must use * here as input to
function

Can use array indexing here inside 
function definition

https://bitbucket.org/adrew/gpu/commits/527fc01520b6fb16c5a27053ccea6739
https://bitbucket.org/adrew/gpu/commits/527fc01520b6fb16c5a27053ccea6739


designed inherently for parallelism.  If we imagine pizza delivery in a 

neighborhood, the CPU would deliver a pizza to one house and then 

move on to the next.  The GPU would send out many smaller 

messengers simultaneously to multiple houses via its smaller cores, 

however, which is why operations must be independent – see slides:

Figure 7 – A Typical CPU Operation Nvidia, 2012: 10.
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Figure 8 – A Typical GPU Operation Nvidia, 2012: 11.

What does a GPU chip look like?  Cores, Caches & SM’s
A GPU is largely made up of cores, caches and streaming 

multiprocessors (SM’s).  Namely, thousands of cores are divided up 

into blocks on SM’s – an SM is essentially a mini “brain” on the chip – 

all the SM’s added together make up the entire ‘brain’ or chip.  

Furthermore, each SM has memory caches and registers.  A picture is 

necessary here – there are 32 cores per SM on this GPU: 



Figure 9 – GPU Architecture Nvidia, 2012: 29.

 Hybrid CPU-GPU Operations:  Processing Flow
The next 3 charts demonstrate how the CPU and GPU interact 

when processing hybrid functions or operations - CPU contents are 

copied to GPU DRAM, the GPU does calculations via SM’s and then GPU

contents are copied back to CPU:

Figure 10 – A Typical Hybrid CPU-GPU Operation: CPU-to-GPU Nvidia, 2012: 

24.
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Figure 11 – A Typical Hybrid CPU-GPU Operation: GPU calculations via SM’s 

Nvidia, 2012: 25.

Figure 12 – A Typical Hybrid CPU-GPU Operation: GPU-to-CPU Nvidia, 2012: 

26.

GPU Memory Hierarchy & Kernels:  Threads, Blocks & 
Grids  Cores, SM’s & GPU’s

GPU memory breaks down into threads stored by registers in 

local memory.  Groups of threads then make up blocks stored in shared

memory.  Blocks then make up grids which encompass global memory. 

In terms of kernel or function execution, threads map to cores while 



blocks map to SM’s.  Finally, grids can take up the entirety of the GPU 

or even multiple GPU’s via multi-streaming, concurrent execution – 

these 2 slides show it best:

Figure 13 – GPU Memory Hierarchy Nvidia, 2012: 27.
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Figure 14 – GPU Kernel Execution Nvidia, 2012: 43.

A Simple CUDA C Function
The simple function from Nvidia shows the difference between C 

code and CUDA C – CUDA C is just an extension of C with some 

additional syntax – the CUDA C compiler is called “NVCC” and is very 

similar to the standard C compiler.  They are similar except the way 

they declare and call functions as well as memory allocation.  In CUDA 

C, you typically use “_global_ void” rather than just “void” to declare 

a function.  Also, you must use the triple chevron “<<< blocks, 

threads >>>” to call a CUDA function.  Lastly, you cannot use 



“calloc” to allocate memory to GPU-related variables – you must use 

“malloc” instead:

Figure 15 – C Function versus CUDA C Function Nvidia, 2012: 34.

A Simple CUDA C Program
In the following CUDA C program, we’re simply going to make a 

CUDA function that adds the number 10 to each subsequent iteration 

of a variable.  We’ll then call that function in the main program and 

print the results to the console.  There are two versions here – one 

without error trapping as well as the same version showing how to trap

CUDA errors – it is the same basic program, overall:
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Exhibit 2 – Simple CUDA C Program  Author, 2013.
#include <stdio.h>

// For the CUDA runtime library/routines (prefixed with "cuda_") - must include this file
#include <cuda_runtime.h>

/* CUDA Kernel Device code
 * Computes the vector addition of 10 to each iteration i */
__global__ void kernelTest(int* i, int length){ 

    unsigned int tid = blockIdx.x*blockDim.x + threadIdx.x;

    if(tid < length) 
        i[tid] = i[tid] + 10;}

/* This is the main routine which declares and initializes the integer vector, moves it to the device, 
launches kernel
 * brings the result vector back to host and dumps it on the console. */
int main(){

//declare pointer and allocate memory for host CPU variable - must use MALLOC or CudaHostAlloc here
    int length  = 100;
    int* i = (int*)malloc(length*sizeof(int));

//fill CPU variable with values from 1 to 100 via loop
    for(int x=0;x<length;x++)
        i[x] = x;

//declare pointer and allocate memory for device GPU variable denoted with "_d" – must use cudaMalloc 
here
    int* i_d;
    cudaMalloc((void**)&i_d,length*sizeof(int)); 

//copy contents of host CPU variable over to GPU variable on GPU device
    cudaMemcpy(i_d, i, length*sizeof(int), cudaMemcpyHostToDevice);

//designate how many threads and blocks to use on GPU for CUDA function call/calculation - this depends 
on each device
    dim3 threads; threads.x = 256; 
    dim3 blocks; blocks.x = (length/threads.x) + 1;

//call CUDA C function - note triple chevron syntax
    kernelTest<<<threads,blocks>>>(i_d,length); 

//wait for CUDA C function to finish and then copy results from GPU variable on device back to CPU variable
on host – this is a blocking operation and will wait until GPU has finished calc process
    cudaMemcpy(i, i_d, length*sizeof(int), cudaMemcpyDeviceToHost);

//print results of CPU variable to console
    for(int x=0;x<length;x++)
        printf("%d\t",i[x]);

//free memory for both CPU and GPU variables/pointers – must use cudaFree here for GPU variable
free (i); cudaFree (i_d); 

//reset GPU device
cudaDeviceReset();  }

https://bitbucket.org/adrew/gpu/commits/7e8154cf89bfc312adbf899187d89622

Exhibit 3 – Simple CUDA C Program with Error Trapping  Author, 2013.

This one file must be included 
here for base CUDA functionality,
but can also include others

Thread id # (tid) is function of BOTH 
thread and BLOCK since thread count 
resets to 0 on next contiguous block

Must use MALLOC or CudaHostAlloc for
host CPU variable – cannot use 
CALLOC like in normal C

Thread & block sizes can vary and depend 
on size of data and GPU device – run CUDA
tests later on for optimality, but MUST 
assign an initial value for the number of 
threads which is 256 here and is a fairly 
standard size

This is a BLOCKING operation since 
transfer will WAIT until GPU is done 
processing CUDA function calcs (see 
CUDA call above)

This resets GPU device and all local 
contexts including the thread counter 
index – this is important for profiling 
CUDA application later on

https://bitbucket.org/adrew/gpu/commits/7e8154cf89bfc312adbf899187d89622


#include <stdio.h>
// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>

//CUDA Kernel Device code - Computes the vector addition of 10 to each iteration i
__global__ void kernelTest(int* i, int length){

    unsigned int tid = blockIdx.x*blockDim.x + threadIdx.x;

    if(tid < length)
        i[tid] = i[tid] + 10; }

 /* This is the main routine which declares and initializes the integer vector, moves it to the device, 
launches kernel and brings the result vector back to host and dumps it on the console. */
int main(void){

// Error code to check return values for CUDA calls
    cudaError_t err = cudaSuccess;

    int cumsum[200]={0},x=0;
    int length  = 100;

printf("[Vector multiplication of %d elements]\n", length);

// Allocate the host input vector A
    int* i = (int*)malloc(length*sizeof(int));

    for(int x=0;x<length;x++)
        i[x] = x;

 // Allocate the device input vector 
    int* i_d;
    err=cudaMalloc((void**)&i_d,length*sizeof(int));

if (err != cudaSuccess) 
    {

fprintf(stderr, "Failed to allocate device matrix  (error code %s)!\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE); }

// Copy the host input vector A in host memory to the device input vectors on GPU
printf("Copy input data from the host memory to the CUDA device\n");

    err = cudaMemcpy(i_d, i, length*sizeof(int), cudaMemcpyHostToDevice);

if (err != cudaSuccess)
    {

fprintf(stderr, "Failed to copy matrix from host to device (error code %s)!\n", 
cudaGetErrorString(err));

        exit(EXIT_FAILURE); }

// Launch the Vector Add CUDA Kernel
    dim3 threads; threads.x = 256;
    dim3 blocks; blocks.x = (length/threads.x) + 1;
    kernelTest<<<threads,blocks>>>(i_d,length);

err = cudaGetLastError();

    if (err != cudaSuccess)
    {

fprintf(stderr, "Failed to launch vectorMultiply kernel (error code %s)!\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE); }

 // Copy the device result vector in device memory to the host result vector
printf("Copy output data from the CUDA device to the host memory\n");

    err = cudaMemcpy(i, i_d, length*sizeof(int), cudaMemcpyDeviceToHost);

 if (err != cudaSuccess)
    {

fprintf(stderr, "Failed to copy matrix from device to host (error code %s)!\n", 
cudaGetErrorString(err));
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We can also use “error trapping” in the 
same program to show us where there are 
problems in CUDA functionality as we learn
– “stderr” is the basic error flag or stream 
in C denoting an error in a particular 
operation upon which it will print to the 
console and exit



        exit(EXIT_FAILURE); }

    for(int x=0;x<length;x++)
        printf("%d\t",i[x]);

// Verify that the result vector is correct
    for (int x = 1; x <= length; ++x)
    {     

cumsum[x] = cumsum[x-1]+i[x]; }

if (cumsum[length-1]+i[0] != 5950)
        {
            fprintf(stderr,"Result verification failed at element %i!\n", cumsum[length-1]);
            exit(EXIT_FAILURE); }

// Free host and device memory
    free(i); cudaFree(i_d);
  
    // Reset the device and exit
    err = cudaDeviceReset();

    if (err != cudaSuccess)
    {
        fprintf(stderr, "Failed to deinitialize the device! error=%s\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE); }

    printf("Done\n");
return; }

https://bitbucket.org/adrew/gpu/commits/5f9cb20212fa6ac372e9d71954491309c60e

f984 

https://bitbucket.org/adrew/gpu/commits/5f9cb20212fa6ac372e9d71954491309c60ef984
https://bitbucket.org/adrew/gpu/commits/5f9cb20212fa6ac372e9d71954491309c60ef984


Anatomy of a CUDA C Program Flow & Compilation
These slides simply depict what occurred in the previous CUDA C 

program: 

Figure 16 – Anatomy of CUDA C Program Nvidia, 2012: 32.

Figure 17 – Compilation of CUDA C Program Nvidia, 2012: 33.
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A More Complex CUDA C Program: Model Optimization

in Finance

A Primer in Finance & Building Models – The “Martians” 
Have Landed

The CUDA functions and programs demonstrated so far are 

simple in nature.  This is well and good, but we really want to test how 

CUDA can speed up a more complex program.  In science and finance, 

we are often dealing with models of the world and trying to speed up 

intensive computations.  To do this, we should build a simple model 

that has many iterations and calculations and run it on the CPU (via C) 

as well as on the GPU (via CUDA C).  We want to determine the 

benefits of using the CPU, alone, as well as using the CPU along with 

the GPU in hybrid fashion.  We will build a trading model in finance in C

as well as CUDA C, so, there will be two versions here.  Finance may 

not be socially useful, but it is still intellectually challenging since 

“beating” the market on a risk-adjusted, consistent basis is very 

difficult to do without cheating – we are simply using our brains and 

probability theory here instead of relying on “insider” information or a 

legalized version of “front-running” (e.g., high-frequency trading via 

“flash” quotes).  Some enjoy cross-word puzzles while others enjoy 

finding patterns in the market.

Let’s take a step back and think about what a ‘model’ is.  It is 

also helpful to give a brief primer in finance so the reader has some 



context as to what we’re striving to accomplish in this demonstration.  

A model is nothing more than a simplistic view of the world that 

describes some event.  The main components of a model are typically 

referred to as “factors” or variables.  That is, we want to try and find 

factors that are helpful in describing some state of the world.  We could

use the computer to sift through thousands of potential factors and 

specify the relevant variables – this is referred to loosely as “machine 

learning” (or data mining) and techniques like neural nets (ANN) and 

regressions (PLS) are of this type.  However, we could also observe the 

world and then specify the factors, ourselves, via experience and then 

test their usefulness.  That is what we’ll do here. 

Models are often described in mathematical form.  Thinking back 

to a regression equation from grammar school, we could have:  y = X *

w + ….so, ‘X’ is the factor or variable here describing ‘y’ while ‘w’ is 

the weight or probability of ‘X’.  However, we don’t have use math to 

describe our model – we could also use logic or conditional language 

such as “IF X THEN Y…” – this type of language is intuitive and well-

suited to programming since computer code is also written in pseudo-

language.  In finance, we typically mean:  IF CONDITION X THEN 

EXCESS RETURNS ON Y (e.g., the implicit modeling or prediction of 

RETURNS on a stock or security).  So, we are “relaxing” math 

constraints here and will describe (and program) our model in 

conditional language.  This “less” precise approach affords us more 
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flexibility to test “fuzzier” factors we might not have initially envisioned

via the strict math method.  In fact, this type of approach is often 

referred to as “fuzzy logic” in that it can be “loose” or imprecise.  

Fuzzy logic and set theory was pioneered in the last century by a 

brilliant thinker named Kurt Gödel4.  Many brilliant thinkers emerged 

out of the collapsed Austro-Hungarian after World War I including Gödel

and it is important to mention them since most of the tools we use 

today were created by them – we owe a collective “tip of the hat” to 

this group.  These thinkers laid the foundation for modern math and 

physics as well as computers.  Humorously, this group made up of the 

likes of John Von Neumann, Edward Teller and Gödel were often 

referred to as the “Martians” since they were considered so smart that 

it was if they came from another planet5.  It could be argued that 

modern generations have not come as far since we have not 

developed new fields in math or science though we have more to go on

via computing power.  Remember also that the last large space 

operation occurred in the 1960’s when von Braun and his rocket 

scientists sent us to the moon – a remarkable feat considering the 

limited computing power at the time compared to nowadays. 

In the 1931, Gödel published a set of logical theories including 

the “incompleteness theorem”.  At the time, it was trendy for both 

4James Gleick, The Information: A History, a Theory, a Flood (New York: Pantheon, 
2011) 136-186.
5Istran Hargitta, Martians of Science (New York: Oxford Press, 2006) 11.



mathematicians and physicists to tinker in philosophy.  In fact, thinkers 

like Bertrand Russell at Cambridge University were actually trying to 

make philosophy a science by applying various rigorous disciplines.  

Namely, Russell and several others were trying to create a “perfect” 

human language with no ambiguities based on Boolean logic and 

mathematics6.  The idea was that one could represent linguistic 

expressions as mathematical conditions with binary (e.g., true-or-false)

outcomes and, therefore, switch back-and-forth between the two 

modes of expression.  Today, this endeavor might seem trite or foolish, 

but the hope was that a clear language could rid the world of 

misunderstanding and suffering.  A mathematician, himself, Gödel 

came along and “wrecked” this logical quest though Wittgenstein also 

made some contributions to the cause.  With the “incompleteness 

theorem”, Gödel demonstrated how a mathematical function can be 

logically constructed in language and vice-versa, but still remain 

improvable though simultaneously consistent or rational.  So, he 

demonstrated how something logical could still end up being circular or

incomplete in some sense (e.g., always lacking or imperfect).  The 

long, formal proof of this theorem is beyond the scope of this study, 

but let it suffice that the two main points are that if a system is 

consistent or logical, then it cannot be complete and its axioms cannot 

be proven within the system.  With one master stroke, Gödel basically 

6Gleick 136-186.
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pushed “back” math, physics and philosophy into “grey” space despite

the best efforts of thinkers like Russell to make these disciplines binary 

or “black-and-white”.   So, Gödel brought back ambiguity and made it 

“okay”, so to speak, since he showed that statements that are 

improvable can still have meaning or consistency.  Since he used both 

math and language to illustrate his proof, his findings could not be 

refuted by mathematicians and philosophers, alike, which is why they 

had such far-reaching implications.  

This theme of “greyness” or fuzziness is important because it 

relates back to our model in finance.  Loosely speaking, the word 

“fuzzy” basically implies that something has meaning or usefulness 

though it is ambiguous.  Mapping this theme into logic or probability 

theory, “fuzzy” means that something is not true or false in a strict 

sense, but rather has a degree of truth or consistency between 0 and 

1.  So, a statement has a probability or outcome expressed as an 

interval or percentage between the binary levels of 0 and 1.  

Essentially, fuzzy logic implies a lack of precision and is a matter of 

degree or range, instead, which is very relevant to human language via

conditional statements.  It is as if to admit that there is only a “sense” 

of the truth in human affairs which are often complex.  Imagine 

someone making a stock market prediction and framing it as a matter 

of probability rather than certainty which seems prudent, since, it is so 

difficult to make prognostications about the future.  A typical fuzzy 



statement is the following:  “Unexpected results of government 

reports cause big moves in the stock market”.  Intuitively, this 

statement seems somewhat true or meaningful though it is not exactly

quantified and, hence, ambiguous.  This is the type of expression or 

outcome Gödel was trying to describe in his proof.  Now imagine a 

computer trying to process the statements “cold, colder, coldest”.  

Though these words have some “rough” meaning to humans, 

computers cannot quantify these expressions unless a range of 

temperatures (e.g., a “fuzzy” interval) describing each subset or word 

is also supplied.  More formally in 1965, Lotfi Zadeh mathematically 

described a “fuzzy” set as a pair (A,m) where A is a set and m : A  

[0,1]7.  A fuzzy set or interval of a continuous function can also be 

written:  .  In terms of modeling, it’s more useful to think of a 

fuzzy set in the form A ● R = B where A and B are fuzzy sets and R is a

fuzzy “relation” – A ● R stands for the composition A with R8.  So, what 

does this mean?  It means that though sets A and B are originally 

independent, they might be probabilistically connected through R, the 

fuzzy relation, by one element in both sets.  It is like saying A and B are

independent, but that they could also be probabilistically related to 

each other via R – there is a sense of “fuzziness” or ambiguity here.  

Now we have fuzzy logic under our belts, let’s go ahead and 

specify our fuzzy model.  Note that we will not formally or explicitly 

7Feb. 2013 < http://en.wikipedia.org/wiki/Fuzzy_set >.
8Feb. 2013 < http://en.wikipedia.org/wiki/Fuzzy_set >.
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define our model and its factors via math, but do this implicitly, 

instead, via language.  From observations and experience, we know 

that financial markets get interesting at the extremes.  What does 

“extreme” mean?  In terms of price action, this idea pertains to when 

markets get overbought (e.g., price has risen very high) or oversold 

(e.g., price has dropped very low).  So, we want to build a simple 

model that can give us some insight into what happens when prices 

reach extremes.  Should we buy on strength or “momentum” when 

prices are very high and overbought?  Or, should we sell short in a kind

of counter-trend or mean-reversion trade?  Note that this relates to 

human behavior to some degree since people often engage in 

“crowding” actions akin to “fear-and-greed” cycles.  So, this model will 

also have a behavioral edge as well as underpinnings to fuzzy logic.  

To discover more, we must first find a way to measure extremes. 

From experience, we will use a statistical “trick” or tool called “Z-

scores”.  A z-score is simply defined as:  z = (a – ā)/σ.  So, take 

today’s price for a security and subtract from it a moving-average price

and then divide by the standard deviation (or volatility) of the time 

series.  At any given time, this measure will tell us how many standard 

deviations “rich” or “cheap” the current price is when compared to 

the average price.  Sounds simple, but remember that we already have

two parameters of this function – a parameter is simply an input into a 

function.  Namely, we have length and a suitable cutoff level or fuzzy 



range that defines ‘rich’ or ‘cheap’.  So, our trading rules becomes:  IF

Z-SCORE TODAY IS >= Z-SCORE RANGE THEN BUY (and vice-versa

for SELL trades).  From testing and experience, we happen to know 

that “going with the market” (instead of fighting it) yields better results

– so, this type of model will be a momentum model since we are 

simply reacting to and ‘going with’ the recent trend in prices.  Notice 

also that we only care about price here – we don’t care about 

exogenous, fundamental variables like GDP (Gross Domestic Product).

So, we are keying off “price action” to make a formulation about 

trading on the price of a security – there are no abstract levels of 

determination here since we are studying price to take action on price, 

itself.  This type of model is often referred to as a technical or price-

based model and is endogenous.  

So, we have a relatively simple model here with one implicit 

factor called z-score.  However, we’ll need to test various values to 

determine the optimal parameters of the model – length and z-score 

range.  This will involve combinatorial math.  Let’s say we have 3 

possible inputs for these 2 parameters: {1, 2, 3} for z-score ranges 

and {21, 34, 55} for moving-average lengths – that is 32 

combinations or 9 in total.  Models can often have 2, 3 or even 4 

factors – so we could easily have 34 or 81 combinations for testing.  

This means for each security, we must test all combinations over each 

time period to find the best one.  This is called “exhaustive 
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optimization” since we are testing all combinations – genetic 

optimization is faster, but there is no guarantee of finding the best 

result.  What is the ‘best’ one?  In finance, this is often called lambda, 

λ, or the Sharpe ratio:  μ/σ (the average return over the time period 

divided by the volatility over the same time period).  This is not to be 

confused with lambda or “half-life” from physics.  There is an old joke 

that if your math is not good enough, you leave science and go into 

finance.  All jokes aside, finance does indeed borrow a lot from physics 

– delta, gamma, lambda and omega are all used in option trading 

besides the fact that the Black-Scholes pricing equation (for options) 

was derived from the heat-transfer equation in physics (e.g., Ito’s 

Lemma).  So, we’ll have to run all these combinations and then store 

the best combination for use later in the model for each security.  So, 

30 securities (though we could easily have more) multiplied by 9 

combinations is a total of 270 optimizations.  We can begin to see that 

the amount of computation is piling up here.  

To add more realism to this model testing, we’ll also have to 

repeat this optimization over-and-over for each time period on each 

security.  So, as we move through time, our optimization process 

becomes a “rolling” optimization.  We must look “back” and test the 

best possible parameter combination and then use that one for the 

next period forward to derive unbiased model returns (e.g., “profit-and-

loss”) for each security.  The “look back” period is often referred to as 



an “in-sample” test while the next one forward is called an “out-of-

sample” test (e.g., “ex-ante” versus “ex-post”).  Remember that once 

we’ve found the best parameter combination on a security, we cannot 

go back in a time machine and trade off these results – so, we’ll simply 

hold these parameters constant and use them for the next period 

forward in terms of trading and results.  Since this model will be re-

optimizing and updating with the market, it is also a kind of learning 

model or DLM (Dynamic Learning Model).  The world of finance has 

been waiting patiently for the physicists to find the “time machine” 

model, but nothing has been found as of yet though quantum theory 

suggests this might be possible.  This concept can be confusing and is 

a common mistake amongst modelers so let’s draw a timeline 

depicting this rolling optimization – here we are fitting parameters (for

z-score) on the last 5 years and then repeating this process every year 

(or re-optimizing in steps of 1): 

Exhibit 4 – Rolling Optimization: In-Sample (Blue) vs. Out-of-
Sample (Black)  Author, 2013.

Considering many financial time series (in the futures markets) have 

an average length of at least 39 years, than mean 35 in-sample 

optimizations in total.  So, now we have [35 periods * 9 

combinations * 30 securities] equals 9,450 
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optimizations/combinations in total.  Even though we have a simple 1-

factor model, the amount of calculations increases exponentially.  A 

more complex model could have [35 periods * 81 combinations * 

30 securities] equals 85,050 optimizations/combinations in total.  

This amount of computation will easily overwhelm any CPU (including 

quad-cores) on a workstation or desktop which is really why we need 

GPU’s here as well as multiple workstations (and GPU’s).  In the real 

world, no model is perfect since it is merely a simple representation of 

the world.  Therefore, it is common in finance to run multiple models 

simultaneously in order to diversify the portfolio in an extreme sense.

Instead of diversifying a portfolio of stocks according to finance theory,

take this theme a level higher and imagine becoming a portfolio 

manager of models (instead of just securities).  Now envision this:  [35 

periods * 81 combinations * 30 securities * 30 models] = 

2,551,500 optimizations/combinations in total.  Typically, re-

optimization is done every week instead of every year like the example

above (e.g., smaller steps) – Houston we have a problem!  Hopefully, 

everyone gets the gist of the computational challenges in the world of 

finance and science. 

An Overview of the Model Program Flow, Memory & 
Process
Since there are thousands of line of code between the CPU and GPU 

versions of the model program, it is impractical to highlight all the code



here.  However, here are some highlights as well as some general 

comments on the process:

 It’s a good habit to have all functions in a utility header or source file (utility.h 

or utility.c) and then include this in the MAIN PROGRAM (#include 

“utility.h”) – put any needed files inside the project folder so there is no 

problem with “paths” – be sure to include the cuda_runtime.h as well since 

this is most important and is a requirement.  
o Instead of making a new CUDA project from scratch, it can be easier to 

take an example from Nvidia and then customize it further.  To start 

one from scratch, we must be sure to change the BUILD 

CUSTOMIZATION in the project by selecting the CUDA/NVCC compiler.

Also, the following library paths must be added in under the project 

properties:  cudart.lib under LINKER/INPUT and $(CUDA_PATH) under

LINKER/GENERAL
 As for code, in order to get the combination of parameters, we’ll need to use a

series of outer/inner for-next loops.  In the example here, there are 4 “for-

next” loops:  LOOP BY MARKET >>> LOOP BY TIME PERIOD >>> LOOP 

BY FIRST PARAMETER >>> LOOP BY SECOND PARAMETER…
o We’ll run an optimization based on the previous rolling 6 years and 

then “re-fit” every year or in steps of 1 (though this is variable by the 

user via #define)
o We’ll store the best parameter combination and then use it for the 

NEXT PERIOD FORWARD so that our results are NOT biased – we want 

to collect OUT-OF-SAMPLE results here – remember, we cannot go back

in a time machine and use the parameters we discovered today for 

yesterday’s trading – biasing returns with IN-SAMPLE information is a 

common mistake.  If we do so, any model can look good given the 

amount of computing power we have nowadays (e.g., the computer 

can always find some setting or parameter that looks like it “works”)…
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o For CUDA C, try to use “page-locked” or “pinned” memory as much as

possible for speed gains – store CPU variables or pointers using 

CudaAllocHost (instead of MALLOC) so that the CPU and GPU can 

more quickly transfer data back-and-forth.  Remember, transferring 

data between the CPU and GPU is the SLOWEST operation (or biggest 

“bottle-neck”) so try to do so sparingly by running as many 

calculations on the GPU before sending the results back to the CPU.  

Remember that the MAX MEMORY (DRAM) on ANY GPU is 6 GIGS so be

mindful of large memory operations.  Here is a visualization of pinned 

versus non-pinned/pageable memory:

o Also, depending on the capability of the video card, try to use 

ASYNCHRONOUS (overlapping) operations as much as possible – use 

cudaMemcpyAsync instead of cudaMemcpy.  This means that the 

CPU launches an operation on the GPU and does NOT have to wait for 

the GPU to finish and so the CPU simply moves on to the next 

operation (e.g., this type of memory/data transfer is not a “blocking” 

operation)



o Try using single-precision or FLOAT as much possible – don’t declare 

variables as DOUBLE – or, CAST them to FLOAT as you feed them to 

the GPU – the GPU is OPTIMIZED for SINGLE-PRECISION (whereas the 

CPU is geared for DOUBLE-PRECISION) so you’ll see up to 6X the speed

gains if you do this – after all, do we really need up to 16 decimals?  Be

careful switching back-and-forth between FLOAT and DOUBLE since 

there can be problems with precision due to PROMOTION – use 

FLOAT LITERALS whenever possible to avoid this (e.g., constant = 

1.0f instead of constant = 1.0) – also, be sure to use CudaMemset 

to initialize GPU variables to ZERO
o Try to use BLOCK sizes that are multiples of WARPS (e.g., 32 threads 

on most GPU devices) or half-warps for more efficient memory 

alignment and coalescing
o If you have multiple GPU’s or video cards, launch several GPU 

operations simultaneously (or concurrently) on various cards – this is 

called MULTI-STREAMING – this is not possible on most home setups 

due to hardware constraints

A Closer Look at the Model Program – Computer Code
Here we can see more complexity as opposed to the earlier 

examples in CUDA C:

Exhibit 5 – A Complex CUDA C Program: Trading Model  Author, 2013.
#include <stdio.h>
#include <math.h>
#include <io.h>
#include <stdlib.h>
#include <string.h> 
#include <float.h>
#include "utility.h"
#include "utility.c"
#include <time.h>
#include <malloc.h>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
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custom functions, time.h for timer – must have
malloc.h, stdio.h and cuda_runtime.h here



//Declaring macros and constants in pre-processor - STEP A//INSERT NEW STUFF DOWN HERE EACH TIME 
START SUB-FUNCTION******PRE-PROCESSOR AREA*******//
#define ABS(X) (X>=0?X:-X)
#define MAX(X,Y) (X>=Y?X:Y) 
#define MIN(X,Y) (X<=Y?X:Y)
#define SIGN(X) (X>=0?(X==0?0:1):-1)
#define ROUND(X,Y) ((X>=0?(X<<1)+Y:(X<<1)-Y)/(Y<<1))*Y 

//Change path below for UNIX "c://usr"
#define PATH "C:\\"
#define LOOKBACK 1597 // 1597-987-610-377-144-89 fibos rolling optimization historical period
#define STEP 377 // or 89 fibos step forward in time period for next rolling optimization
#define NUMI 27 //up to 27 number of markets 
   
__global__ void kernelSim(float *zscores_d,float *rets_d,float *pnl_d,float *pos_d,int start,int stop,float 
zcut,int lens){
    

const float buy =1.00f; 
const float sell=-1.00f;
const float flat=0.00f;

    //Thread index
    unsigned int tid = blockDim.x * blockIdx.x + threadIdx.x;
    //Total number of threads in execution grid

unsigned int THREAD_N = blockDim.x * gridDim.x; 

    //No matter how small is execution grid or how large OptN is, 
    //exactly OptN indices will be processed with perfect memory coalescing

for(int opt = tid+start; opt < stop; opt += THREAD_N){

if(zscores_d[opt] > zcut && opt >=lens) pos_d[opt] = buy;

if(zscores_d[opt] < -zcut && opt >=lens) pos_d[opt] = sell;
if(opt >=lens && (pos_d[opt]==buy || pos_d[opt]==sell)) pnl_d[opt] =                      
(pos_d[opt] * rets_d[opt]);
else {pnl_d[opt] = flat; pos_d[opt] = flat; } } }

//INT MAIN//INSERT NEW STUFF HERE EACH TIME START SUB-FUNCTION*******MAIN AREA****//Declare 
each new variable here - initializing and declaring space/memory for return arrays of variables or output 
we want****STEP B//
int main(int argc, char **argv){

//array holder for parameter combinations later on aka "parameter sweeps" which GPU can 
greatly speed up// a[] is # standard deviations
double a[] = { 1.25, 1.50 };
double b[] = { 21.00, 34.00 };
//** ALLOCATE SPACE FOR MEMORY FOR CPU VARIABLES
cudaHostAlloc(&rets, (int)(end)*sizeof(float), cudaHostAllocDefault);
cudaHostAlloc(&pos, (int)(end)*sizeof(float), cudaHostAllocDefault);
cudaHostAlloc(&pnl, (int)(end)*sizeof(float), cudaHostAllocDefault);
cudaHostAlloc(&zscores, (int)(end)*sizeof(float), cudaHostAllocDefault);

sharpp=(double*) calloc(end+1,sizeof(double));
sumip=(double*) calloc(end+1,sizeof(double));

//** ALLOCATE SPACE FOR MEMORY FOR CUDA-RELATED DEVICE VARIABLES**
cudaMalloc((void**)&zscores_d, (int)(end)*sizeof(float));
cudaMalloc((void**)&pos_d, (int)(end)*sizeof(float));
cudaMemset(pos_d, 0, (int)(end)*sizeof(float));
cudaMalloc((void**)&pnl_d, (int)(end)*sizeof(float)); 
cudaMemset(pnl_d, 0, (int)(end)*sizeof(float));
cudaMalloc((void**)&rets_d, (int)(end)*sizeof(float));

ret(p, end, rets); 
zscore(lens, p, sumv, varv, end, zscores, stdevv, m_avev);
m = (lensa*z)+j; 

Instead of formally making functions, we can 
make some simple ones here in the pre-
processor – this is a nice trick in C

Put constants here in pre-processor as well

Here is CUDA function to get model returns as 
well as positions (1/0/-1) – use float literals 
here for constants for precision and loop by 
threads/grids vs. threads/blocks for memory 
coalescing

Start of MAIN PROGRAM

Arrays for param 1 & 2 values for 
sweeping via 4 for-next loop 
optimizations

Use cudaHostAlloc for pinning of 
CPU vars in memory for more speed 
– can use CALLOC for non-GPU vars

Must use cudaMalloc 
here for GPU vars – 
should use 
cudaMemset to 
initialize to ZERO to 
avoid spurious results

Call CPU functions (from 
utility.c) so can pass on 
results to GPU vars later



//** COPY CUDA VARIABLES FROM CPU (HOST) TO GPU (DEVICE) - USE ASYNC TRANSFER FOR 
MORE SPEED SO CPU DOES NOT HAVE TO WAIT FOR GPU TO FINISH OPERATION AND CAN 
PROCEED FURTHER IN THE MAIN PROGRAM**
cudaMemcpyAsync(zscores_d, zscores, (int)(end)*sizeof(float), cudaMemcpyHostToDevice,0);
cudaMemcpyAsync(rets_d, rets, (int)(end)*sizeof(float), cudaMemcpyHostToDevice,0);

lenny=stop-start;
dim3 threads; threads.x = 896;//use 896 threads as per specific GPU device for higher 
OCCUPANCY/USE OF CARD - trial-and-error via PROFILING - max blocks is 112 on GTX 670 GPU

//** CALL GPU FUNCTION/KERNEL HERE FOR MODEL PARAMETER SWEEP TO GENERATE IS RESULTS
    kernelSim<<<threads,112>>>(zscores_d,rets_d,pnl_d,pos_d,start,stop,(float)(a[z]),lens);

//** COPY CUDA VARIABLES/RESULTS FROM GPU (DEVICE) BACK TO CPU (HOST) - MUST WAIT FOR 
GPU OPERATION/FUNCTION TO FINISH HERE SINCE LOW ASYNC/CONCURRENCY ON NON_TESLA 
GPU DEVICES**
cudaMemcpy(pos, pos_d, (int)(end)*sizeof(float)/*stop-start*/, cudaMemcpyDeviceToHost);
cudaMemcpy(pnl, pnl_d, (int)(end)*sizeof(float), cudaMemcpyDeviceToHost);

for (i = 0; i < lensc; i++) {
//find best sharpe ratio from table and store it for next period

                if (table[i][3] > maxi) maxi = table[i][3];
                if (maxi == table[i][3]) high=i; }

sharplist[gg][0][ii] = high;
//row of max sharpe recap
sharplist[gg][6][ii] = table[high][3];
//max sharpe
sharplist[gg][1][ii] = table[high][1];
//param 1 recap
sharplist[gg][2][ii] = table[high][2];
//param 2 recap
sharplist[gg][3][ii] = table[high][4];
//cum ret recap
sharplist[gg][4][ii] = table[high][0];
//test number recap
sharplist[gg][5][ii] = gg;

cudaFree(zscores_d);cudaFree(pnl_d);cudaFree(pos_d);cudaFree(rets_d);cudaFreeHost(pos);cudaFreeHost(p
nl); }

https://bitbucket.org/adrew/gpu/commits/56e6d2665c693fce6af5bd4f3d7e325f 

Profiling the Model Program for Further Speed Gains
When you install the CUDA SDK (link on previous page), NVIDIA 

also gives you a built-in tool called PROFILER.  This will allow you to 

find “bottle-necks” and increase code efficiency.  The main goal here is 

to use as MUCH of the GPU as possible by utilizing ALL of the CORES.  

You can do this by iteratively changing the THREAD and BLOCK SIZE 

when you call the CUDA C FUNCTION – this depends on each specific 

video card so it’s more of an art here than science (e.g., heuristic).  For
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this application, we got about ~ 63% OCCUPANCY utilization (by 

specifying 896 threads x 112 blocks) which is pretty good though 

multi-streaming was non-existent due to the limitation of the NON-

TESLA GPU (as well as only having one GPU) – here is what it looks like:

Figure 18 – Using Nvidia PROFILER to Optimize Occupancy on GPU Cores 

Author, 2013.

Using Non-Nvidia/Non-Cuda Open Source Libraries for 
Model Program – A Look at OpenACC

Note that we don’t have to use Nvidia’s CUDA libraries.  Instead, 

we could use an open-source library called “OpenACC”, “OpenMP” or 

“OpenCL”.  This will allow us to use non-Nvidia GPU’s like AMD/ATI for 

GPU programming.  Since OpenCL is similar to CUDA syntax and partly 

based on it, let’s take a look at OpenACC.  OpenACC was created by 

Average Occupancy at 63% - 
concurrency is non-existent due to
lack of multiple GPU’s and multi-
streaming



the Portland Group and is made up of developers who used to work at 

CRAY computers.  Note that this library has its own compiler, so, we’ll 

have to get used to new syntax once again.  The compiler can be 

downloaded from here: 

http://www.pgroup.com/support/download_pgi2013.php?view=current 

With OpenACC, we must remember 3 important rules:

 You MUST use array indexing and notation within loops – NO 

pointer notation or pointer arithmetic: A[i] = B[i] versus *ptr A 

= *ptr B
 Any OpenACC statement always begins with #pragma acc
 OpenACC parallel operations are essentially loops within loops – 

they are not fragmented into various parts like CUDA C – they 

tend to be more holistic

Here is the main function of the same model program written in 

OpenACC – we see a tiny hit to performance here versus CUDA C, but 

it’s still a very powerful package:

47

http://www.pgroup.com/support/download_pgi2013.php?view=current


Exhibit 6 – A Complex OpenACC Program vs CUDA C: Trading Model  
Author, 2014.
//Start outer loop and declare DATA REGION - list pointers/arrays for copying to and from GPU

#pragma acc data copyin(zscores,rets,start,stop) copyout(pos,pnl)
{

//Declare KERNEL for ACCELERATION - sub-loop
#pragma acc kernels
{

const float buy =1.00f; 
const float sell=-1.00f;
const float flat=0.00f;
float zcut = 0.00f; 
zcut = (float)(a[z]); 

//Start innermost loop to step thru values and rules to get positions and returns
#pragma acc loop independent
for(int opt = start; opt < stop; opt++){
if(zscores[opt] > zcut && opt >=lens) pos[opt] = buy;

if(zscores[opt] < -zcut && opt >=lens) pos[opt] = sell;
if(opt >=lens && (pos[opt]==buy || pos[opt]==sell)) pnl[opt] = (pos[opt] * 
rets[opt]);
else {pnl[opt] = flat; pos[opt] = flat; 

}
}

}
}

https://bitbucket.org/adrew/comp-339-distributed-
systems/commits/048a6f0544e551d3ee5b5a4f83bbb6e193210eda 

To compare and contrast, let’s look at the main function in the original 

CUDA C program (from earlier):

 //** COPY CUDA VARIABLES FROM CPU (HOST) TO GPU (DEVICE) - USE ASYNC TRANSFER FOR 
MORE SPEED SO CPU DOES NOT HAVE TO WAIT FOR GPU TO FINISH OPERATION AND CAN 
PROCEED FURTHER IN THE MAIN PROGRAM**
cudaMemcpyAsync(zscores_d, zscores, (int)(end)*sizeof(float), cudaMemcpyHostToDevice,0);
cudaMemcpyAsync(rets_d, rets, (int)(end)*sizeof(float), cudaMemcpyHostToDevice,0);

lenny=stop-start;
dim3 threads; threads.x = 896;//use 896 threads as per specific GPU device for higher 
OCCUPANCY/USE OF CARD - trial-and-error via PROFILING - max blocks is 112 on GTX 670 GPU

//** CALL GPU FUNCTION/KERNEL HERE FOR MODEL PARAMETER SWEEP TO GENERATE IS RESULTS
    kernelSim<<<threads,112>>>(zscores_d,rets_d,pnl_d,pos_d,start,stop,(float)(a[z]),lens);

//** COPY CUDA VARIABLES/RESULTS FROM GPU (DEVICE) BACK TO CPU (HOST) - MUST WAIT FOR 
GPU OPERATION/FUNCTION TO FINISH HERE SINCE LOW ASYNC/CONCURRENCY ON NON_TESLA 
GPU DEVICES**
cudaMemcpy(pos, pos_d, (int)(end)*sizeof(float)/*stop-start*/, cudaMemcpyDeviceToHost);
cudaMemcpy(pnl, pnl_d, (int)(end)*sizeof(float), cudaMemcpyDeviceToHost);

#pragma acc statements 
starts of a series of nested 
loops – notice array indexing 
as well

Use ASYNC memory transfer cudaMemcpyAsync vs. cudaMemcpy to 
pass CPU function results to GPU vars- spec threads/block #’s by device

Call CUDA function specifying threads/blocks #’s

Must use NON-ASYNC transfer here to push GPU results to CPU

https://bitbucket.org/adrew/comp-339-distributed-systems/commits/048a6f0544e551d3ee5b5a4f83bbb6e193210eda
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Using Wrappers and Other “Non-native” Packages for 
Modelling: What are the tradeofs of using these 
alternatives?

The MATLAB Stats package
Instead of writing CUDA on the lowest, most pure level (e.g., 

kernel level), we can use “wrappers” in other programming 

packages, instead.  Wrappers are overlays or translators that call more 

complex functions beneath them allowing for easier use and 

operability.  Statistics packages like MATLAB give us this option and are

forgiving in that they are “high-level” packages in which a few 

keystrokes can result in powerful results.  Essentially, packages like 

MATLAB do a lot of the heavy lifting for us and so have become very 

popular within science and finance.  Cleve Moler originally created 

MATLAB in the 1970’s based on FORTAN and then morphed into C later 

on.  MATLAB stands for “MATRIX LABORATORY” and it is a very 

powerful stats program that is optimized for large data sets and 

vectorization of code.  MATLAB is not a native language like C (though 

there is a MATLAB C compiler that can transform “M-code” into native 

C), but it is still very fast – unfortunately, it is not open source and is 

expensive (unlike packages like R).  More precisely, MATLAB is more 

like a functional language and is fourth generation type in nature9.  In 

terms of CUDA, we will take a slight hit to performance here since we 

are one level removed from purity, so to speak.  There is also less 

functionality compared to the standard CUDA library.  Here is what the 

9Feb. 2013 < http://en.wikipedia.org/wiki/Matlab  >.
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M-code looks like in terms of the main part of the original model 

program:

Exhibit 7 – A Complex MATLAB Program w/Wrappers: Trading Model  
Author, 2014.    
%start clock timer (wall clock)
tic
 
%Check/set GPU device
g = gpuDevice(1);
 
%Number of optims - variable
Cut = 1810;
 
%Get market data in one shot from flat files and store in matrix
setdbprefs({'DataReturnFormat','ErrorHandling','NullNumberRead','NullNumberWrite','NullStringRead','Null
StringWrite','JDBCDataSourceFile'},{'numeric','empty','NaN','NaN','null','null',''});
conn = database('BLP32','','');
e = exec(conn,'SELECT ALL "pcrhc$"."pcr date","pcrhc$"."pcr price","spxhc$"."spx price" FROM 
"pcrhc$","spxhc$" WHERE "pcrhc$"."pcr date" = "spxhc$"."spx date"');
e = fetch(e);
BLP = e.Data;
close(e)
close(conn)
 
%Get Z-scores from market data
Blotter = BLP; 
Blotter(:,4:5) = single(zscore(BLP(:,2:3)));
Zpcr =single(zscore(Blotter(:,4)));
Zspx = single(zscore(Blotter(:,5)));
dates = Blotter(:,1);
lens = length(dates);
  
%Set parameters for z-score cutoff, moving-average length and rolling period - variable
assignin('base', 'zii', '1');
assignin('base', 'fii', '21');
assignin('base', 'pii', '377');
 
%start outer loop for optimizations
for fors=1:Cut;
 
%assign space in memory for CPU data and set initial values to zero for matrices - speed gains
ret =single(zeros(lens,1));
fp= single(zeros(lens,2));
fproll=single(zeros(lens,5));
ZpcrRoll=single(zeros(lens,2));
ZspxRoll=single(zeros(lens,2));
lookback=str2double(pii);
period =str2double(fii);
zcut=str2double(zii);
dates1=zeros(lens,2);
dates1f=zeros(lens,2); 
dirf=zeros(lens,2);
dir=zeros(lens,2);
dirup=zeros(lens,1); 
dirupf=zeros(lens,1);
dirdn=zeros(lens,1);
dirdnf=zeros(lens,1);
 
%copy data from CPU to GPU using WRAPPER function
Bl7   = gpuArray( single(Blotter(:,7)) );
Bl6   = gpuArray( single(Blotter(:,6) ));
Fpr   = gpuArray( single(fproll) );
Fpr2  = gpuArray( single(fproll) );
Fpr4  = gpuArray( single(fproll) );

Get z-scores by calling built-
in function – no need to write
code for generating this 
metric like in C – MATLAB has
many such math functions 
and makes us lazy

Copy CPU data into GPU 
arrays via wrapper function 
“gpuArray” – switch to single
or floating precision for 
speed gains – no 
asynchronous or overlapping
memory transfers allowed 
like in CUDA C



%run main calculations on GPU – since arrays have been moved to GPU, function will run on GPU
for lp=1:lens-period+1;
    if Bl7(lp) > zcut && zcut > 0
            Fpr(lp)=Bl6(lp);
            for lp2=0:period-1;
                Fpr2(lp+lp2)=Bl6(lp+lp2);
            end;
            Fpr4(lp)=sum(Bl6(lp:lp+period-1)); 
    elseif Bl7(lp) < zcut && zcut < 0
             Fpr(lp)=Bl6(lp);
            for lp2=0:period-1; 
                Fpr2(lp+lp2)=Bl6(lp+lp2);
            end;
            Fpr4(lp)=sum(Bl6(lp:lp+period-1));
    else Fpr(lp)=0;
    end;
end;
 
%Gather results on GPU and send back to CPU
f1=gather(Fpr);
f2=gather(Fpr2); 
f4=gather(Fpr4);
 
%assign results to main data matrix
fproll(:,1)= (f1(:,1));
fproll(:,2)= (f2(:,1));
fproll(:,4)= (f4(:,1));
 
%specify and format output data for flat files
DATE = [datef];
PCR = [Blotter(:,2)];
SPX = [Blotter(:,3)];
PCRstaticZscore = [Blotter(:,4)];
PCRrollingZscore = [Blotter(:,7)];
StaticFwdRet = [Blotter(:,10)*100];
RollFwdRet = [Blotter(:,11)*100];
format bank;
Pres = dataset(DATE,PCR,SPX,PCRstaticZscore,PCRrollingZscore,StaticFwdRet,RollFwdRet);
 
%export fomratted data to .dat file in local directory
export(Pres,'file','PCRdata.dat'); 
end; 
toc
 
%reset GPU device
reset(g);

https://bitbucket.org/adrew/comp-339-distributed-
systems/commits/b95f616221fb182ed32e0ab37c28c73597d8b6ce 

Again, the performance hit will be notable running GPU operations in 

MATLAB versus CUDA C – it is roughly 2X to 4X slower in MATLAB.  

Also, note that open source statistics packages also exist such as R and

SPYDER.  Each package handles GPU functionality in its own way (if 

available).  For PYTHON lovers, a great package is called SPYDER that 
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comes with an extension called PYCUDA.  This combination is the 

closest thing to MATLAB: https://code.google.com/p/spyderlib/ .

JCUDA

Because JAVA is still so popular and is often used in HPC open-source 

computing, it is an interesting challenge see how well it can execute 

the same complex test program by wrapping CUDA functions (hence 

“JCUDA”).  Since we’ve already installed the drivers for earlier 

programs, we simply need to add the binary packages from the JCUDA 

website and place these in our JAVA PATH folder.  If all goes well, we 

should then be able to compile the same program after changing some

pointer references and see something like this – note that we will have 

to rewrite ALL CPU functions in JAVA while converting the GPU functions

into PTX files:

Exhibit 8 – JCUDA Wrappers  Author, 2014. 

public class Cudakernel
{
    /**
     * Entry point of this sample
     *
     * @param args Not used
     * @throws IOException If an IO error occurs
     */
    public static void main(String args[]) throws IOException
    {
    
    long t0=System.currentTimeMillis();   
    
        // Enable exceptions and omit all subsequent error checks
        JCudaDriver.setExceptionsEnabled(true);

        // Create the PTX file by calling the NVCC
        String ptxFileName = preparePtxFile("ModelKernel.cu");
        
        // Initialize the driver and create a context for the first device.
        cuInit(0);
        CUdevice device = new CUdevice();
        cuDeviceGet(device, 0);
        CUcontext context = new CUcontext();

https://code.google.com/p/spyderlib/


        cuCtxCreate(context, 0, device);

        int sims = 216;
        for (int k = 0; k < sims; k++)
        {
        
        // Load the ptx file.
        CUmodule module = new CUmodule();
        cuModuleLoad(module, ptxFileName);

        
        // Obtain a function pointer to the "position profit-and-loss simulation" function.
        CUfunction function = new CUfunction();
        cuModuleGetFunction(function, module, "kernelSim");

        int prices[] = MathFunc.getPrices("data17.dat");
        int numElements = prices.length;  //num of elements

        // Allocate and fill the host input data  
        float hostInputA[] = MathFunc.getZscore(numElements);
        float hostInputB[] = MathFunc.getRet(numElements);
        
            // Allocate the device input data, and copy the host input data to the device
        CUdeviceptr deviceInputA = new CUdeviceptr();
        cuMemAlloc(deviceInputA, numElements * Sizeof.FLOAT);
        cuMemcpyHtoD(deviceInputA, Pointer.to(hostInputA),
            numElements * Sizeof.FLOAT);
        CUdeviceptr deviceInputB = new CUdeviceptr();
        cuMemAlloc(deviceInputB, numElements * Sizeof.FLOAT);
        cuMemcpyHtoD(deviceInputB, Pointer.to(hostInputB),
            numElements * Sizeof.FLOAT);

        // Allocate device output memory
        CUdeviceptr deviceOutput = new CUdeviceptr();
        cuMemAlloc(deviceOutput, numElements * Sizeof.FLOAT);
        CUdeviceptr deviceOutput2 = new CUdeviceptr();
        cuMemAlloc(deviceOutput2, numElements * Sizeof.FLOAT);

        // Set up the kernel parameters: A pointer to an array of pointers which point to the 
actual values.

        Pointer kernelParameters = Pointer.to(
            Pointer.to(new int[]{numElements}),
            Pointer.to(deviceInputA),
            Pointer.to(deviceInputB),
            Pointer.to(deviceOutput),
            Pointer.to(deviceOutput2)
        );

        // Call the kernel function.
        int blockSizeX = 512;
        int gridSizeX = (int)Math.ceil((double)numElements / blockSizeX);
        cuLaunchKernel(function,
            gridSizeX,  1, 1,      // Grid dimension
            blockSizeX, 1, 1,      // Block dimension
            0, null,               // Shared memory size and stream
            kernelParameters, null // Kernel- and extra parameters
        );
        
        cuCtxSynchronize();  //sync threads

        // Allocate host output memory and copy the device output
        // to the host.
        float hostOutput[] = new float[numElements];
        cuMemcpyDtoH(Pointer.to(hostOutput), deviceOutput,
            numElements * Sizeof.FLOAT);
        float hostOutput2[] = new float[numElements];
        cuMemcpyDtoH(Pointer.to(hostOutput2), deviceOutput2,
            numElements * Sizeof.FLOAT);
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        // Verify the results
        boolean passed = true;
        for(int i = 0; i < numElements; i++)
        {
            float expected = 0;
            if (Math.abs(hostOutput[i] - expected) < 0.0)
            {
                System.out.println(
                    "At index "+i+ " found "+hostOutput[i]+
                    " but expected "+expected);
                passed = false;
                break;
            }
        }
        System.out.println("Test "+(passed?"PASSED":"FAILED"));
        
        //print output
        System.out.println("Output1");
        for (float item : hostOutput) {
            System.out.println(item);
        }
        System.out.println("Output2");
        for (float item : hostOutput2) {
            System.out.println(item);
        }

        // Clean up memory
        cuMemFree(deviceInputA);
        cuMemFree(deviceInputB);      
        cuMemFree(deviceOutput);
        cuMemFree(deviceOutput2);}            
        
        long t2=System.currentTimeMillis();  
        System.out.println("\nAll Operations time in ms = " + (t2-t0)*1);           
    }
   
    /**
     * The extension of the given file name is replaced with "ptx".
     * If the file with the resulting name does not exist, it is
     * compiled from the given file using NVCC. The name of the
     * PTX file is returned.
     *
     * @param cuFileName The name of the .CU file
     * @return The name of the PTX file
     * @throws IOException If an I/O error occurs
     */
    private static String preparePtxFile(String cuFileName) throws IOException
    {
        int endIndex = cuFileName.lastIndexOf('.');
        if (endIndex == -1)
        {
            endIndex = cuFileName.length()-1;
        }
        String ptxFileName = cuFileName.substring(0, endIndex+1)+"ptx";
        File ptxFile = new File(ptxFileName);
        if (ptxFile.exists())
        {
            return ptxFileName;
        }

        File cuFile = new File(cuFileName);
        if (!cuFile.exists())
        {
            throw new IOException("Input file not found: "+cuFileName);
        }
        String modelString = "-m"+System.getProperty("sun.arch.data.model");
        String command =
            "nvcc " + modelString + " -ptx "+



            cuFile.getPath()+" -o "+ptxFileName;

        System.out.println("Executing\n"+command);
        Process process = Runtime.getRuntime().exec(command);

        String errorMessage =
            new String(toByteArray(process.getErrorStream()));
        String outputMessage =
            new String(toByteArray(process.getInputStream()));
        int exitValue = 0;
        try
        {
            exitValue = process.waitFor();
        }
        catch (InterruptedException e)
        {
            Thread.currentThread().interrupt();
            throw new IOException(
                "Interrupted while waiting for nvcc output", e);
        }

        if (exitValue != 0)
        {
            System.out.println("nvcc process exitValue "+exitValue);
            System.out.println("errorMessage:\n"+errorMessage);
            System.out.println("outputMessage:\n"+outputMessage);
            throw new IOException(
                "Could not create .ptx file: "+errorMessage);
        }
        System.out.println("Finished creating PTX file");
        return ptxFileName;}

    /**
     * Fully reads the given InputStream and returns it as a byte array
     *
     * @param inputStream The input stream to read
     * @return The byte array containing the data from the input stream
     * @throws IOException If an I/O error occurs
     */
    private static byte[] toByteArray(InputStream inputStream)
        throws IOException
    {
        ByteArrayOutputStream baos = new ByteArrayOutputStream();
        byte bufer[] = new byte[8192];
        while (true)
        {
            int read = inputStream.read(bufer);
            if (read == -1)
            {
                break;
            }
            baos.write(bufer, 0, read);
        }
        return baos.toByteArray();
    }}

https://bitbucket.org/adrew/comp-339-distributed-
systems/commits/558393936126ae072ec4bb2072ef12559a8a5457 
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Extreme GPU Computing:  Master Level Complexity 

Using Multiple GPU’s (Server/Cluster) & Streams for 
Further Speed Gains in Model Program – Multi-GPU’s & 
Multi-Streams (Plus Advanced Math Functions)

We’ve been building up in complexity in terms of GPU programs.  

Finally, we’ve arrived at the most complex iteration possible and it 

involved CUDA C (which should come as no surprise).  Previously, 

we only ran one CUDA kernel at a time on one GPU device – recall 

that NVIDIA’s PROFILER tool suggested that CONCURRENCY was 

non-existent (see page 39).  So, even though we were multi-

threading in earlier programs, there is more to true parallelism 

than threading.  For maximum speed gains, we’re now going to fix

that as well as other adjustments (e.g., more advanced math 

functions plus multiple GPU devices).  

When we have access to a GPU cluster or server, we can get 

further speed gains by re-writing our code (in LINUX typically since 

most servers run on this OS).  Recall in the earlier example of the 

model program, we were only looping through 1 market (or 

security) at a time.  Though the CUDA function was running in 

parallel by using multiple cores (for multiple threads) 

simultaneously to generate trade positions and returns, there is still 

a bit of a serial or sequential “feel” here in terms of process.  But, if 

we have a large enough GPU (e.g., a TESLA GPU) or even multiple 



GPU’s, we can re-write our code to process several markets or 

securities at once.  For example, NVIDIA10 has 2 TESLA (K20) GPU’s 

on one of its server nodes.  So, theoretically, we could at least 

process 2 markets simultaneously instead of stepping through 

market-by-market.  Theoretically, this should further reduce 

computational time by a factor of 2, but it does not exactly work out

this way due to additional overhead regarding the coordination of 

multiple GPU’s.  

Amdhal’s Law
Let’s remember AMDHAL’s law:  S = 1 / 1−P.  Now, if a 

program is further parallelized, the maximum speed-up over serial 

code is 1 / (1 – 0.50) = 2.  So, we should still see additional speed 

gains overall though not by a factor of 2 exactly.  Here is what the 

main part of the code looks like in terms of multi-streaming and 

multiple GPU’s – remember that we had 4 nested “for-next” loops 

earlier (see pages 34-37) – now we will need a total of 5 loops:  

LOOP BY GPU DEVICE NUMBER >>> LOOP BY MARKET >>> LOOP BY TIME

PERIOD >>> LOOP BY FIRST PARAMETER >>> LOOP BY SECOND 

PARAMETER:

10The numerical simulations needed for this work were performed on [NVIDIA Partner] 
Microway's Tesla GPU accelerated compute cluster.
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Exhibit 9 – The Most Complex CUDA C Program: Trading Model  
Author, 2014. 
//Change path below for UNIX "c://usr"
#define PATH "C:\\"
#define LOOKBACK 1597 // 1597-987-610-377-144-89 fibos rolling optimization historical period
#define STEP 377 // or 89 fibos step forward in time period for next rolling optimization
#define NUMI 3 //up to 27 number of markets - this is not FREE downloadable data from internet
#define STR 2 //number of streams - use 2 to be safe since most GPU's can handle 2 streams
#define THR 256 //initial threads - must specify this PARAM - can affect OCCUPANCY or %USE OF GPU

//INT MAIN//INSERT NEW STUFF HERE EACH TIME START SUB-FUNCTION*******MAIN AREA****//Declare 
each new variable here - initializing and declaring space/memory for return arrays of variables or output 
we want****STEP B//
int main(int argc, char **argv){ 

//CHECK for USER INPUT larger than MAX NUMI of Markets
if (NUMI > 27)

    {
        fprintf(stderr, "You entered too many markets! MAX number is 27! Please try again!\n");
        exit(EXIT_FAILURE); }

// Error code to check return values for CUDA calls
    cudaError_t err = cudaSuccess;

err=cudaGetDeviceCount(&GPUn);

if (err != cudaSuccess)
    {

fprintf(stderr, "Failed to find GPU devices  (error code %s)!\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE); }

//LOOP thru as many GPU devices as there are available - so now we are MULTI-STREAMING and using 
MULTI-GPU's - this is FULL POWER of GPU computing
for (dd = 0; dd < GPUn; dd++) {

clock_t ff, ss, t3; float diff=0.00f;
ff=dd;
ff = clock();
strcpy(destr, PATH"recon");//output RECON directory for each GPU
strcpy(foldr, ".dat"); 
sprintf(fnumss, "%d", dd);
strcat(destr,fnumss);  
strcat(destr,foldr); 
recon=f_openw(destr);

err=cudaSetDevice(dd);
if (err != cudaSuccess){

        fprintf(stderr, "Failed to find GPU device  (error code %s)!\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE); }

//divide market data array up into blocks of markets to run on EACH GPU
gapn = NUMI/GPUn;
gapo = NUMI/GPUn;
startg = 1 + (dd*gapn); 

//check for odd number of markets divided by GPUs
if (dd == GPUn-1 && NUMI % GPUn != 0) gapn = ((int)((NUMI % GPUn)*GPUn)+gapo)-1;
if (gapn == 0) gapn = 1;

for (gg = 1; gg <= gapn; gg++) { // top loop for number of market data files passed thru 
dfiles[] // must change NUMI in #def as add number of markets

sprintf(sources,dfiles[(gg-1)+(dd*gapo)]);  //find and open price data files to get lengths for 
periodicities//

fins=f_openr(sources);  
endf=f_line(fins);
endf--; 

MAIN program entry point Must specify initial number 
of kernel streams (GPU 
function launches) per GPU –
2 is a safe number

Must check for number of 
GPU’s on server – use error-
trapping here to exit 
program upon error

Outer-most for-next loop – 
looping thru by number of 
GPU’s detected on server – 1
of 5 for-next loops

Divide market data up into 
blocks to run on each GPU – 
check for odd number of 
markets

2 of 5 for-next loops by 
number of markets on each 
GPU



peri[gg] = (int)(((endf-LOOKBACK)/STEP)+1); //number of rolling periods in each data set for 
rolling optimization (aka moving average)//

f_close(sources,fins); 
sprintf(fnums, "%d", gg);
strcpy(desta, PATH"OSrunALL"); //output directory for out-of-sample tests for all 
combined tests per market

strcpy(foldr, ".dat"); 
strcat(desta,"-");  
strcat(desta,fnums);  
strcat(desta,"-");  
strcat(desta,marks[(gg-1)+(dd*gapo)]);  
strcat(desta,foldr); 
ferri=f_openw(desta);

 for (ii = 1; ii <= peri[gg] ; ii++) { // loop is for periodicity - so 30yrs of price data divided into sub-units 
for rolling optimization (aka parameter sweeps)

  for (z = 0; z < lensa; z++) { // 2 nested for loops for parameter sweep or combination of 
arrays a[] and b[]//

   for (j = 0; j < lensb; j++) {

lens = (int)(b[j]);

//** COPY CUDA VARIABLES FROM CPU (HOST) TO GPU (DEVICE) - USE ASYNC TRANSFER FOR MORE SPEED 
SO CPU DOES NOT HAVE TO WAIT FOR GPU TO FINISH OPERATION AND CAN PROCEED FURTHER IN THE 
MAIN PROGRAM**

cudaMemcpyAsync(zscores_d, zscores, (int)(end)*sizeof(float), cudaMemcpyHostToDevice,0);
cudaMemcpyAsync(rets_d, rets, (int)(end)*sizeof(float), cudaMemcpyHostToDevice,0);

gap = (stop - start)/STR;
lenny=stop-start;
dim3 threads; threads.x = THR; //use threads as per specific GPU device for higher 
OCCUPANCY/USE OF CARD - trial-and-error via PROFILING

    dim3 blocks; blocks.x = (lenny/threads.x) + 1;  //max blocks is 112 on GTX 670 device

// allocate and initialize an array of stream handles
    cudaStream_t *streams = (cudaStream_t *) malloc(STR * sizeof(cudaStream_t));

//** Create Streams for Concurrency or Multi-Streaming - now we will call several KERNELS 
simultaneously**
for(int i = 0; i < STR; i++) cudaStreamCreate(&(streams[i]));

//** CALL GPU FUNCTION/KERNEL HERE FOR MODEL PARAMETER SWEEP TO GENERATE IN_SAMPLE
RESULTS**THIS IS THREAD REDUCTION DUE TO CONCURRENCY!
for (i = 0; i < STR; i++){
kernelSim<<<32,threads,0,streams[i]>>>(zscores_d,rets_d,pnl_d,pos_d,start+(i*gap),start+
((i+1)*gap),(float)(a[z]),lens);

if (i == STR-1) kernelSim<<<32,threads,0,streams[i]>>>(zscores_d,rets_d,pnl_d,pos_d,start+
(i*gap),stop,(float)(a[z]),lens);}

//sync streams before copying back to CPU
cudaStreamSynchronize(streams[STR-1]);

//** COPY CUDA VARIABLES/RESULTS FROM GPU (DEVICE) BACK TO CPU (HOST) - MUST WAIT FOR 
GPU OPERATION/FUNCTION TO FINISH HERE SINCE LOW ASYNC/CONCURRENCY ON NON_TESLA 
GPU DEVICES**
cudaMemcpy(pos, pos_d, (int)(end)*sizeof(float)/*stop-start*/, cudaMemcpyDeviceToHost);
cudaMemcpy(pnl, pnl_d, (int)(end)*sizeof(float), cudaMemcpyDeviceToHost);

//** Destroy Streams for Concurrency or Multi-Streaming - now we will RELEASE resources
back to GPU**
for(int i = 0; i < STR; i++) cudaStreamDestroy(streams[i]);
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3 of 5 for-next loops by 
rolling time period of each 
market (for period 
optimization)

4th & 5th for-next loops by 
model parameters 1 & 2 (for 
period optimization)

Allocate & create N kernel simultaneous 
streams for each GPU for concurrency

Use FMA fast math GPU 
function in GPU kernel

Call main CUDA function kernel by looping thru N 
kernels created up above – note streams[i] here

Sync up concurrent kernel streams before 
copying data from GPU back to CPU

Destroy concurrent kernel 
streams at end



https://bitbucket.org/adrew/comp-339-distributed-
systems/commits/db6ee3e06b952135de850ccd46b5173a96a2eef4 

So, how did we do?  We now have the fastest computational 

times yet: 1810 optimization in 65 seconds (or 0.036 seconds per 

optimization).  All that work finally paid off since we were at 87 

seconds before running on a single GPU without multiple streams – so, 

roughly a +33% pickup in speed.  Here is a fun picture of a massive 

server room at a local business (name withheld): 

https://bitbucket.org/adrew/comp-339-distributed-systems/commits/db6ee3e06b952135de850ccd46b5173a96a2eef4
https://bitbucket.org/adrew/comp-339-distributed-systems/commits/db6ee3e06b952135de850ccd46b5173a96a2eef4


Conclusion and Wrap-Up:  Did we prove out speed 

gains?

We can see that GPU computing is a powerful tool just by looking

at the following performance grid where we pick up speed gains of ~

300% to 700% depending on the benchmark.  Some of these gains 

are due to the C language, itself, in spite of the GPU.  It is interesting to

note that the same model program ran considerably slower in C# - 

remember that C# is OOP and does not have pointers-to-arrays like in

C.  Again, C makes itself easily available to vectorization of math and 

memory operations.  Remember also that data structures like arrays 

operate in linear time (O(n)) if not constant time (O(1)) for other 

operations.  Other data structures like sorted lists and trees can hit log 

time (O(log n)) under certain circumstances.

However, most of these gains are indeed due to GPU operations 

in CUDA C where we see a +300% pickup in speed versus the same 

model program in standalone C.  Again, the fastest program utilized 

multiple GPU’s and kernel streams as well as tips like pinned memory, 

asynchronous memory transfers and floating operations.  This study 

slowly built-up the complexity of the CUDA C approach as follows:  

SINGLE KERNEL ON GPU  MULTIPLE KERNELS ON MULTIPLE GPUs. 

Open source libraries like OpenACC also did well while wrapper 

programs like MATLAB fared worse though JCUDA ran almost as fast as 

native CUDA C.  Lastly, this survey has demonstrated that GPU 
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computing need not be all that complicated – truly, we don’t have to 

be geniuses to take advantage of hybrid HPC and younger generations 

are encouraged to get involved, especially, as the world moves from 

finance back to “hard” science.  

Exhibit 9 – Trading Model Performance Results Across Platforms  
Author, 2014. 

Here is a fun chart of other organizations using GPU computing to 

speed up work: 



Figure 19 – Organizations Using GPU Accelerators Nvidia, 2012: 45.

Common Pitfalls of CUDA Programming: Precision & 

Promotion

When using casting or other techniques to convert variables and 

constants from DOUBLE to FLOAT (for further speed gains), we have to 

be very careful.  This is because many languages like C have been 

formulated to “think” in DOUBLE precision (to optimize the CPU).  So, if

there is a statement like “constant = 1.0”, this will be interpreted as a 

DOUBLE.  The problem comes when we start mixing such a value with 

other values that are FLOATS.  Remember that FLOATS have up to 8 

significant digits while DOUBLE has 16.  If we carelessly mix these 2 

types, C will start to make transformations/conversions to various 
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values without us knowing about it so that we might not get back the 

results we intended.  So, it is always better to use FLOAT LITERALS with

other FLOAT values to keep things straight - “constant = 1.0f” is better 

here if we indeed are using various values in a GPU function that is 

intended for FLOAT types.  There is a nice blurb here from Nvidia 

warning about this11:  

When comparing the results of computations of float variables between the host and 
device, make sure that promotions to double precision on the host do not account for
different numerical results. For example, if the code segment:
float a;
…
a = a*1.02;
were performed on a device of compute capability 1.2 or less, or on a device with 
compute capability 1.3 but compiled without enabling double precision (as 
mentioned above), then the multiplication would be performed in single precision. 
However, if the code were performed on the host, the literal 1.02 would be 
interpreted as a double precision quantity and a would be promoted to a double, the 
multiplication would be performed in double precision, and the result would be 
truncated to a float—thereby yielding a slightly different result. If, however, the literal
1.02 were replaced with 1.02f, the result would be the same in all cases because no
promotion to doubles would occur. To ensure that computations use single-precision 
arithmetic, always use float literals. In addition to accuracy, the conversion between 
doubles and floats (and vice versa) has a detrimental effect on performance.

11Nvidia, “CUDA C Guide and Best Practices,” January 2013, 12.
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