
Using JPA
In this lab you will start using JPA. 

Step 1 - Project Configuration and first test
Open a terminal and enter the following commands:

hg	
  clone	
  https://bitbucket.org/paulbakker/jpalabs
cd	
  jpalabs
hg	
  update	
  start

Import the newly created project “jpalabs” in an IDE. The project already contains some 
classes and a persistence.xml. Open the persistence.xml and check the settings. Now 
open the Book class. It contains an id and a name, but is not an Entity yet. Now open the 
StandaloneJpaTest in the test folder. This test class already contains a test method that 
checks if a Book can be persisted. Try to run it, it should fail at this moment. The reason 
the test fails is because Book is not an Entity yet. Fix Book so that the test passes.

Step 2 - Finding books
Add a new test method to test retrieval of a book using the find method. The tables are 
recreated before every test, so you can be sure to have a clean database in every test. 
This does mean the table is empty! Insert some books to be able to find books. Your test 
could look as follows.

@Test
	
  	
  	
  	
  public	
  void	
  testFind()	
  throws	
  Exception	
  {
	
  	
  	
  	
  	
  	
  	
  	
  createTestBooks();

	
  	
  	
  	
  	
  	
  	
  	
  Book	
  book	
  =	
  em.find(Book.class,	
  1L);
	
  	
  	
  	
  	
  	
  	
  	
  assertNotNull(book);
	
  	
  	
  	
  	
  	
  	
  	
  assertThat(book.getTitle(),	
  is("Angels	
  and	
  demons"));
	
  	
  	
  	
  }

	
  	
  	
  	
  private	
  void	
  createTestBooks()	
  {
	
  	
  	
  	
  	
  	
  	
  	
  em.getTransaction().begin();
	
  	
  	
  	
  	
  	
  	
  	
  em.persist(new	
  Book("Angels	
  and	
  demons"));
	
  	
  	
  	
  	
  	
  	
  	
  em.persist(new	
  Book("Digital	
  Fortress"));
	
  	
  	
  	
  	
  	
  	
  	
  em.persist(new	
  Book("The	
  Da	
  Vinci	
  code"));
	
  	
  	
  	
  	
  	
  	
  	
  em.persist(new	
  Book("The	
  Lost	
  Symbol"));
	
  	
  	
  	
  	
  	
  	
  	
  em.persist(new	
  Book("Deception	
  Point"));
	
  	
  	
  	
  	
  	
  	
  	
  em.getTransaction().commit();

	
  	
  	
  	
  	
  	
  	
  	
  em.close();
	
  	
  	
  	
  	
  	
  	
  	
  em	
  =	
  emf.createEntityManager();
	
  	
  	
  	
  }

https://bitbucket.org/paulbakker/jpalabs
https://bitbucket.org/paulbakker/jpalabs


Step 3 - Editing managed books
Create another test that test if managed books can be edited. Always use a new 
EntityManager and transaction to test for database changes!

Step 4 - Editing detached books
Retrieve a book using the find method and detach it by closing the EntityManager. Try if 
changes to the instance or not persisted to the database. Now use the merge method to 
synchronize the changes with the database.

Step 5 - Listing books
Write a simple query to select all books. 

Step 6 - Mapping books
Add the following fields to Book:
-Date releaseDate (Date in the database)
-Enum Category
-String summary (should be a longtext in the datase)

Also make the title unique.

Add mapping configuration to make sure that the correct datatypes are used in the 
database. 

Step 7 - Deleting books
Use the remove method to remove a book. 

Step 8 - One to One Promotion
Create a new class Promotion. A promotion can be a temporarily lowered price for a 
limited amount of time. Add the following properties.
-String description
-BigDecimal newPrice
-Date beginDate
-Date endDate

Map a bi-directional relationship between Book and Promotion. Test if saving fetching from 
both sides work. Use cascading to be able to save a new book with a new promotion 
without persisting the promotion explicitly. Write tests to test bi-directional behavior and to 
test cascading remove.

Step 9 - One to Many reviews
Create a new class Review and map a bi-directional one-to-many relation with Book. Add 
the following properties to Review.
-String reviewerName
-Date reviewDate
-int rating
-String text

Test adding, cascading, lazy loading and bi-directional behavior. Also test cascading 
remove. Create a separate test to test a join fetch query for explicit eager loading.
Step 10 - Many to Many authors
Create a new class Author and configure a bi-directional Many-to-Many relation with Book 
with cascading persist. Test if persisting and retrieval works correctly.



Step 11 - Inheritance and ElementCollections
Create a new class EBook and a new enum EBookFormat. The EBookFormat represents 
formats such as EPUB and PDF. An EBook is a subclass of Book and contains a List of 
available EBookFormats. To map the List youʼll need an @ElementCollection mapping. 
Test if EBooks can be persisted correctly.

Step 12 - Details embeddable
Create a new class Details with the following properties.
-int pages
-int isbn10
-int isbn13
-String language

Make Details @Embeddable and add a reference to it in Book. Make sure you initialize an 
empty details by default in Book, otherwise itʼs impossible to save a book without Details. 
Create a test to check if Details are persisted correctly on a Book.

Step 13 - Query for books written by more than one author
Write and test a JPQL query to retrieve books that are written by at least two authors. 
Donʼt forget to insert some test data first!

Step 14 - Query for the average rating for each Author
Write and test a JPQL query to retrieve the average rating for each author. The results 
should be returned as a value object Rating.

public	
  class	
  Rating	
  {
	
  	
  	
  	
  private	
  String	
  authorName;
	
  	
  	
  	
  private	
  double	
  avgRating;

	
  	
  	
  	
  public	
  Rating(String	
  authorName,	
  double	
  avgRating)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  this.authorName	
  =	
  authorName;
	
  	
  	
  	
  	
  	
  	
  	
  this.avgRating	
  =	
  avgRating;
	
  	
  	
  	
  }

	
  	
  	
  	
  public	
  String	
  getAuthorName()	
  {
	
  	
  	
  	
  	
  	
  	
  	
  return	
  authorName;
	
  	
  	
  	
  }

	
  	
  	
  	
  public	
  double	
  getAvgRating()	
  {
	
  	
  	
  	
  	
  	
  	
  	
  return	
  avgRating;
	
  	
  	
  	
  }
}

Donʼt forget to add some authors and ratings before executing the query!

Step 15 - Criteria API
Write and test a method that accepts a title and author name filter. If both arguments are 
empty, all books should be returned, including books without an author. If both are non-
empty, an AND filter should be used and if only one argument is non-empty only that field 



should be filtered. The method should use the Type Safe Criteria API to build this dynamic 
query. Order results ascending by title. 

Step 16 - Bean validation
Add bean validation to the Book class to make sure books always have a title. Write a test 
that expects a ConstraintViolationException.

Step 17 - Custom validator
Write a new bean validator annotation and implementation class to disallow certain words 
in a title. The annotation should be configurable:

@NotExplicit(filter	
  =	
  {"sex",	
  "drugs",	
  "rock	
  &	
  roll"})
private	
  String	
  title;


