
ALMA MATER STUDIORUM
UNIVERSITY OF BOLOGNA

First degree course in Engineering and Computer Science

SeaRumble:
a battleship game

Object-oriented programming project of

Daniele Mazzotti
Michel Paoloni

Nicola Di Berardino

Course professors

Mirko Viroli
Andrea Santi
Danilo Pianini

Academic year 2013/2014
Last revision March 17, 2014



1 Problem Analysis
SeaRumble consists in the popular battleship game for two players where you try to guess
the location of some ships your opponent has hidden on a grid. Players take turns calling
out a row and column, attempting to name a square containing enemy ships.
To make the game more original and maybe even funnier to play, some modifications have
been added: special actions and weather conditions.

Special actions, which are unlocked after some conditions are verified:

− Super missile: rocket which shoots a cluster of bombs, striking more than one
square.

− Radar: discovers the chosen square and the ones next to it.

− Shield: protects every ships from one hit. Using it do not cause to lose the turn.

Wheather conditions, which affects game-play:

− Sunny: no effects.

− Foggy: every square is set as undiscovered until the fog is not disappeared. Players
can’t see the previous hit markers on the map, except for already sunk ships.

− Stormy: every turn a lightning hits a square. If a ship is hit, the square is set as
discovered and the ship as hit.

The game has two modes: single-player and LAN multi-player. In single-player mode the
user plays against an artificial intelligence, while in multi-player games can play against a
friend over LAN. It is also possible to chat with the opponent after connection between
the two players has been established. In order to play multi-player, users must necessarily
create a profile. Every profile is protected with password and stores all the statistics of
the player. They are saved on the local hard-drive in the Profiles directory and updated
after a new game has been played. In the main window of the game there is the ranking of
all the local profiles, ordered by the maximum score players have achieved during games.
Main statistics are displayed and updated every round during games, whether single-player
or multi-player mode has been chosen. When the game is finished, a summary page pops
out.

Since the battleship game itself doesn’t require any particular interaction with the player
or any complex graphics, the whole game it is based on a simple GUI.

1



2 Design scheme
Now follow the main UML schemes of the application. The UML diagrams have been
drawn using ObjectAid UML explorer tool for Eclipse IDE.

There are several View classes that are associated with one Controller which contains
some methods called by the View according to the Observer pattern. Additionally, these
controllers classes allow others to access the View. The Application class provides all
the statics methods for the Views managing, hence from every class it is possible to call
an Application method to open a certain window.
The first window is StartView which shows the lists of all profiles. From here, users can
play a quick game, create a new profile (until the limit is not reached) or log in, switching
to the MenuView with all the statistics of the player. From this window, they can still
play single-player, in which case their statistics will be saved, or choose a multi-player
game, challenging another player.

2



3



3 Packages organization
• game contains some general classes used during game-play such as the Coordinates,
PlaceShips and WeatherManager classes.

– game.ai contains the classes relatively at the Artificial Intelligence.
– game.player contains all the classes relative to players.
– game.round contains all the classes for the turn management for both single-

player and multi-player modes.

• general contains the Application class within the main method, the View and
Controller interfaces, the AbstractView, User and SeaSound classes.

• graphics contains the classes for every application’s window.

– graphics.login contains all the classes and controllers for the login view.
– graphics.menu contains all the classes and controllers for the menu view.
– graphics.play contains all the classes for the actual game views such as the

options and the game window with all its controllers.

• profile contains all the classes used to handle profiles, statistics and data saving.

– profile.exception contains a couple of Exceptions used in the profile manage-
ment.

• multiplayer contains the classes needed for the communication between two hosts.

– multiplayer.packet contains all the type of messages/packets that can be
exchanged between the two hosts.

– multiplayer.time contains a class used to start a countdown timer in multi-
player games.

4 Division of work
• Daniele Mazzotti made the whole graphics and GUI part, including the chat frame

for multi-player (graphics, general packages and sub-packages).

• Michel Paoloni made the data saving, the statistics management and the multi-player
part. He also drew some of the sprites of the game (profile, multiplayer packages
and sub-packages).

• Nicola Di Beradino made the core of the game, the turns implementation and the
Easy difficulty of the Artificial Intelligence in single-player mode (game package
and sub-packages).

The whole team developed the Normal difficulty (game.ai.NormalAI).

4



4.1 Division of work: Daniele Mazzotti
Diagram related to the login management (packages: graphics.login, general):

From the main window users can create a new profile or logging in with an existing one.
The AddLogView class draws the window to create a new profile, with user-name and
password fields and an avatar to choose among the predefined ones. On the other side,
the LoginView class draws the window to log in. If the login fields are incorrect, an error
message pops out and the user has to put the credentials again. When he/she is logged,
his/her profile is registered using the User class which has some static fields to get at any
time the information about that user (i.e. if he/she’s logged).

5



Diagram related to the multi-player view (package: graphics.multi):

When the multi-player mode is selected, its options windows is shown, created by the
MultiplayerOption class. Using a JTabbedPane the player can choose to be a server
and select the options for the game or a client. The IP is checked if valid using a Regular
Expression of a Formatter of Sun Microsystem found on the Internet. The chat frame
present during multi-player games extends from JPanel and has a JTextPanel where the
chat history is shown and a JTextfied to write messages.

6



Diagram related to the game view (package: graphics.play):

7



The GameView class builds the game window and is associated with the GameCon-
troller. Before the game starts, the game options view is shown, allowing players to
choose the map size, its color and the difficulty (only in single-player). This data is passed
to the GameController which will make the GameView build the proper field of game,
that is a CellPanel matrix where, ships, which are instantiated using the Ship class, are
placed.
The Ship class has its name, health (corresponding to its length) and a Set containing
the coordinates of the ship itself, as fields. It has a private constructor: it is not possible
to create a generic ship. To make one, there are some static methods which return the
predefined types of ship. There are also some methods to hit a ship and know if it is sunk.
Once, sunk, the sunkDialog which highlights the ship with red, is called and the player
informed that it has been sunk. The CellPanel class extends from JPanel and it creates
every cell on the game map. Its dimension depends on the size of the grid. Every cell is
shows with a sea background and a black Lineborder. Every panel has the xy coordinates.
It also has a field to memorize if a ship has been placed on and which ship it is. There
are some methods to update the state of the panel when hit too. Ships are selected by
clicking on the respective images which is actually a button, JRadioShip, extending from
JRadioButton. They’re rotated using the keyboard because of the ChangePositionLis-
tener implementing a KeyListener and placed using the PlaceListener implementing
MouseListener. The HitListener is used to click cells on the map. When the game is
finished the summary page pops with all the statistics of the player.

8



4.2 Division of work: Nicola di Berardino
Diagram related to the player (packages: game.player, game.ai, game):

• AbstractInfo is an abstract class which contains all the skeleton methods that are
used by its all sub-classes.

• InfoP checks all the actions users can perform in single-player such as hitting or
using special actions. Additionally, checks if the user wins and updates his/her score.

9



• InfoPVersus checks the actions players can perform in multi-player games.

• InfoAI checks the actions that the AI can perform. Its difficulty is set using the
aiStrategy object with the proper class.

• AI is an interface.

• AbstractAI is an abstract class which holds all the common methods for the
AI difficulties in single-player and has already everything needed to use the Easy
difficulty. The Strategy pattern has been used.

• EasyAI is the easy difficulty. It hits randomly. The equation 1 shows what ideally
would be the probability for this AI to win the game without failing.

• NormalAI is the normal difficulty. When it hits a ship, it tries to determine its
direction by hitting without a precise order the squares next to that shot. When
found, it hits all the squares in that row until finds water. Then it does the same on
the opposite direction, whether or not it has sunk the ship. When done, is starts
hitting randomly like EasyAI.

• Hit is an enumerated type used to classify the attack result: WATER if missed, HIT
if hit and SUNK if hit and sunk.

n∏
i=1

n − i + 1
m − i + 1 (1)

n : number of squares occupied by ships
m : number of total squares

10



Diagram related to the AI ship placing (package: game):

• PlaceShips is used to place ships by the AI. It implements Runnable and extends
form the PlaceListener class from graphics.play package. It uses the size of the
game map to determine the number of ships and the position for each one is randomly
generated. Obviously, ships cannot overlap

11



Diagram related to the turns management (packages: game.round, game):

• AbstractRounds contains all the common aspects for the two sub-classes such as
calls to hit a square or special attacks. There are also some methods to update the
game screen with statistics and to end the game.

• ControlRounds handles the order in which the various actions are executed in a
game against the AI. Players attacks are based on the InfoP class, while IA ones on
InfoAI. It also randomly generates who’s starting first and calls the creation of the
weather every turn.

12



• VersusRounds manages the turn order in multi-player games which actions are
based on the InfoPVersus class, but asynchronously, when someone attacks the
other receives the attack and vice versa. It also handles polling through some nested
classes that extend Thread, used to wait for user actions or any other information
exchange between the two hosts. The server class, though, is the only one that
generates weather at the end of its turn and sends it to the Client as the weather of
the next turn.

• WeatherManager generates the weather conditions used in game. Sun (odds 8/10)
has no effects, Fog (odds 1/10) temporarily hides the map, ships which have been
already sunk are still visible though, and Storm (odds 1/10) generates one lightning
per turn in a random field. If it hits water, then nothing happens, but if it hits a
ship the square is discovered and marked as hit. Special weather conditions (Fog
and Storm) have a random duration, from 2 to 5 turns.

• DisplayClock is a Thread used to update the clock time during games.

• WaitingSea is the first polling, used to wait the map of the opponent.

• WaitingAction used to wait the players actions.

• WaitingWeather is the polling used by the Client to wait weather. When he
receives it, his/her turn can start.

• LostTurn uses the timer from multiplayer.time package to determine if the player
loses his/her turn, in which case a fake attack message with invalid coordinates is
send to the other player to signal the turn has ended.

Diagram related to the coordinates management (package: game):

• Coordinates is used to hold coordinates which can be also randomly generated.

13



4.3 Division of work: Michel Paoloni
Diagram related to the profile management (packages: profile, profile.exception):

• Statistics holds all the data relative to game-play. Some of this information is
shown in the game window, some in the summary page at the end of the game. The
main score is based on the ratio between hits and failures but, combos, that are the
number of hits in a row, also affect score: the more the hit-streak goes, the more the
score will grow. The ranking system, however, is solely based on the ratio between
the two. Equation 2 shows the correct formula for the score calculation.

• FileManager is used to save, loads and update profiles after a new game has been
played. Every profile is saved in one single file with extension .srsav allowing users

14



to easily export their own profiles. The password is salted with the player’s nickname
and hashed using the well-known SHA-1 algorithm with one iteration. Although
passwords are salted and hashed per user, this mechanism does not provide any
additional security. The safety of the account is demanded to the user who must set
a strong password.

• Profile is used mainly as a temporary holder to store all the information relatively
to a player’s profile. It implements the Comparable Java interface because of the
main window ranking feature.

• ExistingProfileException and CorruptedFileException are a couple of new
Exceptions which have been defined. The former is used when someone tries to
create a profile with the same nickname of another player, the latter when the name
of the saving file does not match the player nickname in the file itself (i.e. if someone
renames it).

Score = hits
missesk + h

n∑
j=1

r∑
i=1

((1 − m) + m · i) (2)

k : constant
h : hit points
n : number of hit-streaks
r : hits in a row
m : multiplier increment

15



Diagram related to the profile management (packages: multiplayer,multiplayer.packet):

16



• AbstractHost extends from the Thread Java class and holds all the common aspects
of the two sub-classes.

• Server is used to host games. It is similar to the Client class but there are a
few differences: the player chooses the rules for the game and the server is also
responsible to generates the weather conditions. The method getLocalAddress1 is
used to get a proper local address where to start the server.

• Client is used to connect to a server.

• GameRules is used to send rules. It implements the Serializable Java interface.

• GameAction is used to game actions. It implements the Externalizable Java
interface.

• GameWeather is used to send weather conditions. It implements the Externalizable
Java interface.

AbstractHost is an abstract class from which Server and Client inherit. Since they
are both used for playing, they have a lot of aspects in common.
There are three main common stages for which it has been used the Template method:
connect, handshaking, whilePlaying. The first one is the connection phase: when the server
has been started it waits until someone connects. On the other hand when the Client
starts, it attempts to connect to the Server (which has to be already created). When both
hosts are connected the handshaking part can take place. During this stage, information
needed to start the game is exchanged between the two that is, usernames, rules for the
game and respective player’s maps. After the rules have been sent from the server to the
client, the chat is enabled and players can start placing ships on their grid. When a client
is ready, he can press the button to start and his map will be sent to the opponent. When
a player receive the opponent’s map, his handshaking part ends and the whilePlaying
stage can take place. Despite this, the game will start only when the two player have
received their opponent’s maps.

In order to send messages from an host to the other, the Java object serialization has
been used, so some classes such as GameRules, CellPanel and Ship (the last two for
the maps exchange), implement the Serializable interface. There are some performance
problems though: it depends on reflection, it has a verbose data format. It is, in general,
both slow and band-width intensive. To overcome these problems, for messages which are
frequently exchanged the Externalizable interface has been used instead.

1It was found on the Internet and then slightly modified.

17



Server Client

CONNECTION
established

CONNECTION
established

nicknames

rules

maps

Figure 1: Handshaking phase.

Diagram related to the turn time management (package: multiplayer.time):

• Time is used to start a countdown timer in multi-player mode. Every user has a
certain amount of time to make a decision: when it runs out the player’s turn ends
and the control change to the other player. In order to do so and keep both games
synchronized, when there is no more time available the game sends to the other host
a fake attack message with invalid coordinates.
This class uses the Singleton pattern.

• Countdown extends from the TimerTask Java class and every time the method to

18



start the countdown is called, a new task is scheduled, that is, the turn timer.

5 Testing
All the testing was done manually, trying to go through all the possible cases and scenarios.
Particular attention was paid at both single and multi-player modes.

6 Notes
The Server and Client classes which were independently coded were re-factorized as sub-
classes of AbstractHost. At first, before using object serialization to send information
between players, only string messages were planned. Then, regular expressions would have
been used to evaluate every message.

The multi-player protocol designed is very simple and it might fails on very overcrowded
and slow networks.

At first the coding process was done independently, but from at certain point on, interac-
tions have been pretty frequently. One member joined the team late, so the others had to
wait some things were completed.

Anyway, the whole team is pretty happy with the final result which fulfilled the great
majority of their expectations.

19


	Problem Analysis
	Design scheme
	Packages organization
	Division of work
	Division of work: Daniele Mazzotti
	Division of work: Nicola di Berardino
	Division of work: Michel Paoloni

	Testing
	Notes

