
Corso di Programmazione ad Oggetti – a. a. 2013/14
Corso di laurea in Ingegneria e Scienze Informatiche – Università di Bologna

Project relation: Profumeria Barbara Customers Manager

Entirely developed by Andrea de Rose.

1. Analysis

The owners of the local perfume store Profumeria Barbara commissioned AndreWare to develop an
application which simplifies the customers database management.
Formerly, the database is an ODB file containing personal data about each customer and a “stamp”
counter so that they can achieve promotions and discounts by purchasing products.
The application's main features are:

• Automatically load customers list from database on program start up;

• Add/edit/remove customers and their relative information;

• Fast increment or decrement customer's stamps count by button pressure;

• Store changes on database on demand or on program termination;

• Set the database directory (database files are stored on a network folder);

• Search customers by name and surname;

• Undo or redo one or more operations;

• Multiple language support.

2. Design

Although aims and requirements of the application seem pretty clear, there are many aspects to treat
separately using different object-oriented design patterns.
The main and most suitable pattern for this application's aims is Model-View-Controller. This
pattern allows the developer to deal with program data, user interface and their interaction in
different contexts, making each part reusable or editable without interfering with each other.

• The Model contains a list of customers and a database pointer through which data is loaded and
 stored. Note that Model's customer list is separated and changes are written on database only after
 a proper save request. This helps preventing accidental entry errors and data corruption.

• Views use the Composite pattern in order to build themselves and add as many components as
 required under hierarchies. Their aim is to interact with users and communicate their choices to
Controller.

• The Controller works as a bridge between views and Model. It handles all events caused by user
 interaction and performs consequent actions.

Other relevant patterns useful for application are:

• Singleton: Language and Database objects have a single instance in the whole process. There is no
 need to have multiple instances of Language, because its only aim is to return strings by reading a
 file content. The Database must only have one instance; otherwise, a SQLException would be
 thrown since it would try to create more connections to a single structure.

• Command: all actions performed on customers become command objects. This helps the
 implementation of a undo/redo mechanism, allowing users to revert or repeat actions before or
 after saving.

• Memento: when performing RemoveCommand or EditCommand and its derivate, the previous
 and next (not on RemoveCommand) customer statuses are stored in the command object so that
 they can be easily restored upon undo and redo performing.

• Observer: observer are interfaces mostly implemented by Controller and commands. Observers
 are used by views to notify changes and events.

Model structure UML diagram:

Main aspects:

• ModelInterface and Model define and implement an interface to load customer data onto a
 collection, manipulate and save it when required.

• Customer and Customer.Status define data structure of single customers, Customer uses setters
 and getters to easily access fields.

• Database is a singleton object using HSQLDB library to connect to database and execute queries
 upon loading or saving data.

Views structure UML diagram:

Main aspects:

• InitView contains a simple JWindow displaying the application logo while it is loading.

• MainViewInterface defines the main application view. MainView impements the interface and
 contains a frame displaying the customers list on a table and a set of buttons to perform any
 implemented action.

• SettingsView contains a JDialog with components letting the user change database path and
 language settings.

• FormView contains a JDialog with components letting the user add or edit customers.

MVC structure and interactions UML diagram:

Main aspects:

• Both Controller and any AbstractCommand have access to ModelInterface and
 MainViewInterface in order to update relative customers list.

• Controller is both a MainViewObserver, CommandObserver and SettingsViewObserver, it
 handles all requests and works as a bridge between most of application parts.

• AbstractCommand is a FormViewObserver, it's an abstract class defining a generic command
 performed by user.

• Controller holds two AbstractCommand collections and a single pointer in order to manage
 undo/redo functions and saving status.

• All views notify their own observer when an event occurs.

3. Packages

• controller: contains the main application Controller class.

• controller.command: contains the CommandObserver interface, AbstractCommand class and
 all implemented commands.

• core: contains the Language class which manages text shown in views and the Init class
 containing the main method.

• model: contains interfaces and classes relative to main application Model.

• test: contains a JUnit test verifying all Model components work properly.

• views: contains interfaces and classes relative to all application views.

• resources.zip: this zip file contains logos, button images and language files. It is unpacked in
 application folder on first launch.

4. Testing

Class test.ModelTest was created to test application Model and it's interaction with Database.
The test consists in creating a dedicated database folder, adding a new Customer to Model, saving
them on Database, reloading and verify that customer data was stored with no alteration or
problems.
The same action sequence is repeated to edit customer and then to remove it.

Manual testing consisted in adding, changing and removing one or more customers, undoing-
redoing operations. Testing also consisted in saving changes to database, restarting the application
and verifying that data prior to restart was not changed.

5. Final Notes:

Development work has mostly been spiral.
Because there was not a precise plan, the project was nearly started over after one month: only the
views and database pointer structure were kept. Most of the work was done after the start over.
The biggest issues were knowledge lacks about design patterns and, more generally, projecting and
designing. This was summed to the fact of working alone and having no experience in software
development.
When writing the code, the Database class took long to work properly, because of syntax mistakes
writing queries and even the ODB database structure was not clear (many chars columns where int
was expected and vice versa). Many other issues slowed down the work for days.
A final (but not simple) rework was made so that application can be ran by executing a jar file:
program does not use ResourceBundle as previously scheduled, because language files are stored in
the self-generating program folder and no longer in a source package.

The resulting product should is capable to self-generate a configuration file by asking the user
which language to use and the database location. If no database is found or the required table is
missing, the application will generate it automatically.
The user should not see any error occur (unless they alter configuration file or language files
structure); sometimes “useless” actions may be performed (ex. querying the change of a customer
data whthout effectively changing anything), but this would not be visible to user.

Of course the whole program can be refactorized to improve performances and work in more
efficient ways. Perhaps a new branch of this project will be started in the future.

