Melomics API Handbook

version 1.1

April 13,2013
Melomics Media Inc.

©

melomics

Melomics API Handbook

Introduction
Access To API and Authentication
Understanding API methods responses

Searching for songs

Searching for users
Searching for user's public playlists

OAuth authentication
API Calls Table

Introduction

This document describes version 1.0 of Melomics’ API, which allows you to access its repository of
musical contents (available in Melomics’ browser). By using the methods providing by the Melomics
API you will be able to browse contents from your app. In addition, Melomics API also provides
methods for accessing to the public content of Melomics users such as their public song lists. In order to
a better understanding about how this API works some code example are shown and explained. The
used format is JSON and the base URL for API endpoints is:

http://melomics.com/api/...

Access To API and Authentication

To access the version 1.0 of Melomics API you do not need any API key due to the calls can be

accomplished in an anonymously way.

Understanding API methods responses

The Melomics API returns data in JSON format, which contains information about songs, users or lists
of song (playlists). Here is an example of response for songs labeled with tag "piano". The call will
return a list with all the songs matching instrument piano.

https://docs.google.com/document/d/sFAln5Q8gt65vffwyyLoHBQ/headless/print#bookmark=id.rxoawh642sru
https://docs.google.com/document/d/sFAln5Q8gt65vffwyyLoHBQ/headless/print#bookmark=id.99traohq6ljc
https://docs.google.com/document/d/sFAln5Q8gt65vffwyyLoHBQ/headless/print#bookmark=id.1557qbull2et
https://docs.google.com/document/d/sFAln5Q8gt65vffwyyLoHBQ/headless/print#bookmark=id.qk6uihwf34kw
https://docs.google.com/document/d/sFAln5Q8gt65vffwyyLoHBQ/headless/print#bookmark=id.smt29heurbtl
https://docs.google.com/document/d/sFAln5Q8gt65vffwyyLoHBQ/headless/print#bookmark=id.t6ni1iyw8zw
https://docs.google.com/document/d/sFAln5Q8gt65vffwyyLoHBQ/headless/print#bookmark=id.ipyugf6kvi4w
https://docs.google.com/document/d/sFAln5Q8gt65vffwyyLoHBQ/headless/print#bookmark=id.7kxr65xg6rw5

Example

http://melomics.com/api/songs/?q=%23instrument:piano

Response
{
"songs": [
{
"author": {
"artistName": "Melomics",
"avatar":
"https://secure.gravatar.com/avatar/e92c4472c967de848b7958c6c2f53c0d?d=identicon&rg",
"description"”: "<p>melomics is the first computer that has mastered

human musical language.</p>\n\n<p>With more than a billion songs, its production constitutes the

biggest collection of music in the world, and the main contribution to melomics

catalogue.</p>\n",
"email":
"id": "5527d30c-25af-46e5-8707-0428741afb4a",

nn
k)

"lang": "en",

"name": "",
"payment": {

"email": "melomics.spain@gmail.com"
¥

"permalink": "melomics",
"showEmail": false,

"surname":

"uri": "@melomics",

"username": "melomics"
s
"buy": false,
"description": ""

"download": false,
"duration": 276000,
"entities": {
"midi": {
"buy": false,
"download": false,
"price": -1.0
s
"mp3": {
"buy": false,
"download": false,

"price": -1.0

s
"pdf": {
"buy": false,
"download": false,
"price": -1.0
b
"xml": {
"buy": false,
"download": false,
"price": -1.0
b3
bs
"image": "/mexels/ebb39b729b-78a4-4591-bc13-640d72c47b33",
"like": null,

"locked": false,
"songID": "ebb39b729b-78a4-4591-bc13-640d72c47b33",
"numLikes": 9,

"owner": {
"artistName": "Melomics",
"avatar":
"https://secure.gravatar.com/avatar/e92c4472c967de848b7958c6c2f53c0d?d=identicon&rg",
"description"”: "<p>melomics is the first computer that has mastered

human musical language.</p>\n\n<p>With more than a billion songs, its production constitutes the
biggest collection of music in the world, and the main contribution to melomics

catalogue.</p>\n",

"email": ,
"id": "5527d30c-25af-46e5-8707-0428741afbda",

"lang": "en",

"name": "",
"payment": {
"email": "melomics.spain@gmail.com"
1
"permalink": "melomics",
"showEmail": false,

"surname" : ,

"uri": "@melomics",
"username": "melomics"
})
"permalink™": "8",
"tags": [

"effect:gliss",
"effect:trill",
"tempo:66bpm",
"instrument:piano”,
"effect:grace"

1

"title":

ngn

"totalPrice": -1.0,
"type": "song",

"uri": "@melomics/8",

}s
}
... }
oo, }
oo, }

(other listed songs)

1,

"more": false

}
Song Attributes
Attribute Description Example value

author song author See Author attributes

buy song available for sale (boolean) True

description description My favourite song

download song available for downloading False

(boolean)

duration duration in milliseconds 276000

entities available formats for the song See Entity attributes

image image associated to the song /mexels/ebb39b729b-78a4-4591-bc
13-640d72c47b33

locked lock state (boolean) False

songlD string ID ebb39b729b-78a4-4591-bc13-640

d72c47b33

numLikes number of like hits 48
owner song owner See Owner attributes
permalink permalink of the song 85
tags information related to song See Tag attributes
title song title Happy bells
totalPrice price for the song (dollars) 4.00
type item type song
uri uniform resource identifier for the song | @melomics/8
visibility visibility for other users Public
Author Attributes
Attribute Description Example value
artistName author artist name Melomics
avatar author avatar url https://secure.gravatar.com/avatar/e9

2¢4472¢967de848b7958c6c2f53¢c0
d?d=identicon&rg

description author description Melomics is the first computer that
has mastered human musical
language.

email author email melomics@melomics.com

id author ID 5527d30c-25af-46e5-8707-042874
lafb4a

lang author language en

name author name Melomics

permalink permalink of the author 8
showEmail show or hide author email False
surname author surname Comp
uri uniform resource identifier for the auth| @melomics
username author username Melomics
Entity attributes
Attribute Description Example value
midi .midi format 5527d30c.mid
mp3 .mp3 format 5527d30c.mp3
pdf .pdf format 5527d30c.pdf
xml xml format 5527d30c.xml
midi, mp3, pdf and xml attributes
Attribute Description Example value
buy format available for sale (boolean) True
download format available for downloading True
(boolean)
price price of the format $1.00

Owner Attributes

Attribute Description Example value

artistName owner artist name Melomics

avatar owner avatar url https://secure.gravatar.com/avaj
ar/e92c4472c967de848b7958
c6¢2f53c0d?d=identicon&rg

description owner description Melomics hosts the largest
repository of professional
music.

email owner email melomics@melomics.com

id owner ID 5527d30c-25af-46e5-8707-04
28741afb4a

lang owner language en

name owner name Melomics

permalink permalink of the owner 8

showEmail show or hide owner email False

surname owner surname Comp

uri uniform resource identifier for tl @melomics

author
username owner username Melomics

Tag attributes

Attribute Description Example value

©

melomics

effect Effect of the song tremolo
instrument Musical instrument used to perform t| piano

song
style Musical style for a song electronica
substyle Musical substyle for a song dance
tempo Represent the speed of the song i1 100

bpms
Beat Steady pulse of the song. quaternary
Dynamics The loudness of softness of the song | forte
Texture Complexity of the song monophonic

Pagination

As shown above, a search usually returns a list of songs. You can limit how many items you retrieve as

well as the number of items listed per page by using the followings parameters:
e from: determines the item from which the search starts to show results. For instance, imagine
that a search returns 100 songs but you consider that 40 songs are sufficient. By using

_from=60 the search will only display the items between 60 and 100.

e size: items per page. It can take values from 1 to 10 (default is 10).

Searching for songs

One of the most common things to do with the Melomics API is to search songs matching given
parameters. These search parameters can be owner, instrument, style, duration, etc. Songs can be
identified by id as well. Searching for songs can take several forms, which are shown as following:

Searching by id
The easiest way to search for a song is by id. You need to add the id at the end of the call.

http://melomics.com/api/songs/[id]

Example:

http://melomics.com/api/songs/jf96ecdeea-1d59-4b3f-8d81-38a664f8afb3

Response:
{
"author": {
"artistName": "Melomics",
"avatar":
"https://secure.gravatar.com/avatar/e92c4472c967de848b7958c6c2f53c0d?d=identicon&rg",
"description": "<p>melomics is the first computer that has mastered human

musical language.</p>\n\n<p>With more than a billion songs, its production constitutes the biggest
collection of music in the world, and the main contribution to melomics
catalogue.</p>\n",

"email”: ""
"id": "5527d30c-25af-46e5-8707-0428741afb4a",
"lang": "en",
"name": "",
"payment": {
"email": "melomics.spain@gmail.com"
bs
"permalink": "melomics",

"showEmail": false,

"surname": ,

uri": "@melomics",

"username": "melomics
3

"buy": false,
"description": "",

"download": false,
"duration": 359000,

"entities": {
"midi": {
"buy": false,
"download": false,
"price": -1.0
¥
"mp3": {
"buy": false,
"download": false,
"price": -1.0
¥
"pdf": {
"buy": false,
"download": false,
"price": -1.0
¥
"xml": {
"buy": false,
"download": false,
"price": -1.0
}
¥
"image": "/mexels/jf96ecdeea-1d59-4b3f-8d81-38a664f8afb3",
"like": null,
"locked": false,
"songID": "jf96ecdeea-1d59-4b3f-8d81-38a664f8afb3",
"numLikes": 0,

"owner": {
"artistName": "Melomics",
"avatar":
"https://secure.gravatar.com/avatar/e92c4472c967de848b7958c6c2f53c0d?d=identicon&rg",
"description”: "<p>melomics is the first computer that has mastered

human musical language.</p>\n\n<p>With more than a billion songs, its production constitutes
the biggest collection of music in the world, and the main contribution to
melomics catalogue.</p>\n",

"email": "",

"id": "5527d3@c-25af-46e5-8707-0428741afb4a",

"lang": "en",
"name": ""
"payment": {
"email": "melomics.spain@gmail.com"
¥
"permalink": "melomics",

"showEmail": false,

"surname":

uri": "@melomics",
"username": "melomics"

3
"permalink": "7",
"tags": [

"effect:trill",
"effect:tremolo",
"tempo:120bpm",
"effect:mordent",
"tempo:52bpm",
"instrument:violin",
"instrument:piano",
"tempo:68bpm",
"effect:grace",
"effect:pizzicato"
1,

"title": "7",
"totalPrice": -1.0,
"type": "song",
"uri": "@melomics/7",
"visibility": "public"

Searching by parameters

Searching by id is important, but not necessarily that interesting. The power of the Melomics API comes
through the possibility of searching for songs in some other ways. For instance, you may be looking for
songs which is performed with a specific instrument or belongs to a specific style.

http://melomics.com/api/songs/?q=[QUERY]

This call returns a list of songs matching the given parameters. By default, results are ordered by
relevance measured as the success of matching. The example below searches for songs related to

instrument piano.
http://melomics.com/api/songs/?q=%23instrument:piano

You can also use the boolean connectives and, or and not, even parentheses. The example below will

return songs related to instrument violin excluding those related to piano.
http://melomics.com/api/songs/?q=not%20%23instrument:piano%20and%20%23instrument:violin

And this call search for songs whose owner is Melomics and its duration is between 2:30 and 4:40:

http://melomics.com/api/songs/?q=%23username:melomics%20and%20[2:30-4:40]

As commented above many parameters can be used in order to make sure the search is as accurate as
possible. Below, the available query parameters (all optional) are described:

Parameter Description
Owner User who is the owner of the song
Instrument Musical instrument used to perform the song su

as piano, violin, flute, etc.

Style Musical style for a song
Substyle Musical substyle for a song
Tempo Represent the speed of the song such as 10

bpm, 108 bpm, etc...

Duration Desired duration in [mm:ss] format of match
song. To search songs of a specific duration u
[duration]. By default songs are given sor
slack: They are allowed to be up to 10 second
shorter or longer than the specified duration. Y
can also use [duration 1-duration 2] if you wa
to search in a duration range.

Beat Steady pulse of the song such as 4/4, quaternar]
etc...

Dynamics The loudness or softness of the song such as f,
fff, etc...

Effect Effect of the song such as slap, tremolo, etc...

Texture Complexity of the song

melomics

Searching for users

http://melomics.com/api/users/[username]

This call returns information about the user [username].

Searching for user's public playlists

An user can group songs into lists. These lists receive the name of playlists, which can be identified by
id and shared to the world. Melomics API provide methods for searching these user’s public playlists.
An user can only add songs that he owns to a playlist and a song can belong to multiple playlists.

Listing all the public playlists of specific user
http://melomics.com/api/users/[username]/playlists

This call returns a list with all the public p/aylists for the user [username]. Pagination parameters (_from,
size) can be used to customize the way in which results are displayed.

Searching for a specific public playlist of an user

http://melomics.com/api/users/[username]/playlists/[playlistID]

This call returns a list with songs belonging to the playlist [playlist] for the user [username]. In this case,
pagination parameters (_from, size) can also be used to customize the way in which results are

displayed.

Searching for user's public content

http://melomics.com/api/users/[username]/contents/[permalink]

This call returns the public content (playlist or playlist list) that the user [username] owns by using the

specific permalink [permalink] for this content.

©

melomics

OAuth authentication

Melomics’ API uses the protocol OAuth 1.0 (REC 6749) in order to authenticate users. The API keys

can be obtained at https://melomics.com/oauth/developer (you can follow the link from your

profile’s page). Since the API keys are unique for each user, the provided description should be general
enough to cover your purposes as a developer, and not to reflect a specific application. Once you got
the keys, they won’t be active until whitelisted.

Temporary credential request (RFC section 2.1)

https://melomics.com/api/oauth/initiate

Out-of-band (oob) configuration is supported

Resource owner authorization (RFC section 2.2)

https://melomics.com/oauth/authorize

A callback could be provided to cover rejection and errors:

https://melomics.com/oauth/authorize?...&error_callback=[URI]&...

In case of error, the browser is redirected to error_callback providing a parameter

callback_status=<error code + description>.

Access token request (RFC section 2.3)

https://melomics.com/api/oauth/token

https://www.google.com/url?q=https%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5849&sa=D&sntz=1&usg=AFQjCNH1ZZwkvU7-NUvELXcl_NU6V9TiPA
https://www.google.com/url?q=https%3A%2F%2Fmelomics.com%2Foauth%2Fdeveloper&sa=D&sntz=1&usg=AFQjCNEG_5GUvVau5WxsnzaM8St2LehLPQ

©

melomics

Extra requirements:

e The nonce token must be an alphanumeric string with length between 20 and 30 characters:
[a-zA-Z0-9]{20,30}
e HMAC-SHAI signature method is preferred.

Melomics API Handbook | 16

API Calls Table

API call Args Return Description
/songs -q { Return a list with the songs matching
- _from songs: [song], given parameters (i.e: owner,
- size more: bool instrument, style, duration, etc ...)
}
/songs/[id] song Return information about the song
with given id
/songs/[id]/like { Return information of “likes” of the
like, song with given id
numLikes
h
[POST] /songs/[id]/like - like: {} if ok Put or remove a song from favorites
true/false (OAuth login required)
/users/[username] user (json): Return information about the user
{ [username]
§
/users/[username]/contents/[permalink] user (json): Return information about the public
{ content [permalink] for the user
[username]
§
/users/[username]/playlists -q playlists: Return a list with information about
- _from [{ the public playlists for user
- size from [username]
to
4
/users/[username]/playlists/[playlistID] -q playlists: Return information about the public
- _from [{ playlist [playlistID] for user
- size from [username]
to

/]

