
Verified computations
of the polylogarithm

Matthias Goerner

Abstract. We review existing formulas to show how to compute a complex inter-
val arithmetic polylogarithm for integral orders and related functions giving the
(complex) volume of hyperbolic 3-manifolds.

1 Introduction

The polylogarithm is defined as the analytic continuation of the series

Lin(z) =
∞∑

k=1

zk

kn
(1.1)

It is a generalization of the logarithm with Li1(z) = − ln(1− z). Li2 is known as the
dilogarithm - the only function with a “sense of humor” according to Zagier’s excel-
lent survey article [Zag].
We will review the necessary identities and series and give error estimates to imple-
ment a complex interval version of the polylogarithm for integral orders.
The input to such a polylogarithm is the integeral order n and a complex interval
which is a rectangle K = [

a, a
]+ [

b,b
]
i ⊂ C in the complex plane where a, a,b, and

b are real numbers exactly representable by floating point numbers. A correct im-
plementation must return another complex interval L such that for every z ∈ K , we
have Lin(z) ∈ L — at least as long as K does not intersect the branch cut at [1,∞), see
Chapter ??. The returned interval L should be reasonably small but does not need
to be the smallest interval possible with this property.
We use methods similar to the ones in the Pari [Par] library, but deploy interval arith-
metic. A technical report similar to this one is [Woo].

2

Before describing these methods, we review related functions that can be applied
to compute volumes of hyperbolic 3-manifolds.

2 Semantics of complex interval arithmetics

2.1 Differences to MPFI. Let f : Rn → R be a function. We say that an interval im-
plementation of f is correct if it returns an interval J given some real input intervals
I1, . . . In such that f (x1, . . . , xn) ∈ J whenever x j ∈ I j for j = 1, . . . ,k. Note that this
does not require the interval implementation to

(a) be deterministic, i.e., two calls of the same functions given the same inputs
might return two different intervals

(b) preserve inclusions, i.e., if I ′j ⊂ I j for j = 1, . . . ,k, then J ′ ⊂ J where J ′ is re-

turned when giving the I ′j as inputs.

(c) return the smallest possible interval that has as endpoints floating-point num-
bers of the given precision.

The MPFI library implements real interval arithmetics and most (if not all) of its
function satisfy the strongest condition (c). Given how hard it is to achieve the anal-
ogous conditions for complex functions and intervals, a library for complex interval
arithmetic might choose to implement functions in such a way that the returned
intervals are still correct but only fulfill condition (a).

2.2 Interpretations of multi-valued functions. The MPFI library implements the
arg(y, x) function which returns the signed angle of the x axis and the line segment
from the origin to the point (x, y). If we give it as input intervals [−1,−1] for x and
[−0.0625,0.0625] for y , it returns [−π,π].
In a complex analysis setting, it is more natural to think of a function such as log
(whose imaginary part is given by arg) as being multi-valued. The log function is
related to the exp function which is a covering map C→ C \ 0. A complex interval
implementation can be thought of as returning a particular lift of a given complex
interval inC\0 toC. This requires a choice and it is canonical to pick a lift that agrees
with the logarithm’s principal value if the complex interval avoids the branch cut at
(−∞,0).
Some examples of the results returned by the complex interval logarithm will make
this more clear (note that (b) is not satisfied):

3

z log(z)
[-1,-1]+[0.0625, 0.0625]i [0.00194, 0.00196] + [3.0791, 3.080]i
[-1,-1]+[0 , 0.0625]i [0 , 0.00196] + [3.0791, 3.1416]i
[-1,-1]+[-0.0625, 0.0625]i [0 , 0.00196] + [3.0791, 3.2041]i
[-1,-1]+[-0.0625, 0]i [0 , 0.00196] + [3.1415, 3.2041]i
[-1,-1]+[-0.0625, -0.0625]i [0.00194, 0.00196] + [-3.080 , -3.0791]i

This is justified by the fact that clients calling log or
p

z (which can be implemented
as exp(log(z)/2)) often care about the result only up to multiplies of 2πi , respec-
tively, sign.
Evaluating log on a complex interval containing 0 is not allowed which can be sig-
naled by returning NaN (Not a Number).
Similarly, the polylogarithm has a singularity at 1 and the branch cut of polyloga-
rithm is typically chosen to be (1,∞). For consistency, evaluating the polylogarithm
on a complex interval containing 0 should not be allowed either, even though the
singularity is such that the principal value of polylogarithm converges as z → 1.

2.3 A subtle pitfall. Let z be some complex quantity such as the cross ratio of an
ideal tetrahedron. While an algorithm using the complex interval library typically
does not care which of the two values for

p
z the library chooses, it might still re-

quire that every occurrence of
p

z returns the same choice.

While algorithms implemented by a client of a complex interval library typically
do not care about the choice of

p
z, they still might require that whenver

Mathematically, the following holds

c =λ0λ
′
0 =λ1λ

′
1

One choice
p

c. Interval implementation:
√
λ0λ

′
0 and

√
λ1λ

′
1.

3 Related functions

The dilogarithm

Li2(z) =−
∫ z

0

log(1− t)

t
d t

can be used to compute the Lobachevsky function

L(θ) =−
∫ θ

0
log |2sin(t)|d t = 1

2
Im

(
Li2

(
e2iθ

))
,

4

the Bloch-Wigner function

D(z) = Im(Li2(z))+arg(1− z) log |z|,
and Roger’s dilogarithm

R(z) = Li2(z)+ 1

2
log(z) log(1− z)

which Neumann [?] uses to define

R(z; p, q) =R(z)+ πi

2

(
p log(1− z)+q log(z)

)− π2

6
.

The Lobachevsky function and Bloch-Wigner function can be used to compute the
volume of a hyperbolic ideal 3-simplex from its three dihedral angles, respectively,
its cross-ratio as explained by Milnor [?]. Neumann’s R(z; p, q) relates to the ex-
tended Bloch group and can be used to compute the complex volume of a hyper-
bolic 3-manifold.

4 General strategy

If n ≤ 0, Lin is actually a rational function which we treat separately in Section ??.
For n = 1, we have Li1 = − ln(1− z), so we are only concerned about orders greater
than 1 here.
If |z| < 1, we can use the defining series (1.1) and, if |z| > 1, Jonquière’s inversion
formula [Jon]

Lin(z) =−
(

(2πi)n

n!
Bn

(
ln(z)

2πi

)
+ (−1)nLin(1/z)

)
(4.1)

reduces the problem to the case |z| < 1 where

Bn(x) =
n∑

k=0

(
n

k

)
bn−k xk =−

n∑
k=0

n(n −1) . . . (n −k)

k !
ζ(k −n +1)xk

is the Bernoulli polynomial and bi are the Bernoulli numbers.
The resulting series converges arbitrarily slow though when |z| is close to 1. In this
case, we can use the following series for z = eµ with |µ| < 2π

Lin(eµ) = µn−1

(n −1)!

[
n−1∑
h=1

1

h
− ln(−µ)

]
+

∞∑
k=0,k 6=n−1

ζ(n −k)

k !
µk . (4.2)

Section ?? discusses the interval implementation of these series giving error bounds.
This also enables us to analyze the convergence speed of these series in Section ??

5

which tells us which series to pick for a given z to make the computation of the poly-
logarithm faster.
If the given interval for z is so large that none of |z| < 1, |z| > 1, or |µ| < 2π hold, an
interval implementation can simply give (−∞,∞)+ (−∞,∞)i as result.

4.3 Remark. None of the series performs well (gaining less than 2 bits precision per
term) when z is close to -0.3 (see Figure 6.2) and there is a potential optimization by
using the duplication formula [?, ?]

Lin(z) = 21−nLin(z2)−Lin(−z).

5 Error bounds on the series

5.1 Error bounds. Let E [r] = [−r,r]+ [−r,r]i . For the series about 0 from Equa-
tion 1.1, we have |tk +1| < r |tk | with r = |z| for two subsequent terms. This means
that the absolute value of the sum of the terms after tu is bounded by a geometric
series with common ratio r and we obtain

Lin(z) ∈
u∑

k=1
tk +E [F · |tu |] where tk = zk

kn
and F = r

1− r
with r = |z|. (5.2)

Similarly, we have for the series about 1 from Equation 4.2

Lin(eµ) ∈ µn−1

(n −1)!

[
n−1∑
k=1

1

k
− ln(−µ)

]
+

n−2∑
k=0

tk + tn +
u∑

k=n+1
tk +E [F · |tu |] (5.3)

where tk = ζ(n −k)

k !
µk and F = r

1− r
with r = |µ/(2π)|2

when u and n have the opposite parity and u ≥ n + 1. It follows from Riemann’s
functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s), (5.4)

that every other term tn+2, tn+4, ... in the last sum is zero and that the non-trivial
terms in the last sum are given

tk = 2(2π)n−1(−1)

(
k−n+1

2

)
ζ(k −n +1)

k(k +1) · · · (k −n +1)

(µ
2π

)k
for k = n +1,n +3,

Since the Riemann ζ-function is descreasing on (1,∞), we also see that |tk+2| < r |tk |
where r = |µ/(2π)|2 and thus obtain the above error bound F · |tu |.

6

5.5 Interval arithmetic implementations. To be able to use (5.2) or (5.3), we first
need to use interval arithmetics to verify that |z| < 1, respectively, | log(z)| < 2π.
For all the operations on the right hand side of these two formulas, we apply the cor-
responding interval versions except for the term E [F · |tu |] which we need to replace
by E [F · |tu |] where F · |tu | is obtained by applying interval arithmetic to compute an
interval for F · |tu | and picking the right endpoint of that interval (since we don’t use
the left endpoint of the interval, we can save some work by computing only F · |tu |
by proper rounding).
More technical notes: An interval implementation could evaluate the right hand
side of (5.2) or (5.3) for larger and larger u until the resulting complex interval is
not descreasing in size anymore. We also get tighter complex intervals as result by
doing intermediate computations in slightly higher precision. Subsequent evalua-
tions of polylogarithms by (5.3) can be sped up significantly by caching the values
of the Riemann ζ-function.

6 Convergence speed

We gain about − log2(|z|) bits of precision per term when using Equation 5.2 and
− log2(1/|z|) when combining that equation with the inversion formula. Similarly,
we gain about − log2((| log(z)|/2π)2) bits of precision for each non-trivial term when
using Equation 5.3.
Thus, we prefer using Equation 5.3 when

(| log(z)|/2π)2 < min(|z|,1/|z|). (6.1)

Figure 6.2 shows the convergence speed of series (4.2) and the region where this se-
ries converges faster than (1.1). The convergence is slowest near -0.3 where both
series gain only about 1.7 bits per term.
When we test for (6.1) in code, we do not need to use interval arithmetic or higher
precision to verify it since the wrong choice will still be correct, just slower to com-
pute (as long as z in the domain where the chosen series still converges).

7 Non-positive integral orders

For n ≥ 0, the polylogarithm Li−n is obtained by applying (n +1) times the operator
z ∂_
∂z to Li1(z) =− ln(1− z). It is thus a rational function given by

Li−n(z) =
n∑

k=0
k !

{
n +1
k +1

} (z

1− z

)k+1

7

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

1.65

2.00

3.00

4
.0

0

5
.0

0

6.00

7.00

8.00

9.00

10
.0

0

11.00

Figure 6.2. Bits precision per non-trivial term tk in (4.2). The dashed line encloses the
region where series (1.1) converges faster than (4.2). The picture is invariant under
inversion z 7→ 1/z.

where

{
n
k

}
are the Stirling numbers of second kind given explicitly by

{
n
k

}
= 1

k !

k∑
j=0

(−1)k− j

(
k

j

)
j n (7.1)

or recursively by{
n +1

0

}
= 0,

{
n +1

k

}
= k

{
n
k

}
+

{
n

k −1

}
for k > 0

and the initial conditions {
0
0

}
= 1,

{
0
k

}
for k > 0.

Note that the recursive definition is easy enough for a numerical implementation
and also preferable over (7.1) since it avoids the alternating sum that could poten-
tially accumulate larger errors.

8

8 Bernoulli numbers and Riemann ζ-function

8.1 Bernoulli numbers. The Bernoulli numbers can be defined recursively:

bm = 1−
m−1∑
k=0

(
m

k

)
bk

m −k +1
for m ≥ 0. (8.2)

This also allows to compute the Riemann ζ-function for odd negative integers and
even positive integers

b2n

2n
=−ζ(1−2n) = (−1)n+1 2(2n −1)!

(2π)2n
ζ(2n) for n ≥ 1.

The latter equation directly follows from Riemann’s functional equation 5.4 which
also implies that ζ is zero at the even negative integers. Furthermore, we have ζ(0) =
−1/2.
For our purposes, we can use (8.2) to compute the Bernoulli numbers. Pari employs
a different algorithm, but it has different goals: compute a Bernoulli number bm

for much higher m with high enough precision to obtain a rational representation
of bm and without computing all the pervious Bernoulli numbers. Pari’s algorithm
computes ζ using the Euler product which actually converges quickly if m is large
and uses that von Staudt and Clausen give an expression for the numerator of bm ,
see [McG, Ste].

8.3 Riemann ζ-function at positive odd integers. To compute higher polylogarithms,
we still need a way to compute the values of ζ at the odd positive integers. Ramanu-
jan gave a formula for these:

(−α)−n

[
ζ(2n +1)

2
+

∞∑
k=1

k−2n−1

e2αk −1

]
−β−n

[
ζ(2n +1)

2
+

∞∑
k=1

k−2n−1

e2βk −1

]
=

22n
n+1∑
k=0

(−1)k b2k

(2k)!

b2n+2−2k

(2n +2−2k)!
αkβn+1−k (8.4)

where n is a positive integer and αβ = π2,α,β > 0, proven, for example, by Berndt
[Ber]. If (−α)−n −β−n 6= 0, we can solve for and quickly compute ζ(2n+1). In partic-
ular, for n odd and α=β=π, we obtain

ζ(4m −1) =−1

2
(2π)4m−1

2m∑
k=0

(−1)k b2k

(2k)!

b4m−2k

(4m −2k)!
−2

∞∑
k=1

1

k4m−1
(
e2πk −1

) .

9

for m ≥ 1 which converges quickly (e2π = 535.49...). For n even, we can take the
derivative of equation (8.4) and again set α=β=π to obtain

ζ(4m +1) =
(2π)4m+1

2m

m∑
k=0

(−1)k (2m +1−2k)
b2k

(2k)!

b4m+2−2k

(4m +2−2k)!
−2

∞∑
k=1

e2πk (1+πk/m)−1

k4m+1(e2πk −1)2
.

(8.5)

These equations are also used by pari and, according to Cohen [Coh], can also be
proved “by computing the period functions associated to the Eisenstein series of
weight 4m +2 on PSL(2,Z)”.

9 STUFF

C=contour_plot(
lambda x,y:-log(abs(log(x+y*I))/6.283)/0.3465735+log(abs(x+y*I))/0.693147,
(-1,1),(-1,1),
axes=True,contours=[0],linestyles=’dashed’,
fill=False,plot_points=300)

C2=contour_plot(
lambda x,y:-log(abs(log(x+y*I))/6.283)/0.3465735,
(-1,1),(-1,1),
axes=True,contours=[1.65,2,3,4,5,6,7,8,9,10,11],
fill=False,plot_points=300, labels=True)

C3=C+C2

References

[Ber] B. C. Berndt. Modular transformations and generalizations of several for-
mulae of Ramanujan. Rocky Mountain Journal of Mathematics 7 (1977),
147–190. https://projecteuclid.org/download/pdf_1/euclid.rmjm/
1250130041

[Coh] H. Cohen. High precision computation of Hardy-Littlewood constants.
http://www.math.u-bordeaux1.fr/~hecohen/.

[Jon] A. Jonquière. Note sur la série
∑∞

n=1
xn

ns . Bulletin de la Société Mathématique
de France 17 (1889), 142–152.

[McG] K. J. McGown. Computing Bernoulli Numbers Quickly, 2005. http://
wstein.org/projects/168/kevin_mcgown/bernproj.pdf.

https://projecteuclid.org/download/pdf_1/euclid.rmjm/1250130041
https://projecteuclid.org/download/pdf_1/euclid.rmjm/1250130041
http://www.math.u-bordeaux1.fr/~hecohen/
http://wstein.org/projects/168/kevin_mcgown/bernproj.pdf
http://wstein.org/projects/168/kevin_mcgown/bernproj.pdf

10

[Ste] W. Stein. Computing Bernoulli Numbers, 2006. http://wstein.org/
talks/bernoulli/current.pdf.

[Par] The PARI Group, Bordeaux. PARI/GP version 2.7.5, 2015. available from
http://pari.math.u-bordeaux.fr/.

[Woo] D. Wood. The Computation of Polylogarithms. Technical Report 15-92*,
University of Kent, Computing Laboratory, University of Kent, Canterbury,
UK, June 1992. http://www.cs.kent.ac.uk/pubs/1992/110

[Zag] D. Zagier. The Dilogarithm Function. In Number Theory, Physics,
and Geometry II, pages 3–35. Springer-Verlag, 2007. http://people.
mpim-bonn.mpg.de/zagier/files/doi/10.1007/978-3-540-30308-4_
1/fulltext.pdf

Matthias Goerner
email: enischte@gmail.com
http://unhyperbolic.org/

http://wstein.org/talks/bernoulli/current.pdf
http://wstein.org/talks/bernoulli/current.pdf
http://pari.math.u-bordeaux.fr/
http://www.cs.kent.ac.uk/pubs/1992/110
http://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/978-3-540-30308-4_1/fulltext.pdf
http://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/978-3-540-30308-4_1/fulltext.pdf
http://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/978-3-540-30308-4_1/fulltext.pdf
http://unhyperbolic.org/

	Introduction
	Semantics of complex interval arithmetics
	Differences to MPFI
	Interpretations of multi-valued functions
	A subtle pitfall

	Related functions
	General strategy
	Error bounds on the series
	Error bounds
	Interval arithmetic implementations

	Convergence speed
	Non-positive integral orders
	Bernoulli numbers and Riemann -function
	Bernoulli numbers
	Riemann -function at positive odd integers

	STUFF

