
Hacking Camp Teacher’s Manual

A 10-hour course on serious programming for kids
with Python on the GNU/Linux system

Mark Galassi
Los Alamos National Laboratory

and
Warehouse 21, Santa Fe, New Mexico

mark@galassi.org

June 2, 2016

Contents

Motivation and prolegomena iii

1 The hardware and the operating system 1
1.1 Having students bring hardware 1
1.2 Start the installation . 1
1.3 Opening up a computer to demonstrate its parts 3
1.4 Lecture on the blackboard . 3

1.4.1 Hardware block diagram 3
1.4.2 Software functional diagram 4

1.5 After the installation . 6

2 Start programming in Python 8
2.1 Concepts before we start . 8
2.2 Learning to type and learning the editor 9
2.3 Reiterating “hello world” and starting loops 9
2.4 Introducing strings and lists 11

2.4.1 Strings . 11
2.4.2 Lists . 12
2.4.3 All sorts of types . 12

2.5 Start talking about tic-tac-toe 14

3 Functions to do tasks, more tic-tac-toe 16
3.1 Structuring the program . 18

4 Tic-tac-toe: playing moves 21
4.1 Taking input moves from the players 21
4.2 Improving flow and robustness 22
4.3 Checking if someone has won 27
4.4 Rows and diagonals . 28

i

CONTENTS ii

5 Tic-tac-toe: programming the computer to play 30
5.1 First found . 30
5.2 Random play . 31
5.3 Opportunistic play . 33
5.4 Defensive play . 35
5.5 Improving the opportunistic algorithm 35
5.6 Concluding words . 36

A Life after the course 37

B Notes on installing GNU/Linux in class 38
B.1 Issues with old/cheap hardware 38
B.2 The Asus X551MA laptop . 39

B.2.1 Preparing a USB memory stick 39
B.2.2 Saving off laptop info and restore drive 40
B.2.3 Booting from a USB stick 40
B.2.4 Installing GNU/Linux 40

B.3 The old Mac G4 PowerPC laptop 41
B.3.1 Preparing an installation CD 41
B.3.2 Booting from CD and installing 42
B.3.3 Post installation . 42

C Software Freedom 44

D GNU Free Documentation License 45
1. APPLICABILITY AND DEFINITIONS 45
2. VERBATIM COPYING . 46
3. COPYING IN QUANTITY . 46
4. MODIFICATIONS . 46
5. COMBINING DOCUMENTS 47
6. COLLECTIONS OF DOCUMENTS 47
7. AGGREGATION WITH INDEPENDENT WORKS 48
8. TRANSLATION . 48
9. TERMINATION . 48
10. FUTURE REVISIONS OF THIS LICENSE 48
ADDENDUM: How to use this License for your documents 48

Motivation and prolegomena

The joy and beauty of serious programming

Computer programming, like music, chess and mathematics, can be tought
to young children. These children can often perform at the same level as
adults in many areas of programming.

Many courses are taught to kids. The ones I have seen are very well
developed and organized. They use a friendly programming environment in
which users see a rapid visual response to their commands and snippets of
code.

Unfortunately these environments do not bridge a crucial gap to pro-
gramming the way it is done by professionals. The language is not one used
for serious programming, the environment does not scale to more complex
software development, and the graphical output, while immediate, does not
then translate into production-level graphical user interfaces. When the stu-
dents are confronted with real technical work, for example in a college or
graduate school internship, they can feel a sense of loss that those tools did
not prepare them for their “real work”.

Important tools for a programmer include at least the following1:

• a deep understanding of how her computer and operating system work

• mastery of one or more general purpose programming languages

• a strong connection to her development tools (most importantly the
programming editor)

• comfort with how the command line brings together a variety of small
tools

I have carried out various experiments in teaching this more advanced
approach to students, both in the 8- to 12-year-old range and to teenagers.

1Of course this list could be arbitrarily long; I will focus on these items for now.

iii

MOTIVATION AND PROLEGOMENA iv

Some of the approaches I have tried have not worked too well, but the
experiments led me to an approach which has been quite successful: the
students learned the material readily and surprised me and others with how
quickly they grasped real programming tools.

An important matter comes up with teaching real-world programming,
and this is not a problem unique to kids. It is the problem of understanding
how computers work. When I learned to write code in the early 1980s
everyone who had a computer at home had to understand how it worked
and had to put together many components.

Today both children and adults can use a laptop or tablet computer to
good purpose for several tasks (video conferences, reading mail, accessing
web resources, . . .) without understanding how the computer works or even
what the parts of the hardware and software are.

The analogy I have come up to explain this is that of car ownership.
A person can drive a car with an automatic gear shift and have no idea:
(a) that there are gears with a different ratio between how fast the engine
turns and how fast the wheels turn, (b) how to fix a car if it develops
problems, (c) how to design and build a car.

Analogously to meeting kids who don’t know who The Beatles are2, to-
day’s computer users might not know the meaning of CPU, RAM, graphics
cards, network controllers, hard disks. Moving up from hardware they might
not know where the operating system fits into a functional diagram of com-
puter hardware and software, or what an editor is. They might not even
know what a “computer program” is.

These are all important things to understand when you write code, so we
will have to start our training by understanding how hardware and software
work under the fancy cover.

This is why the course requires students to find an old computer or
laptop: in the first lesson the students will open up a computer to see what
the parts are inside (with the instructor’s guidance), and they will then
install a GNU/Linux distribution on their own computer so that they can
do their programming on a machine they have configured, starting from the
bare hardware.

And now for the beauty and joy. Serious programming is not only fun:
you can experience the deep joy of creating something or solving a problem.
We hope to do some of that in the course, so we should emphasize to the
students that this activity has deep rewards.

2A rock and roll band from the 1960s and early 1970s.

MOTIVATION AND PROLEGOMENA v

Automation of repetitive tasks

People who have programming as a tool in their belt know that the main
function of computer programming is the automation of repetitive tasks.

This is so imporant that there is a mantra which I repeat very often when
I teach: “the reason we use computers is for the automation of repetitive
tasks”. When we introduce loops, and at many other times, I have the class
repeat “automation of repetitive tasks”. It eventually becomes a humorous
mantra, with the joke being on the instructor because she repeats herself so
many times, but the phrase will be remembered.

Here is how to test whether students have understood this. After they
have started using the shell, have them create a bunch of files with a typo:

for i in 0 1 2 3 4 5 6 7 8 9

do

fname=file_number_$i
echo "the number is $i" > $fname

done

Then tell them “now you realize that you misspelled and wrote fille instead
of file. What will you do about it?”

At this point they will not have the skills to write a script to fix all the
file names, but they can still give this correct answer: “the right way to fix
it is to write a script of some sort.”

At the end of the class you might want to give give them the script that
fixes all the file names. There are many ways to do it — I usually do this:

for bad_fname in fille_number_*

do

good_fname=`echo $bad_fname | sed 's/fille_/file_/'`
echo "renaming file from $bad_fname to $good_fname"
mv -i $bad_fname $good_fname

done

Plan

This book has five chapters which correspond to five two-hour lessons. I
have taught this course in two formats: as a week-long class in which kids
show up for two hours/day (appropriate for a break from school), and as a
weekend-intensive course in which you have to pack ten hours into two days.

It is important to follow the plan and keep a momentum in the class,
completing each lesson on time. This can be difficult in case some students

MOTIVATION AND PROLEGOMENA vi

need a bit more time, but we are aided by a very fortunate property of
people with technical passion: they love to share their knowledge and help
others. At the end of a class the students can help others catch up.

Since serious computing work involves solving real open-ended problems,
rather than “canned” exercises, the instructor should be available in between
classes to make sure that everyone can catch up and be ready for the next
class without feeling lost.

But there is a flip side: this course is aimed at students who are self-
motivated and ready to step out of their comfort zones. Some students might
not be ready for this. Because of this I make it clear, when I advertise the
course, that students will have to work hard and step out of their comfort
zone in learning new ways of computing.

Why use GNU/Linux and Python?

The motivation behind learning the GNU/Linux operating system is that:

• the GNU/Linux operating system is the basis for almost all the com-
puters that “run the world”: from the servers at Amazon and Google
to the supercomputers that power science, the operating system is
almost always GNU/Linux

• the GNU/Linux operating system is written by programmers for pro-
grammers: it offers a choice of several delightful programming envi-
ronments and puts few barriers in the way of the programmer

• the GNU/Linux system is free (as in freedom), but it is also free as in
cost: the entire system and its wealth of tools (for programming and
all else) are available free of cost

• the GNU/Linux system has been packaged in many ways, some of
which work quite well on very old hardware with less memory

The motivation behind teaching Python is:

• it is a pleasant and easy language to learn

• it is also a language used for many industrial-strength applications

• it can be used for a wide variety of interesting programs

MOTIVATION AND PROLEGOMENA vii

We will be using version 3 of Python (python3) which is now becoming
quite widespread. It has some incompatibilities with python2, but they are
truly minor (we will only notice it in the print() function) and it is good
to start using the new way of doing those things.

Preparation for class: venue and materials

If you get a group of kids signed up for the course you need to be ready to
make the class time move at a good pace. If time is lost getting equipment
to work or figuring out the network then you will lose the kids’ attention.

I do a careful preparation of the site: I verify that we have electrical
outlets, that we have hard ethernet as well as wi-fi, that there is a blackboard
or whiteboard, tables, chairs, . . .

I also correspond extensively with the kids (or their parents for the
younger kids), making sure that they have obtained a piece of hardware
and finding out what kind of computer it is.

Then I have a couple of boxes of equipment I bring to the classes with
(at least) the following items:

• an ethernet hub with as many ports as there are students

• dry erase markers

• several USB mice

• loaner laptops: a combination of cheap ones I purchased with a grant
for the course, and of old computers the center had sitting around

• CDs and DVDs with several GNU/Linux distributions (labeled)

• USB flash drives (memory sticks) with several GNU/Linux distribu-
tions (labeled)

I also do a test install of the operating system on at least one of each
model of loaner laptop, and I write down the procedure.

Using, adapting and improving this book

I have written this teacher’s manual in case you want to use it as a starting
point to develop our own course for children. You may obtain a copy of
the source document for this manual3 and modifiy it to fit your needs, and

3https://bitbucket.org/markgalassi/hackingcamp-teacher-manual

MOTIVATION AND PROLEGOMENA viii

even redistribute your modifications (see Appendix C for the license on this
document).

I have not written this book to be a tutorial for children. You, the reader,
are going to be tutoring the children, so this book is written to give you an
outline and many possible details on what to do.

The target audience (that’s still you) is someone who has at least some
small experience programming. In that case the examples in this book will
make sense to you and you will be able to explain them to the kids, even as
you are learning yourself!

There are some areas you will most likely need to adapt, such as Ap-
pendix B which I tailored to the specific hardware we had available in the
classes I taught. Other areas you might want to adapt to fit your style or
your audience.

And naturally if you have ideas for improving the course or developing
follow-on courses, please be in touch with me!

Lesson 1

The hardware and the
operating system

1.1 Having students bring hardware

An essential part of this course is that the students should install an op-
erating system themselves onto bare metal. This will give them a much
better overall view of what the hardware + software combination that is a
computer is made of.

There are several side benefits: (a) the students are exposed to a free
software environment, (b) people who teach Python classes always grapple
with installing and using Python on widely different systems — we will
not have this problem, (c) the students become versed in the UNIX and
GNU/Linux way of computing and learn some system administration skills.

In announcing the course I urge students to bring in an old computer,
such as “grandma’s or grandpa’s old laptop”. The idea is to encourage them
to ask around: many families will have old computers sitting around, and if
not their neighbors probably do. But if they do not it is still worth having
students take such initiative. Teachers can also raise grant money to find
laptops for students, and I have found several very usable computers with
the freecycle mailing list.

1.2 Start the installation

Installation instructions for the computers I have used in my course are in
Appendix B. I have also had very good luck getting members of the local
GNU/Linux user group in Santa Fe to come help with the installation.

1

LESSON 1. THE HARDWARE AND THE OPERATING SYSTEM 2

It is important to get to this point rather early in the first 2-hour lesson,
since this is rich ground for unpredicted problems. The students might bring
hardware that does not work, or that is so strange that it is hard to install
GNU/Linux on it (although that is rare these days). Or they might have
brought something that is more than 10 years old, for which you would need
a truly tiny GNU/Linux distribution.

To limit the delays that can come from this I recommend having some
“loaner” laptops available for students to use in class if it turns out that
their computer is just not working. If the installation appears to not be
working then make sure you shift to using your loaner laptops.

As for a choice of distributions: I show up with several CDs/DVDs and
USB memory sticks so that I am ready to install many different styles of
GNU/Linux.

I also have a couple of USB wi-fi adaptors that are known to work without
special drivers, since certain laptops have built-in wi-fi that requires special
drivers.

Which distribution to install depends on how much RAM is in the laptop.
I have typically installed the following distributions:

less than 1 GB RAM Bodhi

less than 2 GB RAM xubuntu 12.04

2 GB and 3 GB RAM xubuntu 14.04

4 GB and more ubuntu 16.04

As you can see, I have mostly gravitated toward the ubuntu and xubuntu
distributions. This is not because I have a preference for these distributions
or desktops. The reason I choose them is because they (a) Ubuntu installers
do a reasonable job of detecting laptop hardware, (b) they are solidly main-
tained, with 12.04, 14.04 and 16.04 being long term support (LTS) distri-
butions which will be maintained for five years, (c) they are widely used
the students can get good support, and (d) there is a vast choice of desktop
environments to run.

In class we will mostly use a programming editor and the Python inter-
preter, so the style of desktop doesn’t really matter that much.

The installation can take from a few minutes to half an hour, and we will
use this time to go to the front of the class and discuss computer hardware.

LESSON 1. THE HARDWARE AND THE OPERATING SYSTEM 3

1.3 Opening up a computer to demonstrate its
parts

This “show and tell” should be done with a desktop computer, preferably a
pretty old one, since the parts are more spread out and easier to identify.

The computer should be opened on a desk near the blackboard so that
you can draw a hardware block diagram (see Section 1.4.1) at the same time.

You should identify the CPU, RAM and peripherals, discussing how they
are connected to the CPU. Sometimes a peripheral is on the same board,
and hence is connected via short solder connections. Other times it’s on a
separate card, plugged in to the “bus” (in most modern PCs it’s a PCI bus).

Here is a basic list of some of the components you might identify:

backplane/bus where the cards are seated

motherboard the board with the CPU, much of the RAM, . . .

CPU the biggest item on the motherboard

RAM the computer’s fastest memory, sits on the motherboard in DIMMs
— mini-cards, short and wide which plug in to the motherboard

graphics find the graphics chipset, either on the motherboard or in a sep-
arate card (it might be useful to bring two different computers)

hard disk

optical drive CD/DVD

network port

serial port

video connector

1.4 Lecture on the blackboard

1.4.1 Hardware block diagram

While you have the “show and tell” computer open (Section 1.3) you should
draw a block diagram of how the hardware fits together. Many examples of
block diagrams can be found on the web, but they often go into too much
detail. I use a simple block diagram, a bit like the one in Figure 1.1.

LESSON 1. THE HARDWARE AND THE OPERATING SYSTEM 4

CPU
(central processing unit)

Graphics card Network card

Memory

RAM (random access memory)

Disk Controller

Hard disk

Monitor
network

Keyboard

Mouse

USBinterface

Camera

MP3player

Soundcard

Speakers

CD/DVDdrive

Figure 1.1: A diagram of the hardware parts of a typical personal computer.

Once you have the hardware block diagram on the blackboard you can
animatedly talk about how each of those components is related to what the
children have seen in their daily life.

For example: “has anyone here ever seen a movie streaming on the
network, like with Netflix?” and when someone says “yes” you can point to
the portions of the diagram which shows the ethernet port and the graphics
card and the cable that connects to the monitor.

Or: “has anyone here ever looked at a weather forecast?”, at which point
you can point to the CPU and RAM and talk about how those forecasts come
from a lot of very intense calculations inside the CPU.

The goal of this kind of interactive dialogue is to get the students to
feel that they part of the class, and also to make their subconscious sense a
connection between this understanding of the hardware and their every day
experience.

1.4.2 Software functional diagram

Draw a diagram similar to that in Figure 1.2.
In explaining this to young people, describe the layers from the inside

out. The operating system sits between the hardware and the application
programs and provides a uniform way for programs to access hardware re-
sources.

LESSON 1. THE HARDWARE AND THE OPERATING SYSTEM 5

Hardware

O

pe
rating System

Libraries

Application Programs

Interp
reter

C
om

p
il
er

Spreadsheet
WordProcessor

W
eb

B
row

ser

(firefox
,

ch
rom

ium
, ...)

E
di

to
r

(e
m

ac
s,

vi
, .

..)

Figure 1.2: A diagram of the layers of software above the hardware.

To make this part interactive you can ask “who can tell me what an
example of an operating system is?” Kids will answer “Windows” or “Mac-
intosh”. I find it useful to point out the importance of free software operating
systems by saying something like “very good”, and then writing down the
list on the blackboard starting with the GNU/Linux operating system, and
putting their responses below with the company that sells those operating
systems. For example:

• GNU/Linux — used by programmers and on servers everywhere

• Microsoft Windows — used in many office and home computers

• Apple OS X — used in many Macintosh computers

and then I give a brief discussion (more will come throughout the course) of
how the GNU/Linux system is designed and developed by volunteers with
the goal of offering users a free1 operating system that is not steered by a
company’s marketing agenda.

Libraries allow higher level ideas to be expressed using basic building
blocks. You can give the example of a task in daily life that involves nu-
merous tiny steps, such as getting milk from the refrigerator. You could ask

1“free” as in “freedom”; see Appendix C.

LESSON 1. THE HARDWARE AND THE OPERATING SYSTEM 6

someone to get you milk from the refrigerator by saying: “please step for-
ward 2 paces, then turn left 40 degrees, then step forward two more paces,
then put your arm out, then close your fingers around the handle, then pull,
. . . ”

Or you could simply ask someone “please get me milk from the refrigera-
tor”. A library gives you higher level ways of expressing the task, delegating
the small details to the library.

When you get to the “Application Software” layer remember that many
of them don’t know what a “program” is. Or better: they probably know
what a program is, but they don’t know it’s called a program. You can give
them examples of programs they have seen in school or they might have
used at home.

1.5 After the installation

Having finished our lecture on hardware and software architecture, we start
telling the students to bring up a terminal.

Typing at the terminal and at a programming editor will be what we
do all the time, so they need to start getting used to typing commands at
the shell prompt in the terminal. Eventually they will develop a feeling for
what the terminal and the shell are.

The first thing we can do is have them type:

$ tuxtype

The computer will tell them to install it with:

$ sudo apt-get install tuxtype

and they should do that. This is an entertaining “typing tutor” which will
get them in the habit of touch-typing.

I let the students stay in tuxtype until about 5 minutes before the end
of this first 2-hour lesson.

Now they have just a few minutes left. Remembering that everyone is
relieved and more enthusiastic about a course when classes do not run over
time, we can use these last minutes to:

• Have them bring up a terminal.

• Have them run “sudo apt-get update” and “sudo apt-get install python3”

LESSON 1. THE HARDWARE AND THE OPERATING SYSTEM 7

• Have them bring up the Python interpreter by typing “python3” on the
command line2

• Have them type their first line of code: “print('hello world')”

This way the kids go home from their first lesson having run a brief program.

2We will use python3 in this course.

Lesson 2

Start programming in
Python

2.1 Concepts before we start

There are (at least) two ways of having a computer run your Python pro-
gram: you can type instructions in the Python interpreter, which only works
for a few lines of code, or you can use a text editor (preferably a program-
ming editor) to write the program, save it to a file on disk, and then run
the Python interpreter on that file.

When I teach this I alternate between the two approaches: I might give
a quickie to explore a feature of the language, in which case I will have
students type it into the interpreter. But as the program grows I have them
type it in an editor and execute it from the command line.

This means that the students need to get familiar with a few ideas and
techniques. I start by explaining the following concepts at the blackboard:

• file

• shell

• how you can (and should) use the shell to do things instead of a graph-
ical file manager

• editor

in addition to other ideas:

• programming language

• the literal-mindedness of computers

8

LESSON 2. START PROGRAMMING IN PYTHON 9

2.2 Learning to type and learning the editor

Students might not know how to type yet. I have them install the typing
tutor tuxtype with “sudo apt-get install tuxtype”, after which they can run
tuxtype on the command line to practice typing. I don’t have them spend
more than a couple of minutes on it at this time in class, but I tell slow
typists that they need to practice.

I then have students install the programming editor emacs with “sudo \

apt-get install emacs” and spend a longer amount of time learning emacs.
This can be done with the emacs tutorial. Initially students will try to rely
on the mouse and the arrow keys, and a proficiency test would be if by the
end of the week they are using native emacs navigation and other approaches
from the tutorial.

Once they are comfortable creating a new file in emacs (C-x C-f) and
saving it to disk (C-x C-s) we are ready to move on to writing code.

2.3 Reiterating “hello world” and starting loops

I write all the codes here on the blackboard during the lecture. I have the
students input them, either at the Python interpreter or in an editor, to
then be run from the command line.

At the command line type “$ python3” and at the python prompt type:

>>> print('hello world')

and then a few more instructions to see how to use Python as a simple
calculator:

>>> import math

>>> 7*4

>>> print(7*4)

>>> 125/13.5

>>> math.sqrt(1.7 + 32/17.1)

Then introduce variables with:

>>> x = 7

>>> y = 4

>>> x*y

>>> print(x*y)

Then move on to something more interesting with:

>>> for i in range(10):

... print(i, i*i)

LESSON 2. START PROGRAMMING IN PYTHON 10

This example allows the telling of humorous anecdotes about sadistic
teachers. I mention that in the old days (including my own childhood)
students were often given punishment for being unruly in class. Sometimes
they were unruly because they were too smart for the course material, other
times becuase they were just ill-behaved. A common form of punishment
was to have the child write something repeatedly on the blackboard. My
teacher would make me write 50 times:

I will not misbehave in class

This brings us to the anecdote of Carl Friedrich Gauss (here I’ll ask the
kids “do you have a favorite mathematician superhero?” and run with that
idea for a while. . .). The legend (possibly apocryphal – who knows what
apocryphal means? what’s a famous apocryphal story?) tells that his math
teacher asked him (and maybe the whole class) to add all the numbers from
1 to 100 so that the teacher could take a break.

The teacher’s break was brief: Gauss answered right away. What is the
answer? If the class does not see it we can demonstrate it: write out 1+100
+ 2+99 + 3+98 and so forth to 49+52 and 50+51. That makes for 50*100,
which is 5050. More generally, Gauss got:

n∑
i=1

i =
n(n + 1)

2

So if you are given a repetitive task by a sadistic teacher, how do you
handle it? Two solutions: either you come up with a cool math formula
that lets you calculate it immediately, or you write a computer program to
do it. That’s what we did with our loop.

Now take that looping program and put it in a file called loop.py. The
code in the file will look like:

for i in range(10):

print(i, i*i)

Listing 2.1: loop.py - first program

and you can run it with

$ python3 loop.py

Then expand on the program:

import math

for i in range(10):

LESSON 2. START PROGRAMMING IN PYTHON 11

print(i, i*i, math.sqrt(i))

Listing 2.2: loop.py - adding code

Students might enjoy changing the 10 to be 100 or even 1000 to see what
happens; some will plug in ridiculous numbers, which gives the teacher the
opportunity to have the students run their CPU hard on a tight loop, put
their ear close to the computer, and listen closely to the whining of the fan.
Then hit control-C and hear the whine stop.

Now show the formula for Fahrenheit and Celcius conversion:

TdegC = (TdegF − 32) ∗ 5.0

9.0
(2.1)

and write the following program and save it to a file called fahr.py:

for degF in range(100):

degC = (degF -32) * 5.0 / 9.0

print(degF, degC)

Listing 2.3: fahr.py

And of course here I point out that “sure, you could take a calculator and
write down all the possible fahrenheit–celcius conversions, but . . . [drum roll]
the purpose of computers is to automate repetitive tasks!”

2.4 Introducing strings and lists

2.4.1 Strings

I write on the board (and have the students type at the Python interpreter)
several tutorial snippets to get students comfortable with strings.

>>> s = 'hello'
>>> t = 'world'
>>> print(s, t)

>>> s + t

Oh cool: I can stop typing print() every time when I'm
typing at the interpreter; from now on we will use print()

in programs, but seldom in examples at the >>> interpreter

prompt

>>> s + ' ' + t

LESSON 2. START PROGRAMMING IN PYTHON 12

2.4.2 Lists

First I do a “show and tell” with a shopping bag with three different types
of things in it. They could be a pencil, a box of crackers, and a notepad. I
then introduce the list as analogous to the shopping bag: it contains several
elements of different types. (For now I gloss over the fact that a list is
ordered while the shopping bag is typically not ordered.)

I then write on the board (and have the students type at the Python
interpreter) several tutorial snippets to get students comfortable with lists.

>>> mylist = [2.5, 17, 'dude']
>>> print(mylist)

>>> mylist

>>> mylist[0]

>>> mylist[1]

>>> mylist[2]

AAAARGHH: repetitive task alert!!

>>> for i in range(3):

... print(i, mylist[i])

>>> for item in mylist:

... print('item is:', item)

>>> print(len(mylist))

>>> for i in range(len(mylist)):

... print(i, mylist[i])

2.4.3 All sorts of types

We have seen a few data types already: integer, floating point number,
string, list. Let’s type some commands at the Python interpreter to get a
better feel for these.

Now I write the following on the blackboard and the students type them
into their python3 interpreter:

>>> type(4)

>>> n = 42

>>> type(n)

>>> type(4.4)

>>> x = 3.141592654

>>> type(x)

>>> type(2.0), type(2)

>>> type('hello world')
>>> s = 'hello world'

LESSON 2. START PROGRAMMING IN PYTHON 13

>>> type(s)

>>> mylist = [2.5, 17, 'dude']
>>> mylist

>>> type(mylist)

>>> mylist[0]

>>> type(mylist[0])

>>> len(mylist)

>>> type(len(mylist))

>>> mylist

>>> for i in range(len(mylist)):

... print('index:', i, 'list-entry:', mylist[i], 'type:', \
type(mylist[i]))

I then go to another portion of the board and ask “so what different types
of data do we have in Python?” The audience might answer something
like “numbers, strings, lists”. I would then say that it’s a good start, but
to note that there are two different types of numbers: floating point and
integer. This comes up in particular when we print the type of 2 and of 2.0.

For younger kids I would digress briefly to mention that floating point
numbers are the ones with a decimal point, while integers are “whole num-
bers”. It is always an interesting challenge to match terminology between
programming languages and the particular terms a young student’s math
curriculum uses.

Then we can also discuss how to turn strings into integers. We will first
introduce conditionals (if-statements), logic, and booleans (we don’t need
to call them booleans for younger kids).

>>> if 2 > 3:

... print('the impossible just happened')

... else:

... print('phew: 2 is not greater than 3')
>>> x = 7

>>> y = 8

>>> if x*y < (x+1)*(y+1):

... print('that made sense')
>>> x, y

>>> x == y

>>> x, y

>>> x = y

>>> x, y

This gives us a chance to talk about the meaning of = (assignment) and ==

(test for equality).
Now we can explore types and type conversions:

>>> s = 'hello world'

LESSON 2. START PROGRAMMING IN PYTHON 14

>>> ns = '42'
>>> n = 42

>>> n, ns

>>> n == ns

>>> n, str(n)

>>> str(n) == ns

>>> ns, int(ns)

>>> n == int(ns)

These last sequences (and in fact all “type at the interpreter” sequences)
should be accompanied by a lot of discussion:

1. You write the expression on the board.

2. You wait until they have all typed it in the interpreter.

3. You work slowly and carefully with a student who has not spoken up
much recently to discuss what it means.

2.5 Start talking about tic-tac-toe

Our goal is to write a non-trivial program. We will write a program to play
tic-tac-toe. Lessons 3, 4 and 5 will develop the program in detail.

But at the end of this lesson we should start whetting the student’s
appetite by showing how we can use lists and strings to represent a tic-tac-
toe board.

First ask “if you need to represent a row on a tic-tac-toe board, what
would you use?” Then mention that it’s a sequence of three characters:
either an ‘x’ or an ‘o’ or a ‘ ’ (space), and finally get to the choice of a
list. Then we need three rows, so we will use a list of lists.

Let us turn that into code. Type these lines into the interpreter:

>>> row0 = [' ', 'x', 'o']
>>> row1 = [' ', 'o', ' ']
>>> row2 = ['x', ' ', 'x']
>>> board = [row0, row1, row2]

>>> print(board)

>>> for row in board:

... print(row)

>>> for row in board:

... for cell in row:

... print(cell + ' ', end="")

... print

Then open a file called board.py in emacs and type in this program:

LESSON 2. START PROGRAMMING IN PYTHON 15

row0 = [' ', 'x', 'o']
row1 = [' ', 'o', ' ']
row2 = ['x', ' ', 'x']
board = [row0, row1, row2]

print('-------')
for row in board:

for cell in row:

print('|', end="")

print(cell, end="")

print('|')
print('-------')

Listing 2.4: board.py - first stab

then save the file. In the terminal window run the command:

$ python3 board.py

which should give the following ascii output:

| |x|o|

| |o| |

|x| |x|

With this we stop for the day.

Lesson 3

Functions to do tasks, more
tic-tac-toe

We have written some Python instructions to print out a tic-tac-toe board.
There were about seven lines of code.

Suppose we want to print the board out often. Should we put in those
seven lines of code each time?

The answer is “certainly not” (repeat the mantra on repetitive tasks).
The programming language feature that helps us avoid this duplication is
called a “function” (also called “procedure”, “subroutine” or “method”).

Let us start with simple mathematical functions:

>>> def f(x):

... result = x*x

... return result

the function takes a variable x, does things to it (in this case squaring it),
and returns another value (the square of x).

Functions don’t always have to be mathematical, nor do they have to
return a value: they could make things happen on your screen. Here is how
we can print a tic-tac-toe board. We will modify board.py:

def print_board(board):

print('-------')
for row in board:

for cell in row:

print('|', sep="", end="")

print(cell, sep="", end="")

print('|')
print('-------')

16

LESSON 3. FUNCTIONS TO DO TASKS, MORE TIC-TAC-TOE 17

row0 = [' ', 'x', 'o']
row1 = [' ', 'o', ' ']
row2 = ['x', ' ', 'x']
board = [row0, row1, row2]

print_board(board)

Listing 3.1: board.py - with print board()

We can now look at how to modify the tic-tac-toe board, and then see
how functions help us with that.

Let us say that now it is o’s turn to play and she places an ‘o’ on the
middle square of row two. That would be row 2, column 1. The way we
would do that in Python is by adding this at the end of the previous code
snippet:

...

board[2][1] = 'o'
print_board(board)

Listing 3.2: board.py - setting a cell

and the “print_board(board)” will show us the new state of the board, which
should now look like:

| |x|o|

| |o| |

|x|o|x|

We now write a function to set a position on the board. The entire
program now looks like:

#! /usr/bin/env python3

def print_board(board):

print('-------')
for row in board:

for cell in row:

print('|', sep="", end="")

print(cell, sep="", end="")

print('|')
print('-------')

def set_cell(board, row, col, val):

board[row][col] = val

LESSON 3. FUNCTIONS TO DO TASKS, MORE TIC-TAC-TOE 18

row0 = [' ', 'x', 'o']
row1 = [' ', 'o', ' ']
row2 = ['x', ' ', 'x']
board = [row0, row1, row2]

print(before:')
print_board(board)

set_cell(board, 2, 1, 'o')
print('after:')
print_board(board)

Listing 3.3: board.py - with print board and set cell

The main difference here is that instead of setting the cell with

board[2][1] = 'o'

we use

set_cell(board, 2, 1, 'o')

This does not look like a big savings, but this way of expressing things will
have advantages later.

We are now ready to start playing out moves.

3.1 Structuring the program

With the code we have written in this lesson, starting from Listing 3.3, we
can write a program which plays a sequence of moves and shows the board
after each one.

First a discussion on the overall structure of a program. It’s a good idea
to define a “main function” in which you put the main flow of the program.
This main flow should consist of a sequence of Python instructions, most of
which should be function calls.

The following code shows a small example of this structure:

#! /usr/bin/env python3

def main():

print('f(2.2) is ', f(2.2))

print('f(2.7) is ', f(2.7))

for x in range(5):

print('f(', x, ') is ', f(x))

def f(x):

return x*x

if __name__ == '__main__':

LESSON 3. FUNCTIONS TO DO TASKS, MORE TIC-TAC-TOE 19

main()

And here we should discuss those two lines at the end. They look quite
obscure, and they are. What I do is tell kids that they don’t need to under-
stand it, but rather just take it on faith. Still, just once I will explain: “The
last two lines make sure that the main() function gets called. The way that
works is that there is a variable called name which is set automatically by
Python, and if this file is executed directly (there are other ways of running
it), that variable will be equal to the string ’ main ’.”

It’s a mouthful, and it’s not imporant at this time, so we move on to a
structured program that uses set_cell() and print_board() to play out
a sequence of moves.

#! /usr/bin/env python3

def main():

board = new_board()

print_board(board)

make a move as 'x'
set_cell(board, 1, 1, 'x')
print_board(board)

make a move as 'o'
set_cell(board, 0, 1, 'o')
print_board(board)

make a move as 'x'
set_cell(board, 2, 2, 'x')
print_board(board)

make a move as 'o'
set_cell(board, 0, 0, 'o')
print_board(board)

def new_board():

"""Makes a board where all markers are spaces"""

row0 = [' ', ' ', ' ']
row1 = [' ', ' ', ' ']
row2 = [' ', ' ', ' ']
board = [row0, row1, row2]

return board

def print_board(board):

"""prints the current state of the board"""

print('-------')
for row in board:

for cell in row:

print('|', sep="", end="")

print(cell, sep="", end="")

print('|')
print('-------')

LESSON 3. FUNCTIONS TO DO TASKS, MORE TIC-TAC-TOE 20

def set_cell(board, row, col val):

board[row][col] = val

if __name__ == '__main__':
main()

Listing 3.4: board.py - play a sequence of moves

One interesting thing to point out about the program in Listing 3.4 is
that the main function can be read (almost) as if it were English, and this
is one of the fantastic things about computer programming: if we structure
our program well, then the program flow is expressed with great clarity.

This ends our lesson, which is one of the easier ones. Things will get
more intense in the final lessons.

Lesson 4

Tic-tac-toe: playing moves

4.1 Taking input moves from the players

Now that we have seen how to program in moves I will tell the students: “you
should be saying ‘but Maaaark, this is just a sequence of pre-programmed
moves; nobody is playing!’ ” I then urge them to have patience because we
will now start taking input from players.

First an example of taking input. This can be typed at the interpreter:

>>> row_str = input('please-enter-row: ')
[it will ask you for input; you should type a number 0, 1 or 2

students might be confused and hit <enter> again without typing

a number, so it bears some explanation and some retries]

>>> print('the row was:', row_str)

Remember that in Section 2.4.3 we discussed that strings (with digits in
them) are different types from numbers. You can see that row_str is a
string and not a number.

You can convert a string to a number with “int(row_str)”:

>>> row_str = input('please-enter-row: ')
[it will ask you for input; you should type a number 0, 1 or 2]

>>> row = int(row_str)

>>> print('the row was:', row)

>>> print('types for row_str and row:', type(row_str), type(row))

Let us now write a function which accepts a player’s move. We should
create a new program file called tic-tac-toe.py, starting from board.py.
We can do this at the shell with:

$ cp board.py tic-tac-toe.py

21

LESSON 4. TIC-TAC-TOE: PLAYING MOVES 22

In emacs we can edit tic-tac-toe.py instead of board.py in two ways:
with C-x C-f to load the new file, or we can exit emacs (C-x C-c) and then
(from the shell) re-run emacs on the new file:

$ emacs tic-tac-toe.py

Now we add, between the functions print_board() and set_cell(),
the following:

[...]

def get_move(board):

"""asks the player for a move and sets the appropriate cell"""

row = int(input('row? '))
col = int(input('col? '))
marker = input('marker? ')
set_cell(board, row, col marker)

[...]

(Note that we don’t convert marker to an int.)
This works and we can now rewrite the main program like this:

[...]

def main():

board = new_board()

print_board(board)

player 1 move

get_move(board)

print_board(board)

player 2 move

get_move(board)

print_board(board)

player 1 move

get_move(board)

print_board(board)

player 2 move

get_move(board)

print_board(board)

[...]

Listing 4.1: tic-tac-toe.py with player input

The game now could go as shown in Figure 4.1.

4.2 Improving flow and robustness

The function we have written works well and our program now is equivalent
to a piece of paper and a pen: it allows two players to input their tic-tac-toe
moves.

LESSON 4. TIC-TAC-TOE: PLAYING MOVES 23

$ python3 tic-tac-toe.py

| | | |

| | | |

| | | |

please enter row: 1

please enter col: 1

please enter marker (x or o): x

| | | |

| |x| |

| | | |

please enter row: 2

please enter col: 0

please enter marker (x or o): o

| | | |

| |x| |

|o| | |

please enter row: 0

please enter col: 0

please enter marker (x or o): x

|x| | |

| |x| |

|o| | |

please enter row: 2

please enter col: 2

please enter marker (x or o): o

|x| | |

| |x| |

|o| |o|

Figure 4.1: A run of the tic-tac-toe program with two players alternating moves.

But there are some problems with the get_move() function:

• It forces the user to input her marker, but the program could determine
which is the next marker by alternating ‘x’ and ‘o’.

• It does not check that the row and column are correct (i.e. equal to
0, 1 or 2), or that the marker is a valid ‘x’ or ‘o’.

• It does not check if the cell was already occupied!

Let us first take care of the easiest of these: make the program determine
which player’s turn it is, and figure out the marker by itself.

This problem is an opportunity for discussion on how the world’s bu-
reocracies often ask you for information that they could easily determine

LESSON 4. TIC-TAC-TOE: PLAYING MOVES 24

by themselves. For example, how many times have you filled out a form
that asks for both your date of birth and your age? The kids can provide
examples of how their schools are inefficient in such areas. Then we point
out that as hackers we do much better!

The problem can be solved by passing the marker as an argument to
get_move(board, marker). The function becomes:

[...]

def get_move(board, marker):

"""asks the player for a move and sets the appropriate cell"""

row, col = -1, -1

while not row in (0,1,2):

row = int(input('please enter row: '))
while not col in (0,1,2):

col = int(input('please enter col: '))
set_cell(board, row, col marker)

[...]

Listing 4.2: version of get move() which takes marker as argument

In my experience students can have trouble understanding that they have an
editor can can change the existing function (thus typing very little), while
I have to write a lot more on the board. I have seen the students type the
whole thing again, ending up with two copies of the the function, so it is
worth shepherding them through this first significant edit.

Now we write a function which changes the marker every time:

def next_marker(current_marker):

if current_marker == 'x':
return 'o'

else:

return 'x'

Listing 4.3: the next_marker function

Now we can make a change in the main program:

[...]

def main():

board = new_board()

print_board(board)

marker = 'x' # x plays first

player 1 move

get_move(board, marker)

print_board(board)

player 2 move

marker = next_marker(marker)

get_move(board, marker)

LESSON 4. TIC-TAC-TOE: PLAYING MOVES 25

print_board(board)

player 1 move

marker = next_marker(marker)

get_move(board, marker)

print_board(board)

player 2 move

marker = next_marker(marker)

get_move(board, marker)

print_board(board)

[...]

Listing 4.4: tic-tac-toe.py with computer deciding whose turn it is

Now our main program does not ask the user to input a marker because
the computer keeps track of whose turn it is. Try it out!

To address the issue of whether the input is correct we get to practice
some new programming techniques. Here is a rewriting of the get_move()

function that keeps asking for input until it is valid:

[...]

def get_move(board, marker):

"""asks the player for a move and sets the appropriate cell"""

row, col = -1, -1

while not row in (0,1,2):

row = int(input('row?'))
while not col in (0,1,2):

col = int(input('col?'))
set_cell(board, row, col, marker)

[...]

Listing 4.5: version of get move() which checks for valid input

We are left with one final problem: the current program allows you to
stomp on an existing cell, so we need to modify get_move() to check for
that:

[...]

def get_move(board, marker):

"""asks the player for a move and sets the appropriate cell"""

row, col = -1, -1

valid = False

while not valid:

while not row in (0,1,2):

row = int(input('row? '))
while not col in (0,1,2):

col = int(input('col? '))
a crucial check: was the cell already in use?

if board[row][col] == ' ':
valid = True

LESSON 4. TIC-TAC-TOE: PLAYING MOVES 26

else: # reset row, col to invalid values

row, col = -1, -1

set_cell(board, row, col marker)

[...]

Listing 4.6: version of get move() which checks if the cell is free

When I write this last function on the board I start paying attention
to indentation and really pointing out what the levels of loops/logic are. I
will usually take a different color chalk or marker and draw arrows with a
head for each level of indentation, writing 4, 8, 12, . . . This is very important
because students will often make mistakes in the indentation of their code.

Before moving on to detecting a winner, let us clean up the flow of the
main program. Our students should have commented on how the main
function has a lot of repetition in taking moves from the players, which is
quite unnecessary. We will use a while loop to clean that up, and our while
loop will for now just run forever:

[...]

def main():

board = new_board()

print_board(board)

marker = 'x' # x plays first

start a loop that takes moves from the players

NOTE: you need to type control-C to exit the program

while True:

get_move(board, marker)

print_board(board)

move to next player

marker = next_marker(marker)

[...]

Listing 4.7: tic-tac-toe.py - main function cleaned up with a while loop

This is a good time to point out how short and sweet this main function
is: it tells the story. We can also explain how the terminal interrupt char-
acter (control-C) can help them exit this program when it seems to go on
forever.

But while pointing out that this is sweet, we can also point out that we
have done no more than re-invent the paper and pencil: we have created
ancient Egyptian technology.

LESSON 4. TIC-TAC-TOE: PLAYING MOVES 27

4.3 Checking if someone has won

There are many areas of improvement for the entire program. In Chapter 5
we will add the very important functionality of having the computer play,
but here we can already add another important bit of smarts: having the
computer check if there is a winner.

The condition for winning tic-tac-toe is “three in a row”: you need three
of the same symbols in a column or a row or one of the two diagonals.

Let us write functions that return True or False if a row has three ‘x’ or
three ‘o’ cells. We will save the columns and diagonals for later (4.4) since
the fundamental logic is the same as that for rows.

Rows are the easiest since we represent our board as a list of rows. We
can add these functions toward the end, just before the weird incantation
that calls main():

def find_winner(board):

"""returns 'x' if x is the winner, 'o' if o is the winer, or ' ' if

there is no winner yet"""

for row in board:

winner=find_winner_row(row)

if winner !=' ':
return winner

if winner !=' ':
return winner

if board_is_full(board):

print('Tie!!')
sys.exit(0)

return ' '

def find_winner_row(row):

"""sees if the given row has a solid win. note that a "row" is just a

list of 3 cells, so if you pack a column or diagonal into this

list it will also work to find column and diagonal winners

"""

if row[0] == row[1] and row[1] == row[2]:

if row [0]!=' ':
return row[0]

return ' '

def board_is_full(board):

"""returns True if the board is full, False otherwise"""

for row in board:

for cell in row:

if cell==' ':
return False

return True

LESSON 4. TIC-TAC-TOE: PLAYING MOVES 28

Listing 4.8: functions that test if there is a winner (for now it only looks at rows)

These are quite incomplete: they only find row victories!
Let us bear with that for now. These functions can be plugged in to our

cleaned-up main program:

[...]

def main():

board = new_board()

print_board(board)

marker = 'x' # x plays first

while True:

get_move(board, marker)

print_board(board)

winner = find_winner(board)

if winner != ' ':
break

if we have not exited we advance to the next player

marker = next_marker(marker)

print('winner is', find_winner(board))

[...]

Listing 4.9: tic-tac-toe.py see if we have a winner

And we see a big leap forward in our program: it actually has an algo-
rithm that makes a decision! If you input (0, 0) (for ‘x’), (1, 1) (for ‘o’), and
continue with (0, 1), (1, 2), (0, 2), then the computer will report that ‘x’ is
the winner.

We can now point out that our program has finally gone beyond acting
like paper and pencil: we now have a smart piece of paper which announces
the winner.

4.4 Rows and diagonals

Adding the logic for winning on columns and diagonals is a good exercise
for the students. If there is enough time you can present it in class. I give
my solution here. It’s based on writing functions called extract_col() and
extract_slash() and extract_backslash(). Then we implement find_-
winner() using those extraction functions.

def extract_col(board, col_no):

"""packages the entries for the given column into a list"""

col = [board[0][col_no], board[1][col_no], board[2][col_no]]

return col

LESSON 4. TIC-TAC-TOE: PLAYING MOVES 29

def extract_slash(board):

"""packages the entries for the "slash" diagonal into a list"""

slash = [board[0][2], board[1][1], board[2][0]]

return slash

def extract_backslash(board):

"""packages the entries for the "backslash" diagonal into a list"""

blash=[board[0][0], board[1][1], board[2][2]]

return blash

Listing 4.10: rows and diagonals

def find_winner(board):

"""returns 'x' if x is the winner, 'o' if o is the winer, or ' ' if

there is no winner yet. this only finds victories on rows."""

for row in board:

winner=find_winner_row(row)

if winner !=' ':
return winner

for col_no in range(3):

col=extract_col(board, col_no)

winner=find_winner_row(col)

if winner !=' ':
return winner

winner=find_winner_row(extract_slash(board))

if winner !=' ':
return winner

winner=find_winner_row(extract_backslash(board))

if winner !=' ':
return winner

if board_is_full(board):

print('Tie!!')
sys.exit(0)

return ' '

Listing 4.11: find winner() - full listing that handles columns and diagonals

Lesson 5

Tic-tac-toe: programming
the computer to play

Final stretch: making our computer play, and then making it play with some
intelligence.

5.1 First found

First we write a very simple algorithm that puts a marker in the first empty
cell it can find.

We write a function play_computer_first_found():

def play_computer_first_found(board, marker):

"""simplest computer algorithm: put your marker on the first empty

cell you find"""

for row in range(3):

for col in range(3):

if board[row][col]==' ':
set_cell(board, row, col, marker)

return

Listing 5.1: play computer first found()

We also modify the main loop to include the computer’s move:

[...]

def main():

board = new_board()

print_board(board)

marker = 'x'
while True:

ask the player for a move

30

LESSON 5. TIC-TAC-TOE: PROGRAMMING THE COMPUTER TO PLAY31

get_move(board, marker)

print_board(board)

winner = find_winner(board)

if winner != ' ':
break

marker = next_marker(marker)

now play the computer move

play_computer_first_found(board, marker)

print_board(board)

winner = find_winner(board)

if winner!=' ':
break

marker = next_marker(marker)

print('winner is', find_winner(board))

[...]

Listing 5.2: tic-tac-toe.py - with computer playing moves

This will allow students to play a game against the computer. They
will enjoy it enormously until they realize that the computer is (a) making
un-interesting moves, and (b) not recognizing when you fill a column or a
diagonal so it only awards victories for full rows. The students should be
able to quickly devise a strategy to beat the computer every time.

The first problem will be fixed in the next sections, the second will be
fixed when the students implement the more complete check for victory
outlined in Section 4.3.

5.2 Random play

Next we will write an algorithm to play a random move for the computer.
We start by showing how Python can generate random numbers:

>>> import random

>>> random.random()

>>> random.random()

>>> random.random()

>>> random.randint(-3, 10)

>>> random.randint(-3, 10)

>>> random.randint(-3, 10)

>>> random.randint(0, 2)

>>> random.randint(0, 2)

>>> random.randint(0, 2)

>>> random.randint(0, 2)

>>> random.randint(0, 2)

LESSON 5. TIC-TAC-TOE: PROGRAMMING THE COMPUTER TO PLAY32

The students can keep playing with this until they are convinced that
they have a random sequence. This is also a good time to discuss what
random means. As usual, these more “background” and “philosophical”
discussions should eventually be truncated so that we can continue the real
work.

Next we have a discussion with the students, asking each student to
volunteer ideas on how to have the program place a marker at random.

Since we will be using the random number library, as well as the system
exit function, at the top of our program we put the lines:

#! /usr/bin/env python3

import random

import sys

[...]

Listing 5.3: import statements at top of file

Then we modify the function play_computer() so that we can choose be-
tween first found and random algorithms, and we write our play_computer_-
random() routine:

def play_computer_random(board, marker):

"""another simple computer algorithm: place your marker in a random

empty location"""

done=False

while not done:

row=random.randint(0, 2)

col=random.randint(0, 2)

if board[row][col]==' ':
set_cell(board, row, col, marker)

done = True

Listing 5.4: play computer random()

[...]

uncomment the line for the algorithm you want to use

#play_computer_first_found(board, marker)

play_computer_random(board, marker)

[...]

Listing 5.5: main() - adapted to allow choice of computer algorithm

The students can now to play more games against the computer. They
might find it slightly more challenging than playing against the first found
algorithm. And if there is a bit of time.

And if you are feeling impish, you can suggest that they have the com-
puter play itself: first-found algorithm against random algorithm!

LESSON 5. TIC-TAC-TOE: PROGRAMMING THE COMPUTER TO PLAY33

5.3 Opportunistic play

Now let us add a computer-playing algorithm called play_computer_opportunistic().
This will check to see if there is a row (and some day we will also do columns)
where we have two markers and thus we could add a third marker and win!

We start with a description of the algorithm (procedure):

1. Iterate through the three rows one by one.

2. For that row we examine each cell to see how many of our markers
there are.

3. If there are two of our markers we see if the third cell is a space.

4. If the remaining cell is a space then we can win by setting that cell to
our marker (making our move).

5. If there is no opportunity to win then we apply the random move
algorithm.

We will need some “helper functions” to reflect the steps of the algorithm:

def board_is_ripe(board, marker):

"""check if the board is ripe for a victory by the given marker. if

it is, return the coordinates of the "danger" cell; otherwise return

None. this version also looks at columns."""

for row in range(3):

danger_col = row_is_ripe(board[row], marker)

if danger_col in (0,1,2):

return [row, danger_col]

for col in range(3):

coldata = extract_col(board, col)

danger_row = row_is_ripe(coldata, marker)

if danger_row in (0,1,2):

return[danger_row, col]

danger = row_is_ripe(extract_slash(board), marker)

if danger in (0,1,2):

return[danger, 2-danger]

danger=row_is_ripe(extract_backslash(board), marker)

if danger in (0,1,2):

return[danger, danger]

return None

def row_is_ripe(row, marker):

"""checks if a single row is ripe for a victory by the given marker.

if it is, return the position of the danger cell. note that if

you pack a column or diagonal into this "row" list, this will also

work for those

LESSON 5. TIC-TAC-TOE: PROGRAMMING THE COMPUTER TO PLAY34

"""

(n, pos) = count(row, marker)

(nspace, pos_space) = count(row, ' ')
if n == 2 and nspace == 1:

return pos_space

return None

def count(row, marker):

"""counts how many times the marker occurs in this list (which could

be a row or a slash or backslash or column packed as a list);

returns the count and one of the positions of that marker in the

list"""

count=0

last_pos = -1

for pos in range(3):

if row[pos] == marker:

count = count+1

last_pos = pos

return (count, last_pos)

Listing 5.6: board is ripe() - functions to see if someone is about to win

Then we write play_computer_opportunistic() to use those helper
functions:

def play_computer_opportunistic(board, my_marker):

"""plays opportunistically: if we can win we put our marker in that

slot; otherwise we play the random algorithm"""

pos=board_is_ripe(board, my_marker)

if pos:

set_cell(board, pos[0], pos[1], my_marker)

else: # fallback is to play random move

play_computer_random(board, marker)

Listing 5.7: play computer opportunistic()

Finally we set call our new function in main():

[...]

uncomment the line for the algorithm you want to use

#play_computer_first_found(board, marker)

#play_computer_random(board, marker)

play_computer_opportunistic(board, marker)

[...]

LESSON 5. TIC-TAC-TOE: PROGRAMMING THE COMPUTER TO PLAY35

5.4 Defensive play

Now let us add another computer-playing algorithm called play_computer_-

defensive(). This will check to see if the opponent is about to finish off
a row (or column or diagonal, when we implement that) and thus win the
game.

If the opponent is about to do that, the computer needs to block it by
placing a marker on the last available slot on the row the opponent was
about to fill.

We can use our helper functions from before, using the opponent’s marker
instead of ours to see if the opponent is about to win:

def play_computer_defensive(board, my_marker):

"""plays a defensive strategy: if there is a threat by the opponent,

we plug it up; otherwise we play the random algorithm"""

figure out what the opponent's marker is

opp_marker = next_marker(my_marker)

pos = board_is_ripe(board, opp_marker)

if pos:

set_cell(board, pos[0], pos[1], my_marker)

else:

play_computer_random(board, my_marker)

Listing 5.8: play computer defensive()

This is a good place to comment on (a) how short and easy it was to write
this function once we had already written all the other helper functions, and
(b) how easy it is to read this function.

5.5 Improving the opportunistic algorithm

Now that we have a defensive algorithm we can use it to play both oppor-
tunistically (if a victory is available) and defensively (if we cannot win, we
might as well avoid losing).

def play_computer_opportunistic(board, my_marker):

"""plays opportunistically: if we can win we put our marker in that

slot; otherwise we play the defensive algorithm"""

pos=board_is_ripe(board, my_marker)

if pos:

set_cell(board, pos[0], pos[1], my_marker)

else:

play_computer_defensive(board, my_marker)

Listing 5.9: play computer opportunistic() - improved to play defensively if we
cannot win

LESSON 5. TIC-TAC-TOE: PROGRAMMING THE COMPUTER TO PLAY36

5.6 Concluding words

The best computer-playing algorithm is much more complex and it involves
some restructuring of the program. At this point I leave it as an exercise
for the students to do with a mentor.

The problem is this: to have the computer play an optimal move by
looking ahead at what the opponent might do.

Based on this write a function called play_computer_lookahead(board,

marker) which plays the optimal game of tic-tac-toe.
And with that encouragement to move forward, we can conclude class

by having the students play the various algorithms (first found, random,
opportunistic, defensive) against each other!

And they should try to predict which algorithm will win.
And as their parents come pick them up, they should try having play_-

computer_opportunistic() play against their parents.

Appendix A

Life after the course

It is important to let the children and parents know that they can corre-
sponde with you after the course. That way they can continue working on
the program and ask questions of they get stuck.

I have taken the approach of also offering in-person help after the course
by pointing families to the New Mexico GNU/Linux user group meeting. I
go to many of those meetings, as do other hackers, and we are always willing
to help.

I have also developed a “scientific computing for kids” course which
requires nothing but this course’s material. I have written a teacher’s manual
for it (Galassi 2016), analogous to this one.

Another continuation would be some lessons on GUI programming, in
particular developing a GUI for this tic-tac-toe game.

37

Appendix B

Notes on installing
GNU/Linux in class

B.1 Issues with old/cheap hardware

An old computer can still be quite useful: the GNU/Linux operating system
is often much more efficient with hardware resources, so it can give new
life to an old hunk of metal, as long as it is less than about 10 years old.
(Computers more than 10 years old will usually need a more specialized
operating system distribution.)

Still, older computers can have some problems. Mostly these will come
down to:

limited memory This is the biggest problem. Today’s (early 2015) desk-
tops require more than 2GB of RAM or they will not operate very well.
You can install a low memory use distribution, such as LUbuntu, but
the problem really comes down to the web browser: a contemporary
version of full featured browsers like Firefox and Chromium will rapidly
climb up to using several gigabytes of RAM, slowing down your com-
puter dramatically. On GNU/Linux systems it is easy to install the
Midori web browser which works on many “fancy” web pages but does
not use too much memory.

limited disk space An old computer might come with a small hard drive.
It turns out that this is seldom a problem: computers less than 10
years old usually have hard disks with more than 5GB of storage, and
that is good enough for our purposes.

38

APPENDIX B. NOTES ON INSTALLING GNU/LINUX IN CLASS 39

slower CPU This is actually not really a problem: the limited memory
will slow you down much more than an older CPU.

older graphics card Older graphics cards don’t offer some of the fancy
visual effects that are used in contemporary desktops, such as “heads
up display” features. This is not really a limitation: there are dozens
of choices of window manager on a GNU/Linux system, and many
hackers prefer the non-compositing window managers which run well
on older graphics cards.

A note on very low RAM: the world of low-memory GNU/Linux dis-
tributions is a messy one, with many of them being poorly maintained or
fiddly to use. In spring 2016 I evaluated various alternatives and found
Bodhi to be more usable than the others, but apparently Simplicity Linux
is also currently maintained.

B.2 The Asus X551MA laptop

This is a very inexpensive laptop which offers rather light weight, big screen,
big hard drive (half a terabyte) and plenty of RAM (4GB). The low price is
probably due to the lack of certain features like bluetooth and a DVD drive,
which does not affect software development at all.

B.2.1 Preparing a USB memory stick

This laptop has 4GB of RAM so we can comfortably run a full contemporary
version of a GNU/Linux distribution. In my course I just point people to
the Ubuntu GNU/Linux distribution.

Download the Ubuntu 14.04 image from http://www.ubuntu.com/download/

desktop

Then take a 2GB (or bigger) memory stick and prepare it on an existing
computer following the instructions at the following URLs, depending on
whether you are coming from:

GNU/Linux http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-ubuntu

MS Windows http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-windows

MacOS http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-mac-osx

http://www.ubuntu.com/download/desktop
http://www.ubuntu.com/download/desktop
http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-ubuntu
http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-windows
http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-mac-osx

APPENDIX B. NOTES ON INSTALLING GNU/LINUX IN CLASS 40

B.2.2 Saving off laptop info and restore drive

It might be a good idea to save another USB memory stick with the com-
puter’s Windows installation. This is called a “recovery drive”. This is not
because we might want to use Windows (we don’t), but rather in case we
should need to return the computer and thus need it to have its original
operating system.

1. Write down the PC product key. In Windows do Settings -> PC

And Devices -> PC Info and you will see the product key.

2. Make a recovery drive on a 16GB USB memory stick. Note that
the memory stick will be erased. Plug it in and go to Settings ->

Control Panel -> Action Center -> Recovery -> Create recovery

drive

B.2.3 Booting from a USB stick

Recent vintage computers have a “secure boot” feature which is aimed at
making it harder to replace Microsoft Windows on that computer. I have
found that these Asus computers allow you to boot from a memory stick
without problems.

Follow this procedure:

1. Insert the USB drive with Ubuntu GNU/Linux 14.04

2. Power on the laptop while holding the ESC key

3. You will get a “boot menu” which allows you to either

• boot Windows

• boot the Ubuntu GNU/Linux installation USB memory stick

• enter a setup menu

Choose to boot from the USB memory stick.

B.2.4 Installing GNU/Linux

You can select “run Ubuntu without installing” and it will put you into a
working desktop environment.

Here you will have an install icon. You should double-click that icon and
it will start the installation procedure.

APPENDIX B. NOTES ON INSTALLING GNU/LINUX IN CLASS 41

You can answer most of the questions in the obvious default manner and
it will go well for you.

One place where you might want to change from the default is when it
asks if you want to “install 3rd party software”. Turning this on can install
useful software to play mp3 files and view movies.

One question will be if you want to “download updates while installing”.
In a classroom setting I would not set that option because it can take much
more time to install. It is quite easy to run:

sudo apt-get update

sudo apt-get dist-upgrade

later on.
The trickiest question is about partitioning the hard drive. For our

purposes you should erase all existing partitions and install GNU/Linux on
the entire drive.

At this point your computer will reboot into the GNU/Linux operating
system and you are ready to go.

B.3 The old Mac G4 PowerPC laptop

These are older, somewhat chunky Apple laptops with a PowerPC processor
instead of an Intel Pentium. Many of these are still around. They are
pretty much unusable with the Mac operating system, which has not been
supported on the PowerPC since 2007, but can still be used with various
GNU/Linux distributions.

I experimented with some old G4 laptops and various distributions and
came up with the following recipe. In your searches you will find the Mint
PPC distribution, which I found to take many many hours to install, and
the Ubuntu 12.04 PPC, which I found installed in a reasonable amount of
time. There will certainly be many others as well, but here I will show how
to install the lightweight Ubuntu 12.04 PPC distribution.

B.3.1 Preparing an installation CD

You can download an LUbuntu 12.04 PowerPC image from https://wiki.

ubuntu.com/PowerPCDownloads which will take you to http://cdimage.

ubuntu.com/lubuntu/releases/precise/release

Pick the image with a name like lubuntu-12.04-alternate-powerpc.

iso and download it. Once you have that ISO file you burn it onto a blank
CD.

https://wiki.ubuntu.com/PowerPCDownloads
https://wiki.ubuntu.com/PowerPCDownloads
http://cdimage.ubuntu.com/lubuntu/releases/precise/release
http://cdimage.ubuntu.com/lubuntu/releases/precise/release

APPENDIX B. NOTES ON INSTALLING GNU/LINUX IN CLASS 42

B.3.2 Booting from CD and installing

To boot a G4 laptop from the CD you need to:

1. insert the CD

2. power on the computer while holding down the ‘c’ key

(note that you might need to power the computer on enough to get it to
swallow the CD, and then power it off and turn it on again so you can hold
the ‘c’ key and boot from CD.)

You are now given the “yaboot prompt” that says boot: and you can
just hit the enter key to start booting.

The installation procedure asks you many questions. You can give the
default answer for most of them, but a few will require a specific response
from you:

keyboard You could look for the Mac keyboard variant, but it will work
fine with the default American keyboard.

network It might not find wi-fi immediately and we might need to install
special wi-fi drivers once the whole system is up. It is OK to install
without a network, or even better to plug it in to a wired ethernet
network.

time zone You should put in your time zone. Here in Santa Fe it will be
US Mountain time.

disk partitioning Choose Guided, use entire disk.

user account Create yourself a login name. I recommend that you pick
something that is all lower case. You can use letters, digits, underscore
and hyphen, but absolutely never use a space in your login name.
Mine, for example, is markgalassi

Of course for your full name you should include a space!

B.3.3 Post installation

You are almost ready to go with a wired ethernet network, but we will
take one last step to get the wi-fi working. We will install the package
firmware-b43-installer with the following instructions:

sudo apt-get update

sudo apt-get firmware-b43-installer

APPENDIX B. NOTES ON INSTALLING GNU/LINUX IN CLASS 43

At this point, possibly with a final reboot, you should be ready to go
with wi-fi and all.

But these are truly old computers with little memory, so you might
install the Midori browser with:

sudo apt-get install midori

and to use that instead of Firefox if you are always low on RAM.

Appendix C

Software Freedom

A big part of what has made my scientific career pleasant and effective has
been the free software movement. Using software for scientific research,
without the burden of being hostage to a corporation’s marketing plan, is
very liberating.

In the 1980s Richard Stallman founded the GNU project, aimed at pro-
viding a complete free (as in freedom) high quality computing environment.

The operating system and each individual program is offered to users
with full freedom to use, modify and customize (through access to source
code) and redistribute (including redistributing modified copies).

Many thousands of volunteers and paid professionals have contributed
to the free software movement to the point where the machines running
the GNU/Linux operating system are now the most important part of the
infrastructure of the computer world.

It is in that spirit that I teach these classes: I want students to learn very
serious programming, but I also want them to know that we can develop
software not just to make a widget for a company to sell, but also because
it can be part of a large effort to improve the high tech world.

In particular, this book is a free (as in freedom, but also free in cost)
manual for anyone who might want to teach similar courses.

This book can be redistributed under the terms of the GNU Free Docu-
mentation License (see Appendix D).

44

Appendix D

GNU Free Documentation
License

Version 1.2, November 2002
Copyright © 2000,2001,2002 Free Software

Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA

Everyone is permitted to copy and distribute
verbatim copies of this license document, but

changing it is not allowed.

Preamble

The purpose of this License is to make a man-
ual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncom-
mercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work,
while not being considered responsible for modifica-
tions made by others.

This License is a kind of “copyleft”, which means
that derivative works of the document must themselves
be free in the same sense. It complements the GNU
General Public License, which is a copyleft license de-
signed for free software.

We have designed this License in order to use
it for manuals for free software, because free software
needs free documentation: a free program should come
with manuals providing the same freedoms that the
software does. But this License is not limited to soft-
ware manuals; it can be used for any textual work, re-
gardless of subject matter or whether it is published as
a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY
AND DEFINITIONS

This License applies to any manual or other work,
in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the
terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use
that work under the conditions stated herein. The
“Document”, below, refers to any such manual or
work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means
any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or
a front-matter section of the Document that deals ex-
clusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall sub-
ject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus,
if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathemat-
ics.) The relationship could be a matter of historical
connection with the subject or with related matters, or
of legal, commercial, philosophical, ethical or political
position regarding them.

The “Invariant Sections” are certain Secondary
Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Doc-
ument is released under this License. If a section does
not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are
none.

The “Cover Texts” are certain short passages
of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document
is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a
machine-readable copy, represented in a format whose
specification is available to the general public, that is

45

APPENDIX D. GNU FREE DOCUMENTATION LICENSE 46

suitable for revising the document straightforwardly
with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable
for input to text formatters or for automatic transla-
tion to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transpar-
ent file format whose markup, or absence of markup,
has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image
format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent
copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for hu-
man modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats in-
clude proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the
title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to
appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of
the text.

A section “Entitled XYZ” means a named sub-
unit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned be-
low, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Docu-
ment means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers
next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are con-
sidered to be included by reference in this License, but
only as regards disclaiming warranties: any other im-
plication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

2. VERBATIM
COPYING

You may copy and distribute the Document in any
medium, either commercially or noncommercially, pro-
vided that this License, the copyright notices, and the
license notice saying this License applies to the Doc-
ument are reproduced in all copies, and that you add
no other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or con-
trol the reading or further copying of the copies you
make or distribute. However, you may accept compen-
sation in exchange for copies. If you distribute a large
enough number of copies you must also follow the con-
ditions in section 3.

You may also lend copies, under the same con-
ditions stated above, and you may publicly display
copies.

3. COPYING IN
QUANTITY

If you publish printed copies (or copies in me-
dia that commonly have printed covers) of the Docu-
ment, numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly,
all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present
the full title with all words of the title equally promi-
nent and visible. You may add other material on the
covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Docu-
ment and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too vo-
luminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the
Document numbering more than 100, you must either
include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the gen-
eral network-using public has access to download using
public-standard network protocols a complete Trans-
parent copy of the Document, free of added material.
If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location un-
til at least one year after the last time you distribute
an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact
the authors of the Document well before redistributing
any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version

of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribu-
tion and modification of the Modified Version to who-
ever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if
any) a title distinct from that of the Doc-
ument, and from those of previous versions
(which should, if there were any, be listed in
the History section of the Document). You
may use the same title as a previous version
if the original publisher of that version gives
permission.

B. List on the Title Page, as authors, one or more
persons or entities responsible for authorship
of the modifications in the Modified Version,
together with at least five of the principal au-
thors of the Document (all of its principal au-
thors, if it has fewer than five), unless they
release you from this requirement.

C. State on the Title page the name of the pub-
lisher of the Modified Version, as the pub-
lisher.

APPENDIX D. GNU FREE DOCUMENTATION LICENSE 47

D. Preserve all the copyright notices of the Doc-
ument.

E. Add an appropriate copyright notice for your
modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright no-
tices, a license notice giving the public per-
mission to use the Modified Version under the
terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of
Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Pre-
serve its Title, and add to it an item stating
at least the title, year, new authors, and pub-
lisher of the Modified Version as given on the
Title Page. If there is no section Entitled “His-
tory” in the Document, create one stating the
title, year, authors, and publisher of the Doc-
ument as given on its Title Page, then add an
item describing the Modified Version as stated
in the previous sentence.

J. Preserve the network location, if any, given in
the Document for public access to a Transpar-
ent copy of the Document, and likewise the
network locations given in the Document for
previous versions it was based on. These may
be placed in the “History” section. You may
omit a network location for a work that was
published at least four years before the Docu-
ment itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements”
or “Dedications”, Preserve the Title of the sec-
tion, and preserve in the section all the sub-
stance and tone of each of the contributor
acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Doc-
ument, unaltered in their text and in their ti-
tles. Section numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled “Endorsements”.
Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Enti-
tled “Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter
sections or appendices that qualify as Secondary Sec-
tions and contain no material copied from the Docu-
ment, you may at your option designate some or all
of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct
from any other section titles.

You may add a section Entitled “Endorsements”,
provided it contains nothing but endorsements of your

Modified Version by various parties–for example, state-
ments of peer review or that the text has been approved
by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a
Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts
in the Modified Version. Only one passage of Front-
Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity.
If the Document already includes a cover text for the
same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old
one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document
do not by this License give permission to use their
names for publicity for or to assert or imply endorse-
ment of any Modified Version.

5. COMBINING
DOCUMENTS

You may combine the Document with other doc-
uments released under this License, under the terms
defined in section 4 above for modified versions, pro-
vided that you include in the combination all of the
Invariant Sections of all of the original documents, un-
modified, and list them all as Invariant Sections of your
combined work in its license notice, and that you pre-
serve all their Warranty Disclaimers.

The combined work need only contain one copy of
this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multi-
ple Invariant Sections with the same name but different
contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known,
or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sec-
tions Entitled “History” in the various original docu-
ments, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”,
and any sections Entitled “Dedications”. You must
delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF
DOCUMENTS

You may make a collection consisting of the Docu-
ment and other documents released under this License,
and replace the individual copies of this License in the
various documents with a single copy that is included
in the collection, provided that you follow the rules of
this License for verbatim copying of each of the docu-
ments in all other respects.

You may extract a single document from such a
collection, and distribute it individually under this Li-
cense, provided you insert a copy of this License into
the extracted document, and follow this License in all
other respects regarding verbatim copying of that doc-
ument.

APPENDIX D. GNU FREE DOCUMENTATION LICENSE 48

7. AGGREGATION
WITH INDEPENDENT

WORKS

A compilation of the Document or its deriva-
tives with other separate and independent documents
or works, in or on a volume of a storage or distribu-
tion medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the
individual works permit. When the Document is in-
cluded in an aggregate, this License does not apply to
the other works in the aggregate which are not them-
selves derivative works of the Document.

If the Cover Text requirement of section 3 is ap-
plicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on cov-
ers that bracket the Document within the aggregate,
or the electronic equivalent of covers if the Document
is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification,
so you may distribute translations of the Document un-
der the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their
copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include
a translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version
of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the
translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Ac-
knowledgements”, “Dedications”, or “History”, the re-
quirement (section 4) to Preserve its Title (section 1)
will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or dis-
tribute the Document except as expressly provided for
under this License. Any other attempt to copy, mod-
ify, sublicense or distribute the Document is void, and
will automatically terminate your rights under this Li-
cense. However, parties who have received copies, or
rights, from you under this License will not have their
licenses terminated so long as such parties remain in
full compliance.

10. FUTURE
REVISIONS OF THIS

LICENSE

The Free Software Foundation may publish new,
revised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguish-
ing version number. If the Document specifies that
a particular numbered version of this License “or any
later version” applies to it, you have the option of fol-
lowing the terms and conditions either of that specified
version or of any later version that has been published
(not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this Li-
cense, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to
use this License for your

documents

To use this License in a document you have writ-
ten, include a copy of the License in the document and
put the following copyright and license notices just af-
ter the title page:

Copyright © YEAR YOUR NAME.
Permission is granted to copy, dis-
tribute and/or modify this document
under the terms of the GNU Free
Documentation License, Version 1.2
or any later version published by
the Free Software Foundation; with
no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A
copy of the license is included in the
section entitled “GNU Free Documen-
tation License”.

If you have Invariant Sections, Front-Cover Texts
and Back-Cover Texts, replace the “with . . . Texts.”
line with this:

with the Invariant Sections being
LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and
with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover
Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of
program code, we recommend releasing these examples
in parallel under your choice of free software license,
such as the GNU General Public License, to permit
their use in free software.

	Motivation and prolegomena
	The hardware and the operating system
	Having students bring hardware
	Start the installation
	Opening up a computer to demonstrate its parts
	Lecture on the blackboard
	Hardware block diagram
	Software functional diagram

	After the installation

	Start programming in Python
	Concepts before we start
	Learning to type and learning the editor
	Reiterating ``hello world'' and starting loops
	Introducing strings and lists
	Strings
	Lists
	All sorts of types

	Start talking about tic-tac-toe

	Functions to do tasks, more tic-tac-toe
	Structuring the program

	Tic-tac-toe: playing moves
	Taking input moves from the players
	Improving flow and robustness
	Checking if someone has won
	Rows and diagonals

	Tic-tac-toe: programming the computer to play
	First found
	Random play
	Opportunistic play
	Defensive play
	Improving the opportunistic algorithm
	Concluding words

	Life after the course
	Notes on installing GNU/Linux in class
	Issues with old/cheap hardware
	The Asus X551MA laptop
	Preparing a USB memory stick
	Saving off laptop info and restore drive
	Booting from a USB stick
	Installing GNU/Linux

	The old Mac G4 PowerPC laptop
	Preparing an installation CD
	Booting from CD and installing
	Post installation

	Software Freedom
	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

