
Scientific Programming for Kids
a teacher’s manual for charismatic hackers

lessons 1-4: fundamental techniques and examples

(work in progress)

Mark Galassi
Los Alamos National Laboratory

and
Warehouse 21, Santa Fe, New Mexico

mark@galassi.org

June 15, 2016

Contents

Motivation and plan 5
Notes for teachers . 6
Reproducibility and how to build this book 8
Acknowledgements . 9

1 Starting out: data files and first plots 10
1.1 Very first data plots with gnuplot . 10
1.2 Plotting functions with gnuplot . 12
1.3 Reading and writing files, in brief . 14
1.4 Generating our own data to plot . 16
1.5 The broad landscape of plotting software 20
1.6 Data formats . 21
1.7 Population data from the web . 21
1.8 Simple surface plot . 29
1.9 Topics we have covered . 31

2 Getting and plotting temperature data 32
2.1 Using Python to retrieve data . 32
2.2 Plotting the temperature data . 35
2.3 Retrieving more than one year . 38

3 Exploring statistics 40
3.1 Poisson statistics in a time series . 40
3.2 Histograms of quantities . 48
3.3 Random spatial distribution . 52
3.4 What have we learned . 56

1

4 Looking deeply at a curve 57
4.1 Fourier analysis: the square wave . 57
4.2 Fourier analysis: sound and music . 59

4.2.1 Tuning fork . 59
4.2.2 White noise . 62
4.2.3 Violin playing single “A” note 64
4.2.4 Violin playing single “F” note 66
4.2.5 A more complex music clip . 67
4.2.6 Create your own audio clip and analyze it 70

4.3 Picking out frequencies from a toy signal 71
4.4 EXTRA: Fourier analysis of the temperature data 75

A GNU Free Documentation License 77
1. APPLICABILITY AND DEFINITIONS 77
2. VERBATIM COPYING . 78
3. COPYING IN QUANTITY . 78
4. MODIFICATIONS . 78
5. COMBINING DOCUMENTS . 79
6. COLLECTIONS OF DOCUMENTS . 79
7. AGGREGATION WITH INDEPENDENT WORKS 79
8. TRANSLATION . 79
9. TERMINATION . 79
10. FUTURE REVISIONS OF THIS LICENSE 80
ADDENDUM: How to use this License for your documents 80

2

List of Figures

1.1 Simpledata . 11
1.2 Plot of a simple function and its derivative. 13
1.3 Simplewave . 17
1.4 World population from 10000 BCE to 2100 CE(. . .) 23
1.5 World population from 753 BCE (founding of Rome) (. . .) 24
1.6 World population in the 20th century. 25
1.7 World population from year 0 to 1800 CE. 26
1.8 World population from 10000 BCE to 2100 CE(. . .) 28
1.9 Simple surface plot. 30
1.10 Heat map plot. 31

2.1 Retrieve-temperature-first-a . 36
2.2 Retrieve-temperature-first-b . 37
2.3 Retrieve-temperature-multi . 39

3.1 Lightning-scatter . 45
3.2 Random-scatter . 47
3.3 Lightning-hist . 50
3.4 Random-hist . 51
3.5 Random (x, y) points. You should be able to see (. . .) 53
3.6 Spatial-hist . 55

4.1 Square-wave . 58
4.2 Tuningfork . 60
4.3 White-noise . 63
4.4 Violin-a-440 . 65
4.5 Violin-f . 66
4.6 Canon . 67
4.7 Gloria-excelsis-deo . 69
4.8 Two-sin-fft . 72

3

4.9 Noisy-sin-fft . 74
4.10 Temperature-fft . 75

4

Motivation and plan

I cannot imagine a career more wonderful than that of a scientist.
The day-to-day work in science today involves using computers at all times. Sci-

entists who master their computers and can program them with agility are the ones
who enjoy the job the most and are often in great demand: they can carry out unique
new research.

I have developed a series of lessons on scientific computing, aimed at kids who
have already taken my “Serious Programming For Kids” course (Galassi 2015). This
booklet covers lessons 1-4. I have two goals with these lessons: (a) introduce the tools
and tricks for scientific computing, and (b) take a tour of diverse scientific problems
that demonstrate “realy interesting” things you can do with some programming
knowledge.

The course teaches scientific computing using Python on the GNU/Linux operat-
ing system. There are other possible choices of programming language and operating
system, and some of them are adequate, but there are specific reasons for which I
chose Python and GNU/Linux. Some are those given in the “Serious Programming
for Kids” teacher’s manual, but here are some other reasons which are specific to
scientific work:

• Scientific software often matures into sophisticated programs which need to
be executed on production computers and in a reproducible manner. For this
the use of a free/open-source operating system and language interpreter are
crucial.

• Much scientific infrastructure is available as an integral part of the GNU/Linux
distributions. For example, on a current Debian GNU/Linux or Ubuntu dis-
tribution you will find that the GNU Scientific Library, astropy, scipy, a re-
markable number of R science packages, and much much more are “just there”
as part of the operating system. This comes in part from the fact that the
GNU/Linux operating system is developed by hackers for hackers: program-
ming is a seamless part of such systems.

5

• Python spread rapidly soon after its initial development. Thanks to some
key early developers being part of physics, astronomy and biology research
groups, it was rapidly adopted by the scientific community. The result is a
vast collection of scientific libraries.

• Many research projects have very long lives, and the software is used for years
after it is first written. My opinion, and that of many who observe the business
of scientific computing, is that programs written in Python on a GNU/Linux
system will be stable1

• Reproducibility again: using proprietary software in scientific research makes
it impossible to reproduce or verify a result.

• Reproducibility and verifiability also dictate that scientific software should
be able to run in batch mode, rather than through a graphical user interface
(GUI).A GUI is not necessarily a bad thing, but after initial exploration of data
with a GUI, the scientist needs to then generate a batch program to reproduce
the results.

Notes for teachers

This is a teacher’s manual for the course. If you want to follow my format, I recom-
mend lecturing at a blackboard (nowadays probably a whiteboard) with a printout
of this in hand for code samples.

For the scientific course it would also be good to have a computer set up on a
projector to sometimes show plots, as well as a web site with all the code samples
available for rapid download: most of the examples are meant to be typed in by the
students during the lectures, since typing them in is part of the process of learning
the material, but it might be necessary sometimes to “just grab the .py file.”

One special case will be the use of long-ish URLs. Some of the examples involve
writing programs that download data sets from the web (temperature, population,
audio. . .) Or we might use wget on the command line to get those sets. Writing the
full URL on the board, or dictating it, or putting it in a slide will not work. Here
are a couple of ways to get that URL to the students without having them type it:
(a) have them do a web search with well-chosen keywords and then get the URL

1Programs written in the C programming language on a GNU/Linux system will be even more
stable, thanks to the maturity and stability of the C standard. C is also a delightful and powerful
language, but it is not in the scope of what I teach to younger kids.

6

from their browser, or (b) the instructor puts a text file with the URLs in an easy
place her/his web site. The first solution is has a nice instructional side-effect (show
kids how to search for data on the web) but also has the drawback that over time
the search results might change.

The lecturing style should be one of quickly getting a juicy example up on their
screens: something that gives visible results for the students. Then step back a bit
to make sure they understood how we got to it, and then quickly on to the next
example.

This is hard work for the students: I have developed this course to include serious
material they might otherwise not learn until college, so I often ask the students to
“suspend their not understanding”2 and just latch on to one or two things they can
remember. For example I introduce Fourier Analysis (Chapter 4), and when I give
that lecture I frequently repeat “remember: it is OK to not understand most of this,
but repeat after me the one thing I want you to understand: all these signals look
like wild jumbles, but they are made up of simple waves which let us understand part
of their musical nature.”

In broad strokes you can think of two main categories of scientific computing
effort: analyzing data from experiments, and simulating your own physical situation
with a computer program that generates fake (but, we hope, realistic) experimental
data. We will look at both of these types, and introduce the words: experiments and
simulation as we go through the examples.

The way in which kids approach computers today allows them to not understand
some concepts which are very important for scientific programming (and in fact any
kind of programming). Because of this we must first get comformtable with the
following concepts:

• What is a data file.

• How to plot a data file.

• How to write a program which takes a data file, does some processing of the
data, and writes out another file with the processed data.

Once we have these skills we can:

• Tell the story of that plot.

2A pun on Coleridge’s “suspension of disbelief” – with topics of great complexity it is important
for students to be flexible about temporarily accepting a building block that they don’t undersand
so that they can keep with the flow.

7

• Generate simulated data.

• Retrieve data from online sources.

• Record data from an experiment.

• Analyze data to go beyond that initial story.

This first book has four 1-hour lessons which will give exposure to these areas
while also providing little nuggets of data analysis which can be applied to diverse
problems3.

Reproducibility and how to build this book

This book is available to you under the terms of the GNU Free Documentation
License (GFDL; see Appendix A). The license allows you to adapt it to your own
needs and to redistribute modified copies if you should need to.

You can get a copy of the source material for this book from the Bitbucket hosting
site. The project is at https://bitbucket.org/markgalassi/hackingcamp-teacher-manual
and you can clone and build the book with:

$ hg clone https://markgalassi@bitbucket.org/markgalassi/hackingcamp-teacher-manual
$ cd hackingcamp-teacher-manual/teacher-manual
$ make

oafter which you can view scientific-computing-1to4.pdf with your favorite
PDF viewer.

To make the examples in this book easily reproducible, and to insert their plots
and code snippets automatically, I provide a program called make-book-example.py

which runs all the programs and makes all the plots needed by the book. Note that
this showcases an important advanced concept in scientific computing: you need to
build all the plots for your papers with an automatic and reproducible script.

The book is generated by running:

$./make-book-example.py scientific-computing-1to4.tex
$ pdflatex scientific -computing-1to4.tex
and then the whole lytany of running:
$ biber scientific -computing-1to4.tex
$ pdflatex scientific -computing-1to4.tex
$ pdflatex scientific -computing-1to4.tex

or more concisely:

3Note that I have not yet taught the course to kids - I am writing this book in preparation for
it - so I might revise the “1-hour” estimate of how long it takes!

8

https://bitbucket.org/markgalassi/hackingcamp-teacher-manual

$./make-book-example.py scientific-computing-1to4.tex
$ latexmk -pdf scientific -computing-1to4.tex

or even more concisely just type make to do the whole thing, and you can examine
the book’s Makefile to see how it is done.

Acknowledgements

Thanks to David Palmer and Laura Fortunato for discussing this curriculum with
me in great detail. Thanks to Antoni Galassi for listening carefully as I tested my
explanations of this material on him.

9

Lesson 1

Starting out: data files and first
plots

1.1 Very first data plots with gnuplot

Our first goal is to become comfortable with data files and with plotting. We first
get the students to renew their acquaintance with creating files with an editor and
make a file with some hand-crafted data.

Use your favorite editor (possibly emacs for those who have taken my previous
course, but vi or gedit should also work) to open a file called simpledata.dat

Enter two columns of simple data into this file. For example:

-3 2.7

-2.5 2.1

-2 2.0

-1.5 2.2

-1 2.7

-0.5 2.8

0 2.9

0.5 3.1

1.0 2.8

1.5 2.3

2.0 1.8

Then save it, and enter gnuplot to plot this data:

$ gnuplot

gnuplot> plot 'simpledata.dat'

10

then have the students plot the data with slightly different options in gnuplot:

$ gnuplot

gnuplot> plot 'simpledata.dat' with lines

gnuplot> set xlabel 'this is the "x" axis'
gnuplot> set ylabel 'this is the "y" axis'
gnuplot> plot 'simpledata.dat' with linespoints

Note that we want to give early hints to how you can make this automatic and
reproducible, so we will also give an example of automatically making a PDF file
and including into a document. We should make the students input this file, but
on the projector we can show that Figure 1.1 is generated by the gnuplot script
simpledata.gp running on the file simpledata.dat

Three ways of using "plot"

 1.8 2
 2.2 2.4 2.6 2.8 3
 3.2

-3 -2 -1 0 1 2

y
 a

x
is

x axis

lines

 1.8 2
 2.2 2.4 2.6 2.8 3
 3.2

-3 -2 -1 0 1 2

y
 a

x
is

x axis

points

 1.8 2
 2.2 2.4 2.6 2.8 3
 3.2

-3 -2 -1 0 1 2

y
 a

x
is

x axis

linespoints

Figure 1.1: Plot generated by running gnuplot with “gnuplot simpledata.gp”

gnuplot instructions

set xlabel ’x axis’

set ylabel ’y axis’

set multiplot layout 3,1 title ’Three ways of using "plot"’

plot ’simpledata.dat’ using 1:2 title ’lines’

plot ’simpledata.dat’ using 1:2 with lines title ’points’

plot ’simpledata.dat’ using 1:2 with linespoints title ’linespoints’

11

1.2 Plotting functions with gnuplot

More examples of using gnuplot. We don’t assume knowledge of trigonometry from
younger students, so we tell the story as “this is the sin function, which you will
learn about some day; it plots these waves.”

On the other hand the polynomial y = x3 − 3x should be within their reach: I
might call on the class to tell me “what’s −103 and −23, 23, and 103 – this establishes
that the plot goes down on the left hand side, and up on the right hand side. The
interesting play in the middle can be narrated by showing that (1/2)3 is smaller than
3× (1/2), so that the negative term dominates briefly (Figure 1.2).

gnuplot> plot sin(x)

gnuplot> plot x*x*x -3*x

gnuplot> plot x**3 -3*x

note that this last one did show a dip in the middle,

but zooming in on the range from -3 to 3 shows the

interesting features in the middle of the plot. This

plot has two flat points (one local maximum and one

local minimum), rather than one saddle point.

gnuplot> plot [-3:3] x**3 -3*x

(advanced material)

If I am getting a good mathematical vibe from the classroom I will briefly step
into calculus territory and ask students to predict the local max and min for
y = x3 − 3x. I will then quickly show them that

d(x3 − 3x)

dx
= 3x2 − 3

and using the quadratic formula

x =
−b±

√
b2 − 4ac

2a

we get ±6/6 = ±1, which is exactly where the local max and min are in Fig-
ure 1.2.

You can now set the grid in the plot and see if this calculation matches the plot:

gnuplot> set grid

gnuplot> plot [-3:3] x**3 -3*x

while we're at it also show the derivative:

12

gnuplot> replot 3*x**2 -3

The two plots, superimposed in Figure 1.2, show that where the derivative function
(3x2 − 3) is zero, the original function (x3 − 3x) has its flat point. This can be
presented, especially to older kids, in a rapid way that conveys “you don’t have to
understand this, but if you have heard about slopes then note that the second curve
shows the slope of the first one. . . ” For the younger kids we can emphasize that the
figure shows two functions and looks intriguing.

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

-3 -2 -1 0 1 2 3

x**3 - 3*x
3*x**2 - 3

Figure 1.2: Plot of a simple function and its derivative. This plot was generated by these
instructions:

gnuplot instructions

set grid

plot both function and derivative

plot [-3:3] x**3 - 3*x, 3*x**2 - 3

Visualizing functions like this is cool and it can be useful during the exploratory
phase of a research project, but it seldom comes up in the bulk of the work and
in the final scientific write-up. We will now move on to tasks which come up quite
frequently.

13

1.3 Reading and writing files, in brief

First let us make sure we know a couple of shell commands to look at a file. Here I
usually will take a portion of the board and write a boxed inset “cheat sheet” with
some useful shell commands.1

Since we already have a file called simpledata.dat which we created earlier, let
us look at three shell commands that give us a quick glance at what’s in that file:
head, tail and less.

$ head simpledata.dat

$ tail simpledata.dat

$ less simpledata.dat

(when using less be sure to quit with 'q')

These are simple ways to peek at a file, and will work with any text file. You
should always remember these commands.

Next we will look at how to read a file in a Python program. This is a crucial
pattern and we will use it a lot. Type in the program simple-reader.py and run
it to see what happens.

#! /usr/bin/env python3

"""show a simple paradigm for reading a file with two columns of

data"""

def main():

fname = 'simpledata.dat' # the file we wrote out by hand

dataset = read_file(fname)

print('I just read file %s with %d' % (fname, len(dataset)))

print('I will now print the first 10 lines')
for i in range(10):

print(dataset[i])

def read_file(fname):

dataset = []

f = open(fname, 'r')
for line in f.readlines():

words = line.split()

x = float(words[0])

y = float(words[1])

dataset.append((x, y))

1In the introductory course I have insets on the board with shell commands, emacs keybindings,
and some Python commands. The emacs keybindings are especially important since the students
have not necessarily done the full tutorial.

14

f.close()

return dataset

if __name__ == '__main__':
main()

Listing 1.1: Reads a simple set of 2-column data: simple-reader.py

Remember that after writing and saving the program you do the following to
make it executable and then run it:

$ chmod +x simple-reader.py

$./simple-reader.py

Finally let us see how to write files to disk. We will extend simple-reader.py to
do an easy manipulation of the file simpledata.dat and then write it back out to a
new file simpledata.dat.sums. This new program will be called simple-writer.py,
so we need to copy it first:

$ cp simple-reader.py simple-writer.py

and edit the new file.

#! /usr/bin/env python3

"""show a simple paradigm for writing a file after reading it and

adding some content to it"""

def main():

fname = 'simpledata.dat' # the file we wrote out by hand

dataset = read_file(fname)

print('I just read file %s with %d' % (fname, len(dataset)))

print('I will now print the first 10 lines')
for i in range(10):

print(dataset[i])

print('I will now modify the data')
summed_data = append_sums(dataset)

write_file(fname + '.sums', summed_data)

def read_file(fname):

dataset = []

f = open(fname, 'r')
for line in f.readlines():

words = line.split()

x = float(words[0])

y = float(words[1])

dataset.append((x, y))

15

return dataset

def append_sums(dataset):

sum_y = 0

summed_data = []

for pair in dataset:

sum_y = sum_y + pair[1]

triplet = (pair[0], pair[1], sum_y)

summed_data.append(triplet)

return summed_data

def write_file(fname, dataset):

f = open(fname, 'w')
for triplet in dataset:

f.write('%g %g %g\n' % triplet)

f.close()

if __name__ == '__main__':
main()

Listing 1.2: Reads a simple set of 2-column data and sums the second column and then
writes out line with (x y sumy): simple-writer.py

At this point we are comfortable with basic programming patterns for reading
and writing data. This is very important: this kind of file manipulation is one of the
big steps in becoming a confident programmer. This is a good time to make the kids
familiar with the terminology “input/output” (I/O).

1.4 Generating our own data to plot

Now we look at an example of writing a python program to generate some data
which we will then plot. Initially this just feels like silly data: it calculates the sin
function for many opints and prints out the values. There is a reason to start with
this very simple model: it will allow us (in Section 4.3) to give clear cut examples
of deeper data anlysis. We will not be lazy: later on (in Section 4.4) we will look at
real signals instead of the toy ones.

Start with the python3 command line and let us see the few lines of code that
generate sin wave data:

#! /usr/bin/env python3

import math

for i in range(200):

16

x = i/10.0

signal = math.sin(x)

print('%g %g' % (x, signal))

Listing 1.3: make-simple-wave.py - simple sin wave generator

You can see the plot in Figure 1.3,

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

si
n
(x

)

x

'simplewave.dat' using 1:2

Figure 1.3: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot simplewave.gp”

commands to generate data

./make-simple-wave.py > simplewave.dat

gnuplot instructions

set xlabel ’x’

set ylabel ’sin(x)’

plot ’simplewave.dat’ using 1:2

Comments on this:

17

• This just prints values to the terminal, so we limited it to 30 values of x. When
we write it to a file will do much more.

• The classic for loop generates a sequence of integers, which does not do well
at all for plotting: we want to space our x values much more tightly to get a
nice plot, so we divide the integer i by 10.0 to get finely spaced values of x.

Let us now put this into a file called generate-sin-first-try.py

#! /usr/bin/env python3

import math

def main():

out_fname = 'sin_wave.dat'
f = open(out_fname, 'w')
for i in range(700):

x = i/100.0

signal = math.sin(x)

f.write('%g %g\n' % (x, signal))

f.close()

print('finished writing file %s' % out_fname)

if __name__ == '__main__':
main()

Listing 1.4: First stab at python program: generate-sin-first-try.py

We run the program and do a quick scan of its output with:

$ python3 generate-sin-first-try.py

$ ls -l sin_wave.dat

$ head sin_wave.dat

$ tail sin_vave.dat

and when we have seen the first and last few lines of the output file we realize we
can plot it (after going back to our gnuplot window) with:

$ gnuplot

gnuplot> plot 'sin_wave.dat' using 1:2 with lines

Describing what this program does is rather straightforward, and it can be com-
pared to the gnuplot instruction plot sin(x).

At this point, at the blackboard, I will suggest to the students a couple of edits
they “should have already tried on their own”:

18

• See what happens if we don’t divide i/100.0: try both x = i (for this use
range(7)) and some intermediate value x = i/4.0 (for this use range(28)).
Note the loss of resolution.

• Use python’s sys.argv to take the file name as a command line argument.

We then show a cleaner version of this program which adds some comments,
makes clear what the sin period is, and uses some robust python proramming
paradigms (especially with ... as ...), which at this time students should take
on faith is the “right way” of opening files.

#! /usr/bin/env python3

"""

Generate samples of a simple sin() wave and save them to a

file. The file has two columns of data separated by white

space. To run the program and plot its output try:

$ python3 generate-sin-cleaner.py 'sin_output.dat'
$ gnuplot

gnuplot> plot 'sin_output.dat' using 1:2 with lines

"""

import math

import sys

def main():

out_fname = 'sin_wave.dat' # default output filename

if len(sys.argv) == 2:

out_fname = sys.argv[1]

elif len(sys.argv) > 2:

print('error: program takes at most one argument')
sys.exit(1)

with open(out_fname, 'w') as f:

for i in range(700):

x = i/100.0

signal = math.sin(x)

f.write('%g %g\n' % (x, signal))

print('finished writing file %s' % out_fname)

if __name__ == '__main__':
main()

Listing 1.5: Cleaner version: generate-sin-cleaner.py

19

Note that the comments also tell you how to run a program and visualize the output.
This is an important detail, even for small programs.

In Section 4.3 on we will revisit this simple program and make it generate more
complex waveforms.

1.5 The broad landscape of plotting software

Now that we have seen some examples, let us talk broadly about plotting software,
since you will soon be bombarded with people telling you about their favorites.

By now we know well that in the free software world there is often a dizzying
variety of tools to do any task, with fans advocating each approach. Gnuplot is
full-featured, stable, actively maintained and ubiquitous so I have chosen it, there
are several other valid choices.

There are at least three main categories of plotting tools: (a) the “just a plotting
program” kind, (b) the “plotting program with some data analysis that grew into
a full programming language”, (c) the “plotting library for a well-established pro-
gramming language”. Gnuplot is clearly one of the first, R and Octave the second,
Python with Matplotlib and Cern’s Root are examples of the third.

Often it comes down to where a particular scientist did her early research work:
a boss will tell you to “use this tool because it’s what I use”. I recommend forming a
broad knowlege of scientific tools so that you can use the most appropriate tool instead
of the tool that makes your boss comfortable. You will often find that astrophysicists
often use Python with matplotlib, particle physicists use Cern’s Root, biologists use
R or Python, social scientists who do much statistical work use R. You shoud always
know the tool your community uses (if it’s a free software tool), as well as some
others which might be more appropriate.

There are many proprietary plotting packages. I advocate against the use of
proprietary software, and it is certainly unacceptable to do science with proprietary
tools, but I will mention a couple of packages so that when you come across users
you will be able to categorize and compare them and offer an effective free software
approach to the same problem.

CricketGraph, often used in the 1990s, was a light-weight plotting program, later
supplanted by KaleidaGraph. I would recommend gnuplot as a good way of doing
what those programs did.

Matlab and IDL are simple plotting and data analysis programs that grew out of
control and added an ad-hoc programming language to the package. The languages
were never meant for large software applications, but are often used to write very
large programs. It is interesting to note that these programs always start with the

20

stated intention of not requiring a scientist to know how to program, but they end
up channeling scientists into using an ill-designed language for large programs.

Matlab and IDL programs can be written in a much cleaner way using Python
for the programming parts, and the matplotlib plotting library for graphics.

There is a final outlier in the proprietary data analysis world, which is the “us-
ing a spreadsheet to do data analysis” approach, often with the proprietary Excel
spreadsheet. There is no saving grace to this approach: apart from technical con-
cerns with the validity of the numerical subroutines, there is also the complete lack
of reproducibility of a person moving a mouse around over cells. One of the most
embarrassing cases of incorrect analysis was in a much-cited Economics paper about
debt rations in European countries Reinhart and Rogoff 2010. The analysis was done
with an Excel spreadsheet, and some readers concluded that the authors selected the
wrong range of data with a mouse movement. There is no reproducibility when
mouse movements are part of the data analysis. The economics article was disgraced
because of the faulty analysis as well as other problems with their methodology.

1.6 Data formats

In Sections 1.1 and 1.3 we saw the simplest examples of data files: columns of
numbers separated by white space. These are the simplest to work with, and if your
files are smaller than about 10 megabytes you should always treat yourself to that
simplicity. This format is often called “whitespace separated ascii” or names similar
to that.

Often you will find that the columns of data are separated by commas. This for-
mat is called “comma separated values” (csv) and the files often end with the .csv

extension. The format has been around almost half a century. It has some advan-
tages over the whitespace separated columns and is used by almost all spreadsheet
programs as an import/export format.

Sometimes files are in a variety of binary formats. We will not deal with these
at this time, since we are not yet working with very big files, but later on in
Crefsubsec:white-noise we will show how to convert mp3 files to an ascii format
which is easily read by our programs and by gnuplot.

1.7 Population data from the web

Our goals here are to:

• Automate fetching of data sets from the web.

21

• Look at a plot in a few different ways to get a narrative out of it.

We will start by looking at the population history of the whole world. When I
discuss this with students I often ask “what do you think the population of the world
is today?” (then you can have them search the web for “world population clock”,
which will take them to http://www.worldometers.info/world-population/).

Then ask “what do you think the world population was in 1914? And 1923? And
1776? And 1066? And in the early and late Roman empire? And in the Age of
Pericles?

Let us search for

world population growth

and we will come to this web site: https://ourworldindata.org/world-population-growth/
and if we go down a bit further we will see a link to download the annual world pop-
ulation data.

We will not click on the link. Instead we will use the program wget to download
it automatically2:

$ wget http://ourworldindata.org/roser/graphs/[...]/....csv -O world-pop.csv

Note that this is a very long URL, but students can get it as a result of their search,
so nobody has to type the full thing in.

Once they have the file downloaded they can look at the data with:

$ less world-pop.csv

and will quickly see that it is slightly different from the data we have seen so far.
The columns of data are separated by commas instead of spaces. This type of file
format is called comma-separated-value format and is quite common. Our plotting
program, gnuplot, works with space-separated columns by default, so there are two
tricks to plot the file. Either use the cool program sed to change the commas into
spaces:

$ sed 's/,/ /g' world-pop.csv > world-pop.dat

$ gnuplot

gnuplot> plot 'world-pop.dat' using 1:3 with linespoints

or tell gnuplot to use a comma as a column separator:

2The full URL is http://ourworldindata.org/roser/graphs/

WorldPopulationAnnual12000years_interpolated_HYDEandUN/WorldPopulationAnnual12000years_

interpolated_HYDEandUN.csv but we don’t need to type it all, so in the text I show an abbreviation
of it.

22

http://www.worldometers.info/world-population/
https://ourworldindata.org/world-population-growth/
http://ourworldindata.org/roser/graphs/WorldPopulationAnnual12000years_interpolated_HYDEandUN/WorldPopulationAnnual12000years_interpolated_HYDEandUN.csv
http://ourworldindata.org/roser/graphs/WorldPopulationAnnual12000years_interpolated_HYDEandUN/WorldPopulationAnnual12000years_interpolated_HYDEandUN.csv
http://ourworldindata.org/roser/graphs/WorldPopulationAnnual12000years_interpolated_HYDEandUN/WorldPopulationAnnual12000years_interpolated_HYDEandUN.csv

$ gnuplot

gnuplot> set datafile separator comma

gnuplot> plot 'world-pop.csv' using 1:3 with linespoints

You can see the results of this in Figure 1.4.

 0

 2x109

 4x109

 6x109

 8x109

 1x1010

 1.2x1010

-10000 -8000 -6000 -4000 -2000 0 2000 4000

w
o
rl

d
 p

o
p

u
la

ti
o
n

year

'world-pop.dat' using 1:2

Figure 1.4: World population from 10000 BCE to 2100 CE (projected after the present).
The lower plot uses a ”log scale” on the y axis. This plot was generated by these instruc-
tions:

commands to generate data

wget --continue http://ourworldindata.org/roser/graphs/WorldPopulationAnnual12000years_interpolated_HYDEandUN/WorldPopulationAnnual12000years_interpolated_HYDEandUN.csv -O world-pop.csv

sed ’s/,/ /g’ world-pop.csv | tr ’\r’ ’\n’ > world-pop.dat

gnuplot instructions

23

#set multi layout 2, 1

set grid

set xlabel ’year’

set ylabel ’world population’

plot ’world-pop.dat’ using 1:2 with linespoints pt 6 ps 0.4

#set logscale y

#plot ’world-pop.dat’ using 1:2 with linespoints pt 6 ps 0.4

And what a story we could tell from this plot if it weren’t so hard to read! The
main problem with this plot is that the world population in ancient times was quite
small, and then it grew dramatically with various milestones in history which allowed
for longer life expectancy and for the occupation of more of the world.

There are a couple of ways of trying to get more out of this plot. One is to zoom
in to certain parts of it. For example, in Figure 1.5 we zoom in to the milennium
from the founding of Rome to the fall of the western Roman empire.

 0

 5x107

 1x108

 1.5x108

 2x108

 2.5x108

-600 -400 -200 0 200 400

w
o
rl

d
 p

o
p

u
la

ti
o
n

year

'world-pop.dat' using 1:2

Figure 1.5: World population from 753 BCE (founding of Rome) to 476 CE (fall of the
western Roman empire). This plot was generated by these instructions:

commands to generate data

wget --continue http://ourworldindata.org/roser/graphs/WorldPopulationAnnual12000years_interpolated_HYDEandUN/WorldPopulationAnnual12000years_interpolated_HYDEandUN.csv -O world-pop.csv

sed ’s/,/ /g’ world-pop.csv | tr ’\r’ ’\n’ > world-pop.dat

24

gnuplot instructions

####CAPTION: World population from -146 BCE (Rome destroys Carthage)

set grid

set xlabel ’year’

set ylabel ’world population’

plot [-753:476] [0:] ’world-pop.dat’ using 1:2 with linespoints pt 6 ps 0.4

#set logscale y

#plot ’world-pop.dat’ using 1:2 with linespoints pt 6 ps 0.4

And in Figure 1.6 we zoom in to the 20th century.

 1.5x109

 2x109

 2.5x109

 3x109

 3.5x109

 4x109

 4.5x109

 5x109

 5.5x109

 6x109

 6.5x109

 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

w
o
rl

d
 p

o
p

u
la

ti
o
n

year

'world-pop.dat' using 1:2

Figure 1.6: World population in the 20th century. This plot was generated by these
instructions:

commands to generate data

wget --continue http://ourworldindata.org/roser/graphs/WorldPopulationAnnual12000years_interpolated_HYDEandUN/WorldPopulationAnnual12000years_interpolated_HYDEandUN.csv -O world-pop.csv

sed ’s/,/ /g’ world-pop.csv | tr ’\r’ ’\n’ > world-pop.dat

gnuplot instructions

25

set grid

set xlabel ’year’

set ylabel ’world population’

plot [1900:1999] ’world-pop.dat’ using 1:2 with linespoints pt 6 ps 0.4

#set logscale y

#plot ’world-pop.dat’ using 1:2 with linespoints pt 6 ps 0.4

And in Figure 1.6 we zoom in to the period from year 0 to 1800 CE.

 1x108

 2x108

 3x108

 4x108

 5x108

 6x108

 7x108

 8x108

 9x108

 1x109

 0 200 400 600 800 1000 1200 1400 1600 1800

w
o
rl

d
 p

o
p

u
la

ti
o
n

year

'world-pop.dat' using 1:2

Figure 1.7: World population from year 0 to 1800 CE. This plot was generated by these
instructions:

commands to generate data

wget --continue http://ourworldindata.org/roser/graphs/WorldPopulationAnnual12000years_interpolated_HYDEandUN/WorldPopulationAnnual12000years_interpolated_HYDEandUN.csv -O world-pop.csv

sed ’s/,/ /g’ world-pop.csv | tr ’\r’ ’\n’ > world-pop.dat

gnuplot instructions

26

set grid

set xlabel ’year’

set ylabel ’world population’

plot [0:1800] ’world-pop.dat’ using 1:2 with linespoints pt 6 ps 0.4

#set logscale y

#plot ’world-pop.dat’ using 1:2 with linespoints pt 6 ps 0.4

These attempts at zooming in tell us a some interesting things:

• It is frustrating that there is so little data before 1950.

• The 0 to 1800 plot allows us to see things clearly before the population jumps
up so much.

• In the 0-1800 plot we see that the world population starts growing as we ap-
proach the year 1000, after which it flattens off around the year 1300 (the period
of the great plague), after which it starts pick up and never stops growing.

The other way to look at data when the y axis has too much range is to use what
is called a log scale. Figure 1.8 shows how this can be done in gnuplot, and you can
see that the y axis has been adjusted so that we can see some of the features in the
data, especially compared to Figure 1.4.

27

 1x106

 1x107

 1x108

 1x109

 1x1010

 1x1011

-10000 -8000 -6000 -4000 -2000 0 2000 4000

w
o
rl

d
 p

o
p

u
la

ti
o
n

year

'world-pop.dat' using 1:2

Figure 1.8: World population from 10000 BCE to 2100 CE (projected after the present).
This plot uses a ”log scale” on the y axis. This plot was generated by these instructions:

28

commands to generate data

wget --continue http://ourworldindata.org/roser/graphs/WorldPopulationAnnual12000years_interpolated_HYDEandUN/WorldPopulationAnnual12000years_interpolated_HYDEandUN.csv -O world-pop.csv

sed ’s/,/ /g’ world-pop.csv | tr ’\r’ ’\n’ > world-pop.dat

gnuplot instructions

#set multi layout 2, 1

set grid

set xlabel ’year’

set ylabel ’world population’

set logscale y

plot ’world-pop.dat’ using 1:2 with linespoints pt 6 ps 0.4

#set logscale y

#plot ’world-pop.dat’ using 1:2 with linespoints pt 6 ps 0.4

1.8 Simple surface plot

So far we have looked at line plots. Let us now look at another type of plot: the
surface plot, shown in Figure 1.9. This shows the function z = e−(x2+y2)/10 as a
height over the (x, y) position in the plane.

29

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

exp((-x*x-1.7*y*y)/10.0)

x

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Figure 1.9: Simple surface plot. This plot was generated by these instructions:

gnuplot instructions

set grid

set pm3d

set xlabel ’x’

set ylabel ’y’

set samples 50

set isosamples 50

splot exp((-x*x-1.7*y*y)/10.0) with pm3d

Another way of showing the same information is a heat map. Figure 1.10 shows a
similar function z = e−(x2+1.7∗y2)/50 where the value is represented with color instead
of height.

30

exp((-x*x-1.7*y*y)/50.0)

-10 -5 0 5 10

x

-10

-5

 0

 5

 10

y

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Figure 1.10: Heat map plot. This plot was generated by these instructions:

gnuplot instructions

set size ratio -1

set view map

set samples 50

set isosamples 50

set xlabel ’x’

set ylabel ’y’

splot exp((-x*x-1.7*y*y)/50.0) with pm3d

1.9 Topics we have covered

• data files

• plots

• gnuplot

• reading features from simple plots

• simple surface plots

31

Lesson 2

Getting and plotting temperature
data

2.1 Using Python to retrieve data

The most important thing we will do in this lesson is to write a Python program
which retrieves data from the web. This is very useful in at least these two cases:

• You want to access data that is regularly updated by some other institution.
Examples of this include atmospheric, earthquake, astronomical and financial
data.

• You have your own measurement device which offers up its own data using a
web server.

Python has excellent libraries for accessing and parsing web data.
The example I will give here is to access the NOAA (National Oceanic and At-

mospheric Administration) US Climate Research Network data. Specifically: they
have weather stations in many locations around the US and they give straightforward
online access to the data.

The first thing to do is find the URLs and understand how they are structured,
so that we can then write our program. The base URL actually looks like this:
ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01/

There are three things to notice here: (a) the README.txt, (b) HEADERS.txt, and
(c) all the subdirectories for each year of data.

We start by exploring: if you follow the year (let us say 2014) you find a list
of states and cities which have weather stations, and we will pick Las Cruces, NM
(New Mexico). The URL for Las Cruces, 2014, is:

32

ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01/

ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01/2014/CRNS0101-05-2014-NM_

Las_Cruces_20_N.txt

and in general the format is:
ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01/YYYY/CRNS0101-05-YYYY-SS_

THE_CITY_20_N.txt

where YY is the year, SS is the date, and THE CITY is the city.
The problem is: we cannot just write out the URL – we have to give the students

a procedure for finding this data, so we start with a search string:

NOAA subhourly data

and the first match we find will then give us a link for the subhourly data sets.
Now that we have explored the layout of the data directories, we take a look

at the README.txt and HEADERS.txt files. These tell us that column 9 has the air
temperature, while the date and time (in UTC) are in columns 4 and 5. (Remember
that in Python, as in most computer languages, arrays start at 0, so these will be
positions 8, 3, 4.)

We are now ready to write a python program which downloads the 2014 data file
for Las Cruces:

#! /usr/bin/env python3

"""Retrieve temperatures from the NOAA USCRN weather station in Las

Cruces (actually in the mountains north of Las Cruces, as you can see

from the frequent negative temperatures). All temperatures are in

degrees Celsius.

"""

las_cruces_2014_url = \

('ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/products'
+ '/subhourly01/2014'
+ '/CRNS0101-05-2014-NM_Las_Cruces_20_N.txt')

import urllib.request

import datetime

def main():

time_temp_data = []

print('## retrieving from %s' % las_cruces_2014_url)

with urllib.request.urlopen(las_cruces_2014_url) as f:

for line in f.readlines():

words = line.split()

date_yyyymmdd = words[1]

33

ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01/2014/CRNS0101-05-2014-NM_Las_Cruces_20_N.txt
ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01/2014/CRNS0101-05-2014-NM_Las_Cruces_20_N.txt
ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01/YYYY/CRNS0101-05-YYYY-SS_THE_CITY_20_N.txt
ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01/YYYY/CRNS0101-05-YYYY-SS_THE_CITY_20_N.txt

time_hhmm = words[2]

temp_5min_avg_str = words[8]

now parse apart the date and time

y = int(date_yyyymmdd[0:4])

mo = int(date_yyyymmdd[4:6])

d = int(date_yyyymmdd[6:8])

h = int(time_hhmm[0:2])

mi = int(time_hhmm[2:4])

t = datetime.datetime(y, mo, d, h, mi)

now find time in seconds

epoch = datetime.datetime.utcfromtimestamp(0)

tsec = (t -epoch).total_seconds()

tminutes = tsec / 60.0

These data files put values of -9999 for missing

temperature readings. We use a simple approach and

replace them with the most recent reading:

last_good_temp. At the start there is no

last_good_temp so we kludge it to 10.

last_good_temp = 10

temp_5min_avg = float(temp_5min_avg_str)

if temp_5min_avg != -9999:

time_temp_data.append((tminutes, temp_5min_avg))

last_good_temp = temp_5min_avg

else:

time_temp_data.append((tminutes, last_good_temp))

write_dataset(time_temp_data, 'temperatures_Las_Cruces_2014.dat')

def write_dataset(time_temp_data, fname):

print('## writing to file %s' % fname)

with open(fname, 'w') as f:

f.write('## minutes_since_start hourly_average_temperature\n')
for datum in time_temp_data:

minutes = datum[0] -time_temp_data[0][0]

temp = datum[1]

f.write('%.18g %.5g\n' % (minutes, temp))

if __name__ == '__main__':
main()

Listing 2.1: First stab at temperature retrieval: retrieve-temperature-first.py

This program creates an empty list, then reads data from the URL, one line at
a time. Each line is split into words, and words 1 and 2 (remember: 2nd and 3rd
columns) are used to get the date and time, while word 8 (9th column) has the
temperature in degrees Celsius.

34

This introduces three new Python tricks:

urllib Lets us open files on web (or ftp) servers as if they were local files. We can
use the readlines() method as if it were a local file.

string splitting Allows us to break the line up into words.

datetime This library lets us turn the date and time strings into a numeric quantity
(in our case minutes) which we can plot on the x axis.

Once we have our time and temperature values we add them to the list time_-

temp_data, and once we have filled that up we write it out to a file.

2.2 Plotting the temperature data

Now let us run the program, and then plot the resulting data file:

$./retrieve-temperature-first.py

retrieving from ftp://ftp.ncdc.noaa.gov/pub/data/uscrn [....]

writing to file temperatures_Las_Cruces.dat

$ gnuplot

gnuplot> set grid

gnuplot> set xlabel 'time (minutes since start of data)'
gnuplot> set ylabel 'temperature (Celsius)'
gnuplot> set title 'Las Cruces temperature in 2014'
gnuplot> plot 'temperatures_Las_Cruces.dat' using 1:2 with lines

gnuplot> set terminal pdf

gnuplot> set output 'temperature-first.pdf'
gnuplot> plot 'temperatures_Las_Cruces.dat' using 1:2 with lines

gnuplot> unset output

Listing 2.2: Retrieve and plot temperatures for 2014.

This plot, shown in Figure 2.1, tells a clear story: the temperature starts low in
January 2014, gets higher in the spring and summer, then goes back down in the
next fall and winter.

Within this larger 1-year cycle we also see many fluctuations that look like spikes.
If we zoom in by only plotting ten thousand and eight minutes (one week) like this:

gnuplot> set title 'Las Cruces temperature, first week of 2014'
gnuplot> plot [0:10080] 'temperatures_Las_Cruces.dat' using 1:2 with lines

gnuplot> set terminal pdf

gnuplot> set output 'temperature-first-one-week.pdf'
gnuplot> plot [0:10080] 'temperatures_Las_Cruces.dat' using 1:2 with lines

35

gnuplot> unset output

Listing 2.3: Plot temperatures for the first week of 2014.

we get the second plot shown in Figure 2.2.

-20

-10

 0

 10

 20

 30

 40

 0 100000 200000 300000 400000 500000 600000

te
m

p
e
ra

tu
re

 (
C

e
ls

iu
s)

time (minutes since start of data)

Las Cruces temperature in 2014

'temperatures_Las_Cruces_2014.dat' using 1:2

Figure 2.1: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot retrieve-temperature-first-A.gp”

commands to generate data

./retrieve-temperature-first.py

gnuplot instructions

data came from ftp://ftp.ncdc.noaa.gov/pub/data/ [....]

set grid

set xlabel ’time (minutes since start of data)’

set ylabel ’temperature (Celsius)’

set title ’Las Cruces temperature in 2014’

plot ’temperatures_Las_Cruces_2014.dat’ using 1:2 with lines

36

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

te
m

p
e
ra

tu
re

 (
C

e
ls

iu
s)

time (minutes since start of data)

Las Cruces temperature, first week of 2014

'temperatures_Las_Cruces_2014.dat' using 1:2

Figure 2.2: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot retrieve-temperature-first-B.gp”

37

commands to generate data

./retrieve-temperature-first.py

gnuplot instructions

data came from ftp://ftp.ncdc.noaa.gov/pub/data/ [....]

set grid

set xlabel ’time (minutes since start of data)’

set ylabel ’temperature (Celsius)’

set title ’Las Cruces temperature, first week of 2014’

plot [0:10080] ’temperatures_Las_Cruces_2014.dat’ using 1:2 with lines

This zoomed-in plot allows us to say that the spikes are not “noise”, but rather
daily fluctuations. One week has 10080 minutes, and we see seven cycles in that
period of time. Within that you do see some noise, but it’s clear that the main
features in these plots are the yearly and daily temperature fluctuations.

2.3 Retrieving more than one year

The program in Section 2.1 only fetches one year of temperature, but it is instructive
to gather a few years, since it shows us that along with the daily period (Figure 2.2),
we also have an annual period (Figure 2.3).

Figure 2.2 shows a few years of plots. We will examine this superposition of two
different periodic signals in greater detail in Section 4.3, using the powerful technique
of fourier analaysis.

38

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 500000 1x106 1.5x106 2x106 2.5x106

te
m

p
e
ra

tu
re

 (
C

e
ls

iu
s)

time (minutes since start of data)

Las Cruces temperature for a few years

'temperatures_Las_Cruces.dat' using 1:2

Figure 2.3: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot retrieve-temperature-multi.gp”

commands to generate data

./retrieve-temperature-multi.py

gnuplot instructions

data came from ftp://ftp.ncdc.noaa.gov/pub/data/ [....]

set grid

set xlabel ’time (minutes since start of data)’

set ylabel ’temperature (Celsius)’

set title ’Las Cruces temperature for a few years’

plot ’temperatures_Las_Cruces.dat’ using 1:2 with lines

39

Lesson 3

Exploring statistics

Sometimes labeled as boring, the study of statistics is quite fascinating: an area in
which our intuition is often incorrect, but at the same time a discipline which is
crucial for our understanding of many real-world problems.

We will use random number generators to simulate some situations in which it
is very easy to produce and plot data which gives surprising but solid insights into
some aspects of nature.

3.1 Poisson statistics in a time series

You have a process which generates events intermittently in time. There are at least
two types of situations:

• Each event time is related to the value of the previous event time. Example:
your next meal – you get hungry after a certain amount of time since your
last meal, which affects when you next choose to eat. (Note that in a very
regimented family these times might not be random at all.)

• Each event time is independent of the previous event time. Example: ra-
dioactive decay, where each particle decay time has nothing to do with the
previous one.

The second type of process (event time is independent of previous event time) is
called a Poisson process.

It is interesting to understand when a series of events comes from a poisson
process and when it does not. We will now use the random number generator to

40

simulate a poisson process, but first let us give ourselves a physical example of what
might be happening.

Imagine the following. You have a house in a very unfortunate place: every day
there is a 30% chance of a lightning striking that house. And every day’s 30% does
not change based on what happened yesterday or at any time in the past. To use
Steven Pinker’s expression (Pinker 2011), every day Zeus throws a 10-sided die, and
if the number is between 1 and 3 the house will be hit.

Let us study a bit about what happens to this house. We will study it by
simulating each day whether it gets hit or not, and we will collect statistics on
whether it was hit.

One might wonder why lightning strikes are interesting. At this stage I point out
that these sequences of random events are called a Poisson series: the chance of each
event is unrelated to when or how the previous event happened. Other examples
might include radioactive decay, earthquakes, outbreak of war, some measures in
financial markes, and many others.

Let us start by reminding ourselves of how python allows us to produce random
numbers. In our hacking camp (Galassi 2015) we saw this example of a few functions:

>>> import random

>>> random.random()

>>> random.random()

>>> random.random()

>>> random.randint(-3, 10)

>>> random.randint(-3, 10)

>>> random.randint(-3, 10)

>>> random.randint(0, 2)

>>> random.randint(0, 2)

>>> random.randint(0, 2)

>>> random.randint(0, 2)

>>> random.randint(0, 2)

To generate an event which looks like the result of tossing dice with a 30% out-
come, and to see if the probability was right, we can use this little program:

#! /usr/bin/env python3

import random

def main():

n_days = 1000

n_hits = 0

n_misses = 0

for day in range(n_days):

r = random.random()

if r <= 0.3: ## 30% chance

n_hits += 1

41

else:

n_misses += 1

hit_fraction = n_hits / n_days

print('average daily hits: %g (%d days)' % (hit_fraction, n_days))

if __name__ == '__main__':
main()

Listing 3.1: lightning-first-stab.py - first stab

When you run this program you should get an average lighting strikes per day
that is close to 0.3:

$./lightning-first-stab.py

average daily hits: 0.285 (1000 days)

every time the run gives a different result, but it’s always close to 0.3.
It’s good to get some agility with these simple programs. Let us start by seeing

how the average behaves when we simulate more or fewer days. We start by writing
a function which does the simple calculation of average lightning strikes/day:

#! /usr/bin/env python3

import random

import math

def main():

for n_days in (100, 1000, 10000, 100*1000, 1000*1000):

simulate_strikes(n_days)

simulate_strikes(n_days)

simulate_strikes(n_days)

simulate_strikes(n_days)

print()

def simulate_strikes(n_days):

n_hits = 0

n_misses = 0

for day in range(n_days):

r = random.random()

if r <= 0.03: ## 3% chance

n_hits += 1

else:

n_misses += 1

hit_fraction = n_hits / n_days

how_much_off = math.fabs(hit_fraction -0.03)

print('average daily hits: %g (%d days), off by %g'
% (hit_fraction, n_days, how_much_off))

42

if __name__ == '__main__':
main()

Listing 3.2: lightning-vary-n-days.py - vary the number of days

The output of lightning-vary-n-days.py looks like this:

$./ lightning -vary-n-days.py
average daily hits : 0.04 (100 days), off by 0.01
average daily hits : 0.05 (100 days), off by 0.02
average daily hits : 0.05 (100 days), off by 0.02
average daily hits : 0.01 (100 days), off by 0.02

average daily hits : 0.03 (1000 days), off by 0
average daily hits : 0.026 (1000 days), off by 0.004
average daily hits : 0.032 (1000 days), off by 0.002
average daily hits : 0.024 (1000 days), off by 0.006

average daily hits : 0.0303 (10000 days), off by 0.0003
average daily hits : 0.033 (10000 days), off by 0.003
average daily hits : 0.0288 (10000 days), off by 0.0012
average daily hits : 0.0281 (10000 days), off by 0.0019

average daily hits : 0.0299 (100000 days), off by 0.0001
average daily hits : 0.03062 (100000 days), off by 0.00062
average daily hits : 0.02974 (100000 days), off by 0.00026
average daily hits : 0.03062 (100000 days), off by 0.00062

average daily hits : 0.030283 (1000000 days), off by 0.000283
average daily hits : 0.030008 (1000000 days), off by 8e-06
average daily hits : 0.030252 (1000000 days), off by 0.000252
average daily hits : 0.030035 (1000000 days), off by 3.5e-05

The interesting thing about this output is that it shows how more runs give you
an average number of lightning strikes/day that gets closer and closer to the 0.3
number.

This confirms that the the snippet of Python code which counts hits and misses:

...

r = random.random()

if r <= 0.3: ## 30% chance

n_hits += 1

else:

n_misses += 1

...

hit_fraction = n_hits / n_days

is a valid way of simulating a random occurrence which is uniformly distributed. It
also reminds us again that if you want good statistics you need many events: the
runs with 100000 events gave an average much closer to 0.3 than the runs with 10
or 100 runs. . .

43

Let us now collect some other properties than the average number of lightning
strikes. One question we might ask about these events is:

Q: what is the typical time that elapses between successive strikes?
To collect this information we modify the program and call it

lightning-time-distribution.py

#! /usr/bin/env python3

import random

import math

def main():

run this program with n_days = 50 when you want

to eyeball the output; run it with n_days = 1000,

then 10*1000, then 100*1000 when you want to make

plots

n_days = 10000

delta_t_list = simulate_strikes(n_days)

now that we have the list we print it to a file

with open('time_diffs.dat', 'w') as f:

for delta_t in delta_t_list:

f.write("%d\n" % delta_t)

print('wrote time_diffs.dat with %d delta_t values'
% len(delta_t_list))

def simulate_strikes(n_days):

"""simulates lightning strikes for a given number of

days, collecting information on the times between

strikes. returns the list of delta_t values.

"""

last_delta_t = -1

delta_t_list = []

prev_day_with_strike = -1

for day in range(n_days):

r = random.random() # a random float between 0 and 1

if r <= 0.3: # 30% chance

#print('%d: hit' % day)

if prev_day_with_strike >= 0:

we record the delta_t of this event

last_delta_t = day -prev_day_with_strike

delta_t_list.append(last_delta_t)

prev_day_with_strike = day

return delta_t_list

if __name__ == '__main__':
main()

44

Listing 3.3: lightning-time-distribution.py - study the time spacing between strikes

This program outputs a list of time intervals, ∆t. Let us get an idea of what
these look like by making a scatter plot of the ∆t values:

$ gnuplot

gnuplot> plot 'time_diffs.dat' using 1 with points pt 4 ps 0.3

This does not look like much: just some 30 points on the screen, somewhat
randomly laid out. There are not enough points yet to notice a clear pattern, so
change the number n_days to be a very large number, like 10000, and see what you
get. We can re-run the program:

$./lighting-time-distribution.py 10000

$ gnuplot

gnuplot> plot 'time_diffs.dat' using 1 with points pt 4 ps 0.3 title 'time between \
lightning strikes'

and see the result in Figure 3.1.

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000

Δ
 t

 (
d

a
y
s)

lightning number

time between lightning strikes

Figure 3.1: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot lightning-scatter.gp”

45

commands to generate data

./lightning-time-distribution.py

gnuplot instructions

set xlabel ’lightning number’

set ylabel ’{/Symbol D} t (days)’

plot ’time_diffs.dat’ using 1 with points pt 4 \

ps 0.3 title ’time between lightning strikes’

Here is how I would read the plot to a class of students:

On the x axis you just see the sequence of strikes (some 3000 of them).
On the y axis you see how many days had passed since the previous strike.
What is really interesting (and you probably did not guess it beforehand)
is that there are many more points down below where ∆t is small, and
very few at high values of ∆t. In particular, there was never a period of
more than 30 days between strikes.

I would then jump up and down, exclaiming “you see how a single plot command
can give you so much insight?”

To get even more insight let us show what a random plot would have looked like.
The program random-uniform.py puts out a list of uniform random numbers:

#! /usr/bin/env python3

import random

def main():

for i in range(3000):

print(random.randint(1, 23))

if __name__ == '__main__':
main()

Listing 3.4: random-uniform.py – generate a list of uniform random numbers

The purely random numbers can be seen in Figure 3.2, and now we can really
jump up and down yelling about insight: the scatter plot of random numbers had
no structure, whereas the scatter plot of time between lightning strikes had a clear
structure.

46

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000

ra
n
d

o
m

 v
a
lu

e

position

random numbers

Figure 3.2: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot random-scatter.gp”

47

commands to generate data

./random-uniform.py > random_uniform.dat

gnuplot instructions

set xlabel ’position’

set ylabel ’random value’

plot ’random_uniform.dat’ using 1 with points pt 4 \

ps 0.3 title ’random numbers’

Then a sobering note: this “scatter plot” was very good for probing the data for
a quick bit of insight, but it does not tell us anything quantitative about the time
between strikes. To do this we need to plot histograms of the data.

3.2 Histograms of quantities

A lot of plots you are used to seeing in popular media are histogram plots. These
plots don’t show the measured quantities directly: they show how many times certain
values come up.

For example, when you look at a plot of the weight of a group of people you see
the typical bell curve, and on the x axis you have weight ranges, while on the y axis
you have how many people are in that weight range.

The data is not naturally measured in this way, so we write a bit of code to
change it to that format.

Let us do this with the file time_diffs.dat which was written out by our
lightning-time-distribution.py. It contains a single column of ∆t values (mea-
sured in days) that look like this:

1

4

12

3

2

2

5

6

48

1

1

8

2

... many more lines ...

What we want to do is count how many times each duration appears in the file,
this will be the histogram. A python program to do so might be:

#! /usr/bin/env python3

"""Takes a file with a single column of integers and makes a histogram

of how frequently those integers occur in the file."""

import sys

def main():

fname = sys.argv[1]

histogram = []

with open(fname, 'r') as f:

lines = f.readlines()

for line in lines:

delta_t = int(line)

in case this delta_t is bigger than any seen so far

while delta_t >= len(histogram):

histogram.append(0)

histogram[delta_t] += 1

hist_out_fname = sys.argv[1] + '.hist'
with open(hist_out_fname, 'w') as f:

for value in range(len(histogram)):

f.write('%d %d\n' % (value, histogram[value]))

print('wrote histogram to %s' % hist_out_fname)

if __name__ == '__main__':
main()

Listing 3.5: int-histogram-maker.py - make a histogram from a file of δt values

You can run it with:

$./int-histogram-maker.py time_diffs.dat

$ gnuplot

gnuplot> set grid

gnuplot> set xlabel '{/Symbol D} t (days)'
gnuplot> set ylabel 'frequency of that interval'
gnuplot> plot 'time_diffs.dat.hist' using 1:2 with linespoints

49

We can do better: plotting programs have special ways of plotting histograms – try
this one:

gnuplot> plot 'time_diffs.dat.hist' using 1:2 with boxes

The result is shown in Figure 3.3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30

fr
e
q

u
e
n
cy

 o
f

th
a
t

in
te

rv
a
l

Δ t (days)

'time_diffs.dat.hist' using 1:2

Figure 3.3: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot lightning-hist.gp”

commands to generate data

./lightning-time-distribution.py

./int-histogram-maker.py time_diffs.dat

gnuplot instructions

set grid

set xlabel ’{/Symbol D} t (days)’

set ylabel ’frequency of that interval’

set style data histogram

set style fill solid 0.8 border -1

plot [0:] [0:] ’time_diffs.dat.hist’ using 1:2 with boxes

50

The story in this plot (Figure 3.3) is easy to tell: there are many more lightning
strikes that are closely spaced than that are far apart.

For completeness let us look at what happens when we take the random values
shown in the scatter plot and look at this histogram of those? The result (a flat
histogram) is shown in Figure3.4.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25

fr
e
q

u
e
n
cy

 o
f

th
a
t

in
te

rv
a
l

random value

'random_uniform.dat.hist' using 1:2

Figure 3.4: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot random-hist.gp”

commands to generate data

./random-uniform.py > random_uniform.dat

./int-histogram-maker.py random_uniform.dat

gnuplot instructions

set grid

set xlabel ’random value’

set ylabel ’frequency of that interval’

set style data histogram

set style fill solid 0.6 border -1

plot [0:] [0:] ’random_uniform.dat.hist’ using 1:2 with boxes

51

3.3 Random spatial distribution

We have talked about processes which give events distributed randomly in time:
events happen at random times. Let us now look at processes that generate points
distributed randomly in space: (x, y) coordinates are spewed out by our process. An
example might be where the grains of sand land when you drop a handful onto the
ground.

We can write a program to generate random (x, y) points between 0 and 100.
The program random-spatial.py generates a series of such points, each completely
independent of the previous one.

#! /usr/bin/env python3

"""

Print a bunch of (x, y) points.

"""

import random

def main():

for i in range(3000):

x = random.randint(0, 100)

y = random.randint(0, 100)

print('%d %d' % (x, y))

if __name__ == '__main__':
main()

Listing 3.6: random-spatial.py – generates random points in space.

The results of running this program are shown in 3.5. You can see features in the
data, even though it was randomly generated: filaments, clustering, voids. . . 1

1Note that the clustering is an artifact of the random generation of points; it is not due to a
physical effect that clusters the points together.

52

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

y

x

random (x, y) points

Figure 3.5: Random (x, y) points. You should be able to see some structure: occasional
filaments, clustering, and empty spaces. This plot was generated by these instructions:

53

commands to generate data

./random-spatial.py > random_spatial.dat

gnuplot instructions

set size ratio -1

set xlabel ’x’

set ylabel ’y’

plot ’random_spatial.dat’ using 1:2 with points pt 7 \

ps 0.3 title ’random (x, y) points’

A possible comment: people who spend a lot of time looking at randomly gener-
ated data probably don’t easily believe in conspiracy theories.

We can then do something analogous to what we did for random events in time:
plot the distribution of distances between (x, y) points. The programs xy-to-distances.py
and int-histogram-maker allow us to do so, and the results are in Figure 3.6. Note
that you will not get as much insight out of these spatial histograms as you did in
Figure 3.3, since a big factor in the distribution of spacial distances is the small size
of the x-y plane we used.

54

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000

 0 20 40 60 80 100 120 140

fr
e
q

u
e
n
cy

 o
f

th
a
t

d
is

ta
n
ce

distance between random (x, y) points

'random_spatial.dat.distances.hist' using 1:2

 0
 200
 400
 600
 800

 1000
 1200

 0 10 20 30 40 50 60

fr
e
q

u
e
n
cy

 o
f

th
a
t

n
e
a
re

st
 d

is
ta

n
ce

nearest distance to a point

'random_spatial.dat.nearest.hist' using 1:2

Figure 3.6: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot spatial-hist.gp”

55

commands to generate data

./random-spatial.py > random_spatial.dat

./xy-to-distances.py random_spatial.dat

./float-histogram-maker.py random_spatial.dat.distances

./float-histogram-maker.py random_spatial.dat.nearest

gnuplot instructions

set grid

set multi layout 2,1

set style data histogram

set style fill solid 0.8 border -1

set xlabel ’distance between random (x, y) points’

set ylabel ’frequency of that distance’

plot [0:] ’random_spatial.dat.distances.hist’ using 1:2 with boxes

set xlabel ’nearest distance to a point’

set ylabel ’frequency of that nearest distance’

plot [0:] ’random_spatial.dat.nearest.hist’ using 1:2 with boxes

3.4 What have we learned

In this section we have learned that:

• A histogram shows you how often a value comes up (the frequency of certain
values).

• We can write simple Python programs which take data and make histograms
of the frequency of those values.

• Plotting programs can be used to see the histograms.

56

Lesson 4

Looking deeply at a curve

There is often more to a plot than immediately meets the eye, and in the life of
a scientist one of the great joys is to glean more information than what is on the
surface.

Here we will show one of my favorite tools for extracting further information from
data: the Fourier transform, also referred to as the Fourier spectrum.

It is unlikely that you will be able to fully explain Fourier Transforms to kids,
but here is an approach:

Now we will now talk about a tool that seems almost magical which
lets us finding surprising information in data. This involves some higher
math, so I will ask you to accept some of it on faith for now. First of all,
the tool is called the Fourier Transform – repeat that after me . . .

This tool tells us that any signal at all (and here you can flash to the
temperature data) can be thought of as a sum of sin waves with different
frequencies. Crazy, right? But let’s see if it’s true.

4.1 Fourier analysis: the square wave

Let us start gnuplot and plot a sin wave, then look at some sin waves with higher
frequencies. Then add them together and see what you get:

$ gnuplot

gnuplot> set samples 1000

gnuplot> plot [] [-1.2:1.2] sgn(sin(x))

gnuplot> replot sin(x)

gnuplot> replot (1.0/3)*sin(3*x)

57

gnuplot> replot (1.0/5)*sin(5*x)

gnuplot> replot sin(x) + (1.0/3)*sin(3*x) + (1.0/5)*sin(5*x)

now look at the summed-up plot by itself:

gnuplot> plot sin(x) + (1.0/3)*sin(3*x) + (1.0/5)*sin(5*x) t '5x'

Listing 4.1: First look at sin waves

You should start seeing that you go from a sin wave to something that looks a
bit more like a square wave. Figure 4.1 shows what the individual sin waves look
like and shows how you can add up to 13 of them and get something that starts to
look quite square instead of wavy.

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-10 -5 0 5 10

1x
3x
5x

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-10 -5 0 5 10

1x
3x
5x
7x

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-10 -5 0 5 10

5x

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-10 -5 0 5 10

13x

Figure 4.1: Plot generated by running gnuplot with “gnuplot square-wave.gp”

gnuplot instructions

58

set multi layout 2,2

set samples 3000

plot sin(x) t ’1x’, (1.0/3)*sin(3*x) t ’3x’, (1.0/5)*sin(5*x) t ’5x’

plot sin(x) t ’1x’, \

sin(x) + (1.0/3)*sin(3*x) t ’3x’, \

sin(x) + (1.0/3)*sin(3*x) + (1.0/5)*sin(5*x) t ’5x’, \

sin(x) + (1.0/3)*sin(3*x) + (1.0/5)*sin(5*x) \

+ (1.0/7)*sin(7*x) t ’7x’

plot sin(x) + (1.0/3)*sin(3*x) + (1.0/5)*sin(5*x) t ’5x’

plot sin(x) + (1.0/3)*sin(3*x) + (1.0/5)*sin(5*x) \

+ (1.0/7)*sin(7*x) + (1.0/9)*sin(9*x) \

+ (1.0/11)*sin(11*x) + (1.0/13)*sin(13*x) t ’13x’

The mathematics behind the Fourier Transform are beautiful but more advanced
than this course, so we will just stick with having seen the main idea: “You can
take any signal and represent it as a sum of sin waves with different frequencies and
amplitudes.”

The square wave is not particularly realistic, so let us look at some real signals.
We will start by looking at white noise, then a tuning fork, then single notes on
musical instruments, then at a more complex music clip.

4.2 Fourier analysis: sound and music

When we mentioned waves with different frequencies you might have thought of
sound, and you would have been right. Fourier analysis is a good tool for under-
standing what makes up sound waves.

Let us take a tour through a series of signals, and we will look at their fourier
transforms.

4.2.1 Tuning fork

A tuning fork puts out a very pure single sin wave at a “middle A” note, also known
as A4 or concert pitch. A4 has a frequency of 440 Hz.

We can download a stock mp3 file of the sound of a tuning fork, then we can use
standard command line utilities to convert it to a text file. Once we have it as a text
file we can do the following:

• Use our standard plotting techniques to see that it looks like a very clean sin
wave (top plot in Figure 4.2).

59

• Write a program which uses the powerful Python scientific libraries to calculate
the Fourier transform of the tuning fork signal.

• Look at the Fourier transform, hoping to see that a clean sin wave will appear
as a single spike, indicating that there is only one sin wave in the signal.

-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4

 1.11 1.115 1.12 1.125 1.13 1.135

signal

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 0.1 0.2 0.3 0.4 0.5

fft

Figure 4.2: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot tuningfork.gp”

commands to generate data

wget --continue http://www.vibrationdata.com/tuningfork440.mp3

ffmpeg -n -i tuningfork440.mp3 tuningfork440.aiff

sox tuningfork440.aiff -t dat tuningfork440.dat

head -50000 tuningfork440.dat | tail -1000 > tuningfork-small-sample.dat

./simple-fft.py tuningfork-small-sample.dat 1 tuningfork-small-sample-fft.dat

gnuplot instructions

60

set multi layout 2, 1

set grid

plot ’tuningfork-small-sample.dat’ using 1:2 with lines t ’signal’

plot [-0.01:] ’tuningfork-small-sample-fft.dat’ using 1:3 \

with boxes lt rgb "green" t ’fft’

Having looked at the plots in Figure 4.2 let us write the python program simple-fft.py

which reads in the signal and writes out the Fourier transform:

#! /usr/bin/env python3

import sys

import math

import numpy as np

import scipy.signal as signal

import scipy.fftpack as fftpack

def main():

if len(sys.argv) != 4:

print('error: must give three arguments:')
print(' input filename, signal column (starts at 0),')
print(' and output filename')
sys.exit(1)

fin = sys.argv[1]

signal_column = int(sys.argv[2])

fout = sys.argv[3]

dataset = read_dataset(fin, signal_column)

sig_fft = find_fft(dataset)

write_fft(sig_fft, fout)

def read_dataset(fin, signal_column):

dataset = []

with open(fin, 'r') as f:

for line in f.readlines():

if not line[0].isdigit() and not line[0].isspace():

continue

words = line.split()

(t, signal) = (words[0], words[signal_column])

dataset.append((t, signal))

return dataset

write_fft(sig_fft, n_days, 'fft_%s.dat' % the_city)

def find_fft(dataset):

(time_list, signal_list) = zip(*dataset)

61

times = np.array(time_list)

signal = np.array(signal_list)

signal_fft = fftpack.rfft(signal)

return signal_fft

def write_fft(sig_fft, fname):

n_samples = len(sig_fft)

print('## writing fft to file %s' % fname)

print('type of fft:', type(sig_fft))

with open(fname, 'w') as f:

f.write('## fft\n')
f.write('## frequency frequnce-days-per-cycle fft_amplitude\n')
fft_pts = int(len(sig_fft)/2 -1)

for i in range(1, fft_pts):

real_part = sig_fft[2*i-1]

imag_part = sig_fft[2*i]

freq = i/n_samples

days_per_cycle = 1.0/freq

fft_amplitude = math.sqrt(real_part**2 + imag_part**2)

f.write('%g %g %g\n' % (freq, days_per_cycle, fft_amplitude))

if __name__ == '__main__':
main()

Listing 4.2: Reads a simple column of signal data: simple-fft.py

Having written this program we can then follow the steps in Figure 4.2 to generate
those plots ourselves. Note that the steps include a simple scripting trick to pick
out just a small part of the tuning fork signal. That’s because (a) these signals have
more than 40000 samples/second which is big and unnecessary, and (b) data at the
very start of the file can have artifacts.

What we need to do is skip a lot of lines at the start, and then pick out about
1000 lines of data. A simple use of UNIX shell pipelines can do this:

$ head -50000 tuningfork440.dat | tail -1000 > tuningfork-small-sample.dat

We will use simple-fft.py in the next few examples as well, getting a surprise
amount of mileage from one program.

4.2.2 White noise

Now let us download an example of white noise. This is a random wave with no
discernible pattern.

62

-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3

 0 2 4 6 8 10 12

signal

 0
 1
 2
 3
 4
 5
 6
 7

 0 0.1 0.2 0.3 0.4 0.5

fft

Figure 4.3: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot white-noise.gp”

63

commands to generate data

wget -q --continue http://www.vibrationdata.com/white1.mp3 -O white-noise.mp3

ffmpeg -n -i white-noise.mp3 white-noise.aiff

sox -q white-noise.aiff -t dat white-noise.dat

head -7000 white-noise.dat | tail -1000 > white-noise-small-sample.dat

./simple-fft.py white-noise-small-sample.dat 1 white-noise-fft.dat

gnuplot instructions

set multi layout 2, 1

set grid

plot ’white-noise.dat’ using 1:2 with lines t ’signal’

plot [-0.01:] ’white-noise-fft.dat’ using 1:3 \

with boxes lt rgb "green" t ’fft’

Go ahead and follow the instructions in Figure 4.3. To the ear the signal sounds
like a hissing sound, as you can see if you run

vlc white-noise.mp3

Remember this simple way of playing audio clips.
You could say that the Fourier spectrum for white noise is the opposite of that

for the pure tuning fork signal: instead of a single spike you have random-looking
spikes all over the spectrum.

4.2.3 Violin playing single “A” note

Now let us look at some musical notes from real instruments. Each note corresponds
to a certain frequency (Backus 1977). Figure 4.4 shows a much more complex signal
than the tuning fork.

64

-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

 0 0.5 1 1.5 2 2.5 3 3.5 4

signal

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 0.1 0.2 0.3 0.4 0.5

fft

Figure 4.4: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot violin-A-440.gp”

commands to generate data

wget --continue http://freesound.org/data/previews/153/153587_2626346-lq.mp3 -O violin-A-440.mp3

ffmpeg -n -i violin-A-440.mp3 violin-A-440.aiff

sox violin-A-440.aiff -t dat violin-A-440.dat

./simple-fft.py violin-A-440.dat 1 violin-A-440-fft.dat

gnuplot instructions

set multi layout 2, 1

set grid

plot ’violin-A-440.dat’ using 1:2 with lines t ’signal’

plot [-0.01:] ’violin-A-440-fft.dat’ using 1:3 \

with boxes lt rgb "green" t ’fft’

The signal in Figure 4.4 has some structure to it. The Fourier transform has
several peaks: the strongest peak (for a A4 note) will be at the fundamental frequency
of 440 Hz, but there are many other peaks. The pattern of the peaks characterizes
the sound of that specific violin (or guitar or other instrument).

65

4.2.4 Violin playing single “F” note

This is a repeat of Section 4.2.3 but with a different note on the violin: F instead
of A. Figure 4.5 is hard to distinguish from Figure 4.4 since the character of the
instrument is the same. At this point we have not written code to plot the actual
frequencies on the x axis, so we cannot spot that the A4 note has its highest peak at
440Hz, while the F5 is at 698.45Hz (Backus 1977).

-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

 0 0.5 1 1.5 2 2.5 3 3.5 4

signal

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 0.1 0.2 0.3 0.4 0.5

fft

Figure 4.5: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot violin-F.gp”

commands to generate data

wget --continue http://freesound.org/data/previews/153/153595_2626346-lq.mp3 -O violin-F.mp3

ffmpeg -n -i violin-F.mp3 violin-F.aiff

sox violin-F.aiff -t dat violin-F.dat

./simple-fft.py violin-F.dat 1 violin-F-fft.dat

gnuplot instructions

66

set multi layout 2, 1

set grid

plot ’violin-F.dat’ using 1:2 with lines t ’signal’

plot [-0.01:] ’violin-F-fft.dat’ using 1:3 \

with boxes lt rgb "green" t ’fft’

FIXME the web site with these violin clips has something weird where it always
downloads the same file unless you sign in, so at this time Figure 4.5 is incorrect and
probably the same as Figure 4.4. Plan: record guitar clips for the same notes and
save them somewhere online.

4.2.5 A more complex music clip

The Pachelbel Canon is a well-known piece of baroque classical music which starts
with a single note that is held for a while. Figure 4.6 shows the signal and its Fourier
transform, where you can identify a dominant peak.

-0.0005
-0.0004
-0.0003
-0.0002
-0.0001

 0
 0.0001
 0.0002
 0.0003
 0.0004
 0.0005

 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

left

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 0 0.1 0.2 0.3 0.4 0.5

fft

Figure 4.6: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot canon.gp”

67

commands to generate data

wget -q --continue http://he3.magnatune.com/music/Voices%20of%20Music/Concerto%20Barocco/21-Pachelbel%20Canon%20In%20D%20Major%20-%20Pachelbel%20-%20Canon%20And%20Gigue%20For%20Three%20Violins%20And%20Basso%20Continuo%20In%20D%20Major-Voices%20of%20Music_spoken.mp3 -O Canon.mp3

ffmpeg -n -i ’Canon.mp3’ Canon.aiff

sox -q Canon.aiff -t dat Canon.dat

head -50000 Canon.dat | tail -4000 > canon-small-sample.dat

./simple-fft.py canon-small-sample.dat 1 canon-small-sample-fft.dat

gnuplot instructions

set multi layout 2, 1

set grid

set style fill solid 0.8

plot ’canon-small-sample.dat’ using 1:2 with lines t ’left’

plot [-0.01:] ’canon-small-sample-fft.dat’ using 1:3 \

with boxes lt rgb "green" t ’fft’

But what happens if we have music that is not a single note? In Figure 4.7 we
will look at a clip of a choir singing Gloria in Excelsis Deo. The clip (which you can
play with vlc gloria.ogg after downloading it) starts in a place where many voices
are singing in harmony, so there is no single note to be picked out.

We expect to see several different peaks in the Fourier spectrum, and that is what
you see in the second plot of Figure 4.7.

68

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 0 5 10 15 20 25 30 35

left

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.1 0.2 0.3 0.4 0.5

fft

Figure 4.7: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot gloria-excelsis-deo.gp”

69

commands to generate data

wget -q --continue https://upload.wikimedia.org/wikipedia/en/e/ea/Angels_We_Have_Heard_on_High%2C_sung_by_the_Mormon_Tabernacle_Choir.ogg -O gloria.ogg

ffmpeg -n -i gloria.ogg gloria.aiff

sox -q gloria.aiff -t dat gloria.dat

./simple-fft.py gloria.dat 1 gloria-fft.dat

gnuplot instructions

set multi layout 2, 1

set grid

set style fill solid 0.8

plot ’gloria.dat’ using 1:2 with lines t ’left’

plot [-0.01:] ’gloria-fft.dat’ using 1:3 with boxes \

lt rgb "green" t ’fft’

4.2.6 Create your own audio clip and analyze it

Record some sound and analyze it.
The program sox, which we used to do audio format conversion, comes with two

other programs rec (to record from your computer’s microphone) and play to play
those files back.

To try it out run the following:

$ rec myvoice.dat

speak for a second or two into the microphone, then hit control-C

$ play myvoice.dat

$./simple-fft.py myvoice.dat 1 myvoice-fft.dat

$ gnuplot

gnuplot> set multi layout 2,1

gnuplot> plot 'myvoice.dat' using 1:2 with lines

gnuplot> plot 'myvoice-fft.dat' using 1:3 with boxes

Now try doing this again for different things you can record with your microphone.
If you have a tuning fork, tap it and then rest it on a guitar’s soundboard and record
that, see if you get something similar to what we saw in Section 4.2.1. If you have
a musical instrument, try recording an A note or an F note and compare them to
what we saw in Section 4.2.3.

70

4.3 Picking out frequencies from a toy signal

In Section 1.4 we generated a simple sin wave. The fourier analysis of that should
offer a clear single peak, as we can see with

$./make-simple-wave.py > simplewave.dat

$./simple-fft.py simplewave.dat 1 simplewave-fft.dat

$ gnuplot

gnuplot> set multi layout 2,1

gnuplot> plot 'simplewave.dat' using 1:2 with lines

gnuplot> plot 'simplewave-fft.dat' using 1:3 with boxes

Now let us generate a slightly more complex signal, one that will add two sin
waves together. We will do it to mimic the temperature over a couple of years,
like what we retrieved in Chapter 2. Start by making a copy of the program
generate-sin-cleaner.py to generate-two-sin.py, and then we will try adding
two different things to it: (a) a higher-frequency sin wave, analogous to the daily fluc-
tuations in temperature on top of the yearly fluctuations, and (b) a certain amount
of white noise.

The Fourier transform of these two different additions should be instructive. Both
will look the same: a lot of spikes on top of the annual period. They will look different
when you zoom in (as in Figure 2.2), but the Fourier transform will also allow us to
pick out a strong difference.

Modify generate-two-sin.py to look like this:

#! /usr/bin/env python3

"""Generate samples of a two sin() waves and saves them to a file.

The file has two columns of data separated by white space. To run the

program and plot its output try:

$./generate-two-sin.py two_sin_output.dat

$ gnuplot

gnuplot> plot 'sin_output.dat' using 1:2 with lines

"""

import math

years = 2.5

minutes_per_day = 24*60

minutes_per_year = 365.25 * minutes_per_day

n_minutes = int(years * minutes_per_year)

71

annual_avg_temp = 21.0 ## degC

annual_temp_range = 40

daily_temp_range = 10

zero point is

#for minutes in range(0, n_minutes, 5): ## 5-minute intervals

for minutes in range(0, n_minutes, 45): ## 45-minute intervals

annual_term = math.sin(2*math.pi * minutes/minutes_per_year)

daily_term = math.sin(2*math.pi * minutes/minutes_per_day)

temp = (annual_avg_temp + annual_term*annual_temp_range/2

+ daily_term*daily_temp_range/2)

print('%g %g %g %g'
% (float(minutes)/minutes_per_day, annual_term, daily_term, temp))

Listing 4.3: Generate two sin waves: generate-two-sin.py

The results are shown in Figure 4.8: we see two peaks, one for the “annual” cycle,
the other for the higher frequency “daily” cycle. There are many points, so the peaks
are not that thick, but they are tall and well-defined.

-5 0
 5 10 15 20 25 30 35 40 45 50

 0 100 200 300 400 500 600 700 800 900 1000

signal

 0
 50000

 100000
 150000
 200000
 250000

 0 0.1 0.2 0.3 0.4 0.5

fft

 0
 50000

 100000
 150000
 200000
 250000

 0 0.01 0.02 0.03 0.04 0.05

fft, zoomed in

Figure 4.8: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot two-sin-fft.gp”

72

commands to generate data

./generate-two-sin.py > two_sin_output.dat

./simple-fft.py two_sin_output.dat 3 two_sin_fft.dat

gnuplot instructions

set multi layout 3, 1

set grid

set style fill solid

plot ’two_sin_output.dat’ using 1:4 with lines t ’signal’

plot [-0.01:] ’two_sin_fft.dat’ using 1:3 \

with lines lt rgb "green" t ’fft’

plot [-0.005:0.05] ’two_sin_fft.dat’ using 1:3 \

with lines lt rgb "green" t ’fft, zoomed in’

Then we do the same thing with a noisy sin wave. The program looks like this:

#! /usr/bin/env python3

import math

import random

years = 2.5

minutes_per_day = 24*60

minutes_per_year = 365.25 * minutes_per_day

n_minutes = int(years * minutes_per_year)

annual_avg_temp = 21.0 ## degC

annual_temp_range = 40

daily_temp_range = 10

zero point is

#for minutes in range(0, n_minutes, 5): ## 5-minute intervals

for minutes in range(0, n_minutes, 45): ## 5-minute intervals

annual_term = math.sin(2*math.pi * minutes/minutes_per_year)

noisy_term = -0.5 + random.uniform(-1.0, 1.0)

temp = (annual_avg_temp + annual_term*annual_temp_range/2

+ noisy_term*daily_temp_range/2)

print('%g %g %g %g'
% (float(minutes)/minutes_per_day, annual_term, noisy_term, temp))

Listing 4.4: Generate a noisy sin: make-noisy-wave.py

73

The noisy sin wave and its Fourier transform are shown in Figure 4.9, and you
can see that although the signal is hard to tell apart from the double sin wave, the
spectrum is clear: there is only one significant peak (from the “yearly” sin wave),
and then there is a scattering of noisy bits in the spectrum, which we expect when
the signal is noisy instead of being a pure sin wave.

-10
-5
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 100 200 300 400 500 600 700 800 900 1000

signal

 0

 50000

 100000

 150000

 200000

 250000

 0 0.1 0.2 0.3 0.4 0.5

fft

Figure 4.9: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot noisy-sin-fft.gp”

commands to generate data

./make-noisy-wave.py > noisy_sin_output.dat

./simple-fft.py noisy_sin_output.dat 3 noisy_sin_fft.dat

gnuplot instructions

set multi layout 2, 1

set grid

set style fill solid

plot ’noisy_sin_output.dat’ using 1:4 with lines t ’signal’

plot [-0.01:] ’noisy_sin_fft.dat’ using 1:3 \

with lines lt rgb "green" t ’fft’

74

4.4 EXTRA: Fourier analysis of the temperature

data

Our final step is to look at the temperature data we downloaded in Chapter 2. Unlike
Section 4.3, this example will use real data from the weather station near Las Cruces.

-30
-20
-10

 0
 10
 20
 30
 40
 50

 0 500000 1x106 1.5x106 2x106 2.5x106

signal

 0

 500000

 1x106
 1.5x106

 2x106
 2.5x106

 3x106

 0 0.02 0.04 0.06 0.08 0.1

fft

Figure 4.10: Plot generated by the following: run the commands at the shell to generate
the data, then plot the data with with “gnuplot temperature-fft.gp”

commands to generate data

./retrieve-temperature-first.py

./temperature-fft.py Las_Cruces

gnuplot instructions

set multi layout 2, 1

set grid

set style fill solid

plot ’temperatures_Las_Cruces.dat’ using 1:2 with lines t ’signal’

plot [-0.01:] ’temperatures_Las_Cruces-fft.dat’ using 1:3 \

with lines lt rgb "green" t ’fft’

75

The Fourier transform of the temperature is shown in Figure 4.10. We see some-
thing analogous to what we saw with the toy model which simulated temperature
by adding two sin waves.

76

Appendix A

GNU Free Documentation License

Version 1.2, November 2002
Copyright © 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook,
or other functional and useful document “free” in the sense of
freedom: to assure everyone the effective freedom to copy and re-
distribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that
derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals
for free software, because free software needs free documentation:
a free program should come with manuals providing the same free-
doms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book.
We recommend this License principally for works whose purpose
is instruction or reference.

1. APPLICABILITY

AND DEFINITIONS
This License applies to any manual or other work, in any

medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such
a notice grants a world-wide, royalty-free license, unlimited in du-
ration, to use that work under the conditions stated herein. The
“Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”.

You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work
containing the Document or a portion of it, either copied ver-
batim, or with modifications and/or translated into another lan-
guage.

A “Secondary Section” is a named appendix or a front-
matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (Thus,
if the Document is in part a textbook of mathematics, a Sec-
ondary Section may not explain any mathematics.) The relation-
ship could be a matter of historical connection with the subject
or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections
whose titles are designated, as being those of Invariant Sections,
in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Docu-
ment may contain zero Invariant Sections. If the Document does
not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that
are listed, as Front-Cover Texts or Back-Cover Texts, in the no-
tice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-
readable copy, represented in a format whose specification is avail-
able to the general public, that is suitable for revising the doc-
ument straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include
plain ASCII without markup, Texinfo input format, LaTeX in-
put format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or process-
ing tools are not generally available, and the machine-generated

77

HTML, PostScript or PDF produced by some word processors for
output purposes only.

The “Title Page” means, for a printed book, the title page
itself, plus such following pages as are needed to hold, legibly,
the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title
Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the
Document whose title either is precisely XYZ or contains XYZ
in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name men-
tioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of
such a section when you modify the Document means that it re-
mains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to
the notice which states that this License applies to the Document.
These Warranty Disclaimers are considered to be included by ref-
erence in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have
is void and has no effect on the meaning of this License.

2. VERBATIM

COPYING
You may copy and distribute the Document in any medium,

either commercially or noncommercially, provided that this Li-
cense, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this Li-
cense. You may not use technical measures to obstruct or control
the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If
you distribute a large enough number of copies you must also fol-
low the conditions in section 3.

You may also lend copies, under the same conditions stated
above, and you may publicly display copies.

3. COPYING IN

QUANTITY
If you publish printed copies (or copies in media that com-

monly have printed covers) of the Document, numbering more
than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legi-
bly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies.
The front cover must present the full title with all words of the
title equally prominent and visible. You may add other material
on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to
fit legibly, you should put the first ones listed (as many as fit rea-
sonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document
numbering more than 100, you must either include a machine-
readable Transparent copy along with each Opaque copy, or state
in or with each Opaque copy a computer-network location from
which the general network-using public has access to download
using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you

begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of
that edition to the public.

It is requested, but not required, that you contact the au-
thors of the Document well before redistributing any large number
of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Doc-

ument under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a ti-
tle distinct from that of the Document, and from those
of previous versions (which should, if there were any, be
listed in the History section of the Document). You may
use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the
principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifica-
tions adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a li-
cense notice giving the public permission to use the Mod-
ified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Docu-
ment’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Ti-
tle, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on
its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Docu-
ment for public access to a Transparent copy of the Doc-
ument, and likewise the network locations given in the
Document for previous versions it was based on. These
may be placed in the “History” section. You may omit a
network location for a work that was published at least
four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

78

K. For any section Entitled “Acknowledgements” or “Dedi-
cations”, Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, un-
altered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements”. Such a sec-
tion may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “En-
dorsements” or to conflict in title with any Invariant Sec-
tion.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections
or appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option des-
ignate some or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the Modified Ver-
sion’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided
it contains nothing but endorsements of your Modified Version by
various parties–for example, statements of peer review or that the
text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover
Text, and a passage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may
be added by (or through arrangements made by) any one entity.
If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same en-
tity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not by
this License give permission to use their names for publicity for
or to assert or imply endorsement of any Modified Version.

5. COMBINING

DOCUMENTS
You may combine the Document with other documents re-

leased under this License, under the terms defined in section 4
above for modified versions, provided that you include in the com-
bination all of the Invariant Sections of all of the original docu-
ments, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this Li-
cense, and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name
of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles
in the list of Invariant Sections in the license notice of the com-
bined work.

In the combination, you must combine any sections Entitled
“History” in the various original documents, forming one section
Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF

DOCUMENTS

You may make a collection consisting of the Document and
other documents released under this License, and replace the in-
dividual copies of this License in the various documents with a
single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection,
and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and fol-
low this License in all other respects regarding verbatim copying
of that document.

7. AGGREGATION

WITH INDEPENDENT

WORKS

A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on a volume
of a storage or distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual
works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to
these copies of the Document, then if the Document is less than
one half of the entire aggregate, the Document’s Cover Texts may
be placed on covers that bracket the Document within the aggre-
gate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of sec-
tion 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may in-
clude translations of some or all Invariant Sections in addition
to the original versions of these Invariant Sections. You may in-
clude a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a dis-
agreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledge-
ments”, “Dedications”, or “History”, the requirement (section 4)
to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

79

You may not copy, modify, sublicense, or distribute the Doc-
ument except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Docu-
ment is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

10. FUTURE

REVISIONS OF THIS

LICENSE
The Free Software Foundation may publish new, revised ver-

sions of the GNU Free Documentation License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version
number. If the Document specifies that a particular numbered
version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of
that specified version or of any later version that has been pub-
lished (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you
may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to

use this License for your

documents

To use this License in a document you have written, include
a copy of the License in the document and put the following copy-
right and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission
is granted to copy, distribute and/or modify
this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later
version published by the Free Software Founda-
tion; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-
Cover Texts, replace the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR
TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some
other combination of the three, merge those two alternatives to
suit the situation.

If your document contains nontrivial examples of program
code, we recommend releasing these examples in parallel under
your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

80

Bibliography

Backus, J. Musical Note to Frequency Conversion Chart. 1977. url: %5Curl%7Bhttp:
//www.audiology.org/sites/default/files/ChasinConversionChart.pdf%

7D (visited on 05/06/2016).
Galassi, Mark. Hacking Camp Teacher’s Manual. 2015.
Pinker, Steven. The better angels of our nature: Why violence has declined. Penguin,

2011.
Reinhart, Carmen M and Kenneth S Rogoff. “Growth in a time of debt (digest

summary)”. In: American Economic Review 100.2 (2010), pp. 573–578.

81

%5Curl%7Bhttp://www.audiology.org/sites/default/files/ChasinConversionChart.pdf%7D
%5Curl%7Bhttp://www.audiology.org/sites/default/files/ChasinConversionChart.pdf%7D
%5Curl%7Bhttp://www.audiology.org/sites/default/files/ChasinConversionChart.pdf%7D

	Motivation and plan
	Notes for teachers
	Reproducibility and how to build this book
	Acknowledgements

	Starting out: data files and first plots
	Very first data plots with gnuplot
	Plotting functions with gnuplot
	Reading and writing files, in brief
	Generating our own data to plot
	The broad landscape of plotting software
	Data formats
	Population data from the web
	Simple surface plot
	Topics we have covered

	Getting and plotting temperature data
	Using Python to retrieve data
	Plotting the temperature data
	Retrieving more than one year

	Exploring statistics
	Poisson statistics in a time series
	Histograms of quantities
	Random spatial distribution
	What have we learned

	Looking deeply at a curve
	Fourier analysis: the square wave
	Fourier analysis: sound and music
	Tuning fork
	White noise
	Violin playing single ``A'' note
	Violin playing single ``F'' note
	A more complex music clip
	Create your own audio clip and analyze it

	Picking out frequencies from a toy signal
	EXTRA: Fourier analysis of the temperature data

	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

