
techgdoc version 41 (cf9359b13d1c 20-Oct-2015)

T
h
is

 d
o
cu

m
e
n
t

is
 l
ic

e
n
se

d
 u

n
d

e
r

th
e
 C

re
a
ti

v
e
 C

o
m

m
o
n
s

A
tr

ri
b

u
ti

o
n
-S

h
a
re

A
lik

e
 4

.0

In
te

rn
a
ti

o
n
a
l
Li

ce
n
se

.
C

o
p

y
ri

g
h
t

(c
)

G
.

T
h
e
le

r

document hash 1b1ed79c5651

Description of the computational tool wasora

Number Rev.

CIT-WSWA-TD-9E3D A
Date

16-Mar-2016
Document type Pages

Techical Document 33

Author

G. Theler gtheler@cites-gss.com

Reviewed by

J. P. Gómez Omil jugomez@tecna.com

R. Vignolo rvignolo@tecna.com

Abstract

Wasora is a free computational tool designed to aid cognizant experts to analyze complex sys-
tems by solving mathematical problems by means of a high-level plain-text input file containing
a syntactically-sweetened description of definitions and instructions. Some of its main features are:

• evaluation of algebraic expressions
• one and multi-dimensional function interpolation
• scalar, vector and matrix operations
• numerical integration, differentiation and root finding of functions
• possibility to solve iterative and/or time-dependent problems
• adaptive integration of systems of differential-algebraic equations
• I/O from files and shared-memory objects (with optional synchronization using semaphores)
• execution of arbitrary code provided as shared object files
• parametric runs using quasi-random sequence numbers to efficiently sweep a sub-space of
parameter space

• solution of systems of non-linear algebraic equations
• non-linear fit of scattered data to one or multidimensional functions
• non-linear multidimensional optimization
• management of unstructured grids
• complex extensions by means of plugins

Besides solving general math problems usually associated with engineering analysis, the code is de-
signed in such a way that particular (and potentialy complex) computations may be implemented as
plugins (such as computations based on the finite element method or dedicated neutronic codes) that
run over the framework, taking advantage of all the common background wasora provides.This tech-
nical document introduces the code and describes its main features by walking through the rationale
behind its design and the types of problems that are suitable to be tackled with wasora.

CIT-WSWA-TD-9E3D-A

Revision history

Rev. Date Author
A 16-Mar-2016 G. Theler First issue

1b1ed79c5651 2

CIT-WSWA-TD-9E3D-A

Contents

1 Introduction 4
1.1 What wasora is . 4
1.2 What wasora is not . 6
1.3 The wasora suite . 6

2 Design basis overview 6
2.1 Types of problems . 7
2.2 Input . 10
2.3 Output . 12
2.4 Implementation . 13
2.5 Wasora and the UNIX philosophy . 14

3 License 14

A How to refer to wasora 16
A.1 Pronunciation . 16
A.2 Logo and graphics . 16

B Development history 17

C Raymond’s 17 rules of UNIX philosophy 19

D Examples execution and results 21
D.1 The Lorenz system . 21
D.2 One-dimensional minimization . 22
D.3 Root of a one-dimensional function . 23
D.4 A system of algebraic equations . 23
D.5 Print only prime numbers . 24
D.6 The Fibonacci sequence as an iterative problem . 25
D.7 A transient problem . 26
D.8 The differential equation for negative feedback . 27
D.9 The logistic map . 28
D.10 Setting a target flux . 28
D.11 Semi-empirical mass formula fit . 30
D.12 How the wasora parser works . 32

1b1ed79c5651 3

CIT-WSWA-TD-9E3D-A

1 Introduction

Wasora is a free computational tool that essentially solves the mathematical equations that are usually
encountered in the models that arise when studying and analyzing engineering systems. In particular, the
code history and the development team (see appendix B) is closely related to nuclear engineering and re-
actor analysis. Nevertheless, the code provides a number of basic mathematical algorithms and methods
that make it suitable for solving problems in a wide variety of engineering and scientific applications, es-
pecially when dealing with dynamical systems. The main focus are parametric runs and multidimensional
optimization of parameters that are themselves the results of the afore-mentioned models.

Even though wasora is a general mathematical framework, particular computations (such as specific
finite-element formulations of problems or models of digital control systems) or features (such as real-
time graphical outputs or the possibility to read ad-hoc binary data formats) may be implemented as
dynamically-loadable plugins.The set of codes that comprise the wasora code plus its plugin is also known
as the wasora suite (section 1.3).

The code is free software released under the terms of the GNU Public License version 3 or, at your
option, any later version. Section 3 contains further details about the license of wasora.

1.1 What wasora is

Wasora should be seen as a syntactically-sweetened¹ way to ask a computer to perform a certain mathe-
matical calculation. For example, the famous Lorenz system [1]

ẋ = σ (y − x)

ẏ = x (r − z)− y

ż = xy − bz

may be solved by writing these three differential equations into a human-friendly plain-text input file that
wasora reads and solves when executed:
lorenz ’ seminal dynamical system solved with wasora
PHASE_SPACE x y z
end_time = 40

parameters that lead to chaos
sigma = 10
r = 28
b = 8/3

in i t ia l conditions
x_0 = -11
y_0 = -16
z_0 = 22.5

the dynamical system (note the dots before the ’= ’ sign)
x_dot .= sigma*(y - x)
y_dot .= x*(r - z) - y
z_dot .= x*y - b*z

write the solution to the standard output
PRINT t x y z

Lisࢢng 1: lorenz.was

$ wasora lorenz.was
0.000000e+00 -1.100000e+01 -1.600000e+01 2.250000e+01
2.384186e-07 -1.100001e+01 -1.600001e+01 2.250003e+01

¹Quote from Wikipedia, “In computer science, syntactic sugar is syntax within a programming language that is designed to make
things easier to read or to express. It makes the language sweeter for human use: things can be expressed more clearly, more concisely,
or in an alternative style that some may prefer”.

1b1ed79c5651 4

CIT-WSWA-TD-9E3D-A

4.768372e-07 -1.100002e+01 -1.600002e+01 2.250006e+01
9.536743e-07 -1.100005e+01 -1.600004e+01 2.250013e+01
1.907349e-06 -1.100010e+01 -1.600008e+01 2.250024e+01
[...]
3.998879e+01 7.407148e+00 9.791065e-02 3.348664e+01
3.999306e+01 7.098288e+00 -6.613236e-02 3.310819e+01
3.999732e+01 6.795877e+00 -2.113808e-01 3.272946e+01
4.000159e+01 6.500405e+00 -3.390346e-01 3.235134e+01
$

Appendix D illustrate how wasora should be invoked in order to solve each of the example input files
shown in this document. It also shows the output and associated figures and graphics built out of wasora’s
results.

As detailed in section 2, on the one hand wasora uses the UNIX idea of relying on existing libraries
instead of re-implementing what other people have already done better. On the other hand, one of wasora’s
golden rule is “simple problems ought to need simple inputs.” Therefore, it essentially consists of a high-
level interface to low-level mathematical libraries so the final user can state the problem to be solved as
simple as possible without wasting time and effort on unnecessary details. The example above should be
comparedwith other ways of solving the Lorenz system, whichmay range from preparing a snippet of code
to solve the equations (i.e. in C or Python) or using another computational tool (i.e. Octave or some non-
free programs) that are not designed with syntactic sugar in mind as wasora is from the very beginning of
its conception. For instance, in the example above, the parameters, initial conditions and actual differential
equations are written in a natural way into a text file which is the read and solved by wasora. Moreover,
the user does not need to get involved with tolerances or how to choose the time step in order to obtain
convergence or other low-level details, although she may if she really needs to. This way, attention is paid
to the part of the problem that is really important.

Wasora heavily relies on the GNU Scientific Library [2] to perform many low-level mathematical op-
erations, including one-dimensional function interpolation, numerical differentiation and integration, one
and multi-dimensional root-finding, random and quasi-random number generation, non-linear fitting and
minimization, amongst others. A convenient high-level access to many of the features the library provides
is given by wasora, as illustrated in the following two-line example that finds and prints the location of
the minimum of the function f(x) = cos(x) + 1 in the interval 0 < x < 6:

VAR x
PRINT %.7f func_min(cos(x)+1,x,0,6)

Lisࢢng 2: min.was

This example should be compared with section 34.8 of the GNU GSL manual [2], that shows how to
solve the same problem using a 65-lines-long source file written in C, which consists in preparation and
calls to the library. In the same spirit, wasora solves systems of differential-algebraic equations (DAE)
using the SUNDIALS IDA library [3]. The Lorenz example above should also be compared to the examples
of usage of the low-level API provided in the library documentation.

The main focus of wasora is the numerical solution of non-linear equations,² which may represent
either static or transient (i.e. time-dependent) models. Evenmore, an outer iterative schememay be applied
in order to perform parametric or optimization runs. In the case that the numerical methods provided
by wasora through the GNU GSL and/or SUNDIALS IDA are not enough to model a certain problem,
arbitrary user-provided code can be executed by loading dynamically-loadable shared objects. For even
more complex or specific tasks (for example numerical routines coded in legacy Fortran code decades ago),
a plugin may be implemented in such a way that new functionality is added to the code by interfacing with
functions and administrative structures provided by wasora as an API. Many particular plug-ins may be
loaded at the same time and can share data structures in order to perform coupled calculations.

²Actually, wasora’s main focus is to help engineers to cope with the non-linear equations that appear in their chores. These
include analysis and interpolation of data generated by other computational codes.

1b1ed79c5651 5

CIT-WSWA-TD-9E3D-A

Wasora is thus, on the one hand, a computational tool that can be used to solve complex mathematical
problems in such a way that the details are kept in a background plane as long as they are not needed. On
the other hand it provides a flexible and extensible computational framework in which to develop specific
calculation codes in the same spirit.

1.2 What wasora is not

Wasora should not be seen as a programming language, because it is definitely not. If a certain problem
can be better solved by coding a computer program, then it should not be solved using wasora. A set of
definitions and instructions (which is what wasora inputs are) does not necessarily configure a computer
program. Wasora is neither a high-performance computing (HPC) tool. As usual, high-level interfaces
come at the cost of speed.

1.3 The wasora suite

The set of computational codes comprised of wasora and the plugins freely distributed under a GPL-
compatible license plus other related tools (the script qdp and the documentation system techgdoc) is
known as the wasora suite, namely

• wasora: the main code that solves general mathematical problems and loads one or more plugins

• skel: template to write a wasora plugin from scratch

• besssugo: a graphical visualization plugin for wasora

• milonga: core-level neutronic code that solves neutron diffusion or transport on unstructured grids

• fino: plugin to solve general partial differential equations using the finite element method

• waspy: plugin to execute python code within wasora

• qdp: a shell script to generate scientific plots from the commandline

• techgdoc: a set of scripts and macros that help to create, modify and track technical documents

These codes share a common framework (the wasora framework) and are written in the same spirit.
Many of them make extensive use of other free libraries (e.g. PETSc, SLEPc, SDL). They are hosted on
Bitbucket using a distributed version control system (either Git or Mercurial). The list of codes can be
accessed at

https://bitbucket.org/wasora

Besides the repository with the code itself, each project contains a wiki and an issue tracker. A public
mailing list is available at wasora@talador.com.ar. Contributions are welcome by first forking the tree
and then sending back a pull request.

There exist other plugins that involve private know-how and which are meant to be used within a
certain company (i.e. not to be distributed). These plugins (for example pcex and dynetz) are considered
private (not privative) and are not part of the wasora suite.

2 Design basis overview

The code was designed according to how a computational code that should serve as an aid to a cognizant
engineer such as wasora was supposed to behave, from the original author’s humble point of view. The
original development began before he actually read Eric Raymond’s 17 rules of UNIX Philosophy (ap-
pendix C), but it turned out that they were more or less implicitly followed. This section briefly reviews
some design decisions that affect how wasora works.

1b1ed79c5651 6

https://bitbucket.org/wasora/wasora
https://bitbucket.org/wasora/skel
https://bitbucket.org/wasora/besssugo
https://bitbucket.org/wasora/milonga
https://bitbucket.org/wasora/fino
https://bitbucket.org/wasora/waspy
https://bitbucket.org/wasora/qdp
https://bitbucket.org/wasora/techgdoc
https://bitbucket.org/wasora
wasora@talador.com.ar

CIT-WSWA-TD-9E3D-A

2.1 Types of problems

Wasora performs a series of mathematical and logical algorithms in order to solve the equations that model
real physical systems of interest. These equations include both static and transient problems. Static prob-
lems may involve many steps, for example, to solve a non-linear problem by performing several iterations.
Transient problems may involve one or more static computations at t = 0, such as in the case suitable
initial conditions are the result of non-linear equations. The number of static steps is given by the special
variable static_steps. After the static computation, the time t advances either by explicitly setting a time
step dt (which may change with t) or by allowing the DAE solver to choose an appropriate value for dt. The
computation (either static or transient) ends when t exceeds a special variable called end_time or when
the special variable done is set to a value different from zero.

Single-step static problems can be used to compute a simple mathematical expression such as

f(x) := (x+1)*x-5
PRINT %.7f root(f(x),x,0,5)

Lisࢢng 3: roots.was

or to solve a more complex but still one-step problem

solves the system of equations
y = exp(−f (z)*x)
x = integral (f (z ’) , z ’ , 0 , z)
2 = x+y+z
where f (z) i s a point−wise defined function

FUNCTION f(z) INTERPOLATION akima DATA {
0 0
0.2 0.2
0.5 0.1
0.7 0.8
1 0.5
}

VAR z'
SOLVE 3 UNKNOWNS x y z METHOD hybrids RESIDUALS {
y-exp(-f(z)*x)
integral(f(z'),z',0,z)-x
x+y+z-2
}

PRINT "␣x␣=␣" %f x
PRINT "␣y␣=␣" %f y
PRINT "␣z␣=␣" %f z

Lisࢢng 4: solve.was

or to evaluate a function at several points. For example, the following function f(x) gives only prime
numbers when x is an integer:

f(x) := x^2 - x + 41
PRINT_FUNCTION f MIN 1 MAX 40 STEP 1 FORMAT %g

Lisࢢng 5: allprimes.was

Multi-step static problems are employed to solve iterative problems. For example, the Fibonacci se-
quence may be generated iteratively with the following input:

static_steps = 25

IF step_static=1|step_static=2
f_n = 1
f_nminus1 = 1
f_nminus2 = 1
ELSE
f_n = f_nminus1 + f_nminus2
f_nminus2 = f_nminus1
f_nminus1 = f_n

1b1ed79c5651 7

CIT-WSWA-TD-9E3D-A

ENDIF

PRINT %g step_static f_n

Lisࢢng 6: fibo-iteraࢢve.was

Transient problems may advance time either by explicitly setting the special variable dt

end_time = 2*pi
dt = 1/10

y = lag(heaviside(t-1), 1)
z = random_gauss(0, sqrt(2)/10)

PRINT t sin(t) cos(t) y z HEADER

Lisࢢng 7: tran.was

or by writing a DAE equation and letting wasora (actually IDA) take care of handling the time steps:

PHASE_SPACE x # DAE problem with one variable
end_time = 1 # running time
x_0 = 1 # in i t ia l condition
x_dot .= -x # differential equation
PRINT t x HEADER

Lisࢢng 8: exp.was

Engineers usually need to analyze how systems respond to changes in the input parameters.Therefore,
wasora provides a convenient way to perform parametric computations by solving the same problem
several times with different input parameters. Wasora can sweep a multidimensional parameter space in a
certain pre-defined way (for example by sampling parameters using a quasi-random number sequence to
perform a parametric computation) or by employing a certain recipe in order to find extrema of a scalar
function of the parameters (for example using conjugate gradients to minimize a cost function).This sweep
is obtained by performing an outer iterative loop, which ends either when the parameter space is exhausted
by reaching the specified number of outer steps or by convergence of the minimization algorithm.

For instance, the logistic map xn = r ·xn−1(1−xn−1) can be studied by solving it for different values
of the parameter r sampling a certain range with a quasi-random number sequence:

compute the log i s t i c map for a range of the parameter r
DEFAULT_ARGUMENT_VALUE 1 2.6 # by default compute r in [2 .6 :4]
DEFAULT_ARGUMENT_VALUE 2 4

sweep the parameter r between the arguments given in the commandline
sample 1000 values from a halton quasi−random number sequence
PARAMETRIC r MIN $1 MAX $2 OUTER_STEPS 1000 TYPE halton

static_steps = 800 # for each r compute 800 steps
x_init = 1/2 # start at x = 0.5
x = r*x*(1-x) # apply the map

only print x for the last 50 steps to obtain the asymptotic behaviour
IF step_static>static_steps-50
PRINT %g r x
ENDIF

Lisࢢng 9: logisࢢc.was

Instead of sweeping the parameter space, one may want wasora to automatically find the best suitable
value for one or more parameters following a certain recipe (e.g. conjugate gradients or Nelder & Mead
simple method). The figure to be minimized can be any result computed by wasora, including the result
of solving a system of non-linear DAE equations. The following example computes what is the needed
reactivity step in order to increase the flux level of a nuclear reactor exactly 2% in 20 seconds:

1b1ed79c5651 8

CIT-WSWA-TD-9E3D-A

nprec = 6 # six groups of neutron precursors
VECTOR c SIZE nprec
VECTOR lambda SIZE nprec DATA 1/7.8e1 1/3.1e1 1/8.5 1/3.2 1/7.1e-1 1/2.5e-1
VECTOR beta SIZE nprec DATA 2.6e-4 1.5e-3 1.4e-3 3.0e-3 1.0e-3 2.3e-4
CONST lambda Lambda beta Beta
Lambda = 1e-3
Beta = vecsum(beta)

PHASE_SPACE phi c rho

t_insertion = 1 # reactivity insertion time
end_time = 20 + t_insertion # target time
min_dt = 0.1 # fix min and max dt so the DAE
max_dt = 0.1 # solver doesn ’ t choose dt by himself
target_phi = 1.02 # target level
rhostep = 1e-5 # in i t ia l step

in i t ia l conditions for the DAE system
rho_0 = 0
phi_0 = 1
c_0(i) = phi_0 * beta(i)/(Lambda*lambda(i))

DAE system (reactor point kinetics)
rho .= rhostep * heaviside(t-t_insertion)
phi_dot .= (rho - Beta)/Lambda * phi + sum(lambda(i)*c(i), i, 1, nprec)
c_dot(i) .= beta(i)/Lambda * phi - lambda(i)*c(i)

Record the time history of a variable as a function of time .
HISTORY phi flux

the function to be minimized is the quadratic deviation
of the flux level with respect to the target at t = end_time
f(rhostep) := (target_phi - flux(end_time))^2
MINIMIZE f METHOD nmsimplex STEP 1e-5 TOL 1e-10

write some information
IF done
PRINT FILE_PATH flux-iterations.dat TEXT "\#␣" %g step_outer %e rhostep f(rhostep)

ENDIF
IF done_outer
PRINT t phi HEADER

ENDIF

Lisࢢng 10: targe�lux.was

A particular case of multidimensional minimization problems is that of parameter fitting. For example,
the following input uses the binding energy per nucleon as a function of N and Z to fit Weizsäcker’s
semi-empirical mass formula to predict the mass of isotopes [4]:

B

A
(A,Z) ≈ a1 − a2 ·A−1/3 − a3 · Z(Z − 1)A−4/3 − a4 · (A− 2Z)2A−2 + a5 · δ ·A−γ

where

δ =

+1 for even-A and even-Z
0 for odd-A
−1 for even-A and odd-Z

a1 = 1 # in i t ia l guess
a2 = 1
a3 = 1
a4 = 1
a5 = 1
gamma = 1.5

the functional form of weiszäcker ’ s formula
delta(A,Z) := if(is_odd(A), 0, if(is_even(Z), +1, -1))
W(A,Z) := a1 - a2*A^(-1/3) - a3*Z*(Z-1)*A^(-4/3) - a4*(A-2*Z)^2*A^(-2) + delta(A,Z) * a5*A^(-gamma)

FUNCTION D(A,Z) FILE_PATH binding-2012.dat # the experimental data

1b1ed79c5651 9

CIT-WSWA-TD-9E3D-A

FIT W TO D VIA a1 a2 a3 a4 a5 gamma # f i t W to D using the six parameters

IF done_outer # write the result !
PRINT "a1␣=␣" %.3f a1 "MeV"
PRINT "a2␣=␣" %.3f a2 "MeV"
PRINT "a3␣=␣" %.3f a3 "MeV"
PRINT "a4␣=␣" %.3f a4 "MeV"
PRINT "a5␣=␣" %.3f a5 "MeV"
PRINT "γ␣␣=␣" %.3f gamma
PRINT_FUNCTION D W D(A,Z)-W(A,Z) FILE_PATH binding-fit.dat
ENDIF

Lisࢢng 11: fsm.was

To summarize, wasora solves one or more outer iterations (parametric, minimization or fit), each one
consisting of

1. one or more static steps, up to static_steps

2. zero or more transient steps, until t > end_time or done ̸= 0 (one step for each t)

2.2 Input

As already seen in the examples reviewed in the previous section, wasora reads a plain-text input file
containing keywords that define the problem to be solved. There are some basic rules that wasora follows,
namely

1. the problem definition and its associated math should be entered as naturally as possible,

2. whenever a numerical value is expected, any valid algebraic expression may be entered,

3. arguments should not be position-dependent, they have to be preceded by a self-explanatory key-
word, and

4. simple problems ought to need simple inputs.

Input files contain English-based keywords that are either definitions (such as PHASE_SPACE) or instruc-
tions (such as PRINT). These keywords take zero or more arguments, usually by means of other secondary
keywords. For example, when defining a matrix one may explicitly state the number of rows and columns
using the secondary keywords ROWS and COLS of the primary keyword MATRIX:

MATRIX A ROWS 3 COLS 4

Some other mathematical tools may give a keyword or an API call with three arguments: a name, a
number of rows and a number of columns that should be given in a certain order and one has to refer
to the manual to check which one is the appropriate. This behavior in non-compact³ and in principle is
deliberately avoided by the wasora design.

The input file is parsed by wasora at run-time. The following example illustrates and annotates some
features of the parser:

this f i l e shows some particularit ies about the wasora parser

there are primary and secondary keywords , in this case
PRINT is the primary keyword and TEXT is the secondary , which
takes a single token as an argument , in this case the word hello
PRINT TEXT hello

³Compactness is the property that a design can fit inside a human being’s head. A good practical test for compactness is this:
Does an experienced user normally need a manual? If not, then the design (or at least the subset of it that covers normal use) is
compact. See section “Compactness and Orthogonality” in chapter 4 of reference [5]

1b1ed79c5651 10

CIT-WSWA-TD-9E3D-A

i f the text to be printed contains a space , double quotes should be used :
PRINT TEXT "hello␣world"
i f the text to be printed contains quotes , they should be escaped :
PRINT TEXT "hello␣\"world\""

i t does not matter i f the argument is a string or an expression , whenever
a certain argument is expected , either spaces are to be remove or
the arguments should be enclosed in double quotes :
PRINT 1 + 1 # the parser will read three different keywords
PRINT "1␣+␣1" # this i s the correct way to compute 1+1
PRINT 1+1 # this line also works becasue there are no spaces

you already guessed it , to insert comments, use the hash ‘# ‘ character
PRINT sqrt(2)/2 # comments may appear in the same line as a keyword

in case a hash character i s expected to appear l i t e ra l ly in an argument
i t should be escaped to prevent wasora to ignore the rest of the line :
PRINT TEXT "\#␣this␣is␣a␣commented␣output␣line" # this i s a wasora comment

secondary keywords and/ or arguments can be given in different lines either by
a . using a continuation marker composed of a single backslash :
PRINT sqrt(2)/2 \

sin(pi/4) \
cos(pi/4)

b . enclosing the lines within brackets ‘ { ‘ and ‘ } ‘
PRINT sqrt(2)/2 {

sin(pi/4)
comments may appear inside brackets (but not within continued lines)
cos(pi/4) }

arguments may be given in the command line after the input f i l e
they are referred to as $1 , $2 , etc . and are l i t e ra l ly used
i . e . they can appear as arguments or even keywords
i f a $n expressions appears in the input f i l e but less than n
arguments were provided , wasora complains
this behavior can be avoided by giving a default value :
DEFAULT_ARGUMENT_VALUE 1 world
DEFAULT_ARGUMENT_VALUE 2 2

PRINT TEXT "hello␣$1"
PRINT sqrt($2)/$2

try executing this input as
$ wasora parser .was WORLD
$ wasora parser .was WORLD 3

i f a l i t e ra l dollar sign is part of an argument , quote i t with a backslash :
PRINT TEXT "argument␣\$1␣is␣$1"

Lisࢢng 12: parser.was

In general, the term table is avoided throughout wasora. Functions are functions and vectors are vec-
tors. Functions may be algebraically-defined and then evaluated to construct a vector whose components
can be copied into a shared-memory object. Or a function can be defined point-wise from a set of values
given by a vector (maybe read from a shared-memory object) and then interpolated:

read the mesh ’square .msh’ and name i t ”square”
MESH NAME square FILE_PATH square.msh DIMENSIONS 2

define a function defined over the mesh whose independent values
are given by the contents of the vector ”in” (the size i s
automatically computed from the number of ce l l s in the mesh)
to define f at the nodes , replace CELLS with NODES
FUNCTION f(x,y) MESH square CELLS VECTOR in

f i l l in the values of the vector ” in” (probably by reading them
from a f i l e or from shared memory)
in(i) = sqrt(i)

define a vector that will hold a vector of another function over
the mesh. The special variable ce l l s (nodes) contains the number
of ce l l s (nodes) of the last mesh read .
VECTOR out SIZE cells
you can use the vecsize () function over ”in” to achieve the same result
VECTOR out SIZE vecsize (in)

do some computing here

1b1ed79c5651 11

CIT-WSWA-TD-9E3D-A

PRINT %g nodes ce l l s elements
PRINT_FUNCTION f
g(x,y) := x^2

f i l l in the vector ”out” with the function g(x ,y)
MESH_FILL_VECTOR MESH square CELLS VECTOR out FUNCTION g
alternatively one may use an expression of x , y and z
MESH_FILL_VECTOR MESH square CELLS VECTOR out EXPRESSION x^2

you can now write out to a shared memory object
PRINT_VECTOR out

Lisࢢng 13: mesh-fun-vec.was

Again, functions are functions and vectors are vectors. This is one loose example of the application
of the rule of representation and the rule of least surprise, which are two of the seventeen rules of UNIX
Philosophy listed in appendix C.

2.3 Output

The main design decision in wasora regarding output is

1. output is completely defined by the user

In particular, if no instructions about what to write as the computation output, nothing is written
(rule of silence). In principle, output refers to plain-text output including both the terminal (which may
be redirected to a file nevertheless) and ASCII files. But it also refers to binary files and to POSIX shared-
memory objects and semaphores, which wasora is able to write to (and of course read from also).

This feature is actually a thorough implementation of the rule of economy. Back in the seventies, when
memory was scarce and CPU time expensive, it made sense in scientific/engineering software to compute
and output as many results as possible in a single run. Nowadays (mid 2010s), most of the every-day
computations we engineers have to perform take just a few seconds. And as indeed our cost far exceeds
current CPU time, it now makes sense to compute just what the user needs instead of having to find a
needle in a haystack (i.e. post-processing a fixed-format output file). Should another result be needed,
another PRINT instruction is added and wasora is re-run to obtain the desired figure. It will be exactly in
the expected location.

Besides the fact that output is user defined, some instructions will actually write information in a pre-
defined way. For example, the instruction PRINT_FUNCTION writes the values that one or more functions
take at certain points of the independent variables as an ASCII representation of numbers in a column-wise
function—first the independent variables and then the dependent one (or ones if the user asked for more
than one function). In this regard, attention was paid to the rule of composition, the rule of separation and
the rule of parsimony. If the user wants to plot an interpolated two-dimensional function of a certain data
set, she would be better off by feeding the ASCII output generated by wasora into a dedicated plotting
program such as Gnuplot, Pyxplot or Paraview instead of trying to use whatever lame plotting capabilities
that may be coded into wasora.

define a two−dimensional scalar f ie ld
FUNCTION g(x,y) INTERPOLATION rectangle DATA {
0 0 1-1
0 1 1-0.5
0 2 1
1 0 1
1 1 1+0.25
1 2 1
2 0 1-0.25
2 1 1+0.25
2 2 1+0.5
}

print g(x ,y) at the selected range to the standard output
PRINT_FUNCTION g MIN 0 0 MAX 2 2 STEP 0.05 0.05

1b1ed79c5651 12

CIT-WSWA-TD-9E3D-A

Lisࢢng 14: interp2d.was

2.4 Implementation

Wasora is implemented as an executable that reads one plain-text input file (which may further include
other files) and executes a set of instructions. Essentially it is best suited for execution in GNU/Linux, as
wasora was born and designed within the UNIX philosophy (see section 2.5 below). The usage of wasora
in non-UNIX and/or non-free environments is highly discouraged. It is really worth any amount of time
and effort to get away from Windows if you are doing computational science.

I first started coding it in C [6] (see appendix B) because it is the language I feel most comfortable with.
But then I stumbled upon the concept of glue layer [5] and everything started to add up. In effect, wasora
is a glue layer between the user at a high level and a bunch of low-level numerical algorithms, most of
them from the GNU Scientific Library [2] and the SUNDIALS IDA library [3]. It is therefore appropriate
to use C as the programming language. Besides, wasora makes extensive use of complex data structures
such as linked lists, hash tables and function pointers in order to reduce the complexity of the algorithms
involved (rule of representation). Again, the C Programming Language is the appropriate choice for this
endeavor because for example Fortran was not designed to manage complex data structures and does not
provide flexible mechanisms for handling such added complexity (or at least not in a thorough and native
way). On the other hand C++ adds much more complexity than the threshold needed without a net gain.

The development originally started in 2009 as a re-write of some real-time fuzzy-logic control software
I wrote for my undergraduate and masters’ thesis [7, 8] in my free time. Shortly after, I realized that the
code was suitable for the usage in my everyday chores at the company TECNA working as a contractor
for the completion of the Atucha II Nuclear Power Plant. Further development was continued both at
TECNA and in my free time, with other people contributing with bug reports, ideas for enhancements and
actual code. First versions (series 0.1.x) used Subversion as the version control system. Then we switched
to Bazaar for the 0.2.x versions to finally converge to Mercurial since the 0.3.x series. Current version (as
of 2016) is 0.4.x.

As knowing exactly which version of the code is being used to run a certain computation, versions in
wasora changewith each commit to the control version system. So the x above increases with each commit,
including merges. Of course, when using distributed control version systems one cannot guarantee that
there are no independent commits that result in the same version number with the proposed scheme.
However, by hosting the repository in Bitbucket we can minimize the issues of duplicate commits, that
will appear only in private forks. Nevertheless, not only does wasora report the major-minor-revision
version number but it also reports the actual SHA1 hash of the changeset used to compile the binary.
Moreover, if the Mercurial working tree contains uncommitted changes, a +∆⁴ is appended to the hash
string. So, if wasora is called with no arguments, it reports the version, the hash and the date of the last
commit:

$ wasora
wasora 0.4.47 (c6f81e76e3f9 + Δ 2015-12-30 15:23 -0300)
wasora's an advanced suite for optimization & reactor analysis
$

The ∆ shows that this particular version of wasora was compiled from a tree that has some modifica-
tions with respect to the last commit. After committing the changes and calling the executable with the -v
(or --version) argument in the command line, we get rid of the ∆ and obtain further details about the
binary executable:

$ wasora -v
wasora 0.4.48 (aa1175af1ed6 2016-01-06 10:05 -0300)

⁴This glyph can be seen only in operating systems with native UTF8 support.

1b1ed79c5651 13

https://bitbucket.org/wasora/wasora

CIT-WSWA-TD-9E3D-A

wasora's an advanced suite for optimization & reactor analysis

rev hash aa1175af1ed6c6d34c57cb4cb476f0e3b17d8bbd
last commit on 2016-01-06 10:05 -0300 (rev 202)

compiled on 2016-01-06 10:05:15 by gtheler@frink (linux-gnu x86_64)
with gcc (Debian 4.9.2-10) 4.9.2 using -O2 and linked against
GNU Scientific Library version 1.16
SUNDIALs Library version 2.5.0
GNU Readline version 6.3

wasora is copyright (C) 2009-2016 jeremy theler
licensed under GNU GPL version 3 or later.
wasora is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
$

2.5 Wasora and the UNIX philosophy

As can be seen in the detailed output of wasora -v, wasora is linked against three libraries. The first is the
GNU Scientific Library, which implements most of the numerical method used to solve the mathematical
problem defined in the input file (function interpolation, integration, differentiation, root finding, data
fitting, etc.). The second library is SUNDIALs IDA and is optional. It is used to solve differential-algebraic
equations (referred to as DAEs, i.e. a generalization of ordinary differential equations or ODEs), which
is a very useful feature wasora provides and may be the central issue for many users. The third one is
also optional, and is the GNU Readline library which is used for a debugger-like interactive interface that
wasora can provide for transient problems. A very basic scheme of breakpoints and watches can be used
to track the evolution of complex time-dependent problems, normally needed only by advanced users.

Although it may be difficult for new users to get all the needed libraries compiled and installed, the
usage of third-party libraries—especially free and open high-quality math libraries designed by mathe-
maticians and coded by computer scientists— instead of hard-coding particular poorly-coded routines into
the source code is one of the most important aspects of the UNIX philosophy [5], in which wasora was first
born and conceptually designed. In effect, appendix C summarizes the seventeen rules of UNIX philosophy
compiled by Raymond. Some of them were deliberately used when programming wasora, but some others
were just implicit consequences of the programming style used in wasora.

3 License

Wasora is free software—both as in free speech and as in free beer, although the first meaning is far more
important than the second one—and is distributed under the terms of the GNU General Public License
version 3. In words of the Free Software Foundation,

Nobody should be restricted by the software they use. There are four freedoms that every user
should have:

0. the freedom to use the software for any purpose,
1. the freedom to change the software to suit your needs,
2. the freedom to share the software with your friends and neighbors, and
3. the freedom to share the changes you make.

When a program offers users all of these freedoms, we call it free software.

1b1ed79c5651 14

CIT-WSWA-TD-9E3D-A

Developers who write software can release it under the terms of the GNU GPL. When they
do, it will be free software and stay free software, no matter who changes or distributes the
program. We call this copyleft: the software is copyrighted, but instead of using those rights
to restrict users like proprietary software does, we use them to ensure that every user has
freedom.

Not only does wasora provide all the four basic freedoms to the software user, but it also encourages her
to study, understand, analyze and hack it. And of course, to share the associated discoveries, suggestions,
improvements and fixed bugs under the terms of the GNU GPL—especially with wasora’s original author.
To sum up:

Wasora is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
Wasora is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty ofMERCHANTABILITY or FITNESS FORA PARTICULAR
PURPOSE. See the GNU General Public License for more details.

References

[1] Edward N. Lorenz. “Deterministic non-periodic flow”. In: Journal of the Atmospheric Sciences 20
(1963), pp. 130–141.

[2] M. Galassi et al. GNU Scientific Library Reference Manual. 3rd. isbn: 0954612078.
[3] A. C. Hindmarsh et al. “SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers”.

In: ACM Transactions on Mathematical Software 31.3 (2005), pp. 363–396.
[4] C. F. von Weizsäcker. “Zur Theorie der Kernmasse”. German. In: Zeitschrift für Physik 96 (1935),

pp. 431–458.
[5] Eric S. Raymond. The Art of UNIX Programming. Addison-Wesley, 2003.
[6] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. 2nd. Prentice Hall, 1988.
[7] GermánTheler. Controladores basados en lógica difusa y loops de convección natural caóticos. Spanish.

Proyecto Integrador de la Carrera de Ingeniería Nuclear, Instituto Balseiro. 2007.
[8] GermánTheler.Análisis no lineal de inestabilidades en el problema acoplado termohidráulico-neutrónico.

Spanish. Tesis de la Carrera de Maestría en Ingeniería, Instituto Balseiro. 2008.
[9] G. Theler and F. J. Bonetto. “On the stability of the point reactor kinetics equations”. In: Nuclear

Engineering and Design 240.6 (June 2010), pp. 1443–1449.
[10] Donald E. Knuth. The Art of Computer Programming. Vol. 1–4. Addison-Wesley, 1968–2006.

1b1ed79c5651 15

CIT-WSWA-TD-9E3D-A

A How to refer to wasora

Wasora means “Wasora’s an Advanced Suite for Optimization & Reactor Analysis”, which is of course a
recursive acronym as in “GNU’s Not Unix” and in “to understand recursion one has first to understand re-
cursion.”The code name should always be written using lowercase letters, except when it starts a sentence.
In such case, the ‘W’ should be capitalized. The expression “WASORA” ought to be avoided because

1. words written in uppercase letters ANNOY READERS

2. names written in uppercase letters remind of old-fashioned inflexible poorly-coded Fortran-based
engineering programs

A.1 Pronunciation

The name is originally Spanish, so it should be pronounced /wɒ'sɔɹɑ/ although the English variation
/wɒ'soʊɹɑ/ and even the German version /vɒ'sɔɹɑ/ are accepted.

A.2 Logo and graphics

The official wasora logotype is shown in figure 1a. The original is a vector image in SVG format that can
be found in the doc subdirectory of the wasora repository 1b. Usage in the form of other vector formats
(e.g. PDF or EPS) is allowed. Conversion to lossless-compressed bitmap formats (e.g. PNG or TIFF) is dis-
couraged but may be needed if the media format does not support vector graphics (note that HTML does
support plain SVG). Conversion to compressed bitmap formats with pixel-level degradation (i.e. JPEG) is
forbidden.

The logo is distributed under the terms of the GNU GPLv3. It may be freely modified as long as the
distribution satifies the license and the author of the modifications claims copyright on the changes only.

(a) (b)

Figure 1: The wasora logotype (a) available in the doc subdirectory of the wasora repository (b)

1b1ed79c5651 16

https://bitbucket.org/wasora/wasora

CIT-WSWA-TD-9E3D-A

B Development history

It was at the movies when I first heard about dynamical systems, non-linear equations and chaos theory.
The year was 1993, I was ten years old and the movie was Jurassic Park. Dr. Ian Malcolm (the character
played by Jeff Goldblum) explained sensitivity to initial conditions in a memorable scene, which is worth
to watch again and again (figure 2). Since then, the fact that tiny variations may lead to unexpected results
has always fascinated me. During high school I attended a very interesting course on fractals and chaos
that made me think further about complexity and its mathematical description. Nevertheless, not until
college was I able to really model and solve the differential equations that give rise to chaotic behavior.

Figure 2: Dr. Ian Malcolm (Jeff Goldblum) explaining the concept of sensiࢢvity to iniࢢal condiࢢons in chaoࢢc systems in the 1993
movie Jurassic Park.

In fact, initial-value ordinary differential equations arise in a great variety of subjects in science and
engineering. Classical mechanics, chemical kinetics, structural dynamics, heat transfer analysis and dy-
namical systems, amongst other disciplines, heavily rely on equations of the form

ẋ = F(x)

During my years of undergraduate student, whenever I faced these kind of equations, I had to choose
one of the following three options:

1. program an ad-hoc numerical method such as Euler or Runge-Kutta, matching the requirements of
the system of equations to solve

2. use a standard numerical library such as the GNU Scientific Libary and code the equations to solve
into a C program (or maybe in Python)

3. use a high-level system such as Octave, Maxima, or some non-free (and worse) programs⁵

Of course, each option had its pros and its cons. But none provided the combination of advantages I
was looking for, namely flexibility (option one), efficiency (option two) and reduced input work (partially
given by option three). Back in those days I ended up wandering between options one and two, depending
on the type of problem I had to solve. However, even though one can with some effort make the code read
some parameters from a text file, any other drastic change usually requires a modification in the source
code—some times involving a substantial amount of work—and a further recompilation of the code. This
was what I most disliked about this way of working, but I could nevertheless live with it.

⁵I will not name such privative programs so I do not encourage new generations to even know their name. Non-free software,
especially scientific and academic software, is evil. Avoid it at any cost.

1b1ed79c5651 17

CIT-WSWA-TD-9E3D-A

Regardless of this situation, during my last year of Nuclear Engineering, I ran into a nuclear reactor
model that especially called my attention and forced me to re-think the ODE-solving problem issue. The
model was implemented in a certain non-free software which I had been told was the actual panacea
for the engineering community—and yet I was using for the very first time. When I opened the file and
took a look at something that I was told was a graphical representation of the model, I was not able to
understand any of the several screens the model contained. Afterward, somebody explained to me that a
set of unintelligible blocks that were somehow interconnected in a rather cumbersome way was how the
reactor power was computed. I wish I had a copy of the screen in order to illustrate how shocking it was
to me.

The equation represented by what seemed to me as a complex topology problem was as simple as [9]

dϕ

dt
=

ρ− β

Λ
+

I∑
i=1

λi · ci

My first reaction was to ask why someone would prefer such a cumbersome representation instead of
writing something like

phi_dot .= (rho - beta)/Lambda * phi + sum(lambda(i)*c(i), i, 1, I)

in a plain-text file and let a computer program parse and solve it. I do not remember what the teacher’s
answer was, and I still do not understand why would somebody prefer to solve a very simple differential
equation by drawing blocks and connecting them with a mouse with no mathematical sense whatsoever.

That morning I realized that in order to transform a user-defined string representing a differential
equation into something that anODE-solving library such as the GNU Scientific Librarywould understand,
only a good algebraic parser plus some simple interface routines were needed. The following two years
were very time-consuming for me, so I was not able to undertake such a project. Nevertheless, eventually I
earned a Master’s Degree in 2008 [8] and afterward my focus shifted away from academic projects into the
nuclear industry and some gaps of time for freelance programming popped up. I started to write wasora
from scratch in my free time, and one of the first features I included was an adaptation of a small algebraic
parser posted online⁶ (which should be replaced by a more efficient tree-based parser), freely available
under the Creative Commons License. Before I became aware, I was very close to arriving at a tool that
would have met my needs when I was an engineering student. Moreover, a tool like this one would have
been extremely helpful during the course on non-linear dynamics I took back in 1999. With some luck, it
would also meet somebody else’s needs as well. This is how wasora entered into the scene.

From this point onward, the development continued as explained in section 2.4 in page 13.

⁶http://stackoverflow.com/questions/1384811/code-golf-mathematical-expression-evaluator-that-respects-pemdas

1b1ed79c5651 18

http://stackoverflow.com/questions/1384811/code-golf-mathematical-expression-evaluator-that-respects-pemdas

CIT-WSWA-TD-9E3D-A

C Raymond’s 17 rules of UNIX philosophy

These are briefly Eric Raymond’s 17 rules of UNIX philosophy as discussed in “The Art of UNIX Program-
ming” [5], which of course is a word game to Donald Knuth’s “The Art of Computer Programming” [10].
Both references are a great source of inspiration for wasora in particular and for my professional life in
general.

Rule of Modularity Developers should build a program out of simple parts connected by well defined
interfaces, so problems are local, and parts of the program can be replaced in future versions to
support new features. This rule aims to save time on debugging code that is complex, long, and
unreadable.

Rule of Clarity Developers should write programs as if the most important communication is to the de-
veloper, including themself, who will read and maintain the program rather than the computer. This
rule aims to make code readable and comprehensible for whoever works on the code in future.

Rule of Composition Developers should write programs that can communicate easily with other pro-
grams. This rule aims to allow developers to break down projects into small, simple programs rather
than overly complex monolithic programs.

Rule of Separation Developers should separate the mechanisms of the programs from the policies of the
programs; one method is to divide a program into a front-end interface and back-end engine that
interface communicates with. This rule aims to let policies be changed without destabilizing mech-
anisms and consequently reducing the number of bugs.

Rule of Simplicity Developers should design for simplicity by looking for ways to break up program sys-
tems into small, straightforward cooperating pieces. This rule aims to discourage developers’ affec-
tion for writing “intricate and beautiful complexities” that are in reality bug prone programs.

Rule of Parsimony Developers should avoid writing big programs. This rule aims to prevent overinvest-
ment of development time in failed or suboptimal approaches caused by the owners of the program’s
reluctance to throw away visibly large pieces of work. Smaller programs are not only easier to op-
timize and maintain; they are easier to delete when deprecated.

Rule of Transparency Developers should design for visibility and discoverability by writing in a way that
their thought process can lucidly be seen by future developersworking on the project and using input
and output formats that make it easy to identify valid input and correct output. This rule aims to
reduce debugging time and extend the lifespan of programs.

Rule of Robustness Developers should design robust programs by designing for transparency and discov-
erability, because code that is easy to understand is easier to stress test for unexpected conditions
that may not be foreseeable in complex programs. This rule aims to help developers build robust,
reliable products.

Rule of Representation Developers should choose to make data more complicated rather than the proce-
dural logic of the program when faced with the choice, because it is easier for humans to understand
complex data compared with complex logic. This rule aims to make programs more readable for any
developer working on the project, which allows the program to be maintained.

Rule of Least Surprise Developers should design programs that build on top of the potential users’ ex-
pected knowledge; for example, ‘+’ should always mean addition in a calculator program. This rule
aims to encourage developers to build intuitive products that are easy to use.

1b1ed79c5651 19

CIT-WSWA-TD-9E3D-A

Rule of Silence Developers should design programs so that they do not print unnecessary output. This
rule aims to allow other programs and developers to pick out the information they need from a
program’s output without having to parse verbosity.

Rule of Repair Developers should design programs that fail in a manner that is easy to localize and diag-
nose or in other words “fail noisily”. This rule aims to prevent incorrect output from a program from
becoming an input and corrupting the output of other code undetected.

Rule of Economy Developers should value developer time over machine time, because machine cycles to-
day are relatively inexpensive compared to prices in the 1970s.This rule aims to reduce development
costs of projects.

Rule of Generation Developers should avoid writing code by hand and instead write abstract high-level
programs that generate code. This rule aims to reduce human errors and save time.

Rule of Optimization Developers should prototype software before polishing it. This rule aims to prevent
developers from spending too much time for marginal gains.

Rule of Diversity Developers should design their programs to be flexible and open.This rule aims to make
programs flexible, allowing them to be used in other ways than their developers intended.

Rule of Extensibility Developers should design for the future bymaking their protocols extensible, allow-
ing for easy plugins without modification to the program’s architecture by other developers, noting
the version of the program, and more. This rule aims to extend the lifespan and enhance the utility
of the code the developer writes.

1b1ed79c5651 20

CIT-WSWA-TD-9E3D-A

D Examples execution and results

D.1 The Lorenz system

Edward Lorenz introduced the nowadays-famous dynamical system in his seminal 1963 paper Determin-
istic Nonperiodic Flow

ẋ = σ (y − x)

ẏ = x (r − z)− y

ż = xy − bz

Wasora can be used to solve it by writing the equations in the input file as naturally as possible, as
illustrated in the input file that follows.

lorenz ’ seminal dynamical system solved with wasora
PHASE_SPACE x y z
end_time = 40

parameters that lead to chaos
sigma = 10
r = 28
b = 8/3

in i t ia l conditions
x_0 = -11
y_0 = -16
z_0 = 22.5

the dynamical system (note the dots before the ’= ’ sign)
x_dot .= sigma*(y - x)
y_dot .= x*(r - z) - y
z_dot .= x*y - b*z

write the solution to the standard output
PRINT t x y z

Lisࢢng 15: lorenz.was

$ wasora lorenz.was > lorenz.dat
$ head lorenz.dat
0.000000e+00 -1.100000e+01 -1.600000e+01 2.250000e+01
2.384186e-07 -1.100001e+01 -1.600001e+01 2.250003e+01
4.768372e-07 -1.100002e+01 -1.600002e+01 2.250006e+01
9.536743e-07 -1.100005e+01 -1.600004e+01 2.250013e+01
1.907349e-06 -1.100010e+01 -1.600008e+01 2.250024e+01
3.814697e-06 -1.100019e+01 -1.600017e+01 2.250047e+01
7.629395e-06 -1.100038e+01 -1.600034e+01 2.250091e+01
1.525879e-05 -1.100076e+01 -1.600068e+01 2.250179e+01
3.051758e-05 -1.100153e+01 -1.600136e+01 2.250356e+01
6.103516e-05 -1.100305e+01 -1.600271e+01 2.250708e+01
$ tail lorenz.dat
3.996319e+01 9.358722e+00 1.541198e+00 3.568235e+01
3.996745e+01 9.025737e+00 1.240715e+00 3.533280e+01
3.997172e+01 8.694644e+00 9.654912e-01 3.497443e+01
3.997599e+01 8.366400e+00 7.146306e-01 3.460905e+01
3.998025e+01 8.041884e+00 4.871387e-01 3.423833e+01
3.998452e+01 7.721893e+00 2.819431e-01 3.386374e+01
3.998879e+01 7.407148e+00 9.791065e-02 3.348664e+01
3.999306e+01 7.098288e+00 -6.613236e-02 3.310819e+01
3.999732e+01 6.795877e+00 -2.113808e-01 3.272946e+01
4.000159e+01 6.500405e+00 -3.390346e-01 3.235134e+01
$ gnuplot -e "set terminal pdf; set output 'lorenz.pdf'; set ticslevel 0; splot 'lorenz.dat' u 2:3:4 w l ti ''"
$

1b1ed79c5651 21

https://en.wikipedia.org/wiki/Edward_Norton_Lorenz
https://en.wikipedia.org/wiki/Lorenz_system
http://dx.doi.org/10.1175/1520-0469(1963)020\char "003C\relax {}0130:DNF\char "003E\relax {}2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020\char "003C\relax {}0130:DNF\char "003E\relax {}2.0.CO;2

CIT-WSWA-TD-9E3D-A

-20 -15 -10 -5 0 5 10 15 20 -25-20-15-10-5 0 5 10 15 20 25

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

Figure 3: The a�ractor obtained by wasora a[er solving the Lorenz system with the nominal parameters.

By using the PHASE_SPACE keyword, a three-dimensional phase-space spanned by variables x, y and z
is defined.Therefore, wasora expects now three differential-algebraic equations involving these three vari-
ables and its time derivatives. The special variable end_time is set to forty, thus the system will be solved
for the non-dimensional time range 0 < t < 40. Parameters σ, r and b are assigned constant values, which
by the way are the ones used by Lorenz in his original paper. The initials conditions are set by assigning
values to the special symbols x_0, y_0 and z_0 which represent the initial values of said variables. These
assignments are evaluated and processed only when t = 0 and are ignored for t > 0. The following lines
define the dynamical system by adding a dot before the equal sign, i.e. “.=”. This construction tells wasora
that the assignent is not a regular one but rather that a differential-algebraic expression is being defined.
The postfix _dot indicates that the time derivative of the function is being referenced. Finally, the PRINT
instruction writes into the standard output the current non-dimensional time t and the three variables that
constitute the solution of the dynamical system as time advances. Starting from t = 0, wasora (actually
the IDA library) chooses an appropriate time step so as to keep the numerical error bounded.

D.2 One-dimensional minimization

Find the minimum of the function f(x) = cos(x) + 1 whitin the interval [0, 2π].

VAR x
PRINT %.7f func_min(cos(x)+1,x,0,6)

Lisࢢng 16: min.was

$ wasora min.was
3.1415914
$

The arguments of the keyword PRINT can be expressions that are evaluated whenever the instruction is
executed. In this case we use the functional func_min as the expression, with the first argument equal to the
expression we want to minimize. In the second argument we must tell wasora which is the variable it has
to vary in order to have a minimum. In this case it is x, which wasora understands it is a variable because
it was defined with the VAR keyword. The third and fourth arguments a and b give the interval a < x < b.
The first argument to PRINT is a float format specifier as in the C standard library function printf.

1b1ed79c5651 22

CIT-WSWA-TD-9E3D-A

D.3 Root of a one-dimensional function

Find the root of the function f(x) = (x+ 1) · x− 5 within the interval [0, 5].

f(x) := (x+1)*x-5
PRINT %.7f root(f(x),x,0,5)

Lisࢢng 17: roots.was

$ wasora roots.was
1.7912878
$

This example is similar to the previous one. The difference is that x does not need to be declared
as a variable because the function f(x) is defined using the “:=” operator and it implicitly defines the
argument as a variable. The functional root takes an expression as the first argument (which in this case is
the function f evaluated at the point x), and the variable over which the root is to be found as the second
one. The third a and fourth b arguments give the range a < x < b where the root is to be sought.

D.4 A system of algebraic equations

Solve the following system of three non-linear algebraic equations

0 = y − exp [−f(z) · x]

0 =

∫ z

0
f(z′) dz′ − x

0 = x+ y + z − 2

for x, y and z where f(z) is a pointwise-defined function such that the following values

z f(z)

0.0 0.0

0.2 0.2

0.5 0.1

0.7 0.8

0.7 0.8

1.0 0.5

are interpolated using an Akima-based scheme.

solves the system of equations
y = exp(−f (z)*x)
x = integral (f (z ’) , z ’ , 0 , z)
2 = x+y+z
where f (z) i s a point−wise defined function

FUNCTION f(z) INTERPOLATION akima DATA {
0 0
0.2 0.2
0.5 0.1
0.7 0.8
1 0.5
}

VAR z'

1b1ed79c5651 23

CIT-WSWA-TD-9E3D-A

SOLVE 3 UNKNOWNS x y z METHOD hybrids RESIDUALS {
y-exp(-f(z)*x)
integral(f(z'),z',0,z)-x
x+y+z-2
}

PRINT "␣x␣=␣" %f x
PRINT "␣y␣=␣" %f y
PRINT "␣z␣=␣" %f z

Lisࢢng 18: solve.was

$ wasora solve.was
x = 0.319603
y = 0.784170
z = 0.896227
$

D.5 Print only prime numbers

Theastonishing function f(x) = x2−x+41 gives only prime numbers for integer values of the argumentx.

f(x) := x^2 - x + 41
PRINT_FUNCTION f MIN 1 MAX 40 STEP 1 FORMAT %g

Lisࢢng 19: allprimes.was

$ wasora allprimes.was
1 41
2 43
3 47
4 53
5 61
6 71
7 83
8 97
9 113
10 131
11 151
12 173
13 197
14 223
15 251
16 281
17 313
18 347
19 383
20 421
21 461
22 503
23 547
24 593
25 641
26 691
27 743
28 797
29 853
30 911
31 971
32 1033
33 1097
34 1163
35 1231
36 1301
37 1373
38 1447
39 1523
40 1601
$

1b1ed79c5651 24

CIT-WSWA-TD-9E3D-A

The PRINT_FUNCTION keyword takes at least one function name and prints in a column-based fashion
first the independent variables (in this case only x) and then the evaluated functions (in this case only f)
at those points. As f(x) is an algebraic function, it is mandatory to provide an explicit range where the
function is to be evaluated. This is given with the MIN, MAX and STEP keywords. In this case, we ask wasora
to evaluate f(x) for x = 1, 2, . . . , 40 and print it as neatly as possible with the format specifier %g.

D.6 The Fibonacci sequence as an iterative problem

The Fibonacci sequence fn defined as

f1 = 1

f2 = 1

fn = fn−2 + fn−1 for n > 2

can be solved in many different ways.⁷ The following input uses the straightforward iterative one.

static_steps = 25

IF step_static=1|step_static=2
f_n = 1
f_nminus1 = 1
f_nminus2 = 1
ELSE
f_n = f_nminus1 + f_nminus2
f_nminus2 = f_nminus1
f_nminus1 = f_n
ENDIF

PRINT %g step_static f_n

Lisࢢng 20: fibo-iteraࢢve.was

$ wasora fibo-iterative.was
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34
10 55
11 89
12 144
13 233
14 377
15 610
16 987
17 1597
18 2584
19 4181
20 6765
21 10946
22 17711
23 28657
24 46368
25 75025
$

⁷See The wasora Realbook for three ways using wasora.

1b1ed79c5651 25

https://en.wikipedia.org/wiki/Fibonacci_number
http://www.talador.com.ar/jeremy/wasora/realbook/._realbook007.html

CIT-WSWA-TD-9E3D-A

First, the special variable static_steps is set to a non-zero value to indicate that we want to solve an
iterative (but static, i.e. with no time dependence) problem. The problem is solved by using three variables
named f_n, f_nminus1 and f_nminus2 (remember that a variable name cannot contain the character ’-’,
nor any other operator sig). For the first two steps, where the special variable step_static is equal to
one and two respectively, we initialize the three variable to one. In the rest of the step, we updated the
two f_nminusN variables and compute f_n as the sum of the other two. The PRINT instruction is executed
in each of the twenty five static steps, giving two columns with the step number and the value of fn.

D.7 A transient problem

This example illustrates how wasora can be used to solve a transient problem. This case defines a time-
dependent variable y equal to a first-order lag of a step at t = 1, and another variable z sampled from a
gaussian random generator. It also prints the functions sin(t) and cos(t).

end_time = 2*pi
dt = 1/10

y = lag(heaviside(t-1), 1)
z = random_gauss(0, sqrt(2)/10)

PRINT t sin(t) cos(t) y z HEADER

Lisࢢng 21: tran.was

$ wasora tran.was | qdp -o tran
$

0 2 4 6

t

−1

−0.5

0

0.5

1

sin(t) cos(t) y z

Figure 4: The results of ‘tran.was‘: sine and cosine of t, a first-order lag of a step and a gaussian random variable.

If the special variable end_time is set to a non-zero value, wasora assumes that the problem defined
in the input is a transient problem. The special variable t holds the current value of the time. The special
variable dt can be set to the time step. In this example it is fixed to one tenth of whatever units the variable t
is assumed to be (it defaults to dt = 1/16 to avoid truncation errors when summing up time steps due to

1b1ed79c5651 26

CIT-WSWA-TD-9E3D-A

the periodic representation of decimal fractions in a base-two floating point representation), but its value
can be re-assigned at every time step to obtain a variable time step. The variable y is set to a first-order
lag (function lag) of a heaviside step at t = 1 (function heaviside) with a characteristic time equal to one.
Variable z is a gaussian random value, sampled at each time step. The keyword PRINTwrites, for each time
step, the time t, the sine and the cosine of t, and both variables y and z. This output format is already suited
to be plotted as variables vs first-column with tools such as Gnuplot or Pyxplot. The result in figure 7 was
obtained with by piping the output of wasora to the tool qdp.⁸

D.8 The differential equation for negative feedback

The “Hello World!” case for differential equations is

dx

dt
= −x (1)

which for x(0) = 1 gives x(t) = exp(−t) as a solution. Of course, a simple problem needs a simple input:

PHASE_SPACE x # DAE problem with one variable
end_time = 1 # running time
x_0 = 1 # in i t ia l condition
x_dot .= -x # differential equation
PRINT t x HEADER

Lisࢢng 22: exp.was

$ wasora exp.was | qdp -o exp
$

0 0.25 0.5 0.75 1

t

0.4

0.6

0.8

1

x

Figure 5: Numerical soluࢢon of ẋ = −x with x(0) = 1 (exp.was).

We tell wasora that our phase space is composed just by the scalar variable x. Then, that the running
time is end_time whose value is set to one time unit, whatever units time has. Then, that the initial value
of x is also one unit of whatever units this magnitude is expected to use. Then, we write the differential

⁸https://bitbucket.org/gtheler/qdp

1b1ed79c5651 27

https://bitbucket.org/gtheler/qdp

CIT-WSWA-TD-9E3D-A

equation as naturally as possible. Two things to note here: (a) the equal sign is prepended by a dot to
indicate that this line is actually a DAE-equation and not just a plain assignment, and (b) the time derivative
of a variable is denoted by appending _dot to the variable name, thus ẋ becomes x_dot. Finally, we print
the time t and the value of the variable x to be quickly and dirty plotted by qdp.

D.9 The logistic map

The logistic map is a polynomial mapping often cited as an archetypal example of how complex, chaotic
behavior can arise from very simple non-linear dynamical equations.Themapwas popularized in a seminal
1976 paper by the biologist Robert May. Mathematically, the logistic map is written

xn+1 = r · xn(1− xn)

where xn is a number between zero and one that represents the ratio of existing population to the maxi-
mum possible population. The values of interest for the parameter r are those in the interval (0, 4].

The following input solves eight-hundred iterations of the logistic map parametrically sweeping a
certain interval of the range r using a quasi-random number sequence generator to obtain the map’s
bifurcation diagram.

compute the log i s t i c map for a range of the parameter r
DEFAULT_ARGUMENT_VALUE 1 2.6 # by default compute r in [2 .6 :4]
DEFAULT_ARGUMENT_VALUE 2 4

sweep the parameter r between the arguments given in the commandline
sample 1000 values from a halton quasi−random number sequence
PARAMETRIC r MIN $1 MAX $2 OUTER_STEPS 1000 TYPE halton

static_steps = 800 # for each r compute 800 steps
x_init = 1/2 # start at x = 0.5
x = r*x*(1-x) # apply the map

only print x for the last 50 steps to obtain the asymptotic behaviour
IF step_static>static_steps-50
PRINT %g r x
ENDIF

Lisࢢng 23: logisࢢc.was

$ wasora logistic.was > logistic.dat
$ gnuplot -e "set terminal pdf; set output 'logistic.pdf'; plot 'logistic.dat' ps 0.05 pt 5 lt 3 ti ''"
$

By default, the parameter r is swept over the interval [2.6, 4]. Other values can be given in the com-
mandline after the input filename logistic.was that will replace the constructions $1 and $2 in the PARA-
METRIC line. One thousand values of r are sampled from said interval using a Halton sequence. From an
initial value x0 = 1/2 the logistic map is iteratively solved up to n = 800. For the last 50 steps, r and xn
are printed to the standard output such that a plot of the second column vs. the first one gives the expected
bifurcation diagram.

D.10 Setting a target flux

This input solves the neutron point kinetic equations
dϕ

dt
=

ρ(t)−
∑N

i=1 βi
Λ

· ϕ+

I∑
i=1

λi · ci

ci
dt

=
βi
Λ

· ϕ− λi · ci i = 1, . . . , I

to answer the following question: “Which reactivity step applied at t = 1 sec. gives rise to a 2% increase
of the flux after 20 seconds?”

1b1ed79c5651 28

https://bitbucket.org/gtheler/qdp
https://en.wikipedia.org/wiki/Robert_May,_Baron_May_of_Oxford
https://en.wikipedia.org/wiki/Bifurcation_diagram
https://en.wikipedia.org/wiki/Halton_sequence

CIT-WSWA-TD-9E3D-A

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Figure 6: The logisࢢc map bifurcaࢢon diagram for 2.6 ≤ r ≤ 4 solved parametrically by wasora.

nprec = 6 # six groups of neutron precursors
VECTOR c SIZE nprec
VECTOR lambda SIZE nprec DATA 1/7.8e1 1/3.1e1 1/8.5 1/3.2 1/7.1e-1 1/2.5e-1
VECTOR beta SIZE nprec DATA 2.6e-4 1.5e-3 1.4e-3 3.0e-3 1.0e-3 2.3e-4
CONST lambda Lambda beta Beta
Lambda = 1e-3
Beta = vecsum(beta)

PHASE_SPACE phi c rho

t_insertion = 1 # reactivity insertion time
end_time = 20 + t_insertion # target time
min_dt = 0.1 # fix min and max dt so the DAE
max_dt = 0.1 # solver doesn ’ t choose dt by himself
target_phi = 1.02 # target level
rhostep = 1e-5 # in i t ia l step

in i t ia l conditions for the DAE system
rho_0 = 0
phi_0 = 1
c_0(i) = phi_0 * beta(i)/(Lambda*lambda(i))

DAE system (reactor point kinetics)
rho .= rhostep * heaviside(t-t_insertion)
phi_dot .= (rho - Beta)/Lambda * phi + sum(lambda(i)*c(i), i, 1, nprec)
c_dot(i) .= beta(i)/Lambda * phi - lambda(i)*c(i)

Record the time history of a variable as a function of time .
HISTORY phi flux

the function to be minimized is the quadratic deviation
of the flux level with respect to the target at t = end_time
f(rhostep) := (target_phi - flux(end_time))^2
MINIMIZE f METHOD nmsimplex STEP 1e-5 TOL 1e-10

write some information
IF done
PRINT FILE_PATH flux-iterations.dat TEXT "\#␣" %g step_outer %e rhostep f(rhostep)

ENDIF
IF done_outer
PRINT t phi HEADER

ENDIF

Lisࢢng 24: targe�lux.was

$ wasora targetflux.was | qdp -o targetflux --xrange "[0:21]"

1b1ed79c5651 29

CIT-WSWA-TD-9E3D-A

$ tail -n1 flux-iterations.dat
18 3.761658e-05 9.915842e-16
$

0 5 10 15 20

t

1

1.005

1.01

1.015

1.02

p
h
i

Figure 7: Converged soluࢢon to answer the quesࢢon “which step reacࢢvity gives a 2% increase in the flux a[er 20 seconds?”

The point kinetics equations are solved as usually using the variable ρstep as a parameter. A func-
tion flux(t) with the actual history of the phase-space function ϕ is defined using the keyword HISTORY.
An additional function f(ρstep) is defined as the square of the difference between the actual flux ϕ and the
target flux ϕtarget. This function, which is evaluated when t =end_time, is minimized over its single argu-
ment ρstep using the MINIMIZE keyword. Nelder &Mead’s simplex method is used to solve the minimization
problem.

D.11 Semi-empirical mass formula fit

Given a certain nuclide characterized by the number Z of protons and the total number A of nucleons
(i.e. protons plus neutrons), theWeizsäcker’s mass formula based on the liquid dropmodel gives a expected
dependence of the binding energy per nucleon B/A in terms of algebraic sums of powers of Z and A that
involve some multiplicative factors that are to be determined experimentally.

To make a long story short, the semi-empirical mass formula says that the binding energy per nucleon
of a nuclide of mass number A with atomic number Z is

B

A
(A,Z) ≈ a1 − a2 ·A−1/3 − a3 · Z(Z − 1)A−4/3 − a4 · (A− 2Z)2A−2 + a5 · δ ·A−γ

with

δ =

+1 for even-A and even-Z
0 for odd-A
−1 for even-A and odd-Z

and ai for i = 1, . . . , 5 and γ are six real constants to be empirically determined.

1b1ed79c5651 30

https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
http://en.wikipedia.org/wiki/Semi-empirical_mass_formula

CIT-WSWA-TD-9E3D-A

a1 = 1 # in i t ia l guess
a2 = 1
a3 = 1
a4 = 1
a5 = 1
gamma = 1.5

the functional form of weiszäcker ’ s formula
delta(A,Z) := if(is_odd(A), 0, if(is_even(Z), +1, -1))
W(A,Z) := a1 - a2*A^(-1/3) - a3*Z*(Z-1)*A^(-4/3) - a4*(A-2*Z)^2*A^(-2) + delta(A,Z) * a5*A^(-gamma)

FUNCTION D(A,Z) FILE_PATH binding-2012.dat # the experimental data
FIT W TO D VIA a1 a2 a3 a4 a5 gamma # f i t W to D using the six parameters

IF done_outer # write the result !
PRINT "a1␣=␣" %.3f a1 "MeV"
PRINT "a2␣=␣" %.3f a2 "MeV"
PRINT "a3␣=␣" %.3f a3 "MeV"
PRINT "a4␣=␣" %.3f a4 "MeV"
PRINT "a5␣=␣" %.3f a5 "MeV"
PRINT "γ␣␣=␣" %.3f gamma
PRINT_FUNCTION D W D(A,Z)-W(A,Z) FILE_PATH binding-fit.dat
ENDIF

Lisࢢng 25: fsm.was

$ wasora fsm.was
a1 = 15.031 MeV
a2 = 16.059 MeV
a3 = 0.662 MeV
a4 = 20.354 MeV
a5 = 17.020 MeVγ
= 1.621

$ gnuplot -e "set terminal pdf; set output 'fsm.pdf'; set cbrange [0:9]; set view map; set xlabel 'A'; set ylabel 'Z'; ←↩
splot 'binding-fit.dat' u 1:2:4 w p pt 50 ps 0.15 palette ti ''"

$

 0 50 100 150 200 250 300

A

 0

 20

 40

 60

 80

 100

 120

Z

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Figure 8: Binding energy per nucleon given by the semi-empirical mass formula as fi�ed by wasora.

In this case, measured data from the 2012 Atomic Mass Evaluation is used as the experimental data. A
point-wise defined functionD(A,Z) is defined, reading the data from a file with three columns, namelyA,
Z and B/A called binding-2012.dat. Another algebraic function W (A,Z) is defined following the pro-
posed functional form and leaving the to-be-determined constants as parameters. Using the FIT keyword,
we ask wasora (actually GSL) to find the values of the constants that better fitW (A,Z) toD(A,Z). Using

1b1ed79c5651 31

https://www-nds.iaea.org/amdc/
http://www.gnu.org/software/gsl/

CIT-WSWA-TD-9E3D-A

the secondary keyword VERBOSEwe can see how the iterative procedure advances. When a result is finally
obtained, we print the fit results to the standard output.

D.12 How the wasora parser works

this f i l e shows some particularit ies about the wasora parser

there are primary and secondary keywords , in this case
PRINT is the primary keyword and TEXT is the secondary , which
takes a single token as an argument , in this case the word hello
PRINT TEXT hello

i f the text to be printed contains a space , double quotes should be used :
PRINT TEXT "hello␣world"
i f the text to be printed contains quotes , they should be escaped :
PRINT TEXT "hello␣\"world\""

i t does not matter i f the argument is a string or an expression , whenever
a certain argument is expected , either spaces are to be remove or
the arguments should be enclosed in double quotes :
PRINT 1 + 1 # the parser will read three different keywords
PRINT "1␣+␣1" # this i s the correct way to compute 1+1
PRINT 1+1 # this line also works becasue there are no spaces

you already guessed it , to insert comments, use the hash ‘# ‘ character
PRINT sqrt(2)/2 # comments may appear in the same line as a keyword

in case a hash character i s expected to appear l i t e ra l ly in an argument
i t should be escaped to prevent wasora to ignore the rest of the line :
PRINT TEXT "\#␣this␣is␣a␣commented␣output␣line" # this i s a wasora comment

secondary keywords and/ or arguments can be given in different lines either by
a . using a continuation marker composed of a single backslash :
PRINT sqrt(2)/2 \

sin(pi/4) \
cos(pi/4)

b . enclosing the lines within brackets ‘ { ‘ and ‘ } ‘
PRINT sqrt(2)/2 {

sin(pi/4)
comments may appear inside brackets (but not within continued lines)
cos(pi/4) }

arguments may be given in the command line after the input f i l e
they are referred to as $1 , $2 , etc . and are l i t e ra l ly used
i . e . they can appear as arguments or even keywords
i f a $n expressions appears in the input f i l e but less than n
arguments were provided , wasora complains
this behavior can be avoided by giving a default value :
DEFAULT_ARGUMENT_VALUE 1 world
DEFAULT_ARGUMENT_VALUE 2 2

PRINT TEXT "hello␣$1"
PRINT sqrt($2)/$2

try executing this input as
$ wasora parser .was WORLD
$ wasora parser .was WORLD 3

i f a l i t e ra l dollar sign is part of an argument , quote i t with a backslash :
PRINT TEXT "argument␣\$1␣is␣$1"

Lisࢢng 26: parser.was

$ wasora parser.was
hello
hello world
hello "world"
1.000000e+00 + 1.000000e+00
2.000000e+00
2.000000e+00
7.071068e-01
this is a commented output line
7.071068e-01 7.071068e-01 7.071068e-01
7.071068e-01 7.071068e-01 7.071068e-01

1b1ed79c5651 32

CIT-WSWA-TD-9E3D-A

hello world
7.071068e-01
argument $1 is world
$

1b1ed79c5651 33

	Introduction
	What wasora is
	What wasora is not
	The wasora suite

	Design basis overview
	Types of problems
	Input
	Output
	Implementation
	Wasora and the UNIX philosophy

	License
	How to refer to wasora
	Pronunciation
	Logo and graphics

	Development history
	Raymond's 17 rules of UNIX philosophy
	Examples execution and results
	The Lorenz system
	One-dimensional minimization
	Root of a one-dimensional function
	A system of algebraic equations
	Print only prime numbers
	The Fibonacci sequence as an iterative problem
	A transient problem
	The differential equation for negative feedback
	The logistic map
	Setting a target flux
	Semi-empirical mass formula fit
	How the wasora parser works

