

Koliada, LLC
Los Gatos, California USA

KoliadaES

EtherMESH – A mesh for low power, embedded systems

An Overview

EtherMESH – An Overview

 Guy McIlroy © 2001 - 2014 - 2 -

Revision History
5/12/2001 - First Edition
2/13/2005 - Updates for BridgeLINK
5/3/2010 - Updates for CC2500
13/4/2012 - Updates for Win32
26/12/2013 - Updates for CC8051
26/4/2014 - Updates for CC8051

EtherMESH – An Overview

 Guy McIlroy © 2001 - 2014 - 3 -

Table of Contents

KoliadaES ... 1
EtherMESH – A mesh for low power, embedded systems... 1
An Overview... 1

1. Introduction... 4
1.1 Purpose.. 4
1.2 Scope... 4
1.3 Acronyms.. 4
1.4 Reference Documents ... 4

2. EtherMESH... 4
2.2 Mesh Profile.. 4

3. Addressing .. 5
3.2 Network address assignment... 5

3.3 Addressing in EtherMESH ... 5
4. Routing.. 6

4.1 Overview... 6
4.2 Neighbor Table ... 7

5 End-to-End Acknowledgements .. 7
6 Security .. 7
7 Miscellaneous .. 8

7.1 Channel Configuration.. 8
7.2 Configuring the mesh ID .. 8
7.3 Maximum Payload Size .. 8
7.4 Fragmentation ... 8
7.4 Memory Requirements.. 8

EtherMESH – An Overview

 Guy McIlroy © 2001 - 2014 - 4 -

1. Introduction

1.1 Purpose
This document provides an overview some of the components of the KoliadaES
EtherMESH stack and their functioning.

1.2 Scope
This document describes concepts and settings for the KoliadaES EtherMESH mesh
network stack.

1.3 Acronyms
AF Application Framework
AES Advanced Encryption Standard
AIB APS Information Base
API Application Programming Interface
CCM* Enhanced counter with CBC-MAC mode of operation
MSG Message
NIB Network Information Base
NWK Network
OTA Over-The-Air

1.4 Reference Documents
[1] EtherMESH Specification.
[2] EtherMESH API
[3] EtherDATA

2. EtherMESH
An EtherMESH network is a multi-hop ‘meshed’ network for battery-powered devices. A
meshed network is a type of network topology where each node must not only capture
and disseminate its own data, but also serve as a relay for other nodes. Each node must
collaborate and propagate the data in the network and any two devices that wish to
exchange data in a EtherMESH network may have to depend on intermediate devices to
be successful.

EtherMESH uses an optimized flood fill algorithm to propagate traffic that eliminates the
need for specific node types and significantly reduces the need for configuration
parameters. EtherMESH optimizations include the ability to significantly reduce
redundant retransmissions and the ability to allow extended sleep times.

2.2 Mesh Profile
The set of mesh parameters that need to be configured to specific values is called a mesh
profile. The parameters that comprise the mesh profile are defined in the EtherMESH
Specification (currently v1.0). All devices in a network must conform to the same mesh

EtherMESH – An Overview

 Guy McIlroy © 2001 - 2014 - 5 -

profile (i.e., all devices must have their mesh profile parameters configured to the same
values). However, some of these values may be changed and shared dynamically.
EtherMESH defines a standard mesh profile with the goal of promoting interoperability.
All devices that use this mesh profile will be able to interoperate with any other devices
that also use it. If application developers choose to change the settings for any of these
parameters, they can do so with the caveat that those devices will no longer be able to
interoperate with devices that use the standard mesh profile.
The mesh profile identifier is shared as part of each EtherMESH exchange and is used to
allow nodes to ignore messages from non-conforming mesh profiles.

3. Addressing
3.1 Address types
EtherMESH devices have two types of addresses - a 64 byte name and a 16-bit network
address.
A device name may be statically or dynamically assigned but must be unique within the
mesh and may also be designed to be globally unique. The 16-bit network address is
assigned to a device when it joins a network and is intended for use while it is on the
network. It is only unique within that network and is used for identifying devices and
sending data within the network. The developer uses the EtheMESH APIs to manage
names and addresses.

3.2 Network address assignment
EtherMESH uses a distributed addressing scheme for assigning the network addresses,
which ensures that all assigned network addresses are unique throughout the whole
network. Network addresses are defined and defended autonomously and typically at
power up time. Once assigned, network addresses remain unchanged for the duration of
mesh participation. The developer is not involved with the network address assignment
except for the case where a device is unable to assign an address.
EtherMESH uses a stochastic (random) addressing scheme for assigning the network
addresses. This process randomly assigns addresses to new devices, and then uses the rest
of the devices in the network to ensure that there are no duplicate addresses. When a
device joins a mesh, it self generates a new address. The new network node then
‘announces’ its new address and its name (if any) to the rest of the network. If there is
another device with the same short address an address conflict message will be broadcast
to the entire network and the device generating the conflicting short address will
regenerate a new short address. When a device determines its new address is valid, it
joins the mesh using the newly assigned network address.

3.3 Addressing in EtherMESH
EtherMESH frames can be unicast, multicast or broadcast where a unicast frame is sent
to a single device, a multicast frame is sent to a group of devices and a broadcast frame is
sent to all meshed devices.

EtherMESH – An Overview

 Guy McIlroy © 2001 - 2014 - 6 -

3.3.1 Unicast Addressing

Used to send a frame to a single device whose network address is known simply use the
network address. If the network address is not known, it can be found using the API.
EtherMESH uses a cached name table to remember names and addresses. If the name is
not in the cache, EtherMESH will force a name lookup request out to the network and
may therefore be less efficient than knowing the address beforehand.

3.3.2 Group Addressing

Any address may also be a group address and any frame sent to a group address will be
seen by all devices that are part of the group. A device may send a message to any group
at any time using the relevant group address, but to receive particular group messages,
each device must add itself to any groups it is part of.

3.3.3 Broadcast Addressing

Used to send a frame to all devices in the network. The destination address can be set to
one of the following broadcast addresses:

BCAST (0xFFFF) message sent to all devices in the mesh. Sleeping devices
will see the message when they next wake.

Broadcast messages are received by the standard, developer defined, callback handler.

4. Routing

4.1 Overview
A mesh network is described as a network in which the routing of messages is performed
as a decentralized, cooperative process involving many peer devices routing on each
other’s behalf. EtherMESH message routing is completely transparent to the application,
which simply sends data destined to another device via the EtherMESH API.

EtherMESH is specifically designed to facilitate dynamic routing, providing multiple
simultaneous routes in the face of varying transmition quality or mobile nodes that appear
and disappear. If a particular wireless link is down, EtherMESH simultaneously finds
multiple parallel routes to any given node avoiding the broken link. A fundamental
assumption within any mesh network is that there will be more than one route from any
given node to any other.

EtherMESH uses an optimized flooding protocol where a message is passed
simultaneously to any node within range and this process is repeated by each node until
the message exists on every node. Optimizations allow for eliminating redundant
transmits and for nodes to sleep for significant parts of their duty cycle.

Because EtherMESH uses a flood-fill algorithm, there are no routing tables. This allows
message passing to scale dynamically to large numbers of nodes with very constrained
resource requirements. Nodes may enter and leave the mesh rapidly without needing to

EtherMESH – An Overview

 Guy McIlroy © 2001 - 2014 - 7 -

rebuild routes. EtherMESH facilitates an environment capable of supporting mobile
nodes, link failures and frame losses.

4.2 Neighbor Table
Neighbor nodes are nodes that are within radio range of each other. Each node keeps
track of their neighbors in a “neighbor table”, and that table is updated when the node
receives any message from a neighboring node (unicast, broadcast or beacon).
Each neighbor table entry contains the node address, some house keeping details, and the
link status. The neighbor table size is implementation dependant (8 for the CC25xx).

5 End-to-End Acknowledgements
EtherMESH does not support either end-to-end or single-hop message acknowledgement.
This is a specific design decision to more easily support simultaneous dynamic message
routing and avoid the significant complexity and resource expense of message buffering.
This does not degrade delivery reliability (for meshed nodes); it is very hard for a
message to get lost as the flood fill algorithm ensures that all nodes receive each message.
In general, and for the types of application for which EtherMESH has been designed,
message acknowledgement is not a major requirement. For applications that need end-to-
end acknowledgment, or to support nodes that drop out and then return ‘later’, it is
generally a simple affair to arrange a suitable higher level communication paradigm.
EtherDATA [3] one such example and is designed to maintain shared data in the face of
extensive message loss.

6 Security
EtherMESH supports encryption but not authentication or authorization. When available,
EtheMESH security is based on the underlying hardware. For the TI CC25xx MCUs,
encryption uses AES block cipher and CCM* mode of operation as the underlying
security primitive. AES/CCM* security algorithms were developed by external
researchers and are used widely in other communication protocols.
AES/CCM* provides the following security features:

- Infrastructure security
- Network access control
- Application data security

6.1 Configuration
EtherMESH does not currently support key distribution and the default key must be
provisioned on each device in the network either at compile time or runtime under
manufacture or application control.

6.2 Network access control
In a secure EtherMESH network, each device uses the provisioned key to encrypt each
frame. Because the EtherMESH uses flood-fill, there is very little side-channel
information that may be gleaned from packet distribution.

6.3 Joining a Network

EtherMESH – An Overview

 Guy McIlroy © 2001 - 2014 - 8 -

EtherMESH devices are provisioned for a particular mesh ID and encryption key.
Joining the mesh is transparent to the application.

7 Miscellaneous

7.1 Channel Configuration
Dynamic channel hopping is implementation dependant. Currently the CC25xx
implementation does not currently support channel hopping. These devices are currently
provisioned for a particular channel. However, devices can change channel, and other
mesh joining details (ID and encryption key) as part of their profile attributes, under
application control.

7.2 Configuring the mesh ID
EtherMESH devices are generally provisioned for a particular mesh ID. However,
devices can change mesh ID, and other mesh joining details (channel and encryption
key), under application control.

7.3 Maximum Payload Size
The maximum payload size is implementation specific.

7.4 Fragmentation
EtherMESH does not currently support fragmentation. However, messages larger than the
max payload size can be split by the application. Note that this is not generally a problem
for the types of application EtherMESH is designed to support. In particular, EtherDATA
[3], a data management layer that sits on top of EtherMESH, routinely manages data sets
larger than the max payload size.

7.4 Memory Requirements
EtherMESH uses 1.2Kb of RAM and ~6.5Kb flash. Moving some tables and config items
to flash may further reduce the ram footprint, however, this is at the expense of a slight
performance penalty.

