3(\ KOLIADA

KoliadaES

EtherDATA — A Distributed Data System
for Small Embedded Systems

An Overview

Koliada, LLC
Los Gatos, California USA

Revision History

Distributed Data System — Developer Guide

12/26/2013 — First release
4/25/2014 — Updates for CC8051 release
8/12/3014 — Additional changes for CC8051

Ju<
34@ KOLIADA

Guy Mcllroy © 2001 - 2014

Distributed Data System — Developer Guide

Table of Contents

(0] = 1o F= 1S PP 1
EtherDATA — A Distributed Data System for Small Esdlled Systems.............cccceee
AN OVEBIVIBW ...ttt e e e e ettt e e e e e e e e e e e e e s s s e e bbb bbb e sttt et e e e aas s s snnbbbbbbeesee e 1
1 goTo [FTox 1 o] o [P 4

P U DOS . . aaan 4

Y ol0] o[PS 5

X od (0] 017/ 1 T PP PPN 5
RETEIENCES ettt e e e e e e e e 5
Distributed Data ODJECES.....uuuuiii i 5
DTS o3] o1 To] o RSSO 5
Distributed data ODJECES.........ccco e 5

Y DS ettt ———— ettt e e e e e e e e e n e ra e era e aee 6
D22 L= Y o o =T PP 7
(D= 1= B =T o] o= i o] o RS URRRRPP 7
Fragmentationccoooiiiiiiieiees e e e e e e eaaas 8
ANTOCALION....ieieeeee et ettt aere e e e e e e e e e e e eees 8

e oo o 1 T S 8
Y=o U 11 YRR 8
= 1 4] 0] 1= 8

2
§@<Ko]_ IADA Guy Mcllroy © 2001 - 2014

Distributed Data System — Developer Guide

Introduction

Purpose

A distributed data system is any system of comnaiimg nodes that each maintains data
objects that need to be accessed as a single ezihdata system.

KoliadaES Distributed Data System (EtherDATA) i@uch implementation designed
for the transparent access and management otdited and replicated data objects on
small embedded devices.

EtherDATA is designed to abstract data referencesrhall, heterogeneous systems. In
an 8051, EtherDATA can be deployed in as few akyd&s ROM and negligible RAM
footprint (< 128 bytes).

EtherDATA addresses the following architecturalces;

Logical Data Independence
EtherDATA data objects are described and accedaeahvexternal
schema.

Physical Data Independence
EtherDATA data objects are stored and referencedl lbgical to physical
mapping defined by the system and hidden from ppdi@ation.

Network Transparency
EtherDATA can be implemented over a variety of reking
technologies including, but not limited to TCP/Rhernet and Wireless
using a variety of node architectures. The detditsommunication and
node architecture are hidden from the application.

Replication Transparency
Data replication improves the locality of refererarel improves the
redundancy of access in the event of failure. BYAGIA data objects are
transparently replicated across all the nodesraus of nodes, in
network.

Fragmentation Transparency
Small-embedded systems do not have the resourstsréeoall the data
accessible by the system and any database mustgrednted across the
network nodes. EtherDATA hides this fragmentati@nf the application.

EtherDATA is a datalefinition, storage and accesgstem that addresses the additional
needs of replication across the data system amd@esdata definition paradigm.

EtherDATA does not provide relational database rganeent facilities.

/
-

9@<Ko]_ IADA Guy Mcllroy © 2001 - 2014

/
-

9@<Ko]_ IADA Guy Mcllroy © 2001 - 2014

Distributed Data System — Developer Guide

Scope
This document is designed to guide a developenpie@menting an application using

EtherDATA as might it be used with data communa@atrchitectures over Ethernet or
wireless (RF).

Acronyms

References

Distributed Data Objects

Description

EtherDATA objects are described by the KoliadaE$al2escription Language (kDDL).

kDDL is a general-purpose data description langulagecan be used to encode data
objects for both ‘managed’ and ‘unmanaged’ purposkEsaged objects are defined to
be a coherent part of a distributed data systermasiaged objects are objects that are
formally described and may be easily shared betwgstems but are not part of a
distributed data system.

For the purposes of this document we will focusr@anaged data objects only.

Distributed data objects

All data objects must be described within a dajeaildescription file. Each data object
is fully described in a manner similar to a MIB &get of object attributes using the
syntax detailed in Appendix 1 and broadly;

modifier type name{ attributevalue ... }

Where;
modifier - is a type modifier
type - is a fundamental or derived object type
name - is the defined name of the object
type - is an optional field type identifier
attribute - is an attribute identifier
value - is the attribute value appropriate todtigbute identifier. A value

has either typetype’ or ‘string’.

An object name must be unique within the groupaihiect is defined in. Attributes may
be defined in any order and are simply key/valuespa

EtherDATA currently defines the followingquiredattribute fields;
access — is the type of access to be allowedhi®oliject

Distributed Data System — Developer Guide

EtherDATA currently defines the followingptional attribute fields;
group — defines any replication groups objecia pf
status — defines the status of this object

These attributes are described more fully in follmysections. Other attribute fields are
optional and application specific.

Objects may be defined as either static or dynaniject arrays thus;

type name[n]{ field value ... } /I static object array of type

Where n is a positive integer. The support of dyicashject arrays is implementation
specific.

Data Objects attributes are encoded for the systerh that each object is unique across
the system

Types
For example, a data object may be described asfameet of ‘fundamental’ types;

char - acharacter (system dependent size)
int - signed integer (system dependent size)
word - unsigned int (system dependent size)
byte - an unsigned 8 bit char

wyde - an unsigned 2 byte word

teta- an unsigned 4 byte word

real - a floating point number (system dependent size)
string - a zero terminated set of asciiz chars
bool - logical true/false (system dependent size)

Int8 - signed 8 bit word

Intl6 - signed 16 bit word

Int32 - signed 32 bit word

Int64 - signed 64 bit word

UInt8 - signed 8 bit word

UIntl16- signed 16 bit word

UInt32- signed 32 bit word

UInt64- signed 64 bit word

Real - double precision floating point value
String - a zero terminated set of asciiz chars
Bool - signed 8 bit word

For types with system defined sizes, sizes mustbby either by DDL or compiler build
options and must be consistent across the system.

§@<KO]_ IADA Guy Mcllroy © 2001 - 2014 -6-

/
-

9@<Ko]_ IADA Guy Mcllroy © 2001 - 2014

Distributed Data System — Developer Guide

Data types may be modified using ‘global’, ‘locail, ‘remote’. Global data objects are
replicated globally (across an EtherMESH), locaadabjects are only defined on the
‘owner’ system but may be accessed by remote sgst@emote data objects are
declared locally but defined remotely. This alloavsode to access a remote object
without the need to carry the data definition.His tcase, the definition is retrieved from a
remote node and cached locally. Remote definitadlasv a small node to access a much
larger data set than might fit on a small systeemBte capabilities are implementation
dependant.

Whereas constructed types (class types) are iotyp#, these are not currently available
in release.

Data Access

EtherDATA objects are accessed using a set ofatatass primitives, dbGet (), dbSet ()
and dbSubscribe(). Each of dbSet and dbGet hasg mwtlex variants dbGetArray() &
dbSetArray(). dbSubscribe() allows a node to ‘substto an object in such a way as to
receive a callback for any change to the objeataiabubscription to an indexed object
will receive one callback for each change to angatindex. The call back will refer
only to the object index that changed.

EtherDATA uses a haming convention to disambigdata objects based on the group
within which the data object is found. Thus a datpect may be referenced as
“house.kitchenTemp” to refer to a group called ‘b@uhat replicates a data object value
called ‘kitchenTemp’. Group names are unique anceotly support only one level of
re-direction. Object names are unique across gogidiinere the object is not defined as
part of a group the device name may be substitotatlow reference to the object on a
specific device. In this way, an object may bemkdi on multiple devices but with a
value that is specific to that particular device.

Device and group name constructions are implemientapecific and typically map to
the underlying communications protocols. For exangtherDATA over EtherMESH
maps the device and group names directly to Eth&MHBevice and group names.

Data Replication

EtherDATA supports transparent data replicatiomsgia distributed network.

Replication is by group ident and thus object namast be unique within that group. A
data object may be referenced by access to angaleurrently supporting that group.
Typically, groups are used to transparently repdickata from one set of nodes to another
such that any given access to the device will ballcather than remote.

For example, a gateway device might make certdin alailable locally such that
external queries hit the gateway only and are nopgyated into the network. Another
example, a gateway or specific logging device mayded to track data over a period of
time. This device then makes its aggregated datéadne to the network as an indexed
array or other derived data object.

Distributed Data System — Developer Guide

In another example, a group may be used to pragdess redundancy. A group
transparently replicates data items and thus oedgla a minimum of one device in a
group to be ‘live’ to service a dbGet request.

Fragmentation

Currently, EtherDATA requires that any object fitthe maximum payload size offered
by the underlying transport.

Allocation

EtherDATA can be configured to use either ram Hflasfile storage. Storage is selected
at compile time and cannot be changed at runtinféerBnt devices may use different
storage paradigms, but they cannot be mixehin the device.

Encoding

All data objects are encoded using ASN.1 (BER)faih storage and communication.
This significantly reduces the space required t@ sand send objects.

Security

EtherDATA is ‘security blind’ and depends on thaedarlying security of the system on
which it is deployed. EtherDATA does not managédaatication or access control
(other than as may be defined by the ‘access’ vfigld — read, write, none).

Examples

There are a number of examples available in the §laKshow the execution of most
EtherDATA features.

§@<Ko]_ IADA Guy Mcllroy © 2001 - 2014

Distributed Data System — Developer Guide

Appendix 1 — Summary EtherDATA data description

kDDL uses the following keywords;

char - a character (system dependent size)

int - signed integer (system dependent size)
word - unsigned int (system dependent size)
byte - an unsigned 8 bit char

wyde - an unsigned 2 byte word

teta - an unsigned 4 byte word

real - a floating point number (system dependent size)
string - a zero terminated set of asciiz chars

bool - logical true/false (system dependent size)
Int8 - signed 8 bit word

Int16 - signed 16 bit word

Int32 - signed 32 bit word

Int64 - signed 64 bit word

Uint8 - signed 8 bit word

UIntl6 - signed 16 bit word
UInt32 - signed 32 bit word
Uint64 - signed 64 bit word

Real - double precision floating point value

String - a zero terminated set of asciiz chars

Bool - signed 8 bit word

access

readonly

writeonly

readwrite

group

global -type modifier indicating ‘global’ scope

remote - type modifier indicating remotely defined context
local - type modifier indicating locally defined context

Comments follow the style of C/C++ comments usirgdelineating comments to the end
of the line and /* .. */ delineating block commemtkich may also be nested thus; /* ...
[* .. **

A string literal is any sequence of chars enclaosetbuble quotes thus; “This is a string”

An identifier is any valid c/c++ identifier.

§@<Ko]_ IADA Guy Mcllroy © 2001 - 2014

Distributed Data System — Developer Guide

The following is an example of valid kDDL content;

/I comment
/* comment /* nested */ */

/I values may be declared local, remote or global
/I unmarked values are local by default

/l all local and global values must have a definiti on section that
/I describes value attributes
/I remote values may have a definition section but do not require it as

/l'long as dbGetDefinition() is available

remote kitchenTemp /[a value maintained on a remot e node
{ /I (no local definition)
/I declare attributes we use so attribute enumerat ion can work
/l we do not need to declare all attributes, just the ones we use
description,
units
}
global int bodyTemp /l a value maintained globally
{

description "Grandma's current body temp";
access readonly;

units "*C";
max 39;
min 33;

/I expressions may be used to map to named functio n handlers
(value > max) tempAlert;
(value < min) tempAlert;

}

bool led[3] // a value maintained locally
{ /l'local values are not globally unique
description "Device LEDs O - red, 1 - blue, 2 - gr een";
access readwrite;

(value ==true) ledAlert;
(value == false) ledAlert;

}

Note that any attribute that is not a formal attté(access, group) is a simple key/value
pair such that the key can be any identifier ardvidue any value of the same type as
the databject or a string.

§@<Ko]_ IADA Guy Mcllroy © 2001 - 2014

