
EUROPEAN MIDDLEWARE INITIATIVE

MPI-START AND MPI-UTILS

Document version: 1.0.5

EMI Component Version: 1.5.0

Date: January 18, 2013

1/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

This work is co-funded by the EC EMI project under the FP7 Collaborative Projects Grant Agreement Nr.
INFSO-RI-261611.

2/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

CONTENTS

1 ABOUT 6

1.1 MPI-START . 6

1.1.1 DESCRIPTION . 6

1.1.2 REQUIREMENTS . 6

1.1.3 SOURCE CODE . 6

1.2 MPI-UTILS . 6

1.2.1 DESCRIPTION . 6

1.2.2 REQUIREMENTS . 6

1.2.3 SOURCE CODE . 6

2 USER GUIDE 7

2.1 INSTALLATION . 7

2.2 USAGE . 7

2.3 COMMAND LINE OPTIONS . 7

2.4 ENVIRONMENT VARIABLES . 8

2.5 SCHEDULER AND EXECUTION ENVIRONMENT SUPPORT 9

3 HOOKS 11

3.1 FILE DISTRIBUTION HOOKS . 11

3.1.1 DISTRIBUTION METHOD PLUGINS . 11

3.2 EXTENSIONS HOOKS . 12

3.3 LOCAL SITE HOOKS . 12

3.4 DEVELOPING USER HOOKS . 13

3.4.1 COMPILATION . 13

3.4.2 INPUT PREPROCESSING . 14

3.4.3 OUTPUT GATHERING . 14

3.5 HOOKS VARIABLE SUMMARY . 14

4 SYSTEM ADMINISTRATOR GUIDE 16

4.1 INSTALLATION . 16

4.1.1 BINARY DISTRIBUTION . 16

4.1.2 UPGRADING FROM EMI-1 . 16

4.1.3 SOURCE DISTRIBUTION . 16

4.2 CONFIGURATION . 17

4.2.1 HOOKS . 17

4.3 MPI-START YAIM CONFIGURATION . 18

4.3.1 WN CONFIGURATION . 18

3/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

4.3.2 CE CONFIGURATION . 19

4.3.3 EXAMPLE CONFIGURATION . 20

5 EXAMPLES 23

5.1 SIMPLE JOB . 23

5.2 JOB WITH USER HOOKS . 23

5.3 USING MPI-START WITH WMS . 24

5.3.1 BASIC JOB SUBMISSION . 24

5.3.2 MODIFYING MPI-START BEHAVIOR . 26

6 MPI-START INTERNALS 28

6.1 GLOBAL CONFIGURATION VARIABLES . 28

6.2 SCHEDULER PLUGIN VARIABLES . 28

6.3 MPI EXECUTION VARIABLES . 29

A CONFIGURATION OF BATCH SYSTEM 30

A.1 TORQUE/PBS . 30

A.1.1 MAUI . 30

A.2 SGE . 30

A.3 PASSWORDLESS SSH (HOSTBASED AUTHENTICATION) 31

B INSTALLATION OF MPI IMPLEMENTATION 31

B.1 OPEN MPI . 31

B.1.1 SGE . 32

B.1.2 TORQUE/PBS . 32

B.1.3 OPEN MPI WITHOUT TIGHT INTEGRATION . 33

B.2 MPICH2 . 33

B.2.1 MPD . 33

B.2.2 HYDRA . 33

B.2.3 OSC MPIEXEC . 34

C DISTRIBUTION OF BINARIES 34

C.1 SHARED HOME/OTHER SHARED AREA . 34

C.1.1 PASSWORDLESS SSH BETWEEN WNS . 34

C.1.2 USE OSC MPIEXEC TO DISTRIBUTE FILES . 34

D INFORMATION SYSTEM 34

D.1 MPI-START SUPPORT . 35

D.2 MPI FLAVOUR(S) . 35

D.3 MPI VERSION(S) . 35

4/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

D.4 MPI COMPILER(S) – OPTIONAL . 35

D.5 INTERCONNECTS – OPTIONAL . 35

D.6 SHARED HOMES . 36

5/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

1 ABOUT

1.1 MPI-START

1.1.1 DESCRIPTION

mpi-start is a set of scripts to close the gap between the workload management system of a Grid insfras-
tructure and the configuration of the nodes on which MPI applications are run. The package is used to
help the user to start MPI applications on heterogeneous Grid sites.

mpi-start provides an abstraction layer that offers a unique interface to start parallel jobs with different ex-
ecution environments implementations. It supports several different MPI implementations under different
batch systems.

mpi-start was originally developed in the frame of the int.eu.grid project for the execution of MPI applica-
tions with the CrossBroker metascheduler and then extended its use as the official way of starting MPI
jobs within EGEE. Currently, it is part of the EMI project.

There is a trac page at http://devel.ifca.es/mpi-start with information about the development of mpi-start.

1.1.2 REQUIREMENTS

mpi-start only requires bash compatible shell for working. mpi-start uses several commands that are
available in most unix systems: readlink, mount and mktemp.

1.1.3 SOURCE CODE

Source code is available at mpi-start mercurial repository (https://devel.ifca.es/hg/mpi-start). Released
versions are tagged as mpi-start_R_X_Y_Z-r, where X.Y.Z is the mpi-start version and r the revision
number for that version.

1.2 MPI-UTILS

1.2.1 DESCRIPTION

MPI-utils is a metapackge (emi-mpi) that depends on mpi-start and a yaim plugin for easy configuration
of the MPI support in grid sites.

1.2.2 REQUIREMENTS

MPI-Utils contains a yaim plugin, therefore it needs yaim-core installation available. The plugin does not
use any non-standard tools.

1.2.3 SOURCE CODE

The source code of the yaim plugin is available at glite CVS (http://jra1mw.cvs.cern.ch/cgi-bin/jra1mw.
cgi/org.glite.yaim.mpi) under org.glite.yaim.mpi module. Released versions are tagged with tags in the
form glite-yaim-mpi_R_X_Y_Z_r, where X.Y.Z is the plugin version and r the revision number for that
version.

6/36

http://devel.ifca.es/mpi-start
https://devel.ifca.es/hg/mpi-start
http://jra1mw.cvs.cern.ch/cgi-bin/jra1mw.cgi/org.glite.yaim.mpi
http://jra1mw.cvs.cern.ch/cgi-bin/jra1mw.cgi/org.glite.yaim.mpi

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

2 USER GUIDE

2.1 INSTALLATION

Normally users do not need to install mpi-start. However if they want to use it in a site without an exist-
ing installation, the recommendation is to create a tarball installation that can be transfered in the input
sandbox of the job.

In order to create a tarball installation, get the source code and do the following:

$ make tarball

This will create a mpi-start-X.Y.Z.tar.gz (with X.Y.Z being the version of mpi-start) that contains all that
is needed for the execution of jobs. In your job script unpack the tarball and set the I2G_MPI_START
environment variable to $PWD/bin/mpi-start.

2.2 USAGE

mpi-start can be controlled via environment variables or command line switches, most configuration de-
pendent paramenters are automatically detected by mpi-start and do not need to be specified by the user.
The following command line will be enough to run the application with the site defaults:

$ mpi-start application [application arguments ...]

2.3 COMMAND LINE OPTIONS

-h show help message and exit

-V show mpi-start version

-t mpi_type use mpi_type as MPI implementation

-v be verbose

-vv include debug information

-vvv include full trace

-pre hook use hook as pre-hook file

-post hook use hook as post-hook file

-pcmd cmd use cmd as pre-command

-npnode n start n processes per node

-pnode start only one process per node (equivalent to -npnode 1)

-npsocket n start n processes per CPU socket

-psocket start only one process per CPU socket (equivalent to -npsocket 1)

-npcore n start n processes per core

7/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

-pcore start only one process per core (equivalent to -npcore 1)

-np n set total number of processes

-i file use file as standard input file

-o file use file as standard output file

-e file use file as standard error file

-x VAR[=VALUE] define variable VAR with optional VALUE for the application’s environment (will not be
seen by mpi-start!)

-d VAR=VALUE define variable VAR with VALUE

– optional separator for application and arguments, after this, any arguments will be considered the ap-
plication to run and its arguments

For example, the following command line would start /bin/hostname 3 times for available node using Open
MPI:

$ mpi-start -t openmpi -npnode 3 -- /bin/hostname

2.4 ENVIRONMENT VARIABLES

Prior to version 1.0.0 mpi-start only used environment variables to control its behavior. This is still possible,
although command line arguments will override the environment variables defined. Next table shows the
complete list of variables, with the command line options that can be used to set them:

8/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

Variable Cmd line Meaning
I2G_MPI_APPLICATION The application binary to execute.
I2G_MPI_APPLICATION_ARGS The command line parameters for the application
I2G_MPI_TYPE -t The name of the MPI implementation to use.
I2G_MPI_PRE_RUN_HOOK -pre This variable can be set to a script which must de-

fine the pre_run_hook function. This function will be
called after the MPI support has been established and
before the internal pre-run hooks. This hook can be
used to prepare input data or compile the program.

I2G_MPI_POST_RUN_HOOK -post This variable can be set to a script which must de-
fine the post_run_hook function. This function will be
called after the mpirun has finished.

I2G_MPI_START_VERBOSE -v Set to 1 to turn on the additional output.
I2G_MPI_START_DEBUG -vv Set to 1 to enable debugging output
I2G_MPI_START_TRACE -vvv Set to 1 to trace every operation that is performed by

mpi-start
I2G_MPI_APPLICATION_STDIN -i Standard input file to use.
I2G_MPI_APPLICATION_STDOUT -o Standard output file to use.
I2G_MPI_APPLICATION_STDERR -e Standard error file to use.
I2G_MPI_SINGLE_PROCESS -pnode Set it to 1 to start only one process per node.
I2G_MPI_PER_NODE -npnode Number of processes to start per node.
I2G_MPI_SINGLE_SOCKET -psocket Set it to 1 to start only one process per CPU socket.
I2G_MPI_PER_SOCKET -npsocket Number of processes to start per CPU socket.
I2G_MPI_SINGLE_CORE -pcore Set it to 1 to start only one process per core.
I2G_MPI_PER_CORE -npcore Number of processes to start per core.
I2G_MPI_NP -np Total number of processes to start.

These variables can also be set with the -d command line switch. The following example shows how to
set the I2G_MPI_TYPE variable to openmpi:

mpi-start -d I2G_MPI_TYPE=openmpi

There are also other variables that can modify the behaviour of mpi-start, but they are described in other
sections of this document. The ones dealing with site configuration of mpi-start are documented in the
Site Administrator Section (4), and the variables dealing with the Hooks are summarized in Section 3.5.

2.5 SCHEDULER AND EXECUTION ENVIRONMENT SUPPORT

mpi-start support different combinations of batch schedulers and execution environments using plugins.
The schedulers are automatically detected from the environment and the execution environment can be
selected with the I2G_MPI_TYPE variable or the -t command line option.

9/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

Scheduler Plugins
sge supports Grid Engine.
pbs for supporting PBS/Torque.
lsf supports LSF.
condor gives support for Condor. This plugin lacks the possibility to select how many processes per

node should be run.
slurm for supporting Slurm. As with condor, the plugin currently lacks the processes per node

support.

Execution Environment Plugins
openmpi Open MPI
mpich2 MPICH2
mpich MPICH
lam LAM-MPI
pacx PACX-MPI
dummy Debugging environment, just executes application in current host.

10/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

3 HOOKS

The mpi-start Hooks Framework allow the extension of mpi-start features without changing the core func-
tionality. Several hooks are included in the default distribution of mpi-start for dealing with file distribution
and some MPI extensions. Site admins can check the local hooks description while users probably are
interested in developing their own hooks for compilation.

3.1 FILE DISTRIBUTION HOOKS

File distribution hooks are responsible for providing a common set of files prior to the execution of the
application in all the hosts involved in that execution. Three steps are taken for file distribution:

• Detection of shared filesystem: mpi-start will try to detect if the current working directory is in a
network file system (currently considered as such are: nfs, gfs, afs, smb, gpfs and lustre). If the
detection is positive, the distribution of files is not performed. Detection can be totally skipped by
setting: MPI_START_SHARED_FS to 0 or 1 (0 means that mpi-start will try distribution in the next
step, and 1 that it won’t).

• File distribution: in this step, mpi-start copies files from the current host to the other hosts involved in
the execution. It uses the most suitable of the available distribution methods. Distribution methods
are plugins that are detected at runtime by checking all the files with .filedist extension in the
mpi-start etc directory.

• Clean-up: once the job is finished, mpi-start will try to clean-up in the remote hosts the files that were
copied previously using the same distribution method as in the previous step. Clean-up removes
entire directories, so it should not be used when running from important paths (e.g. home
directory)!. The clean-up step can be deactivated by setting MPI_START_DISABLE_CLEANUP to
yes.

The file distribution method can be enforced by using the I2G_MPI_FILE_DIST variable.

3.1.1 DISTRIBUTION METHOD PLUGINS

A file distribution plugin must contain the following functions:

• check_distribution_method(): called during initialization to check if the distribution method is
suitable. It returns a number, the lower the number it returns, the higher priority it will have. If the
method is not suitable, then it should return 255 or larger.

• copy() perform the actual copy of files between hosts. Files are in a gzipped tarball pointed by the
TARBALL variable.

• clean(): clean up any files once the execution is finished.

These distribution methods are included in mpi-start:

ssh uses scp to copy files, needs passwordless ssh properly configured.

mpiexec uses OSC mpiexec for copying, needs OSC mpiexec installed.

11/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

cptoshared_area copies files to a shared area that is not the current working directory. Needs the
following variables:

• MPI_SHARED_HOME: set to "yes".

• MPI_SHARED_HOME_PATH: path of the shared area that will be used for execution.

mpi_mt uses mpi_mt for copying the files. Needs the mpi_mt binary to be available in all machines.

3.2 EXTENSIONS HOOKS

Extension hooks are local site hooks that come in the default mpi-start distribution. The following hooks
are available:

Affinity The Affinity hook is enabled by setting the MPI_USE_AFFINITY variable to 1. When enabled
(and the execution environment supports it), it will define the appropriate options for setting the
processor affinity under the selected MPI implementation.

OpenMP The OpenMP hook is enabled by setting the MPI_USE_OMP variable to 1. When enabled it will
define the OMP_NUM_THREADS environment variable to the number of processors available per mpi
process.

MPItrace MPItrace is enabled by setting the I2G_USE_MPITRACE variable to 1. It adds to the execution
the mpitrace utility, assuming it is installed at MPITRACE_INSTALLATION. Once the execution is
finished, it gathers and creates the output files at the first host.

MARMOT Marmot is a tool for analysing and checking MPI programs. This hook enables the use of the
tool if the variable I2G_USE_MARMOT is set to 1. It also copies the analysis output to the first host.

Compiler This hook sets environment variables MPI_MPI<COMPILER>, where COMPILER is one of CC,
F90, F77, CXX, for C, FORTRAN 90, FORTRAN 77 and C++ compilers respectively. This variables
should point to valid compilers for the current MPI implementation. The hook also fixes compiler
flags (MPI_MPIxx_OPTS) to avoid problems with bad flag for the current processor architecture.
This hook can be disabled by setting the environment variable MPI_COMPILER_HOOK to 0.

These hooks can be completely removed by deleting the affinity.hook, openmp.hook, mpitrace.hook, mar-
mot.hook, or compiler.hook in the mpi-start configuration directory.

3.3 LOCAL SITE HOOKS

Site admins can define their own hooks by:

• Creating new .hook files in the configuration directory, or

• modifying the mpi-start.hooks.local file.

The .hook files are executed in alphabetical order and the mpi-start.hooks.local will be executed
after any other hook in the system are executed and the shared file system detection is performed. Each
hook file contains the following functions:

12/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

• pre_run_hook (): it will be executed before the user hooks and the user application gets exe-
cuted.

• post_run_hook (): it will be executed after the user application gets executed.

If any of these functions is not available, the hook will be ignored.

3.4 DEVELOPING USER HOOKS

Users can also customize the mpi-start behavior defining their own hooks by using the -pre and -post
command line switches or by setting the I2G_MPI_PRE_RUN_HOOK and I2G_MPI_POST_RUN_HOOK envi-
ronment variables

-pre / I2G_MPI_PRE_RUN_HOOK path of the file containing the pre-hook, in this file a function called
pre_run_hook() must be available. This function will be called before the application execution.
The pre-hook can be used, for example, to compile the executable itself or download data.

-post / I2G_MPI_POST_RUN_HOOK path of the file containing the post-hook, in this file a function
called post_run_hook() must be available. This function will be called once the applications
finishes its execution. The post-hook can be used to analyze results or to save the results on the
grid.

Both pre and post hooks can be in the same file. Next sections contain some hook examples

3.4.1 COMPILATION

Pre-run hook can be used for generating the binaries of the application that will be run by mpi-start. The
following sample shows a hook that compiles an application using the C MPI compiler, as defined by the
compiler hook in the MPI_MPICC variable. It assumes that the source code is called like the application
binary, but with a .c extension. Use of complex compilation commands like configure, make, etc is also
possible. This code is only executed in the first host. The results of the compilation will be available to all
hosts thanks to the file distribution mechanisms.

#!/bin/sh

This function will be called before the execution of MPI application
pre_run_hook () {

Compile the program.
echo "Compiling ${I2G_MPI_APPLICATION}"
$MPI_MPICC $MPI_MPICC_OPTS -o ${I2G_MPI_APPLICATION} ${I2G_MPI_APPLICATION}.c
if [! $? -eq 0]; then

echo "Error compiling program. Exiting..."
return 1

fi
echo "Successfully compiled ${I2G_MPI_APPLICATION}"
return 0

}

13/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

3.4.2 INPUT PREPROCESSING

Some applications require some input preprocessing before the application gets executed. For example,
gromacs has a grompp tool that prepares the input for the actual mdrun application. In the following
example the grompp tool prepares the input for gromacs:

#!/bin/sh

pre_run_hook()
{

echo "pre_run_hook called"

Here comes the pre-mpirun actions of gromacs
export PATH=$PATH:/$VO_COMPCHEM_SW_DIR/gromacs-3.3/bin
grompp -v -f full -o full -c after_pr -p speptide -np $MPI_START_NP

return 0
}

Note the use of the MPI_START_NP variable to get the number of processors. See the developer section
for a list of internal mpi-start variables.

3.4.3 OUTPUT GATHERING

Applications that write output files in each of the hosts involved in the execution may need to fetch all
those files to transfer them back to the user once the execution is finished. The following example copies
all the mydata.* files to the first host. It uses the mpi_start_foreach_host function of mpi-start that
will call the first argument for each of the hosts passing the name of the host as parameter.

the first paramter is the name of a host in the
my_copy () {

CMD="scp . \$1:\$PWD/mydata.*"
echo \$CMD

}

post_run_hook () {
echo "post_run_hook called"
if ["x\$MPI_START_SHARED_FS" = "x0"] ; then

echo "gather output from remote hosts"
mpi_start_foreach_host my_copy

fi
return 0

}

3.5 HOOKS VARIABLE SUMMARY

This section contains a summary of the variables that can modify the existing hook behaviour. They can
be set using the -d command line switch.

14/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

Hook Variable Meaning
File Distribution MPI_SHARED_FS If undefined, mpi-start will try to detect a shared

file system in the execution directory. If defined
and equal to 1, mpi-start will assume that the ex-
ecution directory is shared between all hosts and
will not try to copy files. Any other value will make
mpi-start assume that the execution directory is
not shared.

File Distribution I2G_MPI_FILE_DIST Forces the use of a specific distribution method.
File Distribution MPI_SHARED_HOME If set to "yes", mpi-start will use the path defined

in MPI_SHARED_HOME_PATH for copying the files
and executing the application.

File Distribution MPI_SHARED_HOME_PATH Path to a shared directory.
File Distribution MPI_START_DISABLE_CLEANUP If set to "yes", mpi-start will not try to cleanup

files after job execution.
Affinity MPI_USE_AFFINITY If set to 1, enable processor affinity hook.
OpenMP MPI_USE_OMP If set to 1, enable Open MP hook.
MPItrace I2G_USE_MPITRACE If set to 1, enable MPItrace hook.
Marmot I2G_USE_MARMOT If set to 1, enable Marmot hook.
Compiler MPI_COMPILER_HOOK If set to 0, disable compiler hook.

15/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

4 SYSTEM ADMINISTRATOR GUIDE

4.1 INSTALLATION

4.1.1 BINARY DISTRIBUTION

Binary packages for mpi-start are generated in EMI using ETICS. Check their repositories for the correct
package for your distribution. Once you have the repositories configured you only need to install the
package using your favorite package manager:

For RedHat based distributions:

yum install mpi-start

Debian based:

apt-get install mpi-start

If you are running a site with CREAM and WN, you may prefer to install the emi-mpi meta-package that
includes the yaim plugin for configuraton:

yum install emi-mpi

The nodes where the user applications will be executed (Worker Nodes) also require a working MPI
implementation, Open MPI and MPICH are recommended. The devel packages should also be installed
in order to allow user to compile their applications. Refer to your OS repositories for the exact packages.
In the case of SL5, Open MPI (including devel packages) can be installed with the following command
line:

yum install openmpi openmpi-devel

devel packages may require also the installation of a C/C++/Fortran compiler. Some devel packages
of the MPI packages do not include the compiler as (e.g. gcc, gcc-gfortran, gcc-g++) dependency! They
should be installed also if you want to support the compilation of MPI applications.

4.1.2 UPGRADING FROM EMI-1

There are no major changes between EMI-1 and the EMI-2 releases, no backward incompatible changes
have been introduced. However the metapackage has changed the name from glite-mpi to emi-mpi.
If you configure the EMI-2 repo on top of a EMI-1 installation and do an upgrade, the glite-mpi package
will be automatically upgraded to emi-mpi when a yum upgrade or yum update is performed. There is
no need to reconfigure.

4.1.3 SOURCE DISTRIBUTION

Source can be retrieved from the mercurial repository.

Installation is as easy as "make install". The default installation prefix is "/usr". If a non default installation
wants to be done, use the PREFIX variable in make install

$ make install PREFIX=/opt/mpi-start

In this case, is recommendable setting the installation the environment variable I2G_MPI_START to point
to mpi-start script (although this is not mandatory anymore).

$ export I2G_MPI_START=/opt/mpi-start/bin/mpi-start

16/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

4.2 CONFIGURATION

mpi-start is designed to auto detect most of the site configurations without any administrator intervention.
The default installation will automatically detect:

• the batch scheduler at the site: currently PBS/Torque, SGE, LSF, Condor and Slurm are supported.

• existence of shared file system in the job running directory

mpi-start uses a set of files to configure its behavior. There are several paths where the files can be
located. All of them will be checked when looking for hooks, execution environments or scheduler plugins.
These are the paths (and the order) used by default in mpi-start:

• Any path pointed by environment variable MPI_START_ETC.

• A .mpi-start directory at current user’s home.

• The etc/mpi-start under mpi-start installation path. On default installations that would be /.

The first file that mpi-start checks is the mpi-config.local file. This should contain the appropriate
location of your local MPI installations and any other modifications you want to introduce in the default be-
havior. mpi-start includes such file with the default configuration for your system in RHEL/SL 5, RHEL/SL
6 and Ubuntu.

Typical variables that the administrator can set in this file are:

Variable Meaning
MPI_DEFAULT_FLAVOUR name of the default flavour for jobs running at the site
MPI_<flavour>_PATH Path of the bin and lib directories for the MPI flavour
MPI_<flavour>_MODULE Name of the module that loads the MPI flavour environment.

When defined, the MPI_<flavour>_PATH will not be used.
MPI_<flavour>_VERSION preferred version of the MPI flavour
MPI_<flavour>_MPIEXEC Path of the MPIEXEC binary for the specific flavour
MPI_<flavour>_MPIEXEC_PARAMS Parameters for the MPIEXEC of the flavour
MPI_<flavour>_MPIRUN Path of the MPIRUN binary for the specific flavour
MPI_<flavour>_MPIRUN_PARAMS Parameters for the MPIRUN of the flavour
MPI_<flavour>_MPI<compiler> Location of the compiler for the flavour. Compiler may be one of

CC, F90, F77 or CXX.
I2G_<flavour>_PREFIX Path of the MPI installation for the MPI flavour

A known issue with the setting of the I2G_<flavour>_PREFIX variable makes them useless, please use
the MPI_<flavour>_PATH variable instead!

If MPI_<flavour>_MPIEXEC or MPI_<flavour>_MPIRUN are not defined, mpi-start will try to use the
mpiexec or mpirun that are found in the current PATH.

4.2.1 HOOKS

Hooks may change the behavior of mpi-start and provide additional features such as file distribution and
configuration of compiler flags. Site admins can add their own hooks via the local hook mechanism.

17/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

mpi-start includes hooks for distributing the files needed for the execution of an application. By default it
tries to find the most suitable method for copying the files, using shared filesystems whenever they are
found. However, the filesystem detection may not work for all sites, or the shared filesystem may be in a
different location to the execution path making it impossible for mpi-start to detect its availability. Check
Section 3 for more information. Section 3.5 contains a summary of relevant variables that may defined.

4.3 MPI-START YAIM CONFIGURATION

Configuration is necessary on both the CE and WNs in order to support and advertise MPI correctly. This
is performed by the yaim MPI module which should be run on both types of nodes.

4.3.1 WN CONFIGURATION

The yaim plugin in the WN prepares the environment for the correct execution of mpi-start. Each of the
MPI flavours supported by the site must be specified setting the variable MPI_<FLAVOUR>_ENABLE to
"yes". For example, to enable Open MPI, add the following:

MPI_OPENMPI_ENABLE="yes"

Optionally, if you are using a non OS provided MPI implementation, you can define the location and
version with MPI_<FLAVOUR>_VERSION and MPI_<FLAVOUR>_PATH. Do not use these variables if you
are using the OS provided MPI implementations. For example for Open MPI version 1.3, installed at
/opt/openmpi-1.3:

MPI_OPENMPI_VERSION="1.3"
MPI_OPENMPI_PATH="/opt/openmpi-1.3/"

MPI flavours that use a particular mpiexec for starting the jobs (e.g. OSC mpiexec for PBS/Torque system)
may also provide in the MPI_<FLAVOUR>_MPIEXEC the path to the binary. Do not use this variable if
you are not using a different mpiexec from the one provided by the MPI implementation.

Additionally, you may specify a default MPI flavour to use if non is selected for execution, with the
MPI_DEFAULT_FLAVOUR. If no default flavour is specified, the first one defined in your site-info.def will
be considered as default.

If you provide a shared filesystem for the execution of the applications, but it is not the path where the jobs
are started, then set the variable MPI_SHARED_HOME to "yes" and the variable MPI_SHARED_HOME_PATH
to the the location of the shared filesystem. Do not use this variable if the application starts its exe-
cution in a shared directory (e.g. shared home), this situation should be automatically detected.

If you use ssh host based authentication, set the variable MPI_SSH_HOST_BASED_AUTH to "yes". Note
that this does NOT configure passwordless SSH between the nodes, just sets an environmnet
variable

Lastly, if your use a non default location for mpi-start, set its location with the MPI_MPI_START variable.

The complete list of configuration variables for the WN is shown in the next table:

18/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

Variable Mandatory Description
MPI_<FLAVOUR>_ENABLE YES set to "yes" if you want to enable the <flavour>
MPI_<FLAVOUR>_VERSION NO set to the supported version of the <flavour>, usually is

automatically detected
MPI_<FLAVOUR>_PATH NO set to the path of supported version of the <flavour>,

usually is automatically detected by the yaim WN plugin
MPI_<FLAVOUR>_MPIEXEC NO If you are using OSC mpiexec (only in PBS/Torque

sites), set this to the location of the mpiexec program,
e.g. "/usr/bin/mpiexec"

MPI_DEFAULT_FLAVOUR NO Set it to the default flavour for your site, if undefined, the
first defined flavour will be used

MPI_SHARED_HOME NO set this to "yes" if you have a shared home area be-
tween WNs.

MPI_SHARED_HOME_PATH NO location of the shared area for execution of MPI applica-
tions

MPI_SSH_HOST_BASED_AUTH NO set it to "yes" if you have SSH based authentication
between WNs

MPI_MPI_START NO Location of mpi-start if not installed in standard location
(/usr/bin/mpi-start)

The profile for a worker node is MPI_WN. Use it along any other profiles you may need for your WN.

/opt/glite/yaim/bin/yaim -c -s site-info.def -n MPI_WN -n <other_WN_profiles>

4.3.2 CE CONFIGURATION

As with the WN, individual flavours of MPI are enabled by setting the MPI_<FLAVOUR>_ENABLE associ-
ated variable to "yes". The version of the MPI implementation must also be specified with the variable
MPI_<FLAVOUR>_VERSION, e.g. for configuring Open MPI version 1.3:

MPI_OPENMPI_ENABLE="yes"
MPI_OPENMPI_VERSION="1.3"

Possible flavours are:

OPENMPI for Open MPI

MPICH for MPICH-1

MPICH2 for MPICH-2

LAM for LAM-MPI

The use of shared homes should be announced also by setting the MPI_SHARED_HOME to "yes".

If you are using PBS/Torque, you can set the variable MPI_SUBMIT_FILTER to "yes" in order to enable
the submission of parallel jobs in your system. The submit filter assumes that your Worker Nodes are
correctly configured to publish in their status the ncpus variable with the number of available slots. If
that’s not true in your case, you may edit the file /var/torque/submit_filter in line 71 to fit your
pbsnodes output. An example for using the np value is commented out in the file.

The complete list of configuration variables for the CE is shown in the next table:

19/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

Variable Mandatory Description
MPI_<FLAVOUR>_ENABLE YES set to "yes" if you want to enable the <flavour>
MPI_<FLAVOUR>_VERSION YES set to the supported version of the <flavour>, usually is

automatically detected
MPI_START_VERSION NO set to the available mpi-start version. If not set, the yaim

plugin will try to figure out the version by checking if mpi-
start is installed.

MPI_SHARED_HOME NO set this to "yes" if you have a shared home area between
WNs.

MPI_SUBMIT_FILTER NO Set this to "yes" to configure the submit filter for torque
batch system that enables the submission of parallel
jobs. The configuration assumes that torque path is
/var/torque or TORQUE_VAR_DIR variable if defined.

The profile for configuring the CE is MPI_CE.

/opt/glite/yaim/bin/yaim -c -s site-info.def -n MPI_CE -n <other_ce_profiles>

Batch system and MPI: The batch system may need extra configuration for the submission of MPI jobs.
In PBS, you may use the automatic creation of the submit filter with the MPI_SUBMIT_FILTER variable.
Note: any changes to the submit filter will be overwritten if yaim is re-run. In the case of SGE you need to
configure a parallel environment. Check the documentation of your batch system for any further details.

For glite-yaim-mpi versions <= 1.1.11, the submit filter assumes that the pbsnodes -a output has the
ncpus= field in the status line correctly set. If not, please change the submit filter like shown in this diff:

--- submit_filter 2012-01-20 11:19:48.000000000 +0100
+++ submit_filter.new 2012-01-20 11:19:21.000000000 +0100
@@ -68,8 +68,8 @@

if (m/^\s*state\s*=\s*(\w+)/) {
$state = ($1 eq "offline") ? 0 : 1;

This may be changed to fit your nodes description
- # } elsif (m/^\s*np\s*=\s*(\d+)/) {
- } elsif (m/^\s*status\s*=\s*.*ncpus=(\d+),/) {
+ } elsif (m/^\s*np\s*=\s*(\d+)/) {
+ # } elsif (m/^\s*status\s*=\s*.*ncpus=(\d+),/) {

my $ncpus = $1;
if ($state) {

if (defined($machines{$ncpus})) {

The default behaviour of the submit filter has changed in version 1.1.11 to use the "np=xx" parameter of
the pbsnodes command output. Check the patch shown previously for the changes applied.

MPI_CE and other yaim profiles: The MPI_CE profile should be the first in the yaim configuration, other-
wise the Glue variables will not be properly defined. This restriction may be removed in future versions.

mpi-start version: The yaim plugin will publish in the tags the mpi-start version if mpi-start is installed at
the CE. If not installed you should define the MPI_START_VERSION with the version available at the WNs.

4.3.3 EXAMPLE CONFIGURATION

Here is an example configuration (with both CEs and WN variables!):

20/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

#----------------------------------
MPI-related configuration:
#----------------------------------
Several MPI implementations (or "flavours") are available.
If you do NOT want a flavour to be installed/configured, set its variable
to "no". Else, set it to "yes" (default). If you want to use an
already installed version of an implementation, set its "_PATH" and
"_VERSION" variables to match your setup (examples below).
#
NOTE 1: the CE_RUNTIMEENV will be automatically updated in the file
functions/config_mpi, so that the CE advertises the MPI implementations
you choose here - you do NOT have to change it manually in this file.
It will become something like this:
#
CE_RUNTIMEENV="$CE_RUNTIMEENV
MPI_MPICH
MPI_MPICH2
MPI_OPENMPI
MPI_LAM"
#
NOTE 2: it is currently NOT possible to configure multiple concurrent
versions of the same implementations (e.g. MPICH-1.2.3 and MPICH-1.2.7)
using YAIM. Customize "/opt/glite/yaim/functions/config_mpi" file
to do so.

MPI_MPICH_ENABLE="yes"
MPI_MPICH_VERSION="1.2.7p1"

MPI_MPICH2_ENABLE="yes"
MPI_MPICH2_VERSION="1.0.4"

MPI_OPENMPI_ENABLE="yes"
MPI_OPENMPI_VERSION="1.1"

MPI_LAM_ENABLE="yes"
MPI_LAM_VERSION="7.1.2"

set Open MPI as default flavour
MPI_DEFAULT_FLAVOUR=OPENMPI

#---
Example for using an already installed version of MPI.
Setting "_PATH" and "_VERSION" variables will prevent YAIM
from using the default OS packages.
Just fill in the path to its current installation (e.g. "/usr")
and which version it is (e.g. "6.5.9").
DO NOT USE UNLESS A NON DEFAULT LOCATION IS USED
#---
MPI_MPICH_PATH="/opt/mpich-1.2.7p1/"
MPI_MPICH2_PATH="/opt/mpich2-1.0.4/"

If you do NOT provide a shared home, set $MPI_SHARED_HOME to "no" (default).
#
MPI_SHARED_HOME="yes"

21/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

#
If you do NOT have SSH Hostbased Authentication between your WNs, set the below
variable to "no" (default). Else, set it to "yes".
#
MPI_SSH_HOST_BASED_AUTH="yes"

If you use Torque as batch system, you may want to let the yaim plugin
configure a submit filter for you. Uncomment the following line to do so
MPI_SUBMIT_FILTER="yes"

#
If you provide an ’mpiexec’ for MPICH or MPICH2, please state the full path to
that file here (http://www.osc.edu/~pw/mpiexec/index.php). Else, leave empty.
#
#MPI_MPICH_MPIEXEC="/usr/bin/mpiexec"

22/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

5 EXAMPLES

5.1 SIMPLE JOB

Simple job using environment variables:

#!/bin/sh
IMPORTANT : This example script execute a
non-mpi program with Open MPI
#
export I2G_MPI_APPLICATION=/bin/hostname
export I2G_MPI_TYPE=openmpi

$I2G_MPI_START

Same example using command line parameters:

mpi-start -t openmpi /bin/hostname

5.2 JOB WITH USER HOOKS

#!/bin/sh
#
MPI_START_SHARED_FS can be used to figure out if the current working
is located on a shared file system or not. (1=yes, 0=no);
#
The "mpi_start_foreach_host" function takes as parameter the name of
another function that will be called for each host in the machine as
first parameter.
- For each host the callback function will be called exactly once,
independent how often the host appears in the machinefile.
- The callback function will also be called for the local host.

create the pre-run hook
cat > pre_run_hook.sh << EOF

pre_run_hook () {
echo "pre run hook called "
- download data
- compile program

if ["x\$MPI_START_SHARED_FS" = "x0"] ; then
echo "If we need a shared file system we can return -1 to abort"
return -1

fi

return 0
}
EOF

create the post-run hook
cat > post_run_hook.sh << EOF
the first paramter is the name of a host in the

23/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

my_copy () {
CMD="scp . \$1:\$PWD/mydata.1"
echo \$CMD
#\$CMD
upload data

}

post_run_hook () {
echo "post_run_hook called"
if ["x\$MPI_START_SHARED_FS" = "x0"] ; then

echo "gather output from remote hosts"
mpi_start_foreach_host my_copy

fi
return 0

}
EOF

export I2G_MPI_APPLICATION=mpi_sleep
export I2G_MPI_APPLICATION_ARGS=0
export I2G_MPI_TYPE=openmpi
export I2G_MPI_PRE_RUN_HOOK=./pre_run_hook.sh
export I2G_MPI_POST_RUN_HOOK=./post_run_hook.sh

$I2G_MPI_START

instead of the variable definition, the following command line could be used:
mpi-start -t openmpi -pre ./pre_run_hook.sh -post ./post_run_hook.sh mpi_sleep 0

5.3 USING MPI-START WITH WMS

EMI provides the WMS software for submitting jobs to the different available resources. The WMS gets a
job description in the JDL language and performs the selection and actual submission of the job into the
resources on behalf of the user. The following sections describe how to submit a job using the WMS.

5.3.1 BASIC JOB SUBMISSION

Jobs are described with the JDL language. Most relevant attributes for parallel job submission are:

• CPUNumber: number of processes to allocate.

• Requirements: requirements of the job, will allow to force the selection of sites with mpi-start sup-
port.

The following example shows a job that will use 6 processes and it is executed with Open MPI. The
requirements attribute makes the WMS to select sites that publish that they support mpi-start and Open
MPI.

JobType = "Normal";
CPUNumber = 6;
Executable = "starter.sh";
Arguments = "OPENMPI hello_bin hello arguments";

24/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

InputSandbox = {"starter.sh", "hello_bin"};
OutputSandbox = {"std.out", "std.err"};
StdOutput = "std.out";
StdError = "std.err";
Requirements = member("MPI-START", other.GlueHostApplicationSoftwareRunTimeEnvironment)

&& member("OPENMPI", other.GlueHostApplicationSoftwareRunTimeEnvironment);

The Executable attribute is a script that will invoke mpi-start with the correct options for the execution
of the user’s application. We propose a generic wrapper that can be used for any application and MPI
flavour that gets in the Arguments attribute:

• Name of mpi-start execution environment (I2G_MPI_FLAVOUR variable), in the example: OPEN-
MPI

• Name of user binary, in the example: hello_bin

• Arguments for the user binary, in the example: hello arguments

This is the content of the wrapper:

#!/bin/bash
Pull in the arguments.
MPI_FLAVOR=$1

MPI_FLAVOR_LOWER=‘echo $MPI_FLAVOR | tr ’[:upper:]’ ’[:lower:]’‘
export I2G_MPI_TYPE=$MPI_FLAVOR_LOWER

shift
export I2G_MPI_APPLICATION=$1

shift
export I2G_MPI_APPLICATION_ARGS=$*

Touch the executable, and make sure it’s executable.
touch $I2G_MPI_APPLICATION
chmod +x $I2G_MPI_APPLICATION

Invoke mpi-start.
$I2G_MPI_START

User needs to include this wrapper in the InputSandbox of the JDL (starter.sh) and set it as the
Executable of the job. Submission is performed as any other job:

$ glite-wms-job-submit -a hello-mpi.sh

Connecting to the service https://gridwms01.ifca.es:7443/glite_wms_wmproxy_server

====================== glite-wms-job-submit Success ======================

The job has been successfully submitted to the WMProxy
Your job identifier is:

25/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

https://gridwms01.ifca.es:9000/8jG3MUNRm-ol7BqhFP5Crg

==

Once the job is finished, the output can be retrieved:

$ glite-wms-job-output https://gridwms01.ifca.es:9000/8jG3MUNRm-ol7BqhFP5Crg

Connecting to the service https://gridwms01.ifca.es:7443/glite_wms_wmproxy_server

==

JOB GET OUTPUT OUTCOME

Output sandbox files for the job:
https://gridwms01.ifca.es:9000/8jG3MUNRm-ol7BqhFP5Crg
have been successfully retrieved and stored in the directory:
/gpfs/csic_projects/grid/tmp/jobOutput/enol_8jG3MUNRm-ol7BqhFP5Crg

==

$ cat /gpfs/csic_projects/grid/tmp/jobOutput/enol_8jG3MUNRm-ol7BqhFP5Crg/std.*
Hello world from gcsic054wn. Process 3 of 6
Hello world from gcsic054wn. Process 1 of 6
Hello world from gcsic054wn. Process 2 of 6
Hello world from gcsic054wn. Process 0 of 6
Hello world from gcsic055wn. Process 4 of 6
Hello world from gcsic055wn. Process 5 of 6

5.3.2 MODIFYING MPI-START BEHAVIOR

mpi-start behavior can be customized by setting different environment variables. If using the generic
wrapper, one easy way of customizing mpi-start execution is using the Environment attribute of the JDL.
The following JDL adds debugging to the previous example by setting the I2G_MPI_START_VERBOSE and
I2G_MPI_START_DEBUG variables to 1:

JobType = "Normal";
CPUNumber = 6;
Executable = "starter.sh";
Arguments = "OPENMPI hello_bin hello arguments";
InputSandbox = {"starter.sh", "hello_bin"};
OutputSandbox = {"std.out", "std.err"};
StdOutput = "std.out";
StdError = "std.err";
Requirements = member("MPI-START", other.GlueHostApplicationSoftwareRunTimeEnvironment)

&& member("OPENMPI", other.GlueHostApplicationSoftwareRunTimeEnvironment);
Environment = {"I2G_MPI_START_VERBOSE=1", "I2G_MPI_START_DEBUG=1"};

Use of hooks is also possible using this mechanism. If the user has a file with the mpi-start hooks
called hooks.sh, the following JDL would add it to the execution (notice that the file is also added in the
InputSandbox):

26/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

JobType = "Normal";
CPUNumber = 6;
Executable = "starter.sh";
Arguments = "OPENMPI hello_bin hello arguments";
InputSandbox = {"starter.sh", "hello_bin", "hooks.sh"};
OutputSandbox = {"std.out", "std.err"};
StdOutput = "std.out";
StdError = "std.err";
Requirements = member("MPI-START", other.GlueHostApplicationSoftwareRunTimeEnvironment)

&& member("OPENMPI", other.GlueHostApplicationSoftwareRunTimeEnvironment);
Environment = {"I2G_MPI_PRE_RUN_HOOK=hooks.sh", "I2G_MPI_POST_RUN_HOOK=hooks.sh"};

27/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

6 MPI-START INTERNALS

This section documents the internal variables of mpi-start. They might be used for development of hooks
or configuration of mpi-start. As the documentation improves, these may be moved to other sections of
the document.

6.1 GLOBAL CONFIGURATION VARIABLES

Variable Default Description
MPI_START_DUMMY_SCHEDULER 1 Enables or disables the dummy scheduler.
I2G_MPI_START_KEEP_FILES 0 Enables or disables the removal of temporary files at

the end of execution.
I2G_MPI_START_FULL_TRACE - Enables or disables full trace of mpi-start.
MPI_START_DO_NOT_USE_WRAPPER - Enables or disables the use of a wrapper for the exe-

cutable
MPI_START_SOCKETS - Number of sockets in the host (if not defined, mpi-

start tries to detect them).
MPI_START_COREPERSOCKET - Number of cores per socket in the host (if not defined,

mpi-start tries to detect them).
MPI_START_COREPERSOCKET - Number of cores per socket in the host (if not defined,

mpi-start tries to detect them).
I2G_MPI_START_ENABLE_TESTING - If equal to "TEST", then do not call the main function.

Used for sourcing the mpi-start file.

6.2 SCHEDULER PLUGIN VARIABLES

Variable Description
MPI_START_SCHEDULER Name of the scheduler.
MPI_START_HOSTFILE File containing one line per slot available.
MPI_START_MACHINEFILE File containing one line per host available.
MPI_START_HOST_SLOTS_FILE File containing one line with a name of host, and the number of slots

available in that host.
MPI_START_NP Total number of processors to use.
MPI_START_NPHOST Number of processes per host, may be undefined if slot allocation

is used.
.

28/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

6.3 MPI EXECUTION VARIABLES

Variable Description
MPIEXEC Defined by each flavour, mpiexec executable
MPI_GLOBAL_PARAMS Global parameters for mpiexec
MPI_LOCAL_PARAMS Local parameters for mpiexec
MPI_START_SSH_AGENT User (or system) specified ssh agent (used mostly by

condor).
MPI_START_DISABLE_LRMS_INTEGRATION If set to "yes", do not use any LRMS integration avail-

able in the MPI flavour.
MPI_MPICH2_DISABLE_HYDRA If set to 1, disable the use of hydra launcher for mpich2.
OSC_MPIEXEC Set to 1 if OSC mpiexec is found.
HYDRA_MPIEXEC Set to 1 if hydra mpiexec is found.
OPENMPI_VERSION_MAJOR Set to Open MPI major version.
OPENMPI_VERSION_MINOR Set to Open MPI minor version.
OPENMPI_VERSION_RELEASE Set to Open MPI release version.

29/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

A CONFIGURATION OF BATCH SYSTEM

The batch system must be ready to execute parallel jobs (i.e. more than one slot is requested for a single
job). Each batch system has its own specific ways of configuring such support.

Here you can find the instructions to manually configure different batch systems to execute MPI jobs.

A.1 TORQUE/PBS

Torque/PBS can be configured with the yaim module as described in previous sections. In order to
configure manually you will need to edit (create it if it does not exist) your torque configuration file
(/var/torque/torque.cfg or /var/spool/pbs/torque.cfg) and add a line containing:

SUBMITFILTER /var/torque/submit_filter.pl

Then download the submit_filter.pl from http://devel.ifca.es/rep/submit_filter.pl and put it in the above
location.

This filter modifies the script coming from the submission, rewriting the -l nodes=XX option with specific
requests, based on the information given by pbsnodes command.

The submit filter is crucial. Failing to use the submit filter translates in the job being submitted to only one
node, where all the MPI processes are allocated too, instead of distributing the job across several nodes.

Warning: updates tend to rewrite torque.cfg. Check that the submit filter line is still there after
performing an update

A.1.1 MAUI

Edit your configuration file (usually under /var/spool/maui/maui.cfg) and check that it contains the
following line:

ENABLEMULTIREQJOBS TRUE

The ENABLEMULTINODEJOBS parameter must not be set to FALSE (if not specified is TRUE by default).
These parameters allow a job to span to more than one node and to specify multiple independent resource
requests.

The maui version provided as third party in EMI/UMD (maui-3.2.6p21-snap.1234905291.5.el5) has a bug
that prevents the use of more than one WN when submitting a parallel job. See https://ggus.eu/ws/ticket_
info.php?ticket=57828 for details. It is recommended to use newer versions of maui that do not have this
problem.

A.2 SGE

Support for parallel jobs under SGE is enabled using Parallel Environments. You will need to configure at
least one parallel environment in order to execute the jobs. Check the Parallel Environment documentation
for more information. The CREAM Blah scripts will automatically use the available parallel environment if
a job that requires more than one CPU is submitted.

In the following example a PE configuration is shown:

30/36

http://devel.ifca.es/rep/submit_filter.pl
https://ggus.eu/ws/ticket_info.php?ticket=57828
https://ggus.eu/ws/ticket_info.php?ticket=57828

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

[root@ce ~]# qconf -sp mpi
pe_name mpi
slots 4
user_lists NONE
xuser_lists NONE
start_proc_args /bin/true
stop_proc_args /bin/true
allocation_rule $fill_up
control_slaves TRUE
job_is_first_task FALSE

A.3 PASSWORDLESS SSH (HOSTBASED AUTHENTICATION)

Depending on the MPI implementation used and if the site does not have a shared file system, password-
less ssh between the nodes may be required between the WN. If that’s the case, make sure that any pool
account can login from one WN to any other using ssh without showing any password prompt.

B INSTALLATION OF MPI IMPLEMENTATION

In order to execute MPI jobs, the site must support one of the multiple MPI implementations available.
Most extended are Open MPI and MPICH2. OS distributions provide ready to use packages that fit most
use cases. SL provides the following packages:

• openmpi and openmpi-devel for Open MPI.

• mpich2 and mpich2-devel for MPICH2.

• lam and lam-devel for LAM

Installation of devel packages for the MPI implementation is recommended, since this will allow users to
compile their applications at the site. Moreover the Nagios probes will try to compile a binary, thus not hav-
ing a working compiler will make them fail. Note that the compiler may not be specified as dependencies
of the -devel packages. Make sure that gcc and related packages are available.

Note also that not all the implementations support tight integration with the batch system. Tight integra-
tion is required for proper accounting numbers.

The MPI packages must be installed at the nodes that will execute the jobs (WN).

B.1 OPEN MPI

Open MPI support tight integration with several batch system, including Torque/PBS and SGE, that may
require recompilation of the packages in order to get it. Tight integration allows proper accounting of
resources used (CPU time) and better control of the jobs by the system, thus avoiding zombie processes
if something goes wrong with the application. The following sections describe the SGE and PBS/Torque
cases:

31/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

B.1.1 SGE

The SGE tight scheduler integration allows Open MPI to start the processes in the worker nodes using the
native batch system utilities, thus providing better process control and accounting. SL5 packages already
include support for SGE with the openmpi and openmpi-devel rpms. After Open MPI is installed, you
should see one component named gridengine in the ompi_info output:

$ ompi_info | grep gridengine
MCA ras: gridengine (MCA v2.0, API v2.0, Component v1.4)

Check the Open MPI FAQ at http://www.open-mpi.org/faq/?category=building#build-rte-sge for more in-
formation.

B.1.2 TORQUE/PBS

In the case of Torque/PBS in SL5 you will need to compile the packages for your site. The Open MPI FAQ
(http://www.open-mpi.org/faq/?category=building#build-rte-tm) includes instructions for doing so. You can
adapt the SL5 packages to support Torque/PBS following these steps:

• Download and install Open MPI source rpm: http://ftp2.scientificlinux.org/linux/scientific/5x/SRPMS/
vendor/openmpi-1.4-4.el5.src.rpm

$ rpm -Uvh http://ftp2.scientificlinux.org/linux/scientific/5x/SRPMS/vendor/openmpi-1.4-4.el5.src.rpm
Retrieving http://ftp2.scientificlinux.org/linux/scientific/5x/SRPMS/vendor/openmpi-1.4-4.el5.src.rpm
warning: /var/tmp/rpm-xfer.DAMscP: Header V3 DSA signature: NOKEY, key ID 192a7d7d

1:openmpi warning: user mockbuild does not exist - using root
warning: group mockbuild does not exist - using root
[100%]
warning: user mockbuild does not exist - using root
warning: group mockbuild does not exist - using root
warning: user mockbuild does not exist - using root
warning: group mockbuild does not exist - using root
warning: user mockbuild does not exist - using root
warning: group mockbuild does not exist - using root
warning: user mockbuild does not exist - using root
warning: group mockbuild does not exist - using root
warning: user mockbuild does not exist - using root
warning: group mockbuild does not exist - using root
warning: user mockbuild does not exist - using root
warning: group mockbuild does not exist - using root

• Modify the spec file to include Torque/PBS support:

--- openmpi.spec 2010-03-31 23:18:20.000000000 +0200
+++ openmpi.spec 2011-03-07 18:37:11.000000000 +0100
@@ -114,6 +114,7 @@
./configure --prefix=%{_libdir}/%{mpidir} --with-libnuma=/usr \

--with-openib=/usr --enable-mpirun-prefix-by-default \
--mandir=%{_libdir}/%{mpidir}/man %{?with_valgrind} \

+ --with-tm \
--enable-openib-ibcm --with-sge \
CC=%{opt_cc} CXX=%{opt_cxx} \
LDFLAGS=’-Wl,-z,noexecstack’ \

32/36

http://www.open-mpi.org/faq/?category=building#build-rte-sge
http://www.open-mpi.org/faq/?category=building#build-rte-tm
http://ftp2.scientificlinux.org/linux/scientific/5x/SRPMS/vendor/openmpi-1.4-4.el5.src.rpm
http://ftp2.scientificlinux.org/linux/scientific/5x/SRPMS/vendor/openmpi-1.4-4.el5.src.rpm

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

• Install Torque/PBS development libraries:

$ yum install libtorque-devel

• Build the RPMs

$ rpmbuild -ba /usr/src/redhat/SPECS/openmpi.spec

• Install the resulting RPMs:

$ yum localinstall -nogpgcheck /usr/src/redhat/RPMS/x86_64/openmpi-*

• Check that the support for Torque/PBS is enabled:

$ /usr/lib64/openmpi/1.4-gcc/bin/ompi_info | grep tm
MCA memory: ptmalloc2 (MCA v2.0, API v2.0, Component v1.4)

MCA ras: tm (MCA v2.0, API v2.0, Component v1.4)
MCA plm: tm (MCA v2.0, API v2.0, Component v1.4)

B.1.3 OPEN MPI WITHOUT TIGHT INTEGRATION

Open MPI can use rsh/ssh for starting the jobs if no tight integration is available. Jobs will run if you have
passwordless ssh enabled between the WN, but the accounting figures will be incorrect.

B.2 MPICH2

MPICH2 can use several launchers for starting the processes:

• MPD, which uses rsh/ssh for starting the processes, so it will not produce correct accounting num-
bers.

• Hydra, which also uses rsh/ssh and should support tight integration with some batch systems.

• For PBS/Torque, OSC Mpiexec http://www.osc.edu/~djohnson/mpiexec/index.php which includes
tight integration.

mpi-start is able to select the most appropriate one if found (Hydra is prefered over MPD)

B.2.1 MPD

MPD is available in all versions of MPICH2 and uses rsh/ssh to start the processes. It was the default
starter for versions < 1.3. It uses a .mpd.conf file at the home directory, so it is necessary to provide a
way to access the home directory from the WN (usual case)

B.2.2 HYDRA

Hydra is the new starter of MPICH2 and the default since version 1.3. It is designed to natively work
with multiple daemons such as ssh, rsh, pbs, slurm and sge. Notice that not all versions support all
the daemons!. The version included with SL5 does NOT support pbs or sge, therefore passwordless
rsh/ssh between the nodes is mandatory.

sge support is included since version 1.3b1. pbs is included in version 1.5a1. If you want to have tight
integration (i.e. accounting) with MPICH2 and one of these systems you may need to download and
compile the packages at your site.

33/36

http://www.osc.edu/~djohnson/mpiexec/index.php

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

B.2.3 OSC MPIEXEC

OSC Mpiexec provides tight integration for PBS/Torque system. In order to use itwith mpi-start you will
need to define the variable MPI_MPICH2_MPIEXEC pointing to its location.

C DISTRIBUTION OF BINARIES

The MPI binaries that users want to run need to be accessible on every node involved in an MPI compu-
tation (it is a parallel job after all). There are three main approaches:

C.1 SHARED HOME/OTHER SHARED AREA

By far the best option is to provide user homes hosted on a shared filesystem. This could either be a
network filesystem (e.g. NFS) or a cluster filesystem (e.g. GPFS or Lustre). Then the MPI binary you
transfer in the Sandbox (or compile up) on the first MPI node will automatically be available on all nodes.
This is the normal mode of operation for MPI, and what MPI users will probably expect.

mpi-start checks if the working directory of the job is in a shared filesystem (nfs, gfs, afs, smb, gpfs and
lustre are detected) and considers that if the filesystem is shared the binaries will be available without any
further action in all the nodes involved in the execution.

In some cases, there is an available shared filesystem but the job does not start its execution there. Site
admins can force mpi-start to use one directory as shared for transferring the job files to all nodes as
described in the hooks section.

C.1.1 PASSWORDLESS SSH BETWEEN WNS

If you configure host-based authentication between worker nodes, then mpi-start can automatically repli-
cate your binary to nodes involved in the computation. All the files in the working directory will be repli-
cated, however, other needed files (e.g. data) may not be replicated, so this would have to be done
manually (and would be slow for large data sets). Also it could open up the potential for users to subvert
the normal resource management mechanisms by directly executing commands on nodes not allocated
to them.

C.1.2 USE OSC MPIEXEC TO DISTRIBUTE FILES

This option is for sites with neither a shared filesystem nor passwordless ssh between WNs. If you have
an mpiexec that can spawn the remote jobs using the LRMS native interface, you can use it to distribute
the files. See http://www.osc.edu/~djohnson/mpiexec/index.php#Cute_mpiexec_hacks for the basic idea.

D INFORMATION SYSTEM

Sites may install different implementations (or flavours) of MPI. It is important therefore that users can use
the information system to locate sites with the software they require. You should publish some values to let
the world know which flavour of MPI you are supporting, as well as the interconnect and some other things.
Everything related with MPI should be published as GlueHostApplicationSoftwareRunTimeEnvironment
in the corresponding sections.

34/36

http://www.osc.edu/~djohnson/mpiexec/index.php#Cute_mpiexec_hacks

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

D.1 MPI-START SUPPORT

May include the version.

GlueHostApplicationSoftwareRunTimeEnvironment: MPI-START
GlueHostApplicationSoftwareRunTimeEnvironment: MPI-START-1.3.0

D.2 MPI FLAVOUR(S)

<MPI flavour>

This is the most basic variable and one should be advertised for each MPI flavour that has been installed
and tested. Currently supported flavours are MPICH, MPICH2, LAM and OPENMPI.

Example:

GlueHostApplicationSoftwareRunTimeEnvironment: MPICH
GlueHostApplicationSoftwareRunTimeEnvironment: MPICH2
GlueHostApplicationSoftwareRunTimeEnvironment: LAM
GlueHostApplicationSoftwareRunTimeEnvironment: OPENMPI

D.3 MPI VERSION(S)

<MPI flavour>-<MPI version>

This should be published to allow users with special requirements to locate specific versions of MPI
software.

Examples:

GlueHostApplicationSoftwareRunTimeEnvironment: OPENMPI-1.0.2
GlueHostApplicationSoftwareRunTimeEnvironment: MPICH-1.2.7
GlueHostApplicationSoftwareRunTimeEnvironment: MPICH-G2-1.2.7
GlueHostApplicationSoftwareRunTimeEnvironment: OPENMPI-1.0.2-ICC

D.4 MPI COMPILER(S) – OPTIONAL

<MPI flavour>-<MPI version>-<Compiler>

If <Compiler> is not published, then gcc suite is assumed.

D.5 INTERCONNECTS – OPTIONAL

MPI-<interconnect>

Interconnects: Ethernet, Infiniband, SCI, Myrinet

Example:

GlueHostApplicationSoftwareRunTimeEnvironment: MPI-Infiniband

35/36

TITLE:
mpi-start and MPI-Utils
Date: January 18, 2013

D.6 SHARED HOMES

If a site has a shared filesystem for home directories it should publish the variable MPI_SHARED_HOME.

GlueHostApplicationSoftwareRunTimeEnvironment: MPI_SHARED_HOME

36/36

	1 About
	1.1 mpi-start
	1.1.1 Description
	1.1.2 Requirements
	1.1.3 Source Code

	1.2 MPI-Utils
	1.2.1 Description
	1.2.2 Requirements
	1.2.3 Source Code

	2 User Guide
	2.1 Installation
	2.2 Usage
	2.3 Command Line Options
	2.4 Environment Variables
	2.5 Scheduler and Execution Environment Support

	3 Hooks
	3.1 File Distribution Hooks
	3.1.1 Distribution Method Plugins

	3.2 Extensions Hooks
	3.3 Local Site Hooks
	3.4 Developing User Hooks
	3.4.1 Compilation
	3.4.2 Input Preprocessing
	3.4.3 Output Gathering

	3.5 Hooks Variable Summary

	4 System Administrator Guide
	4.1 Installation
	4.1.1 Binary Distribution
	4.1.2 Upgrading from EMI-1
	4.1.3 Source Distribution

	4.2 Configuration
	4.2.1 Hooks

	4.3 mpi-start Yaim Configuration
	4.3.1 WN Configuration
	4.3.2 CE Configuration
	4.3.3 Example configuration

	5 Examples
	5.1 Simple Job
	5.2 Job with User Hooks
	5.3 Using mpi-start with WMS
	5.3.1 Basic Job Submission
	5.3.2 Modifying mpi-start Behavior

	6 mpi-start Internals
	6.1 Global Configuration Variables
	6.2 Scheduler plugin variables
	6.3 MPI Execution Variables

	A Configuration of batch system
	A.1 Torque/PBS
	A.1.1 Maui

	A.2 SGE
	A.3 Passwordless ssh (hostbased authentication)

	B Installation of MPI implementation
	B.1 Open MPI
	B.1.1 SGE
	B.1.2 Torque/PBS
	B.1.3 Open MPI without tight integration

	B.2 MPICH2
	B.2.1 MPD
	B.2.2 Hydra
	B.2.3 OSC Mpiexec

	C Distribution of binaries
	C.1 Shared home/other shared area
	C.1.1 Passwordless ssh between WNs
	C.1.2 Use OSC mpiexec to distribute files

	D Information System
	D.1 MPI-start support
	D.2 MPI flavour(s)
	D.3 MPI version(s)
	D.4 MPI compiler(s) – optional
	D.5 Interconnects – optional
	D.6 Shared homes

