
sLASh – a simple LAS reader library
in a single header file

Thomas Knudsen, PhD

Danish Geodata Agency

European Lidar Map Forum, 2013

Outline

1 What?
What is it
What does it look like?

2 Why?
Do we need yet another LAS library?
But why a header library?

3 How? – Design and Usage
Setting and influences
Overall Design

4 (Un)conclusion

5 DVD bonus material – digitally remastered director’s cut

Outline

1 What?
What is it
What does it look like?

2 Why?
Do we need yet another LAS library?
But why a header library?

3 How? – Design and Usage
Setting and influences
Overall Design

4 (Un)conclusion

5 DVD bonus material – digitally remastered director’s cut

What is it

sLASh – slash.h – reads LAS files
Header library, written in plain C
Permissive license (ISC/OpenBSD)
Very compact

wc -l slash.h
1346 slash.h

awk -f lines_of_code.awk slash.h|wc -l
577

Data type definitions and self tests ≈200 lines
Core library functionality <400 lines
Binary < 7 kB (gcc, Win64).

What is it

sLASh – slash.h – reads LAS files
Header library, written in plain C
Permissive license (ISC/OpenBSD)
Very compact

wc -l slash.h
1346 slash.h

awk -f lines_of_code.awk slash.h|wc -l
577

Data type definitions and self tests ≈200 lines
Core library functionality <400 lines
Binary < 7 kB (gcc, Win64).

What is it

sLASh – slash.h – reads LAS files
Header library, written in plain C
Permissive license (ISC/OpenBSD)
Very compact

wc -l slash.h
1346 slash.h

awk -f lines_of_code.awk slash.h|wc -l
577

Data type definitions and self tests ≈200 lines
Core library functionality <400 lines
Binary < 7 kB (gcc, Win64).

What does it look like?

#include "slash.h"

int main (int argc, char **argv) {
LAS *h;
double x, y, z;

h = las_open (argv[1], "rb");
while (las_read (h)) {

x = las_x (h);
y = las_y (h);
z = las_z (h);
printf ("%f %f %f\n", x, y, z);

}

las_close (h);
return 0;

}

Outline

1 What?
What is it
What does it look like?

2 Why?
Do we need yet another LAS library?
But why a header library?

3 How? – Design and Usage
Setting and influences
Overall Design

4 (Un)conclusion

5 DVD bonus material – digitally remastered director’s cut

A relevant question. . .

LASlib libLAS

But. . . Do we really need another LAS library?

Do we really need another LAS library?

We may not need it
but I did need it

Long story short. . .

Needed to patch some slightly erroneous LAS 1.0 files
Just a small extra effort to turn the code into a library.

Do we really need another LAS library?

We may not need it
but I did need it

Long story short. . .
Needed to patch some slightly erroneous LAS 1.0 files
Just a small extra effort to turn the code into a library.

But why a header library?

Recently, we did some experiments packaging small
re-usable software components as header-only libraries

Including
ASTA

Accumulation of STAtistics
stack

Template library in plain C
comquat

COMplex numbers and QUATernions
Obvious idea to package the LAS reader in the style of
ASTA, stack and comquat.

Helios

The entire package of libraries was named after 3 elements

4
2 He 7

3 Li 192
76 Os

Header Libraries on Steroids

It may be perceived as dense and brittle, but it’s lightweight and
it keeps you sane :-)

Helios

The entire package of libraries was named after 3 elements

4
2 He

7
3 Li 192

76 Os

Header

Libraries on Steroids

It may be perceived as dense and brittle, but it’s lightweight and
it keeps you sane :-)

Helios

The entire package of libraries was named after 3 elements

4
2 He 7

3 Li

192
76 Os

Header Libraries

on Steroids

It may be perceived as dense and brittle, but it’s lightweight and
it keeps you sane :-)

Helios

The entire package of libraries was named after 3 elements

4
2 He 7

3 Li 192
76 Os

Header Libraries on Steroids

It may be perceived as dense and brittle, but it’s lightweight and
it keeps you sane :-)

Helios

The entire package of libraries was named after 3 elements

4
2 He 7

3 Li 192
76 Os

Header Libraries on Steroids
It may be perceived as dense and brittle, but it’s lightweight and
it keeps you sane :-)

Outline

1 What?
What is it
What does it look like?

2 Why?
Do we need yet another LAS library?
But why a header library?

3 How? – Design and Usage
Setting and influences
Overall Design

4 (Un)conclusion

5 DVD bonus material – digitally remastered director’s cut

Our typical software tool setup

LAS processing
LAStools, libLAS, OPALS, TerraSolid

Core functionality/library implementation
C (with Python bindings)

Graphical User Interfaces
Python/PyQt

Production automatization
Python, bash, Windows cmd.exe

Our typical software tool setup

LAS processing
LAStools, libLAS, OPALS, TerraSolid

Core functionality/library implementation
C (with Python bindings)

Graphical User Interfaces
Python/PyQt

Production automatization
Python, bash, Windows cmd.exe

Our typical software tool setup

LAS processing
LAStools, libLAS, OPALS, TerraSolid

Core functionality/library implementation
C (with Python bindings)

Graphical User Interfaces
Python/PyQt

Production automatization
Python, bash, Windows cmd.exe

Our typical software tool setup

LAS processing
LAStools, libLAS, OPALS, TerraSolid

Core functionality/library implementation
C (with Python bindings)

Graphical User Interfaces
Python/PyQt

Production automatization
Python, bash, Windows cmd.exe

The LAS format

The sLASh design is necessarily shaped by the main
structures defined in the LAS format specification:

Public Header
Version, Spatial extent, Scaling, Record type, etc.

Variable Length Records
Georeferencing, generic user defined metadata

Fixed Length Records
The actual LiDAR point data

Extended Variable Length Records
e.g. Waveform data

Five versions (LAS 1.0–1.4), 11 fixed record formats (0–10)
=⇒ Probably not as simple as it could be. . .

The LAS format

The sLASh design is necessarily shaped by the main
structures defined in the LAS format specification:

Public Header
Version, Spatial extent, Scaling, Record type, etc.

Variable Length Records
Georeferencing, generic user defined metadata

Fixed Length Records
The actual LiDAR point data

Extended Variable Length Records
e.g. Waveform data

Five versions (LAS 1.0–1.4), 11 fixed record formats (0–10)
=⇒ Probably not as simple as it could be. . .

The LAS format

The sLASh design is necessarily shaped by the main
structures defined in the LAS format specification:

Public Header
Version, Spatial extent, Scaling, Record type, etc.

Variable Length Records
Georeferencing, generic user defined metadata

Fixed Length Records
The actual LiDAR point data

Extended Variable Length Records
e.g. Waveform data

Five versions (LAS 1.0–1.4), 11 fixed record formats (0–10)
=⇒ Probably not as simple as it could be. . .

The LAS format

The sLASh design is necessarily shaped by the main
structures defined in the LAS format specification:

Public Header
Version, Spatial extent, Scaling, Record type, etc.

Variable Length Records
Georeferencing, generic user defined metadata

Fixed Length Records
The actual LiDAR point data

Extended Variable Length Records
e.g. Waveform data

Five versions (LAS 1.0–1.4), 11 fixed record formats (0–10)
=⇒ Probably not as simple as it could be. . .

The LAS format

The sLASh design is necessarily shaped by the main
structures defined in the LAS format specification:

Public Header
Version, Spatial extent, Scaling, Record type, etc.

Variable Length Records
Georeferencing, generic user defined metadata

Fixed Length Records
The actual LiDAR point data

Extended Variable Length Records
e.g. Waveform data

Five versions (LAS 1.0–1.4), 11 fixed record formats (0–10)
=⇒ Probably not as simple as it could be. . .

The LAS format

The sLASh design is necessarily shaped by the main
structures defined in the LAS format specification:

Public Header
Version, Spatial extent, Scaling, Record type, etc.

Variable Length Records
Georeferencing, generic user defined metadata

Fixed Length Records
The actual LiDAR point data

Extended Variable Length Records
e.g. Waveform data

Five versions (LAS 1.0–1.4), 11 fixed record formats (0–10)
=⇒ Probably not as simple as it could be. . .

Design principles

Less is more
You cannot do everything in 400 lines

Worse is better
Go for simple implementations. Don’t get smart unless
necessary: smart means brittle

Avoid the 2nd system syndrome
Plan ahead but keep it simple, stupid (KISS)

Avoid creeping featurism
“you’re not gonna need it”.

Design principles

Less is more
You cannot do everything in 400 lines

Worse is better
Go for simple implementations. Don’t get smart unless
necessary: smart means brittle

Avoid the 2nd system syndrome
Plan ahead but keep it simple, stupid (KISS)

Avoid creeping featurism
“you’re not gonna need it”.

Overall Design

Data types
LAS, NRGB, Waveform Descriptor, LAS record, VLR

File access API
las_open, las_seek, las_read, las_close

Record access API
las_x, las_y, las_z, las_intensity, las_flag_overlap. . .

Printing and formatting API
las_header_display, las_record_display, las_vlr_display

Plumbing
Record structure LUTs, big endian/little endian, WIN32
large file support.

Overall Design

Data types
LAS, NRGB, Waveform Descriptor, LAS record, VLR

File access API
las_open, las_seek, las_read, las_close

Record access API
las_x, las_y, las_z, las_intensity, las_flag_overlap. . .

Printing and formatting API
las_header_display, las_record_display, las_vlr_display

Plumbing
Record structure LUTs, big endian/little endian, WIN32
large file support.

Overall Design

Data types
LAS, NRGB, Waveform Descriptor, LAS record, VLR

File access API
las_open, las_seek, las_read, las_close

Record access API
las_x, las_y, las_z, las_intensity, las_flag_overlap. . .

Printing and formatting API
las_header_display, las_record_display, las_vlr_display

Plumbing
Record structure LUTs, big endian/little endian, WIN32
large file support.

Overall Design

Data types
LAS, NRGB, Waveform Descriptor, LAS record, VLR

File access API
las_open, las_seek, las_read, las_close

Record access API
las_x, las_y, las_z, las_intensity, las_flag_overlap. . .

Printing and formatting API
las_header_display, las_record_display, las_vlr_display

Plumbing
Record structure LUTs, big endian/little endian, WIN32
large file support.

Overall Design

Data types
LAS, NRGB, Waveform Descriptor, LAS record, VLR

File access API
las_open, las_seek, las_read, las_close

Record access API
las_x, las_y, las_z, las_intensity, las_flag_overlap. . .

Printing and formatting API
las_header_display, las_record_display, las_vlr_display

Plumbing
Record structure LUTs, big endian/little endian, WIN32
large file support.

Back to page 1. . .

#include "slash.h"

int main (int argc, char **argv) {
LAS *h;
double x, y, z;

h = las_open (argv[1], "rb");
while (las_read (h)) {

x = las_x (h);
y = las_y (h);
z = las_z (h);
printf ("%f %f %f\n", x, y, z);

}

las_close (h);
return 0;

}

Features

sLASh will happily. . .

Access LAS files
Read variable length records
Read fixed length records
Access/interpret fields and flags of the fixed length records.

Features

sLASh will happily. . .
Access LAS files

Read variable length records
Read fixed length records
Access/interpret fields and flags of the fixed length records.

Features

sLASh will happily. . .
Access LAS files
Read variable length records

Read fixed length records
Access/interpret fields and flags of the fixed length records.

Features

sLASh will happily. . .
Access LAS files
Read variable length records
Read fixed length records

Access/interpret fields and flags of the fixed length records.

Features

sLASh will happily. . .
Access LAS files
Read variable length records
Read fixed length records
Access/interpret fields and flags of the fixed length records.

Un-features

sLASh will only reluctantly (or not at all). . .

Interpret variable length records
Read compressed LAZ files
Write LAS files
Make coffee
Provide kitchen sink access
Read mail
Emit tweets.

Un-features

sLASh will only reluctantly (or not at all). . .
Interpret variable length records

Read compressed LAZ files
Write LAS files
Make coffee
Provide kitchen sink access
Read mail
Emit tweets.

Un-features

sLASh will only reluctantly (or not at all). . .
Interpret variable length records
Read compressed LAZ files

Write LAS files
Make coffee
Provide kitchen sink access
Read mail
Emit tweets.

Un-features

sLASh will only reluctantly (or not at all). . .
Interpret variable length records
Read compressed LAZ files
Write LAS files

Make coffee
Provide kitchen sink access
Read mail
Emit tweets.

Un-features

sLASh will only reluctantly (or not at all). . .
Interpret variable length records
Read compressed LAZ files
Write LAS files
Make coffee
Provide kitchen sink access
Read mail
Emit tweets.

Where to use?

The Use Cases. . .

Probably mostly for lovers of the C language
Quick-and-dirty hacks
When stream mode reading is sufficient (e.g. building
inventories, collecting statistics. . .)
Memory constrained (e.g. embedded) systems

Where to use?

The Use Cases. . .
Probably mostly for lovers of the C language

Quick-and-dirty hacks
When stream mode reading is sufficient (e.g. building
inventories, collecting statistics. . .)
Memory constrained (e.g. embedded) systems

Where to use?

The Use Cases. . .
Probably mostly for lovers of the C language
Quick-and-dirty hacks

When stream mode reading is sufficient (e.g. building
inventories, collecting statistics. . .)
Memory constrained (e.g. embedded) systems

Where to use?

The Use Cases. . .
Probably mostly for lovers of the C language
Quick-and-dirty hacks
When stream mode reading is sufficient (e.g. building
inventories, collecting statistics. . .)

Memory constrained (e.g. embedded) systems

Where to use?

The Use Cases. . .
Probably mostly for lovers of the C language
Quick-and-dirty hacks
When stream mode reading is sufficient (e.g. building
inventories, collecting statistics. . .)
Memory constrained (e.g. embedded) systems

Where to use? (2)

The Useless Cases. . .

When writing LAS files are important
When you need on-the-fly reprojection
When you need spatial indexing (.lax files)
When you need LAS compression (.laz files)

Where to use? (2)

The Useless Cases. . .
When writing LAS files are important

When you need on-the-fly reprojection
When you need spatial indexing (.lax files)
When you need LAS compression (.laz files)

Where to use? (2)

The Useless Cases. . .
When writing LAS files are important
When you need on-the-fly reprojection

When you need spatial indexing (.lax files)
When you need LAS compression (.laz files)

Where to use? (2)

The Useless Cases. . .
When writing LAS files are important
When you need on-the-fly reprojection
When you need spatial indexing (.lax files)
When you need LAS compression (.laz files)

Where to use? (3)

In brief:

Use LAStools/LASlib/libLAS for the heavy lifting
only consider sLASh when filling in where you need
specialized functionality
. . . and have fun!

Where to use? (3)

In brief:
Use LAStools/LASlib/libLAS for the heavy lifting

only consider sLASh when filling in where you need
specialized functionality
. . . and have fun!

Where to use? (3)

In brief:
Use LAStools/LASlib/libLAS for the heavy lifting
only consider sLASh when filling in where you need
specialized functionality

. . . and have fun!

Where to use? (3)

In brief:
Use LAStools/LASlib/libLAS for the heavy lifting
only consider sLASh when filling in where you need
specialized functionality
. . . and have fun!

Outline

1 What?
What is it
What does it look like?

2 Why?
Do we need yet another LAS library?
But why a header library?

3 How? – Design and Usage
Setting and influences
Overall Design

4 (Un)conclusion

5 DVD bonus material – digitally remastered director’s cut

Summary

Try sLASh
It’s compact
It’s fast
It’s fun
It’s available from http://bitbucket.org/busstop/helios
a.k.a. http://goo.gl/zsi8qz
Get it while it’s hot!

http://bitbucket.org/busstop/helios
http://goo.gl/zsi8qz

Outline

1 What?
What is it
What does it look like?

2 Why?
Do we need yet another LAS library?
But why a header library?

3 How? – Design and Usage
Setting and influences
Overall Design

4 (Un)conclusion

5 DVD bonus material – digitally remastered director’s cut

lasinfo in 8 lines

#include "slash.h"
int main (int argc, char **argv) {

LAS *h;
h = las_open (argv[1], "rb");
las_header_display (stdout, h);
las_close (h);
return 0;

}

Or even shorter:

#include "slash.h"
int main (int argc, char **argv) {

return las_header_display (stdout,
las_open (argv[1], "rb"));

}

lasinfo in 8 lines

#include "slash.h"
int main (int argc, char **argv) {

LAS *h;
h = las_open (argv[1], "rb");
las_header_display (stdout, h);
las_close (h);
return 0;

}

Or even shorter:

#include "slash.h"
int main (int argc, char **argv) {

return las_header_display (stdout,
las_open (argv[1], "rb"));

}

It’s compact

> gcc -Os -o slashinfo -I../include slashinfo.c
> strip --strip-all slashinfo.exe
> dir

2013-10-31 13:17 20.992 slashinfo.exe

It’s tiny

> gcc -Os -x c -c -o slash.o slash.h
> strip --strip-all slash.o
> dir slash.o

2013-11-01 05:48 6.660 slash.o

A LAS reader library in 6.5 kB!

It’s fast

Read 392826 points.

(bla bla bla...)

********** timings for sLASh ***********
Min: 0.0644 s
Max: 0.0657 s
Mean: 0.0650 s

.

Python bindings and timings by Simon L. Kokkendorf

It’s fast

Read 392826 points.

(bla bla bla...)

********** timings for libLAS **********
Min: 8.4942 s
Max: 8.5881 s
Mean: 8.5480 s

(8.548 / 0.065 = 131.5)

Python bindings and timings by Simon L. Kokkendorf

What does it look like?

#include "slash.h"

int main (int argc, char **argv) {
LAS *h;
double x, y, z;

h = las_open (argv[1], "rb");
while (las_read (h)) {

x = las_x (h);
y = las_y (h);
z = las_z (h);
printf ("%f %f %f\n", x, y, z);

}

las_close (h);
return 0;

}

. . . compared to LASlib

#include "lasreader.hpp"
#include "laswriter.hpp"

int main(int argc, char *argv[]) {
LASreadOpener lasreadopener;
lasreadopener.set_file_name("original.las");
LASreader* lasreader = lasreadopener.open();

LASwriteOpener laswriteopener;
laswriteopener.set_file_name("compressed.laz");
LASwriter* laswriter = laswriteopener.open(&lasreader->header);

while (lasreader->read_point())
laswriter->write_point(&lasreader->point);

laswriter->close();
delete laswriter;
lasreader->close();
delete lasreader;
return 0;

}

c© Martin Isenburg

Data types

struct lasheader;
typedef struct lasheader LAS;

struct las_nrgb;
typedef struct las_nrgb LAS_NRGB;

struct las_wf_desc;
typedef struct las_wf_desc LAS_WAVEFORM_DESCRIPTOR;

struct lasrecord;
typedef struct lasrecord LAS_RECORD;

struct lasvlr;
typedef struct lasvlr LAS_VLR;

Main API

LAS *las_open (const char *filename, const char *mode);

void las_close (LAS *h);

int las_seek (LAS *h, size_t pos, int whence);

size_t las_read (LAS *h);

Record access API

double las_x (const LAS *h);
double las_y (const LAS *h);
double las_z (const LAS *h);
double las_gps_time (const LAS *h);
double las_intensity (const LAS *h);

unsigned int las_class (const LAS *h);
unsigned int las_class_flags (const LAS *h);
unsigned int las_flag_synthetic (const LAS *h);
unsigned int las_flag_key_point (const LAS *h);
unsigned int las_flag_withheld (const LAS *h);
unsigned int las_flag_overlap (const LAS *h);

unsigned int las_return_number (const LAS *h);
unsigned int las_number_of_returns (const LAS *h);
unsigned long long las_record_number (const LAS *h);

double las_scan_angle_rank (const LAS *h);
int las_point_source_id (const LAS *h);
int las_scanner_channel (const LAS *h);
unsigned int las_scan_direction (const LAS *h);
unsigned int las_edge_of_flight_line (const LAS *h);

LAS_WAVEFORM_DESCRIPTOR las_waveform_descriptor (const LAS *h);
LAS_NRGB las_colour (const LAS *h);

Variable length records API

LAS_VLR *las_vlr_read (LAS *h, int type) ;
void las_vlr_free (LAS_VLR *self) ;

Printing and formatting API

struct tm yd2dmy(int y, int d) ;
void las_record_display (FILE *f, const LAS *h);
void las_header_display (FILE *f, const LAS *h);
void las_vlr_display (LAS_VLR *self, FILE *stream);
void las_vlr_display_all (LAS *h, FILE *stream);

Low level portability functions

void memcpy_swapping (void *dest, const void *src, size_t offset, size_t n) ;
long long get_signed_16 (const void *buf, size_t offset);
long long get_signed_32 (const void *buf, size_t offset);
long long get_signed_64 (const void *buf, size_t offset);
unsigned long long get_unsigned_16 (const void *buf, size_t offset);
unsigned long long get_unsigned_32 (const void *buf, size_t offset);
unsigned long long get_unsigned_64 (const void *buf, size_t offset);
float get_float (const void *buf, size_t offset);
double get_double (const void *buf, size_t offset);

LAS (1)

/* LAS file header straightforwardly implemented from the LAS 1.0--1.4 specs */
struct lasheader {

char signature[8]; /* LASF */
unsigned short file_source_id;
unsigned short global_encoding;

unsigned long project_id_1;
unsigned short project_id_2;
unsigned short project_id_3;
unsigned char project_id_4[8];

unsigned char version_major;
unsigned char version_minor;

char system_id[32];
char generated_by[32];

unsigned short file_creation_day_of_year;
unsigned short file_creation_year;

unsigned short header_size;
unsigned long offset_to_point_data;
unsigned long number_of_variable_length_records;

unsigned char point_data_format;
unsigned short point_data_record_length;
unsigned long long number_of_point_records;
unsigned long long number_of_points_by_return[15];

LAS (2)

double x_scale;
double y_scale;
double z_scale;
double x_offset;
double y_offset;
double z_offset;

double x_max;
double x_min;
double y_max;
double y_min;
double z_max;
double z_min;

unsigned long long offset_to_waveform_data_packet_record;
unsigned long long start_of_extended_vlrs;
unsigned long long number_of_extended_vlrs;

/* additional fields for internal use by sLASh */
size_t next_record;
FILE *f;
char mode[256];
size_t class_histogram[256];

/* number of decimals recommended (computed from scale factors by las_open)*/
int nx, ny, nz;
unsigned char raw[8192];
unsigned char record[1024];

};

Colour and Waveforms

/* Colour information - types 2, 3, 5, 7 (rgb),
and 8, 10 (nrgb) */

struct las_nrgb {double n, r, g, b;};

/* Waveform information - types 4, 5, 9, 10 */
struct las_wf_desc {

unsigned char descriptor_index;
float return_point_location;
float x_t, y_t, z_t;
unsigned long long offset_to_data;
unsigned long long packet_size;

};

LAS record – in preparation for writing

struct lasrecord {
/* The common (unpacked) subset for all record types */
double x, y, z;
double intensity;

/* Flags and narrow data fields from bytes 14-15 */
unsigned int return_number, number_of_returns;
unsigned int scanner_channel, scan_direction, edge_of_flight_line;
/* Classification flags (overlap: types 6-10 only) */
unsigned int synthetic, key_point, withheld, overlap;

unsigned int classification; /* "class" is reserved under C++, hence "classification" */

double scan_angle;
unsigned char user_data;
unsigned int point_source_id;

/* Record types 0 and 2 omits the GPS time */
double gps_time;

/* Colour information - types 2, 3, 5, 7 (rgb), and 8, 10 (nrgb) */
LAS_NRGB colour;

/* Waveform information - types 4, 5, 9, 10*/
LAS_WAVEFORM_DESCRIPTOR waveform;

};

Variable length records

struct lasvlr {
unsigned long long reserved;
char user_id[16];
unsigned long long record_id;
unsigned long long payload_size;
char description[32];
/* ------------------- */
fpos_t pos;
int type; /* vlr: 0, evlr: 1 */
unsigned char *payload;

};

	What?
	What is it
	What does it look like?

	Why?
	Do we need yet another LAS library?
	But why a header library?

	How? – Design and Usage
	Setting and influences
	Overall Design

	(Un)conclusion
	DVD bonus material – digitally remastered director's cut

