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Outline 

Tool survey 
Jersey Test Framework (JTF) primer 
Test Driven Design/Development (TDD) with JTF 
Intermediate Jersey via JTF 
Q&A / Discussion 
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Web services: What do you use? 

Remote calls: RMI, EJB 2, EJB 3, Web Services, 
other  

 
Web Services type: SOAP, REST  
 
REST implementation: Restlet, Jersey, Other  
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Web Services:  
What tools do you use? 

Transfer format:  
XML, JSON  
 
Serialization:  
JAXB, XStream, JibX, Burlap, text, other 
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What is Jersey? 
l  Reference implementation for JAX-RS  

(RESTful Web Services for Java)  
l  Straightforward API 
l  Production ready 
l  Major version numbers mirror JAX-RS versions 

l  Version 1.0 released October 13, 2008 
l  Current version:  1.9.1 (Sept 16, 2011) 
l  2.0 will be released with JEE7 
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What is Jersey Test Framework 
(JTF)? 

Framework for testing Jersey Web Services  
 
Runs as “JUnit” test 
 
Automatically starts/stops “test” app server,  
deploys your services 
 
Available since Jersey version 1.4 
 
User guide:  
http://jersey.java.net/nonav/documentation/latest/test-framework.html 
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Types of Web Service testing 

Type Description Benefits Drawbacks 

Mocked Call service class 
methods directly 
from tests  

Fastest Does not test Jersey service 
annotations (@Path, @GET, 
@Accept, etc) 

JTF Use Jersey Test 
Framework 

Faster, 
Tests Jersey 
service 
annotations 

Does not fully simulate 
production service use (e.g. 
character encoding)  

Functional  Call live services 
using tools such 
as soapUI 

Represen-
tative 

Slowest, 
Requires test environment, 
Tests are laborious to write, 
Tests are brittle  
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Supported “test” app servers 

 
l  JTF in-memory: FAST, no full web services 

stack (e.g. character encoding)  
l  Standalone app servers: slower, more 

representative 
-  Grizzly 
-  JTF HTTP 
-  Glassfish  
-  External (app server of your choice) 
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Getting started with JTF 
Maven:  

  
 
 
 
 

 
 

Non-Maven: See Jersey user guide section 7 

Core 

“Test” 
app server 
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Sample web service 

Time Service  
 

Purpose: return current time  
 

Data format: milliseconds since 1/1/1970 
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TDD mantra 

Red: write a failing test 
 

Green: make it pass 
 

Clean: refactor 
 
 
 

For more on TDD, including cheatsheet and dojo, see  
http://code.mcwest.com/java-tdd/wiki/Home 
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RED 
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GREEN 
1) Descend from JerseyTest. 
 
2) Write test code that calls the Jersey service. 
 
 
 

 
Notes: 

l  client() returns an automatically configured client. 

l  Test does not compile since “Time” DTO does not exist. 

l  Jersey will automatically call JAXB to unmarshal XML into object. 
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GREEN (cont.) 
3) Write XSD that generates dto. 
 
 
 
 
 
 
 
Code now compiles, but test fails (fast!) as service does not exist. 
 
 
 

dto name 

dto package 
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GREEN (cont.) 

Stack trace shows how JTF works... 
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GREEN (cont.) 
4) Write service class  

 Jersey automatically calls JAXB to marshal object into XML. 
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GREEN (cont.) 

5) Declare location of service class. 
 
 
 
 
 

Registers all classes in package that have @Path annotation 



 
 

 
18 

GREEN (cont.) 

 
6) Test passes (in less than a second!). 
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GREEN (review) 
1 

 
 
 
 
 
 

l   Note: Automatic JAXB marshalling/unmarshalling 

2 

3 

4 

5 

1. inherit from JerseyTest 
2. register server resources 
3. get client 
4. specify path 
5. select verb 
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CLEAN 
Example refactor: Extract path to a constant 
 
 
 
This example refactor... 
l  keeps test in sync with service 

l  helps users locate service (Eclipse F3)  

l  assumes caller in same classloader as service (e.g. thick 
client jar, service test code).    

server 

client 

 
 



 
21 

JTF tests as sample clients 
(executable documentation) 

Example: get without parameters 
 
 
 
 
 
 
 
 
 
 
 
 

 

Path 
Return type 
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JTF tests as sample clients 

 
 
 
 
Example: get with header  
 
 
 
 
 
 
 
Providing a sample client is more important  
as service API complexity increases 
 

 

Header name 
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Other JTF testable  
Web Service features* 

 
l  Parameters (path, query, post/put form or dto) 
l  Verbs (get, post, put, delete) 
l  Content types (xml, html, pdf, ...) 
l  Filters (client) 
l  Exception mapping 
l  Serialization methods (JAXB, JibX, Castor, ...) 
•  For sample code, see code.mcwest.com/jersey-example  

•  For names of classes of sample code, see slide notes 
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Serialization 

l  A key element of web services 
l  Jersey integrated with JAXB serialization, can 

use other serialization methods 
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XStream:  
Simplified object serialization  

Convert object 
to xml 

Convert xml 
back to object 

XStream specific xml 
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Serialization research using JTF 

l  Try to use of XStream instead of JAXB 
-  Will XStream simplify Jersey WS serialization? 
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XStream: client deserialization 

Service  
returns  
XML 

Must unmarshall  
XML manually 

dto 
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XStream: dto  

l  Manually coded XStream  
data transfer object (dto)  
(JAXB generates dto  
from XSD) 
-  Xstream leads to added 

dto maintenance effort  
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Xstream: namespace 

l  Manual name space configuration 
l  Needed for each return type 

l  JAXB uses namespace declared in the XSD 
l  XStream leads to duplicate maintenance of 

namespace info 
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XStream: server side serialization 

Must manually  
marshall object 
into XML 
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Manual coding:  
JAXB               XStream  

For Jersey WS,  
XStream requires much more 
manual coding than JAXB 
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Serialization research using JTF 

l  Intended simplification would have added end-
to-end complexity 

l  JTF eases Web Service architectural decisions 



Optional Slides: Start 
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Nested XSDs 

l  A more serious concern of using Xstream in 
web services 



 
 

 
35 

Nested XSDs 
l  Reusable XSD (file = jtf-tdd-nested-namespaced-time.xsd) 
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Nested XSDs 
l  Example reuse in another XSD. Generated Java object will contain nested XSD 

namespace in package import statement.  
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Xstream limitation re: nested XSDs  
 

l  No support for namespaces on nested XSDs 
l  Must use chameleon XSDs 
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Chameleon XSD 
l  Example (file = jtf-tdd-nested-chameleon-time.xsd) 

l  Does not declare a namespace  
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Chameleon XSD reuse 
l  “include” (like a macro or ‘C’ include) 

l  Chameleon assumes namespace of file it is included into 
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Chameleon XSDs: Problems 
l  Type name cannot be qualified by namespace 

l  Think “Java class in default package”  
l  Leads to unwieldly names  

l  Item -> InputBatchItem_v3_2 

l  Generated Java class has no record of origin 
(package) of chameleon code 

l  Name collision potential 
l  Two chameleon XSDs with same name can’t be 

imported into same “parent” XSDs 
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Chameleon XSDs: Problems 
“Ultimately, namespaces, like packages, are there 
for a reason, which is to locally group a set of types 
and set them off as being constituent of a given 
general idea. If you can't put your types in a 
namespace, you may need to reconsider your 
design. If you could put your types in a 
namespace, but choose not to in the hopes of 
gaining flexibility, expect interoperability and 
collision problems sooner or later.” Eben Hewitt 
(2009) Java SOA Cookbook (O'Reilly and 
Associates) 
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XStream: no nested namespaces 
l  SpringSource's position on XStream for WS 

-  Note that XStream is an XML serialization library, not a data binding library. 
Therefore, it has limited namespace support. As such, it is rather unsuitable for 
usage within Web services. – 
http://http://static.springsource.org/spring-ws/site/reference/html/oxm.html 

l  Problems easily demonstrated using JTF 
l  JTF can help demonstrate rationale for 

architectural decisions 
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Advanced server resource init 

Initialize server resources with classes: 
when don't want to load all @Resource classes in a package for a 
specific test  

(e.g. avoid declaration of duplicate contexts) 

 
Initialize server resources with objects:  
create  objects and initialize yourself (e.g. inject mocks) 

 (e.g. use a prepopulated Spring bean as a service resource) 

 
For working code,  
see ResourceRegistrar.class in sample code repository  
(jersey-example/src/test/java/com/mcwest/jersey/example/resource/ResourceRegistrar.java) 



JTF wish list 

Spring servlet capabilities (e.g. filter registration) 
Easier setup of custom message body readers/

writers (e.g. for specialized content types) 
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Summary 

Jersey Test Framework enables... 
 
l  TDD of web services: RED – GREEN – CLEAN 
l  Executable documentation for Web services 
l  Quick learning of Jersey features 
l  Sound architectural choices 
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Download Slides and Code 

Slides 
Link: http://code.mcwest.com/jersey-example/downloads/jtf.pdf 

 

Code (Mercurial) 
Host: http://code.mcwest.com 
Repository: jersey-example  
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