

10/3/11

1

Jersey Test Framework:
TDD for Web Services

Brian Westrich
McWest Corp.

bw@mcwest.com

JavaOne 10/4/2011

Slides:
http://code.mcwest.com/jersey-example/downloads/jtf.pdf

Code:

http://code.mcwest.com/jersey-example

2

Outline

Tool survey
Jersey Test Framework (JTF) primer
Test Driven Design/Development (TDD) with JTF
Intermediate Jersey via JTF
Q&A / Discussion

3

Web services: What do you use?

Remote calls: RMI, EJB 2, EJB 3, Web Services,
other

Web Services type: SOAP, REST

REST implementation: Restlet, Jersey, Other

4

Web Services:
What tools do you use?

Transfer format:
XML, JSON

Serialization:
JAXB, XStream, JibX, Burlap, text, other

5

What is Jersey?
l  Reference implementation for JAX-RS

(RESTful Web Services for Java)
l  Straightforward API
l  Production ready
l  Major version numbers mirror JAX-RS versions

l  Version 1.0 released October 13, 2008
l  Current version: 1.9.1 (Sept 16, 2011)
l  2.0 will be released with JEE7

6

What is Jersey Test Framework
(JTF)?

Framework for testing Jersey Web Services

Runs as “JUnit” test

Automatically starts/stops “test” app server,
deploys your services

Available since Jersey version 1.4

User guide:
http://jersey.java.net/nonav/documentation/latest/test-framework.html

7

Types of Web Service testing

Type Description Benefits Drawbacks

Mocked Call service class
methods directly
from tests

Fastest Does not test Jersey service
annotations (@Path, @GET,
@Accept, etc)

JTF Use Jersey Test
Framework

Faster,
Tests Jersey
service
annotations

Does not fully simulate
production service use (e.g.
character encoding)

Functional Call live services
using tools such
as soapUI

Represen-
tative

Slowest,
Requires test environment,
Tests are laborious to write,
Tests are brittle

8

Supported “test” app servers

l  JTF in-memory: FAST, no full web services

stack (e.g. character encoding)
l  Standalone app servers: slower, more

representative
-  Grizzly
-  JTF HTTP
-  Glassfish
-  External (app server of your choice)

9

Getting started with JTF
Maven:

Non-Maven: See Jersey user guide section 7

Core

“Test”
app server

10

Sample web service

Time Service

Purpose: return current time

Data format: milliseconds since 1/1/1970

11

TDD mantra

Red: write a failing test

Green: make it pass

Clean: refactor

For more on TDD, including cheatsheet and dojo, see
http://code.mcwest.com/java-tdd/wiki/Home

12

RED

13

GREEN
1) Descend from JerseyTest.

2) Write test code that calls the Jersey service.

Notes:

l  client() returns an automatically configured client.

l  Test does not compile since “Time” DTO does not exist.

l  Jersey will automatically call JAXB to unmarshal XML into object.

14

GREEN (cont.)
3) Write XSD that generates dto.

Code now compiles, but test fails (fast!) as service does not exist.

dto name

dto package

15

GREEN (cont.)

Stack trace shows how JTF works...

16

GREEN (cont.)
4) Write service class

 Jersey automatically calls JAXB to marshal object into XML.

17

GREEN (cont.)

5) Declare location of service class.

Registers all classes in package that have @Path annotation

18

GREEN (cont.)

6) Test passes (in less than a second!).

19

GREEN (review)
1

l  Note: Automatic JAXB marshalling/unmarshalling

2

3

4

5

1. inherit from JerseyTest
2. register server resources
3. get client
4. specify path
5. select verb

20

CLEAN
Example refactor: Extract path to a constant

This example refactor...
l  keeps test in sync with service

l  helps users locate service (Eclipse F3)

l  assumes caller in same classloader as service (e.g. thick
client jar, service test code).

server

client

21

JTF tests as sample clients
(executable documentation)

Example: get without parameters

Path
Return type

22

JTF tests as sample clients

Example: get with header

Providing a sample client is more important
as service API complexity increases

Header name

23

Other JTF testable
Web Service features*

l  Parameters (path, query, post/put form or dto)
l  Verbs (get, post, put, delete)
l  Content types (xml, html, pdf, ...)
l  Filters (client)
l  Exception mapping
l  Serialization methods (JAXB, JibX, Castor, ...)
•  For sample code, see code.mcwest.com/jersey-example

•  For names of classes of sample code, see slide notes

24

Serialization

l  A key element of web services
l  Jersey integrated with JAXB serialization, can

use other serialization methods

25

XStream:
Simplified object serialization

Convert object
to xml

Convert xml
back to object

XStream specific xml

26

Serialization research using JTF

l  Try to use of XStream instead of JAXB
-  Will XStream simplify Jersey WS serialization?

27

XStream: client deserialization

Service
returns
XML

Must unmarshall
XML manually

dto

28

XStream: dto

l  Manually coded XStream
data transfer object (dto)
(JAXB generates dto
from XSD)
-  Xstream leads to added

dto maintenance effort

29

Xstream: namespace

l  Manual name space configuration
l  Needed for each return type

l  JAXB uses namespace declared in the XSD
l  XStream leads to duplicate maintenance of

namespace info

30

XStream: server side serialization

Must manually
marshall object
into XML

31

Manual coding:
JAXB XStream

For Jersey WS,
XStream requires much more
manual coding than JAXB

32

Serialization research using JTF

l  Intended simplification would have added end-
to-end complexity

l  JTF eases Web Service architectural decisions

Optional Slides: Start

34

Nested XSDs

l  A more serious concern of using Xstream in
web services

35

Nested XSDs
l  Reusable XSD (file = jtf-tdd-nested-namespaced-time.xsd)

36

Nested XSDs
l  Example reuse in another XSD. Generated Java object will contain nested XSD

namespace in package import statement.

37

Xstream limitation re: nested XSDs

l  No support for namespaces on nested XSDs
l  Must use chameleon XSDs

38

Chameleon XSD
l  Example (file = jtf-tdd-nested-chameleon-time.xsd)

l  Does not declare a namespace

39

Chameleon XSD reuse
l  “include” (like a macro or ‘C’ include)

l  Chameleon assumes namespace of file it is included into

40

Chameleon XSDs: Problems
l  Type name cannot be qualified by namespace

l  Think “Java class in default package”
l  Leads to unwieldly names

l  Item -> InputBatchItem_v3_2

l  Generated Java class has no record of origin
(package) of chameleon code

l  Name collision potential
l  Two chameleon XSDs with same name can’t be

imported into same “parent” XSDs

41

Chameleon XSDs: Problems
“Ultimately, namespaces, like packages, are there
for a reason, which is to locally group a set of types
and set them off as being constituent of a given
general idea. If you can't put your types in a
namespace, you may need to reconsider your
design. If you could put your types in a
namespace, but choose not to in the hopes of
gaining flexibility, expect interoperability and
collision problems sooner or later.” Eben Hewitt
(2009) Java SOA Cookbook (O'Reilly and
Associates)

42

XStream: no nested namespaces
l  SpringSource's position on XStream for WS

-  Note that XStream is an XML serialization library, not a data binding library.
Therefore, it has limited namespace support. As such, it is rather unsuitable for
usage within Web services. –
http://http://static.springsource.org/spring-ws/site/reference/html/oxm.html

l  Problems easily demonstrated using JTF
l  JTF can help demonstrate rationale for

architectural decisions

43

Advanced server resource init

Initialize server resources with classes:
when don't want to load all @Resource classes in a package for a
specific test

(e.g. avoid declaration of duplicate contexts)

Initialize server resources with objects:
create objects and initialize yourself (e.g. inject mocks)

 (e.g. use a prepopulated Spring bean as a service resource)

For working code,
see ResourceRegistrar.class in sample code repository
(jersey-example/src/test/java/com/mcwest/jersey/example/resource/ResourceRegistrar.java)

JTF wish list

Spring servlet capabilities (e.g. filter registration)
Easier setup of custom message body readers/

writers (e.g. for specialized content types)

Optional Slides: End

46

Summary

Jersey Test Framework enables...

l  TDD of web services: RED – GREEN – CLEAN
l  Executable documentation for Web services
l  Quick learning of Jersey features
l  Sound architectural choices

47

Download Slides and Code

Slides
Link: http://code.mcwest.com/jersey-example/downloads/jtf.pdf

Code (Mercurial)
Host: http://code.mcwest.com
Repository: jersey-example

48

Jersey Test Framework:
TDD for Web Services

Brian Westrich
McWest Corp.

bw@mcwest.com

JavaOne 2011

Slides:
http://code.mcwest.com/jersey-example/downloads/jtf.pdf

Code:

http://code.mcwest.com/jersey-example

