
Application of the proof strategy

Let A stands for the formula

(and (integerp n)

(integerp key)

(integerp entr)

(integer-listp a)

)

Conjuncts in A state that variables n, key, entr are integers and a is an integer
list.

Let B denotes formula

(and (< 0 n)

(<= n (length a))

(< 0 entr)

)

with an obvious meaning.
The formula C of the form

(<= entr (cnt 0 (- n 1) key a))

states that the number of occurrences of key within subsequence of a in between
indices 0 and n− 1 is not less than entr.

Another abbreviation D stands for

(= (rep2 n key entr a) 1)

meaning that the variable result is equal to 1 just after execution of a loop which
can be modeled by invocation of function rep2 with arguments n, key, entr and
a.

The formula E

(> entr (cnt 0 (- n 1) key a))

obviously is negation of C.
The formula F

(= (rep2 n key entr a) 0)

is a counterpart of D corresponding to unsuccessful search for key during loop
execution.

The formula J

(= entr (rep1 n key entr a))

expresses equality of values of entr and cnt just after execution of the loop.
According to the symbolic verification method this execution is modeled by
invocation of function rep1 with arguments n, key, entr and a.

Finally, the formula K of the form



(zp n)

states that n is an integer greater than zero.

Now we aggregate these meta-formulas into bigger ones. Let L ≡ A ∧B ∧C
and M ≡ A ∧B ∧ E. The initial underlying theory in this case is the definition
of cnt, rep1 and rep2.

Just before the step (1) of our algorithm the VC φ corresponds to the fol-
lowing pattern:

A⇒ (B ⇒ ((C ⇒ D) ∧ (E ⇒ F ))).

The step (1) transforms φ into φ1 corresponding to the pattern

(L⇒ D) ∧ (M ⇒ F ).

Note that at this moment the equivalence still holds.

The step (2) does not change φ1, so we proceed to step (3). It generates au-
tomatically a non-recursive definition for the function rep2. This new definition
is equivalent to the original one since ACL2 was able to prove automatically by
induction on n the following theorem:

(A ∧B ∧ ¬J)⇒ F.

I asserts that whenever the loop exit condition J is false, the value of rep2 is
equal to the initial value of result, i.e. 0. In the process of replacement operation
generation we can determine that within the body of rep2 the function rep1

does not invoke any other function but itself. This guarantees automatically that
rep2 was redefined in a non-recursive way.

Let us consider such a non-recursive redefinition:

(defun rep2(i key entr a)

(if

(zp i)

0

(if

(= entr (rep1 i key entr a))

1

0

)

)

)

It results in the following tree representation of rep2:



Let us denote it as rep2 tree. The edge labeled by P corresponds to formula (zp

i), whereas R stands for (= entr (rep1 i key entr a)).
The repeating application of the step (1) takes into consideration the sub-

formula D in φ1 because it contains an invocation of rep2. The new representa-
tion rep2 tree1 results from rep2 tree after replacement of all variables in edge
labels by corresponding arguments of rep2 invocation in formula D. Actually,
this replacement looks like (i ← n, key ← key, entr ← entr, a ← a). Let la-
bels P1, ¬P1, R1 and ¬R1 denote P , ¬P , R and ¬R correspondingly after such
substitution. If we recall our meta-formulas from the starting paragraphs then
obviously P1 is K and R1 is J .

Now, replacing D in φ1 by conjunction of specific implications provided by
rep2 tree1 we construct the formula φ2:

(L⇒
((K ⇒ (0 = 1))∧

((¬K ∧ J)⇒ (1 = 1))∧
((¬K ∧ ¬J)⇒ (0 = 1))))∧

(M ⇒ F )

What is the conclusion of every such implication? We merely replace rep2 in
D with an expression defined by implication antecedent. The first implication
corresponds to the path in rep2 tree1 traversing the edge P1. By analogy, the
second implication addresses the path over ¬P1 and R1. Finally, the third one
relates to the path over ¬P1 and ¬R1.

Next, we consider sub-formula F in φ1. By analogy with rep2 tree1 we build
up rep2 tree2. It turns out that rep2 tree2 = rep2 tree1.

The tree rep2 tree2 provides us with another set of special implications. If
we substitute their conjunction instead of F then we transform φ2 into φ3:

(L⇒
((K ⇒ (0 = 1))∧

((¬K ∧ J)⇒ (1 = 1))∧
((¬K ∧ ¬J)⇒ (0 = 1))))∧

(M ⇒
((K ⇒ (0 = 0))∧

((¬K ∧ J)⇒ (1 = 0))∧
((¬K ∧ ¬J)⇒ (0 = 0))))



The obvious logical rewritings (like de Morgan laws or ¬φ ∨ ψ ≡ φ → ψ)
transform φ3 into φ4

(L⇒
((¬K ∨ (0 = 1))∧

((K ∨ ¬J) ∨ (1 = 1))∧
((K ∨ J) ∨ (0 = 1))))∧

(M ⇒
((¬K ∨ (0 = 0))∧

((K ∨ ¬J) ∨ (1 = 0))∧
((K ∨ J) ∨ (0 = 0))))

which in turn reforms into a more normalized φ′:

(L⇒ (¬K ∨ (0 = 1)))∧
(L⇒ ((K ∨ ¬J) ∨ (1 = 1)))∧
(L⇒ ((K ∨ J) ∨ (0 = 1)))∧

(M ⇒ (¬K ∨ (0 = 0)))∧
(M ⇒ ((K ∨ ¬J) ∨ (1 = 0)))∧

(M ⇒ ((K ∨ J) ∨ (0 = 0)))

Note that until this very step we preserve equivalence of our formulas.
Since φ has changed we can repeat steps (1)–(4). Exactly, the step (2) may

transform the following disjunct of φ′:

S ≡ (M ⇒ ((K ∨ ¬J) ∨ (1 = 0))).

The relation graph has been produced for S. Consider the following component
of the graph:

The label X stands for (cnt 0 (− n 1) key a) whereas Y means entr. Remind
that this graph component is actually formula E.

Which subgoal will lead to modification of φ′? In fact it is ¬J corresponding
to the pattern g(c, d) where g is ” 6=”, c is entr and d is (rep1 n key entr a). So,
the searching procedure begins to look for a function call corresponding to the
variable entr. The search begins at node X. During the search a subgraph of the
relation graph emerges. This subgraph is exactly the component demonstrated
above. The expression (cnt 0 (− n 1) key a) is the function call we were looking
for. The conjunct E is the path we need. So, the expression (cnt 0 (− n 1) key a)
must be assigned to variable v, and E becomes the value of q.

As a result we have the new formula

T ≡ (= (cnt 0 (− n 1) key a) (rep1 n key entr a)).



Let Z denote the disjunct S after replacement of the goal ¬J by T :

(M ⇒ ((K ∨ T ) ∨ (1 = 0))).

Note that Z 6� S but the truth of S follows from the truth of Z. So we may
replace S by Z in φ′ which results in formula φ′′:

(L⇒ (¬K ∨ (0 = 1)))∧
(L⇒ ((K ∨ ¬J) ∨ (1 = 1)))∧
(L⇒ ((K ∨ J) ∨ (0 = 1)))∧

(M ⇒ (¬K ∨ (0 = 0)))∧
(M ⇒ ((K ∨ T ) ∨ (1 = 0)))∧
(M ⇒ ((K ∨ J) ∨ (0 = 0)))

And here it is, the result of our strategy. On the step (6) ACL2 is able to
prove φ′′ by induction on n thus validating the original VC φ.


