
The fuzz Manual

Mike Spivey

Second Edition

The Spivey Partnership

10 Warneford Road
Oxford OX4 1LU

England

Contents

1 Introduction 5

2 First Steps 7

3 Printing Specifications 12
3.1 Making boxes 13
3.2 Inside the boxes 18
3.3 Fine points 24
3.4 Bits and pieces 25
3.5 Style parameters 27

4 Checking Specifications 29
4.1 Definition before use 30
4.2 Reports 31

5 Advanced Features 35
5.1 Directives 35
5.2 User-defined operators 37
5.3 Type abbreviations 41
5.4 Invisible and unchecked paragraphs 44

6 Error Messages 47

7 Syntax Summary 54

Manual and software copyright c⃝ J. M. Spivey 1988, 1992, 2000

3

1 Introduction

fuzz is a collection of tools that help you to format and print Z specifi-
cations and check them for compliance with the Z scope and type rules.
One part of the package is a style option for the LaTEX type-setting sys-
tem that defines extra LaTEX commands for laying out Z specifications,
and a font that contains Z’s special symbols. The other part is a pro-
gram for analysing and checking specifications that are written using
these commands.

Chapter 2 of this document is a quick introduction to fuzz and its
features, based on a small example specification. Chapter 3 describes
in more detail how to enter your specification as an input file for LaTEX
using the fuzz style option. Chapters 4 to 6 describe the fuzz type
checker and the messages and reports it can produce. Chapter 7 is a
syntax summary for the Z language as recognized by the type checker.

In writing this document, I have assumed that you have some basic
knowledge about LaTEX and Z. For information about LaTEX and the
underlying TEX program, you should consult the manuals

Leslie Lamport, LaTEX: A Document Preparation System,
Addison Wesley, 1985.

Donald E. Knuth, The TEXbook, Addison Wesley, 1984.

For information about Z, and a description of the scope and type rules
used by the fuzz type checker, you should consult

J. M. Spivey, The Z Notation: A Reference Manual, Second
edition, Prentice-Hall International, 1992,

which is referred to in this document by the abbreviation ZRM.

5

6 The fuzz manual

This manual describes versions of the fuzz package numbered 2.0
or higher; the language supported is that described in the second edition
of the ZRM. The fuzz style option is compatible with version 2.99 of
TEX and version 2.09 of LaTEX and SliTEX.

Release 2 of fuzz differs from release 1 in supporting the additional
language constructs added in the second edition of the ZRM, including

∙ renaming of schema components.

∙ a let construct for local definitions in expressions and predicates.

∙ conditional if then else expressions.

∙ piping of operation schemas (>>).

In addition, there is an extended mathematical tool-kit and font of spe-
cial symbols, and it is now possible to use SliTEX to make slides of Z
specifications. Finally, there are improvements in the type inference al-
gorithm that the fuzz type-checker uses to calculate the types it displays
in error messages and reports.

2 First Steps

The fuzz distribution includes a small example specification in the file
example.tex. Here it is, with the lines numbered for easy reference:

1 \documentstyle[fuzz]{article}

2 \begin{document}

3 \noindent Let $PERSON$ be the set of all people:

4 \begin{zed}

5 [PERSON].

6 \end{zed}

7 A ‘club’ has a set of members and a president, who is

8 one of the members:

9 \begin{schema}{Club}

10 members: \power PERSON \\

11 president: PERSON

12 \where

13 president \subseteq members

14 \end{schema}

15 To enroll somebody in the club, we just add them

16 to the set of members:

17 \begin{schema}{Enrol}

18 \Delta Club \\

19 new?: PERSON

20 \where

21 members’ = members \cup new? \\

22 president’ = president

23 \end{schema}

24 The president doesn’t change when a new member

25 is enrolled.

26 \end{document}

7

8 The fuzz manual

This file looks like any other LaTEX manuscript, except that it includes
the style option fuzz (line 1), and it contains three embedded pieces of
Z text, written using the style option’s environments and macros.

The first piece of Z text (lines 4–6) is the declaration of a basic
type PERSON . The second and third pieces (lines 9–14 and 17–23) are
two schemas: the state space of a very simple membership register for a
club, and an operation that enrolls a new member.

You might like to make a copy of the file and format it with LaTEX
by issuing the command:

latex example

Now send the results to a printer. The output should look something
like this:

Let PERSON be the set of all people:

[PERSON].

A ‘club’ has a set of members and a president, who is one of the
members:

Club

members : �PERSON

president : PERSON

president ⊆ members

To enroll somebody in the club, we just add them to the set of
members:

Enrol

ΔClub

new? : PERSON

members ′ = members ∪ new?
president ′ = president

The president doesn’t change when a new member is enrolled.

As you can see, the zed environment produces an ordinary mathematical
display, and the schema environment produces a schema box.

2 First Steps 9

The specification contains a couple of mistakes that can be found
using the fuzz type checker. So let’s run the type checker on the spec-
ification and see what error messages it gives. You can run the type
checker like this:

fuzz example.tex

The input to the type checker is exactly the same file that you used as
input to LaTEX. But instead of printing the document, fuzz scans it,
extracts the pieces of text that make up the formal specification, and
checks that they conform to the rules of the Z language. Here are the
error messages it produces:

"example.tex", line 13: Type mismatch in left argument

of infix relation

> Predicate: president \subseteq members

> Arg type: PERSON

> Expected: P ?

"example.tex", line 21: Right argument of operator \cup

has wrong type

> Expression: members \cup new?

> Arg type: PERSON

> Expected: P PERSON

The first error is in the predicate

president ⊆ members .

It is supposed to say that the president of the club must be a mem-
ber, but the subset relation ⊆ has been used instead of the membership
sign ∈. This is wrong because president is not a set but a simple element
of PERSON . The type checker says that the left argument of ⊆ must
be a set (with type � ? for some type ?), but it has found an expression
of type PERSON instead. The correct thing would be to use the mem-
bership sign ∈ instead of ⊆, so use your favourite editor to change line
13 of the file so that it reads

president \in members

10 The fuzz manual

The second error is in the expression

members ∪ new?.

This is supposed to be the set members extended with an additional
member new?, but it is wrong because new? is just a PERSON , and
the union operator ∪ expects a set of elements of PERSON . The type
checker knows from the standard library that ∪ expects sets as its argu-
ments, and it has determined by looking at the left argument members
that this use of ∪ is for sets drawn from PERSON , but it finds as the
right argument a simple element of PERSON . You should change line
21 so that it reads

members’ = members \cup \{new?\} \\

In the corrected expression, new? is made into a singleton set before
taking the union with members , like this: members ∪{new?}. After you
have made these changes, the type checker should report no errors when
it checks the document.

In addition to checking for errors, the type checker can produce a
report listing the names defined in your specification and their types.
You can get this list by giving the command

fuzz -t example.tex

Here is the output:

Given PERSON

Schema Club

members: P PERSON

president: PERSON

End

Schema \Delta Club

members: P PERSON

president: PERSON

members’: P PERSON

president’: PERSON

End

2 First Steps 11

Schema Enrol

members: P PERSON

president: PERSON

members’: P PERSON

president’: PERSON

new?: PERSON

End

This output shows that PERSON has been declared as a basic type,
and that three schemas Club, ΔClub and Enrol have been defined. The
definition of ΔClub was inserted by the type checker because ΔClub is
used in Enrol but was given no explicit definition in the specification.
For each schema, the signature is shown after all the inclusions have
been expanded, so you can see that Enrol has five variables in all.

There is another, much longer, example specification included in
the distribution under the name tut.tex; it is essentially the same as
the first chapter of the ZRM. This file contains examples of many of the
Z constructs, and you may like to look at it as you read the rest of this
manual. The file also shows how the fuzz style option can be used to
print small pieces of program text.

3 Printing Specifications

Every LaTEX document begins with a \documentstyle command. If the
document contains a Z specification, this command should include the
style option fuzz, like this:

\documentstyle[12pt,fuzz]{article}

The fuzz style option can be used with any of the standard LaTEX styles,
and it can appear either before or after the type-size option if one is
used. It can be combined with most of the standard style options, but it
should not be combined with fleqn, because it already makes provision
for setting mathematics flush left. The fuzz style option can be used
with SliTEX to make slides, but only in black and white at present.

The fuzz style option provides a number of LaTEX environments for
making Z boxes of various kinds, and for other unboxed elements of Z
like basic type definitions. It also provides many commands that print
the fancy symbols of Z using the special font supplied in the package.
Finally, it provides some environments that print things, like equational
proofs, that are not properly part of Z but often appear in specification
documents.

Section 3.1 describes the environments that are used for printing
the various boxes and unboxed elements used in Z specifications; these
environments are the ones recognized and analysed by the fuzz type
checker. Section 3.2 explains how to obtain the symbols that go inside
the boxes, and Section 3.3 gives some hints on getting the best-looking
layout from LaTEX and the fuzz style option. Section 3.4 explains the
environments for printing miscellaneous displayed formulas. The chapter
closes with a list (Section 3.5) of the parameters you may adjust to
customize the layout of your specification.

12

3 Printing Specifications 13

If you want it, the fancy logo ‘fuzz’ is made by the command \fuzz,
which works like the \LaTeX command for printing LaTEX’s own logo.

3.1 Making boxes

The Z reference manual lists in Sections 3.2 and 3.9 the various kinds
of ‘paragraph’ that may appear as one of the top-level units of a Z
specification. The fuzz style option provides a LaTEX environment for
each kind of paragraph that comes in a box, and another environment
called zed for the unboxed paragraphs.

Schema definitions (ZRM Section 3.2.4)
To print a schema, just use the schema environment. Here is an example,
showing first the input, then the output from LaTEX:

\begin{schema}{BirthdayBook}

known: \power NAME \\

birthday: NAME \pfun DATE

\where

known = \dom birthday

\end{schema}

BirthdayBook
known : �NAME
birthday : NAME �DATE

known = dom birthday

The name of the schema appears as an argument to the environment, and
(as in all kinds of box) the horizontal dividing line between declarations
and predicates is indicated by \where. Successive lines in the declaration
and predicate parts are separated by the command \\. As usual in
LaTEX, the actual layout of the input is ignored, and it is only the explicit
command \\ that marks the end of a line in the output. The Z symbols
‘�’, ‘�’ and ‘dom’ have been entered as the commands \power, \pfun
and \dom: for a complete list of these commands, see Section 3.2.

14 The fuzz manual

Like the displaymath environment of LaTEX, the schema environ-
ment (and the others we shall come to in a moment) can appear in
the middle of a paragraph of text, and ordinarily should have no blank
lines either before or after it. Blank lines before the environment are
ignored, but blank lines afterwards cause the following text to begin a
new paragraph.

For a schema without a predicate part, the command \where is
simply omitted, as in the following example:

\begin{schema}{Document}[CHAR]

left, right: \seq CHAR

\end{schema}

Document [CHAR]
left , right : seqCHAR

This example also shows how to print the generic schemas described in
Section 3.9.1 of the ZRM. The formal generic parameters are an optional
argument of the schema environment. For compatibility with previous
versions of fuzz, you can also say \begin{schema}{Document[CHAR]},
making the formal parameters part of the schema environment’s first ar-
gument. The printed effect is the same, and the type checker recognizes
both forms.

If a schema or other box contains more than one predicate below
the line, it often looks better to add a small vertical space between them.
This can be done with the command \also:

\begin{schema}{AddPhone}

\Delta PhoneDB \\

name?: NAME \\

number?: PHONE

\where

name? \notin known

\also

phone’ = phone \oplus \{name? \mapsto number?\}

\end{schema}

3 Printing Specifications 15

AddPhone
ΔPhoneDB
name? : NAME
number? : PHONE

name? /∈ known

phone ′ = phone ⊕ {name? 7→ number?}

Axiomatic descriptions (ZRM Section 3.2.2)
These are printed with the axdef environment1. Here is an example:

\begin{axdef}

square: \nat \fun \nat

\where

\forall n: \nat @ \\

\t1 square(n) = n * n

\end{axdef}

square : "

∀n : ∙
square(n) = n ∗ n

Incidentally, this example illustrates that predicates and declarations
can be split between lines before or after any infix symbol (such as ∙
here). The strange hint \t1 makes the corresponding line in the output
have one helping of indentation. As things get more nested, you can say
\t2, \t3, and so on; these commands are ignored by the type checker,
so you are free to use them as you like to improve the look of your
specification. The \t command usurps the name used by LaTEX for a
tie-after accent, as in ‘⁀oo’, so the fuzz style option renames the accent
as \tie.

1The environment should really be called axdesc and not axdef, but that’s
too hard to pronounce.

16 The fuzz manual

Like schemas, axiomatic descriptions may omit the horizontal di-
viding line and the predicates below it, leaving only the declaration of
some variables, as in the following example:

\begin{axdef}

n_disks: \nat

\end{axdef}

n disks :

Generic definitions (ZRM Section 3.9.2)
These are printed with the gendef environment:

\begin{gendef}[X,Y]

fst: X \cross Y \fun X

\where

\forall x: X; y: Y @ \\

\t1 fst(x,y) = x

\end{gendef}

[X ,Y]
fst : X ×Y "X

∀ x : X ; y : Y ∙
fst(x , y) = x

In this environment, the formal generic parameters are an optional ar-
gument. Omitting this argument results in a box with a solid double
bar at the top, which can be used for uniquely defined constants that
have no parameters.

Unboxed paragraphs

Some Z paragraphs do not appear in boxes, and for these the zed

environment is used. They may be basic type definitions (ZRM sec-
tion 3.2.1), predicates written as global constraints (Section 3.2.3), ‘hor-
izontal’ schema definitions (Section 3.2.4), abbreviation definitions (Sec-
tions 3.2.5 and 3.9.2), or free type definitions (Section 3.10). Here are a
few examples:

3 Printing Specifications 17

\begin{zed}

[NAME, DATE]

\also

REPORT ::= ok | unknown \ldata NAME \rdata

\also

\exists n: NAME @ \\

\t1 birthday(n) \in December.

\end{zed}

[NAME ,DATE]

REPORT ::= ok ∣ unknown�NAME�

∃n : NAME ∙
birthday(n) ∈ December .

As the example illustrates, a full stop or comma is allowed just before the
closing \end command of any of the Z environments, if that suits your
taste (or is forced on you by a publisher’s house rules). This punctuation
is ignored by the type checker.

For large free type definitions, the syntax environment provides
a useful alternative to the zed environment, as the following example
suggests:

\begin{syntax}

OP & ::= & plus | minus | times | divide

\also

EXP & ::= & const \ldata \nat \rdata \\

& | & binop \ldata OP \cross EXP

\cross EXP \rdata

\end{syntax}

OP ::= plus ∣ minus ∣ times ∣ divide

EXP ::= const��
∣ binop�OP × EXP × EXP�

Just as in the eqnarray environment of LaTEX, the fields are separated
by & characters; these are ignored by the type checker.

18 The fuzz manual

3.2 Inside the boxes

The first thing to notice about the text inside the boxes is that multi-
character identifiers look better than they do with ordinary LaTEX: in-
stead of effective specifications, you get effective specifications . The
letters are not spread apart, and ligatures like ff and fi are used. This
improvement is achieved by an adjustment to the way TEX treats letters
in mathematical formulas, and no special commands are needed in the
input file.

Embedded underscore characters in identifiers can be printed with
the _ command, so that not_known prints as not known. The same
command can be used for the dummy arguments that surround infix
operators when they appear on their own; for example, _ + _ prints
as + . Occasionally, the _ command makes an odd-looking space
in an identifier, as in DISK POOL, where the large ‘overhang’ of the
italic K has pushed the underline too far away. This is an unfortunate
consequence of TEX’s rules for setting mathematical formulas, but it can
be avoided by typing "DISK_POOL" instead (using double quote marks).
In Z text, this produces a better-looking DISK POOL; the quote marks
are completely ignored by the fuzz type checker.

So much for the identifiers in Z specifications; what about the math-
ematical symbols? As in ordinary LaTEX, they are typed using LaTEX
commands with (hopefully) mnemonic names. Many Z symbols have
the same name that they are given by LaTEX, but some are given a
shorter name that is more suggestive of their use in Z. The fuzz style
option also adjusts the way that many of the symbols interact with
TEX’s rules for spacing in formulas, so that they will look better in Z
specifications.

A few symbols have two names, reflecting two different uses for the
symbol in Z:

∙ The symbol � is called \semi when it is used as an operation on
schemas, and \comp when it is used for composition of relations.

∙ The symbol ∖ is called \hide as the hiding operator of the schema
calculus, and \setminus as the set difference operator.

3 Printing Specifications 19

∙ The symbol � is called \project as the schema projection operator,
and \filter as the filtering operator on sequences.

Although the printed appearance of each of these pairs of symbols is the
same, the type checker recognizes each member of the pair only in the
appropriate context.

The rest of this section contains lists of the commands defined in the
fuzz style option for printing the mathematical symbols of Z. The lists
are organized according to the class of symbol, with all relation signs in
one list, all binary operators in another, and so on. This classification
of standard symbols is known to the fuzz type checker, which uses the
information in parsing pieces of Z text. The symbols are also listed
according to subject on the Z reference card, part of the fuzz package,
with all the symbols connected with sets listed together, and so on.

Some of the symbols listed here look like words in a special font:
for example, \dom yields the word ‘dom’ in roman type, \IF yields ‘if ’
in bold-face type, and \prefix yields ‘prefix’ in sans-serif type. As far
as the type checker is concerned, these symbols are completely different
from plain identifiers like dom, if , and prefix .

Language elements

Some symbols are basic elements of the Z language. Here are the
mnemonics for them:

� \power

× \cross

= =

∈ \in

∣ | or \mid
∙ @ or \spot
� \theta

� \lambda

� \mu

let \LET

Δ \Delta

Ξ \Xi

=̂ \defs

if then else

\IF \THEN \ELSE

The commands | and @ produce the vertical bar and spot that appear
in formulas like

∀ x : ∣ x > 0 ∙ x ≥ 1.

20 The fuzz manual

They are typed as single characters, but like the other commands for
mathematical symbols, they may only be used in math mode. For up-
ward compatibility, the commands \mid and \spot are also provided.

The symbol � that the ZRM uses to write down bindings isn’t
really part of Z, but it has a mnemonic anyway:

� \bind

Connectives and quantifiers

Here are the commands for operators of propositional and predicate logic
and the schema calculus:

¬ \lnot

∧ \land

∨ \lor

⇒ \implies

⇔ \iff

∀ \forall

∃ \exists

∃
1

\exists_1

∖ \hide

� \project

pre \pre

� \semi

Fancy brackets

Next come commands for the various sorts of fancy brackets:

{ } \{ \}

⟨ ⟩ \langle \rangle

Æ � \lbag \rbag

� � \ldata \rdata

� � \limg \rimg

In addition to the brackets used in specifications, there are the spe-
cial brackets used in the ZRM to write down schema types. Like �,
they aren’t part of Z, but they are sometimes useful in writing about a
specification:

	
 \lblot \rblot

Those are all the symbols ‘built-in’ to the Z language; now for the
symbols that are defined as part of the mathematical tool-kit.

3 Printing Specifications 21

Constants and functions

Some symbols name ordinary mathematical constants and functions:

� \emptyset∪
\bigcup∩
\bigcap

dom \dom

ran \ran

 \nat

� \num

1 \nat_1

\#

�/ \dcat

The control sequence \empty was used in place of \emptyset in previous
versions of the fuzz style option, but this caused problems because it
clashes with a macro of plain TEX. If an existing document uses \empty,
you can still print it by adding the definition

\renewcommand{\empty}{\emptyset}

in the document preamble (or by changing the name with an editor).
Both names are recognized by the fuzz type checker.

Infix function symbols

Next, here are the infix function symbols (class In-Fun), each shown with
its priority, which is a number from 1 to 6, with 6 giving the tightest
binding:

7→ \mapsto 1
. . \upto 2
+ + 3
− - 3
∪ \cup 3
∖ \setminus 3
� \cat 3
⊎ \uplus 3
! \uminus 3
∗ * 4
div \div 4
mod \mod 4

∩ \cap 4
 \extract 4
� \filter 4
� \comp 4
∘ \circ 4
⊗ \otimes 4
⊕ \oplus 5
♯ \bcount 5
� \dres 6
� \rres 6
� \ndres 6
� \nrres 6

The priority of operators means nothing to LaTEX, but it is used by the
fuzz type checker when it analyses expressions.

22 The fuzz manual

Postfix function symbols

The standard postfix function symbols (class Post-Fun) produce different
kinds of superscripts:

∼ \inv
∗ \star

+ \plus
n ˆ{n}

For example, R \star is printed as R∗, and Rˆ{n} is printed as Rn .
The type checker regards this second formula as equivalent to iter n R,
as explained on page 110 of the ZRM; the braces are not optional, even
when the superscript is a single digit. For upward compatibility, the
form R \bsup n \esup is also recognized by both the style option and
the type checker.

Infix relation symbols

The infix relation symbols have class In-Rel:

∕= \neq

/∈ \notin

⊆ \subseteq

⊂ \subset

< <

≤ \leq

≥ \geq

> >

prefix \prefix

suffix \suffix

in \inseq

� \inbag

⊑ \subbageq

partition \partition

R \inrel{R}

Besides the fixed infix relation symbols, an ordinary identifier may be
used as an infix relation if it is underlined; to get x R y, the input is
x \inrel{R} y.

Prefix relation symbols

There is only one standard prefix relation symbol (class Pre-Rel):

disjoint \disjoint

3 Printing Specifications 23

Infix generic symbols

The infix generic symbols are assigned the class In-Gen. The standard
ones are all more-or-less fancy arrows, including the famous ‘dead fish’.
The arrows used by fuzz are a little bigger than the ones that come
with LaTEX:

\rel

� \pfun

" \fun

� \pinj

� \inj

� \psurj

� \surj

� \bij

� \ffun

� \finj

Prefix generic symbols

Prefix generic symbols are assigned class Pre-Gen by the type checker.
Here is the standard list:

�

1
\power_1

id \id

� \finset

�

1
\finset_1

seq \seq

seq1 \seq_1

iseq \iseq

bag \bag

As far as LaTEX is concerned, the infix function and generic symbols
are defined to be binary operators, so they are separated from their
arguments by a medium space. The infix relation symbols are defined as
relation symbols, so that LaTEX inserts thick spaces around them. The
prefix generic symbols and most of the ordinary symbols that denote
functions are defined as operator symbols, so LaTEX inserts a thin space
between the symbol and its argument. The spacing rules of TEX work
well enough that most Z specifications can be printed without the need
for manual adjustment of spacing, but the next section points out some
places where human assistance is needed.

24 The fuzz manual

3.3 Fine points

In math mode, which is used for type-setting the contents of Z boxes,
LaTEX ignores all space characters in the input file. The spaces which
appear between elements of a mathematical formula are determined by
LaTEX itself, working from information about the symbols in the formula.
Although (as described above) this information has been adjusted in the
fuzz style option to make Z texts look as balanced as possible, there are
one or two situations in which LaTEX needs a little help.

Special care is needed when function application is indicated by
juxtaposing two identifiers, as in the expression rev words , which should
be typed as rev˜words. Typing just rev words results in the output
revwords , since LaTEX ignores the space separating the two identifiers.
The fuzz style option extends the definition of ˜ so that in a formula it
inserts the same amount of space as the LaTEX \, command. The type
checker completely ignores both the ˜ character and the LaTEX spacing
commands, except that it issues a warning if it finds that one is missing
between two identifiers. It is not necessary to separate symbols like \dom
and \ran from their arguments with a ˜, because LaTEX inserts the right
amount of space automatically. For example, the input \dom f produces
‘dom f ’.

It is good style also to insert small spaces inside the braces of a set
comprehension, as in this example:

\{˜x: \nat | x \leq 10 @ x * x˜\}

{ x : ∣ x ≤ 10 ∙ x ∗ x }

This helps to distinguish it visually from a set display, which should not
have the space:

\{1, 2, 3\}

{1, 2, 3}

Of course, the space symbol ˜ is ignored by the type checker, which
distinguishes set displays from comprehensions by looking at their con-
tents, so the use of ˜ is purely a matter of aesthetics. It also looks better

3 Printing Specifications 25

if you add small spaces inside the square brackets of ‘horizontal’ schema
texts.

LaTEX also needs help when a binary operator appears at the end
of a line, as in the following example:

\begin{zed}

directory’ = directory \cup {} \\

\t3 \{new_name? \mapsto new_number?\}

\end{zed}

directory ′ = directory ∪
{new name? 7→ new number?}

LaTEX will not recognize \cup as a binary operator and insert the correct
space unless it is surrounded by two operands, so the empty operand
{} has been inserted: this is ignored by the type checker. This problem
affects only binary operators; relation signs do not need to be surrounded
by arguments to be recognized by LaTEX.

3.4 Bits and pieces

Specification documents often contain mathematical text which does not
form part of the formal specification proper. This section describes some
environments for setting various kinds of informal mathematics; they are
provided for convenience, and they are all ignored by the type checker.
Besides these environments for making displays, run-in mathematics can
be set with the usual math environment, or with the commands $... $

or \(... \). All the Z symbols listed in Section 3.2 can be used with
these commands.

The simplest displays are produced by the commands \[... \].
This form acts just like \begin{zed} ... \end{zed}, except that the
contents are ignored by the type checker; it can be used to state informal
theorems about a specification, or to quote a piece of mathematical text
for discussion. The \[... \] commands generalize the standard LaTEX
ones, because the displayed material can be several lines. Note, however,

26 The fuzz manual

that the contents are set in text style rather than display style. Here is
an example:

\[

\exists PhoneDB @ \\

\t1 known = \emptyset

\]

∃PhoneDB ∙
known = �

Sometimes it is nice to expand a complicated schema expression
and display the results in a schema box with no name. Such boxes can
be printed using the schema* environment, like this:

\begin{schema*}

x, y: \nat

\where

x > y

\end{schema*}

x , y :

x > y

Like all these environments, the schema* environment is ignored by
the type checker, and contributes nothing to the picture of the formal
specification it is building.

Another kind of mathematical display is provided by the argue en-
vironment. This is like the zed environment, but the separation between
lines is increased a little, and page breaks may occur between lines. The
intended use is for arguments like this:

\begin{argue}

S \dres (T \dres R) \\

\t1 = \id S \comp \id T \comp R \\

\t1 = \id (S \cap T) \comp R & law about \id \\

\t1 = (S \cap T) \dres R.

\end{argue}

3 Printing Specifications 27

S � (T �R)

= idS � idT �R

= id(S ∩ T) �R [law about id]

= (S ∩ T)�R.

When the left-hand side is long, I find this style better than the LaTEX
eqnarray style, which wastes a lot of space. Each line can have an
optional second field, delimited by an & character: it can be used for a
hint why the expression is considered equal to the previous line.

Finally, there is the infrule environment, used for inference rules:

\begin{infrule}

\Gamma \vdash P

\derive[x \notin freevars(\Gamma)]

\Gamma \vdash \forall x @ P

\end{infrule}

Γ ⊢ P
[x /∈ freevars(Γ)]

Γ ⊢ ∀ x ∙ P

The horizontal line is generated by \derive; the optional argument is a
side-condition of the rule.

3.5 Style parameters

A few style parameters affect the way Z text is set out; they can be
changed at any time if your taste doesn’t match mine.

\zedindent The indentation for mathematical text. By default, this is
the same as \leftmargini, the indentation used for list environ-
ments.

\zedleftsep The space between the vertical line on the left of schemas,
etc., and the maths inside. The default is 1 em.

\zedtab The unit of indentation used by \t. The default is 2 em.

28 The fuzz manual

\zedbar The length of the horizontal bar in the middle of a schema.
The default is 6 em.

\zedskip The vertical space inserted by \also. By default, this is the
same as that inserted by \medskip.

\zedsize A size-changing command used for Z text. It may be redefined
by a command such as \renewcommand{\zedsize}{\small}. The
default is for Z text to be the same size as surrounding prose.

4 Checking Specifications

The fuzz type checker can be run with the command

fuzz [-aqstv] [-p prelude] [file . . .]

It reads the input files, which are Z specifications written as described
in Chapter 3, extracts the pieces of formal text, and produces messages
on the standard error stream describing any errors it finds. If no input
files are listed on the command line, fuzz reads the standard input
stream instead. Various optional flags can be given to make fuzz output
additional information or to modify the processing it performs.

Before reading the input files, the type checker reads a prelude file
that contains, amongst other things, the definitions from the mathemat-
ical tool-kit in Chapter 4 of the ZRM. This prelude is a text file, and
apart from a few special commands it has the same form as any other
input file.

Next, fuzz reads the input files in sequence, keeping the definitions
from each file as it processes the next one, so that specifications in several
files can be analysed, with each file using notation introduced by the ones
before it. The LaTEX commands \input{...} and \include{...} are
completely ignored by fuzz, but much the same effect can be obtained
by listing the files on the command line.

The following flags can be given on the command line to modify the
processing fuzz performs:

-a Disable the system of type abbreviations that is normally used for
printing types in reports and error messages. Further details of the
system of type abbreviations are in Section 5.3.

29

30 The fuzz manual

-p file Use file in place of the standard prelude. This flag is useful
if there are local extensions to the mathematical library; you can
append them to a copy of the usual prelude file, and use -p to have
fuzz read the extended prelude in place of the usual one.

-q Allow implicit quantifiers. Any undeclared identifier that appears
in the predicate part of a schema, axiomatic description, or generic
definition is treated as if it were declared by a universal quantifier
surrounding the predicate, with a type inferred from the context.

-d Dependency analysis. The paragraphs of Z text are topologically
sorted before checking, so that (with a few restrictions), the para-
graphs can appear in the document in an order that best suits
exposition.

-s Syntax check only. This flag overrides the -t flag, and can be used
with the -v flag to extract the paragraphs of specification from the
input files without checking them for type errors.

-t Display on the standard output the types of all names defined glob-
ally in the specification. See Section 4.2 for more details.

-v Display each paragraph of Z text on the standard output as it is
extracted from the input files. See Section 4.2 for more details.

-l Echo each paragraph of Z text in a Lisp-like syntax.

If no -p flag is present, the type checker looks for the prelude file in
an implementation-dependent way. In UNIX versions of fuzz, if there is
an environment variable called FUZZLIB, its value is used as the location
of the prelude file; otherwise, the type checker looks in a place deter-
mined when fuzz is installed. In the IBM PC version, the type checker
looks in all the directories on the search path for a file named fuzzlib,
and uses that as the prelude file.

4.1 Definition before use

fuzz checks the input specification for conformance with the language
rules of Z described in the ZRM. These rules require that each identifier

4 Checking Specifications 31

or schema name is declared or defined before it is first used. fuzz relaxes
this condition if the -d flag is specified on the command line, by reading
the whole specification, then re-ordering the paragraphs of Z material so
that they appear in an order that is acceptable according to the rules. It
is still necessary that the specification can be re-ordered in this way, so
it is not permitted (for example) to have two paragraphs, each of which
refers to definitions made in the other.

Another kind of exception to the principle of definition before use
is made for the symbols Δ and Ξ. These may appear only as the first
character of a schema name such as ΔState (typed as \Delta State).
If no schema with this name has been defined before the first use of the
name, the standard definition is inserted by the type checker: see, for
example, the small specification in Chapter 2. This convention allows
both the style where ΔState is an abbreviation for State ∧ State ′, and
the style where it may be defined explicitly to be something else. Of
course, if the definition is left implicit, then State : Exp must be defined
as a schema before the first use of ΔState.

Normally, it is an error for a Z specification to use any identifier that
has not been declared; but some specifications are made much shorter
by the convention that undeclared variables are universally quantified in
the largest surrounding predicate. This allows definitions like this:

double : "

double(x) = 2 ∗ x

which would otherwise need a universal quantifier for x . The -q flag is
provided so that specifications using this informal convention can still
be checked for other errors.

4.2 Reports

In addition to checking a specification for errors, the type checker can
produce two kinds of reports about the formal text it finds. One report
is activated by the -v flag, and contains an ascii representation of each
Z paragraph; the other is activated by -t, and lists the type of every

32 The fuzz manual

name that is globally defined by the specification. For example, the
schema

PhoneDB
known : �NAME
phone : NAME � PHONE

known = dom phone

is represented like this in the -v report:

schema PhoneDB

known: P NAME

phone: NAME -+> PHONE

where

known = dom phone

end

This output attempts to show the internal form of the schema in a
readable way. The schema box is represented by the keywords schema,
where and end, and symbols like � are built up from ascii characters.
The -t flag generates a report like this from the PhoneDB schema:

Schema PhoneDB

known: P NAME

phone: NAME -+> PHONE

End

fuzz discards the predicate part of the schema after checking it for
errors, because it contains no information that is needed to check the
rest of the specification; so the predicate part does not appear in the
-t report either. On the other hand, all inclusions of one schema in
another are expanded before the report is produced, so you can see
exactly what components each schema has. Like the types displayed in
error messages, the types shown in -t reports use the system of type
abbreviations described in Section 5.3 to make them shorter and more
readable. If you want to see the ‘real’ types, you can use the -a flag in
combination with -t. In the example, the type of phone would then be

4 Checking Specifications 33

shown as

�(NAME × PHONE)

instead of

NAME � PHONE .

An axiomatic description like this:

u, v :

2 ∗ u + v < 10

gives a report like this with the -v flag:

axdef

u, v: NN

where

(2 * u) + v < 10

end

One thing that makes the -v reports particularly useful is that extra
parentheses are used to clarify the binding power of operators, as in the
expression (2 * u) - v here. We all know that multiplication binds
more tightly than addition, but if fuzz reports an error in your specifi-
cation that you just can’t find, sometimes the -v report will reveal that
an expression is begin parsed in an unexpected way.

The -t flag shows separately each global definition which fuzz
stores as it checks the specification: for our example, the output is

Var u: NN

Var v: NN

This shows that two global variables, u and v , have been introduced,
and both have type . Again, the predicate relating u and v has been
checked for errors and discarded.

The types of generic constants are shown under -t with numeric
markers in place of the formal generic parameters. For example, the
definition

34 The fuzz manual

[X ,Y]
fst : X ×Y "X
snd : X ×Y "Y

∀ x : X ; y : Y ∙
fst(x , y) = x ∧
snd(x , y) = y

produces this output under -t:

Genconst fst[2] : @1 x @2 -+> @1

Genconst snd[2] : @1 x @2 -+> @2

Here, the [2] means that fst and snd each have two generic parameters,
and the markers @1 and @2 represent the first and the second parame-
ters respectively. This form of output is also used for generic constants
defined with ==.

5 Advanced Features

For simple specifications, the features described in Chapter 4 are enough.
But more complex specifications may need additional features of the type
checker: they may add to Z’s standard list of infix operators, they may
introduce new mathematical concepts that can be reflected in the way
fuzz computes types for expressions, or they may be presented in an
informal way that requires slight adjustments to the strict principle of
definition before use. All these features of the type checker are activated
by directives, special comments that are processed by the type checker,
but are ignored by LaTEX when it formats the specification for printing.

5.1 Directives

All the directives that activate special features of fuzz start with the
characters %%, so LaTEX sees them as comments, and they have no effect
on the printed version of the specification. Several of them introduce
infix function or relation symbols, and so on; others introduce new type
abbreviations or mark text to be ignored in type-checking. A special
directive allows text to be included for type-checking but ignored by
LaTEX. Each directive must appear at the beginning of a line in the input
file, and it continues to the end of that line. Any other TEX comment
– beginning with only one % or not appearing at the start of a line – is
ignored by the type checker.

Here is a list of all the directives, with a brief explanation of their
meanings. In this list, symbols stands for a sequence of one or more
identifiers or special symbols, separated by spaces.

35

36 The fuzz manual

%%inop symbols n
The symbols are introduced as infix function symbols with priority
n, a digit in the range 1 up to 6.

%%postop symbols
The symbols are introduced as postfix function symbols.

%%inrel symbols
The symbols are introduced as infix relation symbols.

%%prerel symbols
The symbols are introduced as prefix relation symbols.

%%ingen symbols
The symbols are introduced as infix generic symbols.

%%pregen symbols
The symbols are introduced as prefix generic symbols.

%%type symbols
Each of the symbols must have a previous global definition as a
variable or generic constant with a set type, or as a schema; they
are made into type abbreviations. The definitions of the symbols
must be monotonic, as described in Section 5.3.

%%tame symbols
Each of the symbols must have a previous global definition as a
generic function; they are marked as tame functions in the sense
explained in Section 5.3.

%%unchecked

The immediately following Z environment is completely ignored by
the type checker.

%% text
The string text is processed by the type checker, but ignored in
printing the specification.

The directives which introduce infix function symbols, etc., override any
previous directive for the same symbol. There are a few other directives
not listed here that are used in the standard prelude to set up the type

5 Advanced Features 37

checker’s symbol tables. They may not be used in ordinary specification
documents.

5.2 User-defined operators

Specifications that use Z’s tool-kit of mathematical symbols are made
easier to read by the fact that many of these symbols are defined as infix
operators of one kind or another. The ZRM lists the standard operator
symbols on page 46, but does not prescribe any way of adding to this
list. With fuzz, the standard set of operators may be extended using
the directives listed in Section 5.1.

There are three stages in adding a new operator symbol to a speci-
fication. The first is to write a definition that tells LaTEX how to print
the symbol, choosing a command name to represent the symbol in the
input file. The second stage is to announce to fuzz (using one of the di-
rectives) that the symbol is to be used as an infix operator of a specified
kind; this announcement is often best complemented by an explanation
for the human reader of the relative binding power of the operator. The
third stage in adding a new infix symbol is to write its mathematical
definition in Z.

To understand this procedure, it may help to think of three potential
‘audiences’ for the specification document: LaTEX, the fuzz type checker,
and the human reader. The specification is written as an input file for
LaTEX using a certain command to represent the symbol. To format
the specification, the LaTEX program must know what printed symbol
to associate with the command. This association is set up in the first
stage of introducing the symbol, by defining the LaTEX command with
\newcommand.

The type checker does not need to know how the symbol is to ap-
pear on the page, and it ignores the LaTEX definition that contains this
information. But it does need to know whether it is an infix function
symbol, a prefix generic symbol, and so on. This information is given by
a directive in the second stage; this directive is seen by LaTEX as a com-
ment, so it does not affect the printed appearance of the specification.

Human readers want to be told how to read formulas that use the

38 The fuzz manual

symbol, information that is best conveyed by a small example given in
stage 2. They also want to see its definition, given in stage 3. The fact
that the definition for LaTEX in stage 1 and the directive for fuzz in
stage 2 are invisible in the printed text allows the specification author
to explain the significance of the new symbol appropriately.

Here is an example which shows how to introduce a new infix func-
tion symbol. Let’s define ⋄ to be an operator which takes two sequences
and concatenates the reverse of the first with the second. Luckily, there
is already a LaTEX command \diamond for ⋄, so we don’t need to bother
with the first stage. For the second stage, we announce in a directive
that \diamond is an infix function symbol, choosing its priority to be 3:

%%inop \diamond 3

It is important to announce \diamond as an infix symbol before giving
its definition, or the type checker will not be able to parse the definition
correctly. The new symbol should be introduced for the human reader
with a suitable English sentence. In this case, one might say “The
symbol ⋄ will be used as an infix function symbol; it has the same binding
power as �.” Personally, I like to avoid using numeric priorities to
explain the binding power of infix symbols: if you exploit relative binding
powers, it’s a good idea to give an example, such as “The expression
a � S ⋄ b should be read as (a � S) ⋄ b.”

Now for the third stage: we define the operator with a generic
definition like this:

\begin{gendef}[X]

_ \diamond _: \seq X \cross \seq X \fun \seq X

\where

\forall a, b: \seq X @ \\

\t1 a \diamond b = (rev˜a) \cat b

\end{gendef}

[X]
⋄ : seqX × seqX " seqX

∀ a, b : seqX ∙
a ⋄ b = (rev a) � b

5 Advanced Features 39

The ‘quoted’ name ⋄ is used in the declaration, because ⋄ is now an
infix operator. After defining ⋄, we can begin to use it in expressions,
like this:

\begin{zed}

\langle 1, 2, 3 \rangle

\diamond \langle 4, 5, 6 \rangle

= \langle 3, 2, 1, 4, 5, 6 \rangle.

\end{zed}

⟨1, 2, 3⟩ ⋄ ⟨4, 5, 6⟩ = ⟨3, 2, 1, 4, 5, 6⟩.

As another example, let’s define subseq as the relation which holds
between two sequences when the all the elements of the first one also
appear in the second one in the same order. The first stage is to define
a LaTEX command \subseq which produces the relation symbol subseq
in the right style of type. This is achieved by

\newcommand{\subseq}{\mathrel{\sf subseq}}

The TEX primitive \mathrel is not documented in the LaTEX manual,
but it causes its argument to be considered as a relation symbol in math-
ematical formulas, so that the right amount of space will be inserted
around it. There is also \mathbin for binary operators, and others
for brackets, prefix operators like ‘dom’ and so on: see the TEXbook,
page 155. The font-changing command \sf causes the word ‘subseq’
to appear in sans-serif type, like the standard infix relation symbols in
the ZRM.

The second stage is to announce to the type checker that \subseq
is to be used as an infix relation symbol:

%%inrel \subseq

Both LaTEX and the type checker now know all they need about our new
symbol, and we can proceed to the third stage, giving its mathematical
definition:

40 The fuzz manual

\begin{gendef}[X]

_ \subseq _: \seq X \rel \seq X

\where

\forall a, b: \seq X @ \\

\t1 a \subseq b \iff (\exists S:

\power \nat_1 @ a = S \extract b)

\end{gendef}

[X]
subseq : seqX # seqX

∀ a, b : seqX ∙
a subseq b ⇔ (∃S : �1 ∙ a = S b)

The symbol ‘subseq’ can now be used in formulas:

\begin{zed}

\langle 2, 4 \rangle

\subseq \langle 1, 2, 3, 4 \rangle.

\end{zed}

⟨2, 4⟩ subseq ⟨1, 2, 3, 4⟩.

The technique of defining a new LaTEX command for an infix opera-
tor can also be used with schemas. This is useful because some styles of
specification encourage schema names like ΦState that do not conform
to fuzz’s syntax for schema names (see page 59). The trick is to define
a new LaTEX command like this:

\newcommand{\PhiState}{\Phi State}

then define the schema like this:

\begin{schema}{\PhiState} ...

After these definitions, the command \PhiState prints as ΦState, and
is recognized as a schema name by the type checker.

5 Advanced Features 41

5.3 Type abbreviations

The fuzz type checker separates its work into two parts: computing
the types of all the expressions which appear in a specification, and
matching types with each other where they must agree. fuzz uses the
type system described in the ZRM for comparing types, but it uses
a richer type system when computing the types of expressions. This
makes for better error messages, because types in the richer system are
shorter and easier to understand. Because the type system used for
matching types is exactly that described in the ZRM, none of the power
or expressiveness of Z is lost.

The ZRM’s type system has only three type constructors: power
set �, Cartesian product ×, and schema type 	. . .
. In this system,
even simple expressions can have rather complicated types: for example,
dom[X ,Y] has the type

�(�(X ×Y)× �X).

This is rather difficult to read, and the fact that dom is a function has
been lost. For the same expression, fuzz computes the type

(X #Y)��X ,

which is shorter, and closer to the ‘type’ given to dom in its declaration.
This has been achieved by using the type abbreviations ‘#’ and ‘�’.

We can recover the real type of dom[X ,Y] by expanding the ab-
breviations, replacing both A#B and A�B by �(A×B). The value
of A# B is actually equal to this set, but A � B is a proper subset
of �(A× B), so the type we obtain by expansion is larger as a set than
the unexpanded type. This means that information has been lost in
the expansion, but it is safe to assume that any object in the original,
abbreviated type is also in the larger, expanded type.

The algorithm used by fuzz to check that types agree across equal-
ity and membership signs and in function applications is equivalent to
expanding all abbreviations and checking for an exact match, so you
are still free to exploit the way notions like function and sequence are
defined in Z: where convenient, you can use the fact that functions are

42 The fuzz manual

sets of ordered pairs, and sequences are functions defined on a segment
of the integers.

Here is a list of the type abbreviations defined in the standard
prelude:

 ⊆ �

X #Y = �(X ×Y)
X �Y ⊆ �(X ×Y)
X �Y ⊆ �(X ×Y)
�X ⊆ �X
seqX ⊆ �(×X)
bagX ⊆ �(X ×)

A notable absence from this list is the total function arrow ". It is
omitted because it is not monotonic like the others: if S ⊆ T , then
it is not generally true that (S " V) ⊆ (T " V). For example, the
set even "� contains the functions from numbers to numbers that are
defined exactly when the argument is in the set even; one of its members
is the function half that takes an even argument and halves it. This set
is not a subset of �"�, which contains only functions that are defined
on the whole of �; in fact, the two sets of functions are disjoint.

It is important that abbreviations are monotonic, because otherwise
the method fuzz uses to calculate types may conclude that an expression
has a certain type, when in fact the value of the expression is not a
member of the type. The property of being a total function is simply
not one that can be expressed in the type system.

The way that the type checker uses the two-level type system is
illustrated by the predicate

phone ′ = phone ⊕ {name? 7→ number?}.

The type checker calculates the types in this equation as shown in the
following listing, where each line shows a sub-expression and its type:

phone : NAME � PHONE
name? : NAME
number? : PHONE
name? 7→ number? : NAME × PHONE

5 Advanced Features 43

{name? 7→ number?} : �(NAME × PHONE)
⊕ : (X #Y)× (X #Y)� (X #Y)

So far, so good. Now the type checker finds that the operator ⊕, which
expects two relations as its arguments, is being applied to arguments
that are a partial function and a set of ordered pairs. This is allowed,
for although they are superficially different, all three types

NAME # PHONE
NAME � PHONE
�(NAME × PHONE)

can be changed into the third one by expanding abbreviations. So the
type checker ascribes to the right-hand side the type NAME#PHONE ,
the result type of⊕ with NAME substituted for the generic parameter X
and PHONE substituted for Y . The left-hand side of the equation has
type NAME � PHONE . Again, this is superficially different from the
type ascribed to the right-hand side, but they have a common expansion,
so the equation is accepted.

New type abbreviations can be introduced using the %%type direc-
tive (see Section 5.1). Any symbol defined globally in the specification
as having a set type can be marked as a type abbreviation, but it is up to
the user to check that the requirement is satisfied that it be monotonic,
because there is no way to check this mechanically. If a type abbrevia-
tion is not monotonic, no spurious error messages will be produced, but
the types displayed in error messages may be misleading.

Another concept related to type abbreviations is that of a tame

function. An example is the concatenation operator � on sequences.
The enriched type system gives this operator the type

seqX × seqX � seqX ,

and allows the type checker to deduce unaided that applying this op-
erator to two sequences s and t of the same type seqX yields another
sequence s�t , and not simply an element of the expanded type �(�×X).
But there are other relevant properties of � that cannot be deduced from
its enriched type. One such property is that concatenating two elements
of seq gives another element of seq, and not simply an element of the

44 The fuzz manual

type seq�. This is a consequence of the fact that � is tame, meaning
that for any set S , if s and t are in seqS , so is s � t . Another appli-
cation of the tameness of � is the observation that concatenating two
sequences of sequences gives another sequence of sequences, and not just
a sequence of relations.

Almost all the generic functions defined in the standard library are
tame, but one that is not tame is the reflexive–transitive closure operator
∗. Even though succ is in # according to its ZRM definition, succ∗

is not in # but is in �#�.
In order to allow the type checker to deduce reasonable types for

expressions involving tame functions, while treating non-tame functions
correctly, there is a directive %%tame for announcing that a generic func-
tion is tame for the types with which it was declared (for details, see
Section 5.1). Like the %%type directive, it is used extensively in the
standard prelude, but is less commonly used in ordinary specification
documents. In checking a function application, the type checker treats
it as a special case if the function being applied is known to be tame. If
the function being applied is not a generic function symbol with implicit
parameters that has been announced as tame, the type checker uses a
more conservative method of calculating the type.

5.4 Invisible and unchecked paragraphs

The %%unchecked directive causes the next use of a Z environment – one
of zed, axdef, schema or gendef – to be ignored by the type checker. It
is useful for schemas which contain informal nonsense, as in the following
example:

%%unchecked

\begin{schema}{Register}

enrolled: \power STUDENT \\

completed: \power STUDENT

\where

\mbox{\dots\ Invariant \dots}

\end{schema}

5 Advanced Features 45

Register
enrolled : � STUDENT
completed : � STUDENT

. . . Invariant . . .

A specification document might contain an informal definition of the
Register schema like this one, followed by a discussion of what invariant
might be appropriate, and finally the proper definition of Register . By
using the %%unchecked directive, the writer can have both schema boxes
printed like any other, but have the type checker take notice of only the
second, complete one.

A sort of opposite to %%unchecked is the %% directive. This is useful
for including short paragraphs that are processed by the type checker
but should not appear in the output:

We give the name FN

%% \begin{zed} [FN] \end{zed}

to the set of all file names.

We give the name FN to the set of all file names.

Here the author wanted to avoid cluttering up the specification as printed
with the formal definition of FN , but needed to include the definition
for the sake of the type checker.

A second use for %% is in combination with %%unchecked. In the
Register example, the whole schema is ignored by the type checker, and
this may cause problems if a complete definition is not included later,
and the declaration part of the schema is needed for type-checking the
rest of the specification. The best thing in this case is to include a brief
definition of Register using %%:

%% \begin{schema}{Register}

%% enrolled, completed: \power STUDENT

%% \end{schema}

This can be put next to the unchecked but visible definition. This tech-
nique is sometimes useful when it seems clearer to present the parts of

46 The fuzz manual

a specification in a different order from the one that would be needed to
follow strictly the principle of definition before use.

Another use for the %% directive is to introduce local variables for a
predicate:

A name n is included in the output exactly if

\begin{zed}

%% \exists BirthdayBook; n: NAME; today: DATE @

birthday(n) = today

\end{zed}

A name n is included in the output exactly if

birthday(n) = today

The existential quantifier is included only to introduce the variables
used in the predicate; it is used for its effect of declaring some variables
rather than for its logical meaning. In such a simple example as this
one, it would be easier to exclude the predicate from checking, either by
marking it with %%unchecked, or by using \[... \] in place of the zed
environment. In more complicated examples, however, this technique
allows more thorough type-checking to be done.

6 Error Messages

Most of the messages about type errors produced by fuzz come with
supporting evidence about the expressions and types involved. These
expressions and types are obtained from the internal data structures
that fuzz uses to represent them, so they may differ slightly from the
actual forms written in the specification. For example, expressions tend
to have extra brackets added to clarify the precedence of operators.

This corroborative detail makes the meaning of most error messages
clear; but here anyway is a list of the semantic error messages fuzz
produces, together with a little more information about each one. The
numbers in square brackets give the pages in the ZRM where relevant
rules of the language are explained.

Application of a non-function

In an expression of the form f (E), the sub-expression f does not have
type �(t1 × t2) for some types t1 and t2. [60]

Argument k has wrong type

In an expression of the form f (E1,E2, . . . ,En), the type of Ek does not
match the type expected for the k ’th argument of f . Also applies to
expressions of the form E1 f E2, where f is an infix function symbol. [60]

Argument k of × must be a set

In an expression E1×E2×⋅ ⋅ ⋅×En , the sub-expression Ek does not have
type � t for some type t . [56]

Argument of application has wrong type

In an expression f (E), the type of E is different from the type expected
for the argument of f . [56]

47

48 The fuzz manual

Argument of � must be a set

In an expression �E , the sub-expression E does not have type � t for
some type t . [56]

Argument of postfix operator has wrong type

In an expression E !, where ! is a postfix function symbol, the type of
E is not the type expected for the argument of !. [65]

Argument of prefix relation has wrong type

In a predicate R E , where R is a prefix relation symbol, the type of E
is not the type expected for the argument of R. [73]

Argument of selection must have schema type

In an expression E .x , the sub-expression E does not have a schema
type. [61]

Basic type X cannot have parameters

A reference to the basic type X has actual generic parameters. Only
generic constants and schemas can have parameters. [80]

Basic type name X multiply declared

The basic type name X appears more than once in the same basic type
definition or formal generic parameter list. The second occurrence is
ignored. [47, 79, 80]

Component x has wrong type in schema reference

A schema reference is used as a predicate, and the type of the compo-
nent x in the schema is different from the type x has in the current
context. [72]

Constructor name x multiply declared

The constructor name x appears in more than one branch of the same
free type definition. The second occurrence is ignored. [82]

Decoration ignored in schema reference

A schema reference used as an expression contains a non-empty decora-
tion. The decoration is ignored. [63]

Function expects n arguments

In an expression f (E1,E2, . . . ,Ek), the number of arguments supplied,
k , is different from the number n expected by f . [60]

6 Error Messages 49

Generic constant x expects n parameters

In an expression x [E1,E2, . . . ,Ek], the number of parameters supplied,
k , is different from the number n expected by x . Also applies to expres-
sions of the form E1 x E2 or x E where x is an infix or prefix generic
symbol. [80]

Global name x multiply declared

The name x has more than one global definition. The second definition
overrides the first. [36]

Hiding non-existent component x
In a schema expression which hides certain components of a schema, the
component x being hidden does not exist. Applies to the quantifiers ∀,
∃ and ∃

1
, and the explicit hiding operator ∖. [76]

Identifier x is not declared

No declaration or definition of x is in scope. [34]

Implicit parameters not completely determined

The actual parameters of a generic constant have been left implicit, but
they are not completely determined by the context. Also applies to set,
sequence and bag displays. [81]

Infix operator ! is not a function

In an expression E1 ! E2, where ! is an infix function symbol, ! does
not have the right type to be a function. [65]

Infix relation symbol R is not a binary relation

In a predicate E1 R E2, where R is an infix relation symbol, R does not
have type �(t1 × t2) for some types t1 and t2. [73]

Left argument of operator ! has wrong type

In an expression E1 ! E2, where ! is an infix function symbol, the type
of E1 does not match the type expected for the left argument of !. [65]

Let variable x multiply declared

In a let-expression let x1 == E1; x2 == E2 . . ., the same identifier
appears more that once among the left-hand sides x1, x2, [59]

Name x is not a schema

The name x appears in a schema reference, but it is not defined as a
schema. [50]

50 The fuzz manual

Postfix operator ! is not a function

In a predicate E !, where ! is a postfix function symbol, ! does not
have the right type to be a function. [65]

Prefix relation symbol R is not a set

In a predicate R E , where R is a prefix relation symbol, R does not have
a set type. [73]

Renamed component x does not exist

In a schema reference S [y/x , . . .], there is no component of S with the
name x . [50]

Renaming ignored in schema reference

A schema reference used as an expression contains a non-empty renaming
part. The renaming part is ignored. [63]

Right argument of operator ! has wrong type

In an expression E1 ! E2, where ! is an infix function symbol, the type
of E2 does not match the type expected for the right argument of !. [65]

Schema S expects n parameters

In a schema reference S [E1,E2, . . . ,Ek], the number of actual generic
parameters, k , is different from the number n expected by S . [79]

Schema S is not defined

The schema S appearing in a schema reference has not been defined. [50]

Selecting non-existent component x
In an expression E .x , the name x is not one of the components in the
type of E . [61]

Set-valued expression required in actual generic parameter

Set-valued expression required in declaration

Set-valued expression required in free type definition

An expression E appearing as an actual generic parameter (as in A[E]),
in a declaration (as in x : E), or in a free type definition – as in

T ::= . . . ∣ f �E� ∣ . . .

– does not have a set type. [51, 79, 80, 82]

6 Error Messages 51

Tame function x has no global definition

Tame function x is not a generic function

The name x appears in a %%tame directive, but either it has no global
definition, or it is not a generic function. The directive is ignored.

Type abbreviation x has no global definition

Type abbreviation x is not a set

The name x appears in a %%type directive, but either it has no global
definition, or it does not have a set type. The directive is ignored.

Type mismatch in bag display

Type mismatch in sequence display

Type mismatch in set display

In a set display {E1,E2, . . . ,En}, the expressions Ei do not all have the
same type. Also applies to sequence and bag displays. [55, 66]

Type mismatch in conditional expression

In a conditional expression if P then E1 else E2, the types of E1 and
E2 are different. [64]

Type mismatch in declarations of x
In a declaration part, or a schema expression, there are two declarations
of x which give it different types. [31, 51]

Type mismatch in hiding variable x
In a quantified schema expression ∀D ∣ P ∙ S , the type of component x
in the schema S is different from the type it is given by the declaration
D . Also applies to the quantifiers ∃ and ∃

1
. [76]

Type mismatch in left argument of infix relation

Type mismatch in right argument of infix relation

In a predicate E1 R E2, where R is an infix relation symbol, either E1

or E2 has a type different from that expected by R. [73]

Type mismatch in piping

In a piping S1 >> S2, the type of some output x ! of S1 is different from
the type of the input x? of S2. [78]

Type mismatch in sequential composition

In a sequential composition S1 � S2, the type of some component x ′ in
S1 is different from the type of x in S2. [78]

52 The fuzz manual

Types do not agree in equation

In a predicate E1 = E2, the left hand side has a different type from the
right hand side. [68]

Types do not agree in set membership

In a predicate E1 ∈ E2, the type of the right hand side is not the same
as � t , where t is the type of the left hand side. [68]

Variable x cannot have parameters

A reference to the variable x has actual generic parameters. Only generic
constants and schemas can have parameters. [80]

Warning – implicitly quantified name x appears only once

Under the -q switch, an implicit quantifier has been inserted for the
name x , which occurs in a predicate only once. This is allowed, but may
indicate a spelling mistake.

Warning – infix relation symbol ! is not declared as a binary

relation

Warning – infix function symbol ! is not declared as a binary

function

Warning – postfix function symbol ! is not declared as a

function

Warning – prefix relation symbol ! is not declared as a set

The symbol ! has been declared with a type that is not appropriate to
its syntactic class. This is allowed, but will cause an error if the symbol
is ever used.

Warning – X already declared as a basic type

The identifier X appears to the left of ::=, but has been declared as a
basic type earlier in the specification. fuzz allows this so that mutually
recursive free type definitions can be written.

If there are errors in the specification, the fictitious type *errtype*may
appear in the types reported for variables, or in error messages. This
indicates that the type checker could not ascribe a type to some expres-
sion in the specification, and replaced its type with a special marker.

6 Error Messages 53

The type *errtype* never appears in the output produced from a cor-
rect specification; it is simply a device which allows more checking to be
done on a specification after errors have been detected.

Types appearing in error messages may also contain ‘place-markers’,
indicated by ? . These place-markers are generated when generic con-
stants are written without explicit parameters, and the type checker
works out from the context what the parameters must be. If ? appears
in an error message, it means that the type checker has not completely
worked out the type of a phrase, but the type it has found so far has
the wrong shape to match the context. For example, the predicate

� = 3

results in the error message

Types do not agree in equation

> Predicate: \emptyset = 3

> LHS type: P ?

> RHS type: NN

This indicates that � always has a set type, but whatever type is given
to the elements of the set, this cannot be the same as the type ascribed
to 3.

7 Syntax Summary

This chapter contains a syntax summary of the input language recog-
nized by the fuzz type checker, showing the LaTEX commands for the
constructs of Z rather than the way they look when printed. Except for
the use of LaTEX commands in place of the printed symbols, this syntax
is identical with the one in the ZRM. Only the formal parts of the spec-
ification are shown in the summary, but of course one Paragraph should
be separated from the next by plenty of explanatory text.

The following conventions about repeated and optional phrases are
used: S, . . . , S stands for a list of one or more instances of the class S
separated by commas, and S; . . . ; S stands for one or more instances of
S separated by semicolons. The notation S . . . S stands for one or more
adjacent instances of S with no separators. Phrases enclosed in slanted
square brackets [. . .] are optional.

Certain collections of symbols have a range of binding powers: they
are the logical connectives, used in predicates and schema expressions,
the special-purpose schema operators, and infix function symbols, used
in expressions. The relative binding powers of the logical connectives
are indicated by listing them in decreasing order of binding power; the
binding powers of infix function symbols are given in Section 3.2. Each
production for which a binding power is relevant has been marked with
an upper-case letter at the right margin; ‘L’ marks a symbol which
associates to the left – so A ∧ B ∧ C means (A ∧ B) ∧ C – and
‘R’ marks a symbol which associates to the right. Unary symbols are
marked with ‘U’.

54

7 Syntax Summary 55

Specification ::= Paragraph . . . Paragraph

Paragraph ::= Unboxed-Para
∣ Axiomatic-Box
∣ Schema-Box
∣ Generic-Box

Unboxed-Para ::= \begin{zed}

Item Sep . . . Sep Item
\end{zed}

Item ::= [Ident, . . . , Ident]
∣ Schema-Name[Gen-Formals] \defs Schema-Exp
∣ Def-Lhs == Expression
∣ Ident ::= Branch | . . .| Branch
∣ Predicate

Axiomatic-Box ::= \begin{axdef}

Decl-Part
[\where

Axiom-Part]
\end{axdef}

Schema-Box ::= \begin{schema}{Schema-Name}[Gen-Formals]
Decl-Part

[\where

Axiom-Part]
\end{schema}

Generic-Box ::= \begin{gendef}[Gen-Formals]
Decl-Part

[\where

Axiom-Part]
\end{gendef}

Decl-Part ::= Basic-Decl Sep . . . Sep Basic-Decl

Axiom-Part ::= Predicate Sep . . . Sep Predicate

Sep ::= ; ∣ \\ ∣ \also

56 The fuzz manual

Def-Lhs ::= Var-Name[Gen-Formals]
∣ Pre-Gen Decoration Ident
∣ Ident In-Gen Decoration Ident

Branch ::= Ident
∣ Var-Name \ldata Expression \rdata

Schema-Exp ::= \forall Schema-Text @ Schema-Exp
∣ \exists Schema-Text @ Schema-Exp
∣ \exists_1 Schema-Text @ Schema-Exp
∣ Schema-Exp-1

Schema-Exp-1 ::= [Schema-Text]
∣ Schema-Ref
∣ \lnot Schema-Exp-1 U
∣ \pre Schema-Exp-1 U
∣ Schema-Exp-1 \land Schema-Exp-1 L
∣ Schema-Exp-1 \lor Schema-Exp-1 L
∣ Schema-Exp-1 \implies Schema-Exp-1 R
∣ Schema-Exp-1 \iff Schema-Exp-1 L
∣ Schema-Exp-1 \project Schema-Exp-1 L
∣ Schema-Exp-1 \hide

(Decl-Name, . . . , Decl-Name) L
∣ Schema-Exp-1 \semi Schema-Exp-1 L
∣ Schema-Exp-1 \pipe Schema-Exp-1 L
∣ (Schema-Exp)

Schema-Text ::= Declaration [| Predicate]

Schema-Ref ::= Schema-Name Decoration [Gen-Actuals] [Renaming]

Renaming ::= [Decl-Name/Decl-Name, . . ., Decl-Name/Decl-Name]

Declaration ::= Basic-Decl; . . .; Basic-Decl

Basic-Decl ::= Decl-Name, . . ., Decl-Name : Expression
∣ Schema-Ref

Predicate ::= \forall Schema-Text @ Predicate
∣ \exists Schema-Text @ Predicate
∣ \exists_1 Schema-Text @ Predicate
∣ \LET Let-Def; . . . ; Let-Def @ Predicate
∣ Predicate-1

7 Syntax Summary 57

Predicate-1 ::= Expression Rel Expression Rel . . . Rel Expression
∣ Pre-Rel Decoration Expression
∣ Schema-Ref
∣ \pre Schema-Ref
∣ true

∣ false

∣ \lnot Predicate-1 U
∣ Predicate-1 \land Predicate-1 L
∣ Predicate-1 \lor Predicate-1 L
∣ Predicate-1 \implies Predicate-1 R
∣ Predicate-1 \iff Predicate-1 L
∣ (Predicate)

Rel ::= = ∣ \in ∣ In-Rel Decoration ∣ \inrel{ Ident }

Let-Def ::= Var-Name == Expression

Expression-0 ::= \lambda Schema-Text @ Expression
∣ \mu Schema-Text [@ Expression]
∣ \LET Let-Def; . . . ; Let-Def @ Expression
∣ Expression

Expression ::= \IF Predicate \THEN Expression \ELSE Expression
∣ Expression-1

Expression-1 ::= Expression-1 In-Gen Decoration Expression-1 R
∣ Expression-2 \cross Expression-2

\cross . . . \cross Expression-2
∣ Expression-2

Expression-2 ::= Expression-2 In-Fun Decoration Expression-2 L
∣ \power Expression-4
∣ Pre-Gen Decoration Expression-4
∣ - Decoration Expression-4
∣ Expression-4 \limg Expression-0 \rimg Decoration
∣ Expression-3

Expression-3 ::= Expression-3 Expression-4
∣ Expression-4

58 The fuzz manual

Expression-4 ::= Var-Name[Gen-Actuals]
∣ Number
∣ Schema-Ref
∣ Set-Exp
∣ \langle[Expression, . . . , Expression]\rangle
∣ \lbag[Expression, . . . , Expression]\rbag
∣ (Expression, . . ., Expression)

∣ \theta Schema-Name Decoration [Renaming]
∣ Expression-4 . Var-Name
∣ Expression-4 Post-Fun Decoration
∣ Expression-4 \bsup Expression \esup

∣ (Expression-0)

Set-Exp ::= \{ [Expression, . . . , Expression] \}
∣ \{ Schema-Text [@ Expression] \}

Ident ::= Word Decoration

Decl-Name ::= Ident ∣ Op-Name

Var-Name ::= Ident ∣ (Op-Name)

Op-Name ::= _ In-Sym Decoration _

∣ Pre-Sym Decoration _

∣ _ Post-Sym Decoration
∣ _ \limg _ \rimg Decoration
∣ - Decoration

In-Sym ::= In-Fun ∣ In-Gen ∣ In-Rel

Pre-Sym ::= Pre-Gen ∣ Pre-Rel

Post-Sym ::= Post-Fun

Decoration ::= [Stroke . . . Stroke]

Gen-Formals ::= [Ident, . . . , Ident]

Gen-Actuals ::= [Expression, . . . , Expression]

7 Syntax Summary 59

The syntax summary uses several classes of terminal symbol that are
defined as follows:

∙ aWord is an undecorated name or special symbol. It may be either a
non-empty sequence of letters, digits and underscores (written using
the _ command) that starts with a letter, a non-empty sequence
of characters drawn from the list +-*.=<>, or a LaTEX command.
Some strings that would otherwise be Word’s are reserved for other
purposes, and others are taken as Schema-Name’s or operator sym-
bols.

∙ a Schema-Name is either a Word that has been defined as a schema,
or one of the Greek letters \Delta or \Xi followed by a single space
and a Word.

∙ the classes In-Fun, Pre-Rel, etc., stand for members of the classWord
that have been announced as infix function symbols, prefix relation
symbols, etc., either in the prelude or by an explicit directive.

∙ a Number is a non-empty sequence of decimal digits.

∙ a Stroke is a single decoration: one of ’, ?, !, or a subscript digit
entered as _0, _1, and so on.

Another essential Mikronella design

Index

%% directive, 36, 45
& (alignment tab), ignored by

type checker, 17
? as type, 53
\[... \], 25
\\ (newline), 13
_ (underscore), 18
ˆ (superscript), 22
{} (empty operand), 25
˜ (thin space)
between function and

argument, 24
in set comprehension, 24

-a flag, 29
abbreviation definition, 16
\also, 14
argue environment, 26
arrows, 23
\axdef environment, 15
axiomatic description, 15

basic symbols, 19
basic type definition, 16
bracket symbols, 20

comment, ignored by type
checker, 35

\comp (�)
vs. \semi, 18

concatenation (�), 43
constant symbols, 21
constraint, 16

-d flag, 30
default definition, of Δ and Ξ, 31
definition before use, 31, 46
\Delta (Δ), 31
dependency analysis, 30
directives, 35–7
dummy argument (_), 18

empty operand ({}), 25
\empty (�)
vs. \emptyset (�), 21

errtype, 52

\filter (�)
vs. \project, 19

flags, on command line, 29–30
font, significance to

type-checker, 19
free type definition, 16, 17
full stop, allowed before \end, 17

60

Index 61

function, separated from
argument by ˜, 24

fuzz style option, 12
FUZZLIB, environment

variable, 30

gendef environment, 16, 38
generic definition, 16
generic parameter, 14, 16
generic symbols, 23

\hide (∖)
vs. \setminus, 18

identifier, syntax rules, 59
implicit quantifiers, 30, 31, 52
\include, ignored by type

checker, 29
infrule environment, 27
%%ingen directive, 36
%%inop directive, 36, 38
\input, ignored by type

checker, 29
%%inrel directive, 36, 39
\inrel, 22

-l flag, 30
logical symbols, 20

mathematical tool-kit, 29
monotonicity, of type

abbreviations, 42
multi-character identifier, 18

operator symbol, 21–2
user-defined, 37–40

-p flag, 29, 30
%%postop directive, 36
%%pregen directive, 36
prelude file, 29, 30
search rules, 30

%%prerel directive, 36
\project (�)
vs. \filter, 19

-q flag, 30, 31

reflexive–transitive closure
(∗), 44

relation symbols, 22
reports, 30, 31–4

-s flag, 30
schema definition
horizontal, 16
vertical, 13

schema name
containing special

characters, 40
syntax rules, 59

schema environment, 13
schema* environment, 26
\semi (�)
vs. \comp, 18

\setminus (∖)
vs. \hide, 18

SliTEX, 12
space commands, ignored by

type checker, 24
spacing rules of TEX, 18, 23–5
standard symbols, 19–23
style parameters, 27

62 The fuzz manual

superscript, 22
syntax environment, 17

-t flag, 30, 31
\t, 15
tame functions, 43–4
%%tame directive, 36, 44
tie-after accent (⁀oo), 15
total functions ("), 42
type abbreviation, 29
type abbreviations, 41–4
expansion, 41

%%type directive, 36, 43

%%unchecked directive, 36, 44
underlined relation symbol, 22
underscore, in identifier, 18
upward compatibility, 14, 20, 22

-v flag, 30, 31

\where, 13

\Xi (Ξ), 31

zed environment, 16
\zedbar, 28
\zedindent, 27
\zedleftsep, 27
\zedsize, 28
\zedskip, 28
\zedtab, 27

