
Exploiting contemporary architectures for fast Nearest
Neighbor classification

Isaac Jurado Peinado

Master CANS

January 2010

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 1 / 38



Introduction

Outline

1 Introduction
Execution environment
Basic algorithm

2 CPU optimizations

3 GPU port

4 Other classification methods

5 Conclusions

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 2 / 38



Introduction

The Nearest Neighbor algorithm

Definition of the problem
I Given a set of samples and an element, find the closest match from the

set of samples

Both a problem and a tool

Some applications
I Pattern recognition
I Statistical classification
I Data compression
I DNA sequencing

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 3 / 38



Introduction

The Nearest Neighbor algorithm

Definition of the problem
I Given a set of samples and an element, find the closest match from the

set of samples

Both a problem and a tool

Some applications

I Pattern recognition

I Statistical classification

I Data compression
I DNA sequencing

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 3 / 38



Introduction Execution environment

Input data

Database
I M training elements
I N testing elements
I D features

Training set
I train, a M × D matrix
I classof(b), the class label of an element b (a row in matrix train)

Testing set
I test, a N × D matrix
I classof(a), same as with train

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 4 / 38



Introduction Execution environment

Analytical model

Performance measured in Normalized Cycles

NC =
CPU time in cycles

N ·M · D

NC modeled as
NC = NCcpu + NCmem

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 5 / 38



Introduction Execution environment

Hardware platform

Intel Xeon E5520 “Gainestown” (Nehalem microarchitecture)

Two quad-core processors

Two 4GB memory modules

NUMA, Quick Path Interconnect

256kB per core L2 cache

8MB per processor L3 cache

SSE 4.2

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 6 / 38



Introduction Basic algorithm

Basic algorithm

for all a ∈ test do
min←∞
for all b ∈ train do

dist ← 0
for i = 0 to D do

dist ← dist + (ai − bi )
2

end for
if dist < min then

min← dist
cls ← classof(b)

end if
end for
classof(a)← cls

end for

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 7 / 38



Introduction Basic algorithm

Memory access pattern

D D

M
N

test

train

D influences NCcpu

M and N influence NCmem

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 8 / 38



Introduction Basic algorithm

Memory access pattern

D D

M
N

test

train

D influences NCcpu

M and N influence NCmem

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 8 / 38



Introduction Basic algorithm

Memory access pattern

D D

M
N

test

train

D influences NCcpu

M and N influence NCmem

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 8 / 38



Introduction Basic algorithm

Memory access pattern

D D

M
N

test

train

D influences NCcpu

M and N influence NCmem

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 8 / 38



Introduction Basic algorithm

Memory access pattern

D D

M
N

test

train

D influences NCcpu

M and N influence NCmem

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 8 / 38



CPU optimizations

Outline

1 Introduction

2 CPU optimizations
Memory optimizations
Parallelization

3 GPU port

4 Other classification methods

5 Conclusions

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 9 / 38



CPU optimizations Memory optimizations

Blocking

for all a ∈ test do
min←∞
for all b ∈ train do

dist ← 0
for i = 0 to D do

dist ← dist + (ai − bi )
2

end for
if dist < min then

min← dist
cls ← classof(b)

end if
end for
classof(a)← cls

end for

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 10 / 38



CPU optimizations Memory optimizations

Blocking scheme

D D

t
r
a
in

b
lo

ckt
e
st

b
lo

ck

test

train

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 11 / 38



CPU optimizations Memory optimizations

Blocking scheme

L3
L2

D D

t
r
a
in

b
lo

ckt
e
st

b
lo

ck

test

train

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 11 / 38



CPU optimizations Memory optimizations

Blocking scheme

L3

L2

D D

t
e
st

b
lo

ck
t
r
a
in

b
lo

ck

test

train

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 11 / 38



CPU optimizations Memory optimizations

Blocking scheme

L2

L3

D D

t
r
a
in

b
lo

ck

test

train

t
e
st

b
lo

ck

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 11 / 38



CPU optimizations Memory optimizations

Blocking scheme

L3

L2

D D

train

test

t
r
a
in

b
lo

ck
t
e
st

b
lo

ck

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 11 / 38



CPU optimizations Memory optimizations

Blocking results

0

0.5

1

1.5

2

2.5

3

3.5

ijcnn1 aa2a aa9a w1a w8a mnist1

N
or

m
al

iz
ed

C
y
cl

es

No blocking

One level
Two level

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 12 / 38



CPU optimizations Memory optimizations

NCmem reduction

Algorithm NC (Small) NC (Large)

No blocking 3.03 3.14

One level blocking 3.03 3.04

Two level blocking 3.03 3.03

Stalls due to cache misses are reduced

NC = NCcpu + NCmem

NCmem ≈ 0

NC ≈ NCcpu

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 13 / 38



CPU optimizations Memory optimizations

NCmem reduction

Algorithm NC (Small) NC (Large)

No blocking 3.03 3.14

One level blocking 3.03 3.04

Two level blocking 3.03 3.03

Stalls due to cache misses are reduced

NC = NCcpu + NCmem

NCmem ≈ 0

NC ≈ NCcpu

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 13 / 38



CPU optimizations Memory optimizations

Changing data type

0

0.5

1

1.5

2

2.5

3

3.5

aa9a w8a ijcnn1 mnist1

N
or

m
al

iz
ed

C
y
cl

es

double
float
int
short
byte

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 14 / 38



CPU optimizations Parallelization

Loop unrolling

for all a ∈ test do
min←∞
for all b ∈ train do

dist ← 0
for i = 0 to D do

dist ← dist + (ai − bi )
2

end for
if dist < min then

min← dist
cls ← classof(b)

end if
end for
classof(a)← cls

end for

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 15 / 38



CPU optimizations Parallelization

Unrolling results

0

0.5

1

1.5

2

2.5

3

3.5

double float int short byte

N
or

m
al

iz
ed

C
y
cl

es

w8a
Simple

GCC
Unroll 2
Unroll 4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 16 / 38



CPU optimizations Parallelization

Vectorization

for all a ∈ test do
min←∞
for all b ∈ train do

dist ← 0
for i = 0 to D do

dist ← dist + (ai − bi )
2

end for
if dist < min then

min← dist
cls ← classof(b)

end if
end for
classof(a)← cls

end for

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 17 / 38



CPU optimizations Parallelization

Vectorization results

0

0.5

1

1.5

2

2.5

double float int short byte

N
or

m
al

iz
ed

C
y
cl

es

w8a

Scalar
Vectorized

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 18 / 38



CPU optimizations Parallelization

Parallelization

for all a ∈ test do
min←∞
for all b ∈ train do

dist ← 0
for i = 0 to D do

dist ← dist + (ai − bi )
2

end for
if dist < min then

min← dist
cls ← classof(b)

end if
end for
classof(a)← cls

end for

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 19 / 38



CPU optimizations Parallelization

Scalability results

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
p

ee
d
u
p

Threads

Ideal
aa9a

w8a
ijcnn1

mnist1

Good scalability thanks to blocking

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 20 / 38



CPU optimizations Parallelization

Scalability results

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
p

ee
d
u
p

Threads

Ideal
aa9a

w8a
ijcnn1

mnist1

Good scalability thanks to blocking

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 20 / 38



CPU optimizations Parallelization

Scalability without blocking

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
p

ee
d
u
p

Threads

Ideal
aa9a

w8a
ijcnn1

mnist1

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 21 / 38



GPU port

Outline

1 Introduction

2 CPU optimizations

3 GPU port
OpenCL overview
Algorithm adaptation

4 Other classification methods

5 Conclusions

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 22 / 38



GPU port OpenCL overview

OpenCL overview

Host

Local Memory Local Memory

Global/Constant Memory

Memory

Private

Workitem

Private

Memory

Workitem

Workgroup

Memory

Private

Workitem

Private

Memory

Workitem

Workgroup

Device

Main Memory

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 23 / 38



GPU port Algorithm adaptation

Algorithm adaptation

Inspired by sgemmnt from CUBLAS 2.0

M
N

D D

N

M

train

b

a a
b

test dist

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 24 / 38



GPU port Algorithm adaptation

Algorithm adaptation

Inspired by sgemmnt from CUBLAS 2.0

M
N

D D

N

M

train

b

a a
b

test dist

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 24 / 38



GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

N
>

64

N
>

64

D = 8D = 8 M = 64

M
=

64

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

4

64

16

4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

4

64

16

4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

4

64

16

4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

4

64

16

4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

4

64

16

4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

4

64

16

4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

4

64

16

4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU performance

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

aa9a w8a mnist1.scale

N
or

m
al

iz
ed

C
y
cl

es

CPU best
1 GPU
2 GPU

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 26 / 38



Other classification methods

Outline

1 Introduction

2 CPU optimizations

3 GPU port

4 Other classification methods
Overview
Classification accuracy
Performance

5 Conclusions

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 27 / 38



Other classification methods Overview

Overview

k-Nearest Neighbors

Support Vector Machines
I Originally conceived for two class problems
I LibSVM and LibLINEAR

I Classification procedure:

1 Find model parameters or cross-validation (optional)
2 Generate a model from the training set
3 Use the model to classify elements from the testing set

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 28 / 38



Other classification methods Overview

Overview

k-Nearest Neighbors

Support Vector Machines
I Originally conceived for two class problems
I LibSVM and LibLINEAR
I Classification procedure:

1 Find model parameters or cross-validation (optional)
2 Generate a model from the training set
3 Use the model to classify elements from the testing set

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 28 / 38



Other classification methods Classification accuracy

Accuracy comparison

Database 1-NN 3-NN 13-NN 23-NN LibSVM LibLINEAR

ijcnn1 97.39% 97.09% 95.63% 94.71% 97.82% 91.79%

aa9a 79.51% 81.73% 83.69% 84.09% 85.03% 84.96%

w8a 97.93% 98.74% 98.36% 94.48% 99.18% 90.54%

mnist1 95.71% 95.93% 95.24% 98.15% 97.70% 90.07%

svmguide3 100% 70.73% 43.90% 43.90% 82.93% 24.39%

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 29 / 38



Other classification methods Performance

LibSVM times

0

100

200

300

400

500

600

700

ijcnn1 aa9a w8a mnist1 usps letter

T
im

e
(s

)

Classification
Training

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 30 / 38



Other classification methods Performance

LibLINEAR times

0

5

10

15

20

25

30

35

40

ijcnn1 aa9a w8a mnist1 usps letter

T
im

e
(s

)

Classification
Training

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 31 / 38



Other classification methods Performance

Performance comparison (I)

0

0.5

1

1.5

2

2.5

3

3.5

4

ijcnn1 aa9a w8a mnist1

N
or

m
al

iz
ed

C
y
cl

es

NN worst 1 thread
NN best 1 thread
NN 1 GPU
LibSVM
LibLINEAR

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 32 / 38



Other classification methods Performance

Performance comparison (II)

0

0.02

0.04

0.06

0.08

0.1

0.12

ijcnn1 aa9a w8a

N
or

m
al

iz
ed

C
y
cl

es

NN best 8 threads
NN 1 GPU
NN 2 GPU
LibLINEAR

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 33 / 38



Other classification methods Performance

Performance comparison (III)

0

0.1

0.2

0.3

0.4

0.5

0.6

mnist1 usps letter

N
or

m
al

iz
ed

C
y
cl

es

5.06 2.39

NN best 8 threads
NN 1 GPU
NN 2 GPU
LibLINEAR

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 34 / 38



Conclusions

Outline

1 Introduction

2 CPU optimizations

3 GPU port

4 Other classification methods

5 Conclusions
Future work

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 35 / 38



Conclusions

Conclusions

Simpler algorithms are easier to optimize

Parallelism can be exploited in several granularities

Controlling memory access patterns brings more optimization
opportunities

I Specially when programming with GPGPUs

There is no single best classification solution

Performance of optimized NN rivals that of state of the art classifiers

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 36 / 38



Conclusions Future work

Future work

Overcome current limitations
I Support out of core operation

Compare against other nearest neighbor search algorithms
I Locality sensitive hashing
I Space partitioning structures

Extend the GPU implementation to k-NN

Find techniques to shrink the training set (i.e. train matrix)

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 37 / 38



END


	Introduction
	Execution environment
	Basic algorithm

	CPU optimizations
	Memory optimizations
	Parallelization

	GPU port
	OpenCL overview
	Algorithm adaptation

	Other classification methods
	Overview
	Classification accuracy
	Performance

	Conclusions
	Future work


