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Introduction

The Nearest Neighbor algorithm

Definition of the problem
I Given a set of samples and an element, find the closest match from the

set of samples

Both a problem and a tool

Some applications
I Pattern recognition
I Statistical classification
I Data compression
I DNA sequencing
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Introduction Execution environment

Input data

Database
I M training elements
I N testing elements
I D features

Training set
I train, a M × D matrix
I classof(b), the class label of an element b (a row in matrix train)

Testing set
I test, a N × D matrix
I classof(a), same as with train
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Introduction Execution environment

Analytical model

Performance measured in Normalized Cycles

NC =
CPU time in cycles

N ·M · D

NC modeled as
NC = NCcpu + NCmem
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Introduction Execution environment

Hardware platform

Intel Xeon E5520 “Gainestown” (Nehalem microarchitecture)

Two quad-core processors

Two 4GB memory modules

NUMA, Quick Path Interconnect

256kB per core L2 cache

8MB per processor L3 cache

SSE 4.2
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Introduction Basic algorithm

Basic algorithm

for all a ∈ test do
min←∞
for all b ∈ train do

dist ← 0
for i = 0 to D do

dist ← dist + (ai − bi )
2

end for
if dist < min then

min← dist
cls ← classof(b)

end if
end for
classof(a)← cls

end for
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Introduction Basic algorithm

Memory access pattern

D D

M
N

test

train

D influences NCcpu

M and N influence NCmem
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CPU optimizations
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CPU optimizations Memory optimizations

Blocking

for all a ∈ test do
min←∞
for all b ∈ train do

dist ← 0
for i = 0 to D do

dist ← dist + (ai − bi )
2

end for
if dist < min then

min← dist
cls ← classof(b)

end if
end for
classof(a)← cls

end for
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CPU optimizations Memory optimizations

Blocking scheme
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CPU optimizations Memory optimizations
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CPU optimizations Memory optimizations

Blocking results
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CPU optimizations Memory optimizations

NCmem reduction

Algorithm NC (Small) NC (Large)

No blocking 3.03 3.14

One level blocking 3.03 3.04

Two level blocking 3.03 3.03

Stalls due to cache misses are reduced

NC = NCcpu + NCmem

NCmem ≈ 0

NC ≈ NCcpu
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CPU optimizations Memory optimizations

Changing data type
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CPU optimizations Parallelization

Loop unrolling

for all a ∈ test do
min←∞
for all b ∈ train do

dist ← 0
for i = 0 to D do

dist ← dist + (ai − bi )
2

end for
if dist < min then

min← dist
cls ← classof(b)

end if
end for
classof(a)← cls

end for
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CPU optimizations Parallelization

Unrolling results
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CPU optimizations Parallelization

Vectorization

for all a ∈ test do
min←∞
for all b ∈ train do

dist ← 0
for i = 0 to D do

dist ← dist + (ai − bi )
2

end for
if dist < min then

min← dist
cls ← classof(b)

end if
end for
classof(a)← cls

end for
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CPU optimizations Parallelization

Vectorization results
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CPU optimizations Parallelization

Parallelization

for all a ∈ test do
min←∞
for all b ∈ train do

dist ← 0
for i = 0 to D do

dist ← dist + (ai − bi )
2

end for
if dist < min then

min← dist
cls ← classof(b)

end if
end for
classof(a)← cls

end for

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 19 / 38



CPU optimizations Parallelization

Scalability results
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CPU optimizations Parallelization

Scalability without blocking
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GPU port

Outline

1 Introduction
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OpenCL overview
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GPU port OpenCL overview

OpenCL overview
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Local Memory Local Memory

Global/Constant Memory

Memory

Private

Workitem

Private

Memory

Workitem

Workgroup

Memory

Private

Workitem

Private

Memory

Workitem

Workgroup

Device

Main Memory

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 23 / 38



GPU port Algorithm adaptation

Algorithm adaptation

Inspired by sgemmnt from CUBLAS 2.0

M
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GPU port Algorithm adaptation

GPU memory access pattern
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GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

4

64

16

4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

4

64

16

4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

4

64

16

4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

4

64

16

4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

4

64

16

4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

4

64

16

4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU memory access pattern

disttest

train

4

64

16

4

Isaac Jurado Peinado (Master CANS) Exploiting contemporary architectures for fast Nearest Neighbor classificationJanuary 2010 25 / 38



GPU port Algorithm adaptation

GPU performance
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Other classification methods
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Other classification methods Overview

Overview

k-Nearest Neighbors

Support Vector Machines
I Originally conceived for two class problems
I LibSVM and LibLINEAR

I Classification procedure:

1 Find model parameters or cross-validation (optional)
2 Generate a model from the training set
3 Use the model to classify elements from the testing set
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Other classification methods Classification accuracy

Accuracy comparison

Database 1-NN 3-NN 13-NN 23-NN LibSVM LibLINEAR

ijcnn1 97.39% 97.09% 95.63% 94.71% 97.82% 91.79%

aa9a 79.51% 81.73% 83.69% 84.09% 85.03% 84.96%

w8a 97.93% 98.74% 98.36% 94.48% 99.18% 90.54%

mnist1 95.71% 95.93% 95.24% 98.15% 97.70% 90.07%

svmguide3 100% 70.73% 43.90% 43.90% 82.93% 24.39%
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Other classification methods Performance

LibSVM times
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Other classification methods Performance

LibLINEAR times
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Other classification methods Performance

Performance comparison (I)
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Other classification methods Performance

Performance comparison (II)
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Other classification methods Performance

Performance comparison (III)
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Conclusions
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Conclusions

Conclusions

Simpler algorithms are easier to optimize

Parallelism can be exploited in several granularities

Controlling memory access patterns brings more optimization
opportunities

I Specially when programming with GPGPUs

There is no single best classification solution

Performance of optimized NN rivals that of state of the art classifiers
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Conclusions Future work

Future work

Overcome current limitations
I Support out of core operation

Compare against other nearest neighbor search algorithms
I Locality sensitive hashing
I Space partitioning structures

Extend the GPU implementation to k-NN

Find techniques to shrink the training set (i.e. train matrix)
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