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Chapter 1

Introduction

Modern computers provide excellent opportunities for performing fast com-
putations. They are equipped with powerful microprocessors and large mem-
ories. However, programs are not necessarily able to exploit those computer
resources effectively. This document presents various ways to implement and
optimize nearest neighbor classification, as well as show how performance
can be improved by exploiting the ability of superscalar processors to issue
multiple instructions per cycle, by using the memory hierarchy adequately
and by taking advantage of additional processor extensions.

The motivation of this work is exploiting contemporary hardware in a
similar fashion as in [1]. Not only current CPU architectures, but also testing
emerging new architectures such as GPGPU. After developing and bench-
marking different nearest neighbor implementations, a selection of them will
be compared against other classification approaches.

Finally, a brief summary of conclusions and future work will be discussed.

1.1 Base algorithm

The initial algorithm for finding the nearest neighbor is the most naive im-
plementation. The expected input of the algorithm is a database consisting
of two matrices: train and test that represent the training and testing
sets respectively1. Each row represents a complete element of the set, while
each column represents a single feature of an element. Therefore, both ma-
trices shall have the same number of columns. When referring to a single
feature/column of a particular element/row, the notation used will be ai for
a feature i of element a.

Apart from the matrices, which contain the actual data, the databases
also contain some related metadata: the class labels. For convenience, the
notation has been simplified to the following expression:

1Along this document, the term matrix refers to a single set of elements, whereas the
term database includes the training set, the testing set and the related metadata

1



2 CHAPTER 1. INTRODUCTION

classof(a)

Where a is a complete row of either matrix train or test. The expres-
sion is mutable and will also be used as a left value to set the class label of
an element.

In brief, the assumed parameters of all nearest neighbor algorithm list-
ings are:

• D: number of dimensions/features of data element.

• N : number of test elements.

• M : number of training elements.

• test: test element set, a matrix of D columns by N rows.

• train: training element set, a matrix of D columns by M rows.

The task is to compare each element from the test set, i.e. each row
of the test matrix, to all elements of the training set. Each comparison
consists on calculating the euclidean distance of each pair. After comparing
a test element against every training element, the training element with
the minimum euclidean distance is being tracked; and its class label too.
Algorithm 1 illustrates the idea.

Algorithm 1 Nearest neighbor approach in essence

for all a ∈ test do
min←∞
for all b ∈ train do

if distance(a, b) < min then
min← distance(a, b)
cls← classof(b)

end if
end for
classof(a)← cls

end for

Although the euclidean distance would be defined as:

distance(a, b) =

√√√√ D∑
i=1

(ai − bi)2

In [1] it is simplified to:
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distance(a, b)2 =
D∑
i=1

(ai − bi)
2

That is, the square of the euclidean distance. This is done to avoid the
cost of computing the square root. Applying the change to algorithm 1 leads
to algorithm 2.

Algorithm 2 Starting point nearest neighbor search

for all a ∈ test do
min←∞
for all b ∈ train do

dist← 0
for i = 0 to D do
dist← dist + (ai − bi)

2

end for
if dist < min then
min← dist
cls← classof(b)

end if
end for
classof(a)← cls

end for

1.2 Related work

The Nearest Neighbor (NN) classification procedure is a popular technique
in pattern recognition, speech recognition, multitarget tracking, medical di-
agnosis tools, etc. The NN algorithm has some strong consistency results.
As the amount of data approaches infinity, the algorithm is guaranteed to
yield an error rate no worse than twice the Bayes error rate, i.e. the mini-
mum achievable error rate given the distribution of the data [2].

A major concern in its implementation is the immense computational
load required in practical problem environments. Other important issues
are the amount of storage required and the data access time.

In this document, we address these issues by using techniques widely
used in linear algebra codes. We show that a simple code can be very
efficient on commodity processors and can sometimes outperform complex
codes which can be more difficult to implement efficiently. Comparison of
the nearest neighbor with other methods on different application areas can
be found elsewhere [3, 4, 5]. To find disquisitions about appropriate distance
measures the reader is referred to [5, 6, 7, 8].
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There is also some previous experience trying to port the NN generaliza-
tion algorithm, the k-NN, to the GPU [9]. Unfortunately, it led to confusing
and unclear results. Other GPU ports include a Support Vector Machine
implementation [10].

Apart from being a classification tool, the nearest neighbor search can be
understood as a problem by itself, with its different approaches to solve it.
Aside from the naive, or brute force, algorithm, there are other possibilities
to find the nearest neighbor in a set of data. For example, by using space
partitioning structures such as the kd-tree [11]. By performing Locality
Sensitive Hashing, a high dimensional space may be reduced after mapping
similar buckets [12].



Chapter 2

Optimizing the nearest
neighbor search

Starting from the base algorithm shown in section 1.1, this chapter itera-
tively enhances it by exploiting different hardware aspects: memory usage,
through locality, and the different levels of parallelism available.

2.1 Execution environment

All the code derived from the algorithms presented in this chapter has been
developed on a dual processor Intel Xeon E5520 “Gainestown”, running
at 2262 MHz; the first generation of the Nehalem Intel microarchitecture.
This section describes the characteristics of such architecture and provides
additional details related to the way programs are executed.

2.1.1 Hardware platform

The Nehalem microarchitecture [13] is the first Intel processor design that
features an on-chip DDR3 memory controller, one per processor or chip.
This makes Nehalem a hybrid between SMP1 and NUMA2: each processor
contains several cores, four in the case of the E5220, which share main
memory in a SMP fashion, but memory is distributed in different memory
modules among the number of processors in the system.

To solve “remote” memory accesses, i.e. requesting data from a module
connected to a different processor, the QPI3 bus interconnects all processors
directly, point to point, just like a crossbar.

Another novelty is the presence of a third cache memory level. Tradi-
tionally, and since cache memory started to be bundled into the processor

1Symmetric Multi-Processing
2Non Uniform Memory Access
3Quick Path Interconnect

5
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chip, Intel designs had two cache levels: L1 and L2. Nehalem processors
include a single shared L3 cache and independent L2 and L1 caches on each
core. In the E5220 the L2 caches are 256 kilobytes each and the L3 cache is
8 megabytes per processor.

Each core is capable of executing six simultaneous operations: three
memory operations and three computational operations. It also features
SSE4 4.2 where the latency of these vector operations has been reduced to
a single cycle; prior SSE implementations had a two cycle latency. There
is also the possibility of running two simultaneous threads on a single core,
with Hyper-Threading, but the functionality was disabled for this work.

Instruction loops are detected with the aid of the Loop Stream Detector ;
a piece of circuitry that avoids fetching and decoding the same instructions
for each iteration. Moreover, the core contains hardware prefetch logic that
does anticipatory and asynchronous memory transfers dynamically at run
time, without requiring changes in the program code.

Finally, the testing machine was equipped with eight gigabytes of main
memory, four gigabytes for each processor.

2.1.2 Analytical model

Execution time would be the obvious performance metric to be used, but
due to the variety in training and test database sizes there is a need for a
normalized value. In this chapter, the same metric as in [1] will be used:
the Normalized Cycle. NC is computed by:

NC =
CPU time in cycles

N ·M ·D

Just as in [1], the NC is modeled with the following expression:

NC = NCcpu + NCmem

where NCcpu is the component obtained when no misses occur in the
memory hierarchy (caches, TLBs, page faults) and the NCmem represents
the penalty cycles due to the misses in the memory system. Misses pro-
duced by instruction fetches are not considered since a separate instruction
cache exists and the programs evaluated are sufficiently small so that no
instruction misses occur.

2.1.3 Selected databases

Benchmarking was carried out using 27 different training and test database
pairs. However, to simplify the figures and tables, only some of them are
used to show the results in this chapter.

4Streaming SIMD Extension, where SIMD stands for Single Instruction Multiple Data
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Databases have three important attributes: the number of features or
dimensions (D), the number of training elements (M) and the number of
test elements (N). If the values of D, M and N can be small or large,
there are eight possible types of database. This document mainly focuses
on the magnitude of D, with the following terminology: when D is small,
the database is said to be narrow, on the opposite case the database is wide.
Table 2.1 provides the details of the selected databases used to measure
algorithm performances.

Label D M N Floating point

synth s (Synthetic small) 122 268 2148 no
synth l (Synthetic large) 122 18760 150360 no
aa9a (Narrow) 122 32560 16281 no
w8a (Wide) 300 49749 14951 no
ijcnn1 (Narrowest) 22 49990 91701 yes
mnist1 (Widest) 780 21000 49000 yes

Table 2.1: Characteristics of the selected databases

There are two synthetic databases in table 2.1, synth s and synth l to
illustrate the difference between small problems that fit in cache and large
problems which do not fit in cache. This is developed further in section
2.2.1.

Details of all the databases used during development can be found in
appendix A.

2.2 Memory optimizations

The memory access pattern in algorithm 2 is very predictable and with a
high spatial locality, as the memory is traversed in a contiguous manner. Of
course, matrices are stored in row major order which is the natural dispo-
sition for algorithm 2: all elements in the same row are next to each other,
and the last element of a row precedes the first element of the next row.

Figure 2.1 illustrates a complete iteration of the outermost loop in algo-
rithm 2. A complete row of the test matrix is compared against the whole
train matrix. This generates a lot of memory requests, which is specially
harmful for large matrices that will not fit in any of the cache memories;
consequently generating more cache misses. Such misses will have an impact
on NCmem and, consequently, on NC.

2.2.1 Stabilizing memory access

In order to approximate NCmem to zero, cache misses must be reduced. Al-
gorithm 2 clearly stresses the memory bus when matrices are large enough.
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D D

MN

train
test

Figure 2.1: Memory access pattern for algorithm 2

Reducing main memory access helps obtaining uniform results for any database
size.

The spatial locality of algorithm 2 is already good as the memory accesses
are mostly contiguous: matrices are stored in row major order5 and traversed
the same way, following an uniform ascending memory address pattern. For
large databases, the matrices are unlikely to fit completely in any cache level;
thus resulting in an almost inexistent temporal locality between iterations
in the outermost loop.

Reusing training elements has proved to be an efficient way to reduce
processor stalls due to cache misses [1] by taking advantage of the outer level
of the cache memory in typical two level configurations. Adding a second
level of blocking is not motivated by the presence of a third cache level but
by two other reasons: the difference in access latency between L2 and L3,
L3 is about five times slower than L2, and the fact that L3 is shared whereas
L2 is private. Naturally, the block to be hold in L2 should come from the
matrix that has more potential temporal locality: train.

Algorithm 3 shows a possible solution. It includes two new notation
elements:

1. The mindist(a) extended metadata that works analogously to classof(a).

2. The partition test blocks (and respectively train blocks), that
obeys the identity:

test =
⋃

T∈TEST BLOCKS

T

Now the memory access pattern changes slightly. Matrices train and
test are virtually partitioned in blocks with sizes smaller than the total

5All elements in the same row are next to each other, and the last element of a row
precedes the first element of the next row
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Algorithm 3 Two level block reuse

for all tsb ∈ test blocks do
for all trb ∈ train blocks do

for all a ∈ tsb do
min← mindist(a)
for all b ∈ trb do
dist← 0
for i← 0 to D do
dist← dist + (ai − bi)

2

end for
if dist < min then
min← dist
cls← classof(b)

end if
end for
mindist(a)← min
classof(a)← cls

end for
end for

end for

capacities of the L2 and L3 caches respectively. This is illustrated in figure
2.2. The two outer loops control the bounds and the number of executions of
the loops traversing test and train respectively. Because the inner loops
only work in a single block, not all distance comparisons are performed. The
test database metadata needs to be extended with the minimum distance
associated to the currently assigned class label, as a closer element may exist
in a different training database block.

Block algorithm results

When aiming for the best possible results, the size of the blocks must be
adjusted properly. Approximating the size of the blocks to any of the cache
level sizes would probably cause almost the same amount of conflicts as
when blocks are not not used at all; and indeed it happens because there
are other data to hold in cache apart from the databases content. The block
size should be large enough to provide improvement and small enough to
leave some cache memory for other data.

Experimenting led to block sizes of 2 megabytes for L3 blocks and 128
kilobytes for L2 blocks. L3 block size is proportionally smaller than L2
intentionally because, first, L3 cache is shared among all four cores of the
chip while a private L2 is present on each one, and second, L3 is a superset
of all four L2 caches. By not using all L3 available memory, the chances of
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Figure 2.2: Memory access pattern for algorithm 3

cache conflicts with other thread running in other cores of the same processor
are very low.

The configuration for one level of blocking consists of partitioning only
the train matrix into L3 blocks. Adding the second blocking level means
partitioning test into L3 blocks, and train into L2 blocks.

To see how algorithm 3 provides a stable rate of cache misses for any
database size, the artificially crafted databases, listed in table 2.1, will serve
for the purpose. The matrix sizes for the synthetic small database are 127.72
kilobytes for train and almost 1 megabyte for test; this way train fits
completely in L2 and test fits in L3. The large database is exactly sev-
enty times larger than the small one, resulting in 8.73 megabytes and 69.98
megabytes respectively.

As database synth s should generate very few cache misses, then

NCmem(Small) ≈ 0

which means that

NC(Small) ≈ NCcpu(Small)

Database synth l is proportionally larger than synth s, so NCcpu values
should be equal. The NCmem component in the large database can be
estimated by

NCmem(Large) ≈ NC(Large)−NC(Small)

Table 2.2 contains the NC value of the executions with different levels
of blocking, using single precision floating point arithmetic.

Performance for the small database sees practically no change, how-
ever, the large database experiences a total gain of a 3.94% with the two
level blocking approach. Furthermore, the performance matches the small
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Algorithm NC(Small) NC(Large)

No blocking 3.03 3.14
One level blocking 3.03 3.04
Two level blocking 3.03 3.03

Table 2.2: Synthetic database results

database results. Replacing the results presented in table 2.2, for the two
level blocking algorithm, the NCmem estimation leads to NCmem(Large) ≈
0. In other words, algorithm 3 will perform equally for all database sizes.

In general, blocking truly matters when the train matrix does not fit
in cache, as it is completely traversed several times. The second blocking
level does not provide much improvement, but still, it brings some control
over L2 and L3 altogether.

For the sake of completeness, figure 2.3 compares the performance at
different blocking levels and type sizes. The gains of the blocking strategies
are not as impressive as they could be. Even in the most favorable case the
gain is almost 10% altogether, of which only 1% is provided by the second
blocking level.
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Figure 2.3: Blocking algorithm gains, from narrowest to widest

It should be noted, also from figure 2.3 that wide databases perform
better than narrow ones. This is not a coincidence as it is a consistent
behavior along all the results. Recalling the end of section 2.1.1, the Loop
Stream Detector is a component of the core which is able to save the task of
fetching and decoding the loop’s body for later reuse. The innermost loop



12 CHAPTER 2. OPTIMIZING THE NEAREST NEIGHBOR SEARCH

in algorithms 2 and 3 “streams” over whole matrix rows, without branching
code and accessing memory sequentially; not to forget its compact size.
Seems like an ideal case for the Loop Stream Detector. Therefore, the more
innermost iterations, i.e. higher value of D, the more amortized the LSD is.

Nevertheless, the LSD does not explain the little gains by applying block-
ing to very large databases. In this case, all bets are on hardware prefetch
together with a clever cache replacement policy. The Nehalem microarchi-
tecture also introduced changes in cache memory policies. It could be that
the cache is very smart and detects streamed memory access or that LSD
is triggering it. Stream data does not required to be cached, as it is usu-
ally accessed only once and in a predictable manner. Reaching such a level
of sophistication in a cache controller would not be a surprise by current
standards.

In the following sections, the algorithms used to describe optimizations
will omit blocking, however, the performance measurements will have block-
ing applied.

2.2.2 Reducing memory footprint

Choosing a data type for the matrices (or data sets) affects performance in
two ways: the speed of the corresponding arithmetic unit, integer vs floating
point and the size of the type and the total amount of memory transferred.

Figure 2.4 shows an example of how memory usage grows with the size
of the data type used. Considering that the sizes of a short, an int, a float
and a double are two, four, four and 8 bytes respectively, the figure simply
reflects this growth in size.
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Figure 2.4: Memory usage growth for increasing data type sizes
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In previous high-end architecture generations, floating point unit perfor-
mance compensated the memory weight of its data types, both for single
and double precision [1]. Nowadays, integer performance has improved sig-
nificantly; enough to compare data types again.

On the downside, though, not all data types may be available for a
concrete database. It could either contain real numbers, in which case all
integer options have to be dropped, or have properties that might overflow or
saturate smaller integer types while calculating distances between elements;
thus invalidating the algorithm.

Type size results

Now that memory size is not an issue thanks to the blocking technique pre-
sented in section 2.2.1, figure 2.5 illustrates how the different types perform.
The ijcnn1 and mnist1 databases contain real numbers so they cannot be
loaded into integer data types.
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Figure 2.5: Performance of algorithm 2 for all data types

The speedups and slowdowns relative to float are shown in table 2.3.
Speedups will be expressed in percentage (%) or in orders of magnitude
(x); positive value means improvement whereas a negative value indicates
worsening.

The first observation is that word-sized integers perform better than
single precision floating points, around 4.5% better. This result contrasts
with [1]. However, this behavior can be attributed to differences in op-
eration latencies between the integer and floating point arithmetic units;
Intel’s processors integer arithmetic units have had one cycle latency for
some generations. Floating point calculations, although having one cycle
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Database double int short byte

aa9a −8.07% 4.48% −3.71% 3.62%
w8a −9.06% 4.29% −3.47% 2.43%
ijcnn1 −2.28% – – –
mnist1 −9.06% – – –

Table 2.3: Performance of algorithm 3 relative to float

throughput, need more cycles to complete an operation, and in the presence
of data dependencies, the optimal throughput cannot be achieved.

Even more intriguing is the pathology seen in shorts and bytes. While
bytes execute faster than floats (≈ 3%), they are still behind ints. The case
for shorts is even worse, with a 3.5% slowdown. The explanation is simple:
byte load has more overhead than a word size load because it translates into
more micro-operations, e.g. truncation of higher bits. In the long run, this
little overhead becomes visible.

In conclusion, smaller data types only reduce the memory usage, but
the execution pipeline performs the same conversion operations. Except
for shorts, about which one may think that it is a data type in process of
deprecation.

2.3 Parallelization

Parallelism implies performing multiple operations at the same time, and
it comes with different granularities: from executing various operations in
different functional units of the same pipeline, to run simultaneous tasks
on multiple processors. Current hardware trends push software towards
enabling and exploiting all kinds of parallelism, this section describes three
complementary approaches to obtain more performance out of the processor.

This section presents parallelization at three different granularities, one
for each loop of algorithm 2.

2.3.1 Instruction level parallelism

When the delays produced by memory accessed are reduced, other type
of stalls may appear during the execution of the algorithm: pipeline data
dependency hazards. The dist variable contains the sum accumulator for
the distance between elements a and b. Its accumulator nature introduces a
data dependency between successive iterations of the innermost loop.

A processor core of the Nehalem microarchitecture, as its contempo-
raries, is equipped with several integer and floating point arithmetic units;
enabling the possibility of having various operation executing simultane-
ously. This is also known as instruction level parallelism: the ability to
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issue multiple operations in a single clock cycle. Nevertheless, data depen-
dencies impede taking advantage of instruction level parallelism by forcing
the processor to be idle until computed data is available.

The solution in this case is to compare an element from test with multi-
ple train elements in a single iteration; formally referred as loop unrolling.
Algorithm 4 shows an example where two iterations have been unrolled.
After unrolling, the resulting instructions are interleaved in a way that dis-
tances away operations with data dependencies. Treatment for residual
iterations has been omitted for simplicity.

Algorithm 4 Middle loop two iteration unroll

for all a ∈ test do
min←∞
for all (b, c) ∈ train do
dist← 0
dist′ ← 0
for i← 0 to D do
dist← dist + (ai − bi)

2

dist′ ← dist′ + (ai − ci)
2

end for
if dist < min then
min← dist
cls← classof(b)

end if
if dist′ < min then
min← dist′

cls← classof(c)
end if

end for
classof(a)← cls

end for

The loop of algorithm 4 has a new notation in it. The meaning is simple:
at each iteration, obtain two consecutive elements from train instead of
one; then, in the next iteration, the following two elements should be taken.
In the end, train should have been traversed completely with half the
iterations as in algorithm 2. If the unrolling degree was four, then the
middle loop should advance accordingly.

Loop unrolling should solve the poor floating point throughput problem
found in the results of section 2.2.2.
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Loop unrolling results

The unrolling technique explained in the previous section has been inte-
grated with compiler technology to provide some automatic way to per-
form such optimization with a more degree of detail, as the compiler has
better knowledge about its own instruction scheduling. In the GNU C
Compiler (GCC), automatic loop unrolling may be enabled through the
-funroll-loops command line switch. Results are shown in figure 2.6,
comparing manual unrolling of two (algorithm 4) and four iterations against
automatic unrolling and no unrolling at all.

Automatic unrolling brings particularly noticeable gains for integer arith-
metic. The compiler does a very good job dealing with shorts and bytes,
with gains of 10.28% and 12.77% respectively, better than manually un-
rolling four iterations. Certainly, manual optimization of code dealing with
small integer types does not seem possible without resorting to descend di-
rectly into the ISA6.
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Figure 2.6: Results of loop unrolling with blocking

These results confirm the previous presence of pipeline stalls due to data
dependencies. Moreover, the performance of the floating point arithmetic
units is vastly improved by compensating their higher latency with better
throughput; thus becoming almost as competent as integer arithmetic units,
even when computing as double precision.

6Instruction Set Architecture
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2.3.2 Exploiting SIMD extensions

SSE is the name of Intel SIMD extensions. From the instruction set archi-
tecture point of view, it consists of a bunch of new machine instructions
that operate on a dedicated set of special registers. Such registers are 128
bit wide and, when loaded with data, can be treated as 2 doubles, 4 float or
integers, 8 shorts or 16 bytes. Many actual processors include some exten-
sion circuitry specially designed to execute multiple operations by issuing a
single instruction.

In general, vector instructions were introduced for multimedia and stream
processing where a high degree of fine grained parallelism is easily achieved.
For example, increasing the brightness of a picture, where each pixel can be
treated independently from the rest.

SSE works best at gathering contiguous data in a stream fashion. The
train matrix is traversed this way, so it seems reasonable that the distance
calculation can be “vectorized” as defined in algorithm 5.

Algorithm 5 Inner loop vectorization with four element vectors

for all a ∈ test do
min←∞
for all b ∈ train do−−→

dist← (0, 0, 0, 0)
for i← 0 to D/4 do−−→

dist← −−→dist + (−→ai −
−→
bi )2

end for
dist← distx + disty + distz + distt {Vector reduction}
if dist < min then
min← dist
cls← classof(b)

end if
end for
classof(a)← cls

end for

With this optimization, the innermost loop needs fewer iterations to
complete. Depending on the data type used, the number of parallel opera-
tions goes from two to sixteen. For example, in figure 2.7, each component
of −→ai is compared against its corresponding

−→
bi component, all at the same

time. As the accumulator is also a vector, the sum of its components will
result in the square of the euclidean distance between a and b.

It is worth mentioning that algorithm 5 does not reflect some restrictions
imposed by the use of SSE. For example, when loading a vector register, the
starting memory address should be aligned to 16 bytes to avoid the perfor-
mance penalty incurred otherwise. This forces to insert artificial features
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(ax − bx)2 (ay − by)2 (az − bz)2 (at − bt)
2

−→ai

−→
bi

Figure 2.7: Example of vectorized computation

for padding purposes, incurring in memory increases around 5%. On the
other hand, the SSE instruction set is not uniform for all the types, so the
number of instructions needed to implement integer and float versions vary
slightly.

Despite the limitations, vectorizing the innermost loop it is an important
optimization step in various aspects. Firstly, the used data type may change
the performance of the algorithm more severely, owing to the amount of
possible simultaneous computations. Secondly, for some data types, special
operations such as multiply and add may be available, which would reduce
the amount of instructions. Finally, as data is processed in larger chunks,
previously commented optimizations may become more significant.

Vectorization results

In theory, the expected speedups should be of an order of magnitude ac-
cording to the amount of elements per register vector of a particular data
type. In practice, only some results approach the expectations. As it can
be seen from figure 2.8, the integer vectorization improvement is almost the
half (2.65x) of what it should be (≈ 4x). Ironically, floating point data type
vectorization generates better results: 1.95x for double precision and 3.80x
for single precision, where ideal speedups would be 2x and 4x respectively.
Note that scalar versions in 2.8 are the unrolled versions from figure 2.6.

The lack of concrete architectural information about the execution units
of the pipeline, as well as the capabilities of all of them, hardens the task
of finding a suitable explanation for this behavior. It could be that the
sequencing of vector operations, even with unrolled loops, does not allow
the hardware to run optimally. A more plausible reason, from the opposite
point of view, could be that the hardware reorders scalar operations so
well, specially with integers, that the IPC7 count is greater than one; i.e.,

7Instructions Per Cycle.
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Figure 2.8: Vectorization improvements, with unrolling and blocking

Optimization Scalar speedup Vector speedup

Blocking (ijcnn1, narrow) 1.55% 3.46%
Unrolling (ijcnn1, narrow) 57.02% 46.77%

Blocking (mnist1, wide) 5.85% 32.06%
Unrolling (mnist1, wide) 50.59% 58.11%

Table 2.4: Differences in optimization results for database extreme widths

operations are computed in parallel in different execution units.

Table 2.4 shows the improvements obtained with the application of block-
ing and unrolling to algorithm 2 for both scalar and vectorized versions.
Blocking and unrolling have been applied separately here so that we can
measure their contribution individually. As it has been occurring along this
chapter, the innermost loop is the place where all the algorithm’s computa-
tional power is consumed, so, again, optimizations are more notorious when
more time is spent in it. Moreover, vectorization reduces considerably the
number of iterations of the innermost loop, increasing the percentage of loop
overhead for narrow databases.

2.3.3 Going multicore

This is the simplest optimization yet one of the most effective. By using
OpenMP, the algorithm does not have to be altered at all. It is only neces-
sary to place the correct directive on the outermost loop of algorithm 2 (or
the middle loop in algorithm 3) making all variables thread private except
for the databases, which should be shared among threads in order to avoid
stressing cache memories.
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Finding the nearest neighbor of an element from the test database is
a completely independent operation. Consequently, the amount of work is
equally distributed among the cores, leading to an expected linear scalability.
In other words, doubling the number of threads should double the overall
performance of the algorithm.

OpenMP results

The scalability of most optimization combinations is, in general, stable and
almost linear. Figure 2.9 shows the scalability graph of all optimizations
applied for various database types and dimensions. Contrary to what could
be seen in previous results, narrow databases scale particularly well inde-
pendently from the applied optimizations. While the initial performance is
worse than with wide databases, cache conflicts between different cores are
not as hard due to a lower prefetching performance; thus easing scalability.
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Figure 2.9: Scalability of accumulated optimizations

All tests show the particular shape seen in figure 2.9: a small drop in
scalability from four to eight threads. This is a consequence of the Nehalenm
design and its QPI bus. Nehalem machines with more than one processor
socket do not follow a completely SMP8 architecture; instead, they can be
categorized as a mixture of SMP and NUMA9. Multiple cores in a single
chip are, in fact, SMP and share their memory whereas each chip has a
dedicated memory module.

Upon initialization, the nearest neighbor process loads data from disk to

8Symmetric Multi Processing
9Non-Uniform Memory Access
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memory. At this stage, there is only one thread running and the operating
system allocates all the necessary memory space in its corresponding mem-
ory module. When the four cores of the chip are used, additional threads are
scheduled on the second processor; however, the required data is available
only in the memory module of the initial processor so cache line requests
and responses need to go over the QPI bus, causing a slight overhead.

Scalability only flattens for non-blocking versions, as shown in figure
2.10, where cache memory conflicts between different cores degrades the
performance as the concurrency grows. Ironically, narrow databases are less
affected because they generate less potential cache misses from the innermost
loop. Once blocking is applied, scalability becomes the same as in figure 2.9.
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Figure 2.10: Scalability of accumulated optimizations except blocking

2.4 Optimization summary

In summary, this section presents some global review of the previously pre-
sented optimizations. Firstly, table 2.5 shows the average speedup from
algorithm 2 to a combination of algorithms 3, 4 and 5, executed with a sin-
gle or multiple threads. The scalability is almost ideal given that the right
column is, approximately, the result of multiplying the values on the left
column by 7.5.

Figure 2.11 examines the effect of each optimization applied on its own
over algorithm 2, figure 2.11(a), or accumulated on top of the previous opti-
mization, figure 2.11(b). The NC value is the average of the four databases:
ijcnn1, aa9a, w8a and mnist1. Notice how unrolling benefits from block-
ing, specially with large data types, and vectorization benefits from both;
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Data type Single thread Eight threads

byte 11.04x 82.74x
short 8.80x 66.42x
int 4.15x 31.52x
float 5.49x 40.85x
double 3.33x 24.35x

Table 2.5: Average speedups for different data types

although it is the strongest standalone optimization.
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Chapter 3

Porting to GPGPU

GPGPU is the acronym for General Purpose programming on the Graphics
Processing Unit. In essence, it is about using taking advantage of the great
computing power available in current GPU devices.

This practice is becoming increasingly popular among the scientific com-
munity thanks to the favorable price per GigaFLOP ratio. By assembling
multiple devices together, a single computer can easily become a home su-
percomputer in terms of peak performance. Nonetheless, the GPGPU archi-
tecture carries some inherent complexities the programmer must overcome.

GPU vendors try to lessen these difficulties by providing new program-
ming languages, toolkits and libraries. As the time of this writing, the most
popular is CUDA, the NVIDIA GPGPU toolkit. Other brands also provided
their own tools. Fortunately, a new standard framework called OpenCL1 ap-
peared to unify research effort and reduce market fragmentation.

3.1 OpenCL programming overview

OpenCL has been designed to develop on heterogeneous platforms, where
different architectures coexist and cooperate. In an OpenCL application,
there must be at least two entities involved: a host and one or more devices.
OpenCL provides a programming language, based on C99, to develop code,
in the form of functions, that will be executed on the devices; these functions
are called kernels. On the host side, OpenCL offers a complete API to control
the execution of the kernels in the devices. The device executes its kernels
asynchronously from the host to allow overlapped execution, although the
host has the option to block its execution until the device finishes.

A device is structured as shown in figure 3.1. It essentially contains ex-
ecution units and memory. The execution units are called work items and
are organized in equally sized work groups. Each work item could be un-
derstood as a processor core or a thread, in any case it is a single execution

1Open Computing Language
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Figure 3.1: OpenCL logical structure

unit that runs in parallel with other work items. Complementary, there
are four memory types or address spaces: constant, global, local and pri-
vate. Constant and global memories are shared among all work items, local
memory is shared only among the work items in the same work group, and
private memory is independent to each work item. The difference between
constant and global memory is that constant memory cannot be written
by the device, only by the host. The presence and size of a register file is
implementation dependent.

There is yet another memory type: texture memory; which has a global
scope and it is also read-only like constant memory. It has the additional
benefit of being cached, but also has some restrictions that makes it unsuit-
able for the nearest neighbor search.

Global and constant memory allocation and data transfers to and from
the device are exclusively controlled from the host. Local and private mem-
ory is only allocatable inside a kernel and do not support dynamic allocation,
they must be declared statically within the kernel source code.

Albeit the OpenCL host API and the kernel programming language are
device independent, the proper tunning to obtain the maximum efficiency is
still device dependent. In particular, the limit in the number of work items
available or memory sizes depends on the specific hardware used.



3.2. HARDWARE PLATFORM 25

3.2 Hardware platform

The hardware used to develop and test the GPU port was a NVIDIA GeForce
GTX 295. It consists of two graphics cards bundled as a single PCIe device.
Each graphics card has 240 CUDA cores, 480 overall, running at 1242 MHz.
The bundle also has a total dedicated memory of 1792 megabytes split in
896 megabytes for each graphics card.

As already mentioned, each device has its own peculiarities that drive
the way kernel code is developed. The NVIDIA OpenCL implementation
inherits all its available optimization tricks from CUDA, with minor syn-
tax changes. The rest of this section is dedicated to highlight the most
transcendental optimization considerations.

In NVIDIA GPUs consecutive work items are grouped in so-called thread
warps. A warp consists of 32 threads that execute every instruction syn-
chronously. This means that no synchronization is required to ensure those
32 threads have all finished some operation. A warp can also be subdivided
into two half-warps of 16 threads each.

Memory scopes in NVIDIA GPUs have different memory access latencies:
the fastest memory access is to the register file. Therefore, it is generally
recommended to minimize global memory access in favor of local or private
access. Nevertheless, when accessing global memory, if all threads in a warp
or a half-warp read or write to consecutive 32-bit words in memory2 all
memory latencies are hidden under a single memory operation. In CUDA
terms, this is called memory coalescing. In addition, coalesced memory
accesses should be aligned to 16 words, that is, 64 bytes.

Finally, local memory is scattered in 16 separate memory banks. These
banks are organized so that successive 32-bit words are assigned to successive
banks. Each bank can only serve one request at a time, so the ideal access
to local memory of all threads in a warp should be similar to that of global
memory. In the presence of bank conflicts, i.e. two threads reading or
writing to the same bank, accesses are serialized, thus affecting the whole
half-warp execution. There is one exception to this, when all threads in a
half-warp access the same memory bank the request becomes a broadcast
and no serialization is carried out.

3.3 Nearest neighbor in OpenCL

On a first approach, the idea was to merge together vectorization and
OpenMP parallelization into the work group. In other words, define a two
dimensional work group of 16 by 32 elements where each of the 32 rows
would find the nearest neighbor of a different element from test. Then,

2For example, thread 0 reads 4 bytes at address 32, thread 1 reads 4 bytes at address
36, and so on.
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calculate distance in a vectorized fashion, as in in section 2.3.2, using 16
threads, a half-warp, to access global memory with coalescing. Due to the
use of multiple threads to calculate a single distance, a final reduction was
needed.

Unfortunately, that first approach did not fully exploit the potential of
the device. The speedup was not stable among different databases, the
maximum speedup obtained with that implementation was approximately
16x, easily beaten by the CPU using multiple cores.

M
N

D D

N

M

train

b

a a
b

test dist

Figure 3.2: Relation between the database matrices and the distances matrix

In a change of perspective, it was found that calculating the distance
of all elements in test with all elements in train traverses the matrices
similarly to matrix multiplication where the second matrix is transposed3.
This step also requires introducing a new matrix: the distances matrix or
dist. Each position (a, b) in the dist matrix represents the square of the
euclidean distance between element a from matrix test and element b from
matrix train. Figure 3.2 illustrates the concept.

The memory access patterns were modified to imitate those found in
the fastest GEMM implementation for CUDA [14]. This forced kernel to be
separated in two parts: distance calculation and reduction. The distance
calculation is the GEMM adaptation which generates the dist matrix. Re-
duction is in charge of obtaining the minimum distance for each row in
the dist matrix, and the minimum distance’s column location; with this
information the classes are finally assigned.

Following [14], the memory layout of the matrices had to be switched
from row major order to column major order, distancing features by a con-
stant stride of N and M in the test and train matrices respectively.

The size of the work group was also changed from 512 to 64 (16 × 4),
where each thread calculates the distances between a single test element
and sixteen train elements and then stores them in dist. Figure 3.3 shows

3Usually known as sgemmnt in linear algebra programming.
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the starting positions of the threads within a work group traversing trajec-
tory. Each thread iterates over a complete test row, calculating its distance
to the sixteen rows, fetched in blocks, from train. When finished, the com-
puted distances are written to dist.

By following this pattern, global memory is accessed with coalescing,
there are no bank conflicts in local memory and, also important, the com-
putations performed by each thread are completely independent, therefore
eliminating the need of partial reductions. In some cases, it might be nec-
essary to insert padding in local memory structures to avoid local memory
bank conflicts; in our particular case, this trick was not necessary.

In practice, the dist matrix can be very large. To save some memory
its width (M) is divided by 16. This only affects the end of the kernel,
where dist is written. Instead of writing the sixteen computed distances,
only one is kept: the minimum distance. And because the dist column does
not correspond with the train row, indexes need to be saved apart. This
means that the total memory savings for dist are:

N ·M
16

· 2 =
N ·M

8

3.3.1 Multiple GPUs

In addition, there was a chance to spread the computation on two GPU
devices (see section 3.2). Unlike using OpenMP, with OpenCL the memory
had to be assigned manually to each device. As a result, the test and dist
matrices were split in half, sending one half to each GPU. The train matrix,
though, had to be replicated in both. Figure 3.4 illustrates the situation.

The actual implementation scales automatically to the number of devices
available, as reported by OpenCL.
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Figure 3.4: Data separation to compute with two GPU devices

3.3.2 Limitations

In order to reduce the complexity of the implementation, some assumptions
were made, namely:

• Only single precision floating point is used at the moment. OpenCL
theoretically supports more data types, but studying the influence of
data type size on the GPU performance was not a priority for this
work.

• The values for D, N and M must be multiples of 4, 64 and 16 respec-
tively. This situation is handled by the host at database load time.

• All matrices must fit in the device’s global memory. If multiple devices
are used, the corresponding fractions, as represented in figure 3.4, must
fit in the memory of each GPU device.

In fact, because of the last restriction, the ijcnn1 database, the narrow-
est, could not be executed.



3.4. PERFORMANCE RESULTS 29

3.4 Performance results

GPU performance is also measured in NC using the same formula presented
in section 2.1.2. The time used to calculate the cycles only measures kernel
execution, data transfers between host and devices are excluded.
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Figure 3.5: Performance comparison between CPU and GPU

Figure 3.5 shows a comparison between the best CPU implementation,
with eight threads, and the OpenCL implementations using one and two
devices. Apart from being quite an improvement, it should be noted that,
although not visible in figure 3.5, the GPU version is also slower for narrow
databases (D is small). Like it happened with the CPU version, the value of
D determines the amount of iterations in the only loop each thread executes;
therefore, the fewer iterations the more notable the loop overhead and thread
scheduling is.

In a nutshell, table 3.1 contains the average speedups of the GPU versions
over the best and worst CPU version using one and eight threads. The
“worst” CPU version corresponds with algorithm 2 whereas the “best” CPU
version is the combination of all optimizations described in chapter 2.

GPU CPU worst CPU best
1 thread 8 threads 1 thread 8 threads

1 device 224.45x 29.71x 38.03x 5.13x
2 devices 451.08x 59.77x 76.43x 10.30x

Table 3.1: Average speedups on the GPU

The linear scalability of the GPU can be appreciated from table 3.1,
as happens with the CPU OpenMP version. Nevertheless, it can also be
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appreciated that the most optimized parallel CPU version is not too far
away from the GPU implementation.



Chapter 4

Other classification methods

This chapter briefly compares the nearest neighbor search against other pop-
ular classification methods. Not only performance is measured, but classifi-
cation or prediction accuracy is also contrasted.

4.1 k nearest neighbors

A generalization of the nearest neighbor search is the k nearest neighbor
algorithm (k-NN). An element is classified according to the class of its ma-
jority of k closest elements from a training set, using the same distance
calculation methods as in the nearest neighbor.

The k-nearest neighbor is guaranteed to approach the Bayes error rate,
for some value of k, where k increases as a function of the number of data
points). Various improvements to k-nearest neighbor methods are possible
by using proximity graphs [15].

4.2 Support Vector Machines

Support Vector Machines [16] (SVMs) are a set of related supervised learning
methods used for classification and regression. In simple words, given a set
of training examples, each marked as belonging to one of two categories or
classes, an SVM training algorithm builds a model that predicts whether a
new example falls into one class or the other. SVM can also be adapted to
solve multiclass classification problems [17].

Intuitively, an SVM model is a representation of the examples as points
in space, mapped so that the examples of the separate categories are divided
by a clear gap that is as wide as possible. New examples are then mapped
into that same space and predicted to belong to a category based on which
side of the gap they fall on.

More formally, a support vector machine constructs a hyperplane or set
of hyperplanes in a high or infinite dimensional space, which can be used

31
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for classification, regression or other tasks. Intuitively, a good separation is
achieved by the hyperplane that has the largest distance to the nearest train-
ing datapoints of any class (so-called functional margin), since in general the
larger the margin the lower the generalization error of the classifier.

Initially, SVM were designed to create linear prediction models, that is,
models that separate the hyperspace linearly. However, data may not always
be linearly separable; in such cases, SVM can be adapted to solve classifier
problems with the use of non-linear kernels [18].

In this chapter, two SVM software packages are benchmarked: LibLIN-
EAR [19, 20, 21], a linear SVM classifier that does not use kernels, and
LibSVM [22], a more general-purpose SVM package for classification and
regression.

When using the LibSVM and LibLINEAR package, the classification
process for a particular database involves four steps:

1. Scaling the data of the databases to fit in the continuous range [0, 1).
This is not necessary for LibLINEAR.

2. Test and cross-validate different kernel parameters in order to find the
optimum values for the particular problem. This step is optional.

3. Generate a SVM model from the training set.

4. Classify the testing set with the previously generated model.

4.3 Classification accuracy

The accuracy in the classification is the percentage of correctly predicted
classes. As the databases contain the correct classes for the testing set,
it is possible to calculate this value. Table 4.1 contains the values for the
databases, selected in section 2.1.3.

Database 1-NN 3-NN 13-NN 23-NN LibSVM LibLINEAR

ijcnn1 97.39% 97.09% 95.63% 94.71% 97.82% 91.79%
aa9a 79.51% 81.73% 83.69% 84.09% 85.03% 84.96%
w8a 97.93% 98.74% 98.36% 94.48% 99.18% 90.54%
mnist1 95.71% 95.93% 95.24% 98.15% 97.70% 90.07%

Table 4.1: Accuracy results

From these results, it is difficult to conclude if k-NN, with k > 1, is
really beneficial in terms of quality in classification. LibSVM is the only
classifier that provides both accuracy stability and the best results in terms
of quality.

The SVM implementations show higher accuracy, specially LibSVM. It
should be noted that the cross-validation step was carried out for LibSVM
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but not for LibLINEAR. In other words, LibLINEAR was executed with
the default solving method (dual) and default parameters, whereas in the
LibSVM case the utilized kernel was also the default (radial basis function),
but a previous cross-validation process led to the parameter values that give
the best accuracy.

4.4 Performance comparison

The k-NN implementation was not optimized so throughly as in the k = 1
case. It only features a block algorithm. Comparing k-NN against NN
results in an approximate 3% overhead for k-NN.

When measuring the performances of LibSVM, the cross-validation phase
has not been counted. It it had, the times would be much higher as looking
for the best kernel parameter is a very time consuming task. This is one
of the arguments that favor the usage of k-NN as a classification algorithm
over SVM [23]. LibLINEAR test did not go over the cross-validation step.
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Figure 4.1: SVM implementations comparison

Figure 4.1 show the time spent in model generation, i.e. training phase,
over the time spent in classifying. The difference in time between LibSVM,
figure 4.1(a), and LibLINEAR, 4.1(b), is notorious. In fact, LibLINEAR is
very efficient on large databases. This is in part thanks to the extremely
small and condensed model it creates from the training set; it also benefits
from not having to solve complex kernels. The drawback is that it only
predicts accurately on data sets that are linearly separable.

In figure 4.2 some NN implementations are contrasted with LibSVM
and LibLINEAR. Some implementations, such as LibLINEAR and the GPU
NN, in figure 4.2(a) are almost invisible; figure 4.2(b) contains a detail of
the fastest classification implementations mentioned so far. Notice how Li-
bLINEAR rivals with the GPU ports. This is indeed interesting as the
LibLINEAR code was running in the CPU using a single thread.
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Chapter 5

Conclusions

We have shown how memory access can be influential in algorithm per-
formance and stability. Having some consciousness and knowledge of the
memory hierarchy can reduce processor stalls waiting for data.

Also, we have taken advantage of the different parallelism granularities
offered by current architectures. Despite the growing availability of multi-
ple cores, there is still room for sequential improvement before resorting to
a parallel programming model. When taking advantage of SIMD processor
extensions, smaller data types yield improvements of about an order of mag-
nitude by giving the possibility of executing more operations at the same
cost.

In addition, we have seen the huge potential that GPGPU computing
can bring, at the cost of a less flexible programming environment. With the
GPU port, we learned that a proper memory access pattern is a fundamental
change to get the most out of the hardware. We conceived three basic
guidelines to follow when looking for a better way use memory on NVIDIA
graphics cards:

1. Use coalescing global memory access as much as possible.

2. Avoid memory bank conflicts in local memory.

3. Minimize thread inter-dependencies, e.g. reductions.

Simple algorithms and implementations are generally easier to analyze
and manipulate than those more sophisticated. When it comes to adapting
them to new and less mature architectures such as the GPU, simplicity is
an advantage.

Apart from the hardware performance aspect, the actual numerical re-
sults were not clearly heading towards a unique conclusion. The trade offs
between quality of results and time involved are very sensible to the nature
of data. In some situations, a simple brute force approach might be good
enough or even better than a more sophisticated solution. However, cleverer
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designs like SVM could compensate the necessary initial time investment in
the long term. In no case a single solution fits all.

Nevertheless, these facts cannot hide the obvious fact that the LibLIN-
EAR classifier is algorithmically superior to NN. After some simple experi-
ments, we concluded that the only way to be competitive with LibLINEAR
was to reduce the train matrix to something as small as the model created
by LibLINEAR, while still preserving an acceptable classification accuracy.

5.1 Future work

Some ideas could be further developed. For example, the described blocking
implementation does not cover extremely wide database, e.g. thousands of
dimensions, which is a common case in some usage scenarios. The change
would require some thought and, specially, more intermediate memory for
unfinished data calculations. The k-NN implementation could be optimized
similarly to the NN.

On the GPU side, its limitations could be overcome by subdividing data
and overlapping data transfers between host and device, with computations.
Even the GPU plus CPU combination hold great potential, after checking
if floating point arithmetic is fully compatible. Studying the influence of
data type size on the GPU performance is also interesting. A more precise
analytical model could be designed and tested for the GPU.

Experiments mentioned at the end of previous section also constitute an
investigation path to follow. Specially since condensing the train matrix
introduces a new phase, similar to the training phase in SVM, which is also
subject to optimizations.

The implementations presented in this work could also be benchmarked
against alternative nearest neighbor approaches. Converting the tool, NN
as a classification mechanism, to a problem itself, i.e. finding the nearest
neighbor.

Finally, for databases that contain only discrete data, distances other
than the euclidean could be tested for classification accuracy and perfor-
mance.



Appendix A

Database properties

The following table contains the attributes for all the databases used in this
work.

Label D M N Floats Classes

aa1a 122 1605 30955 no 2
aa2a 122 2265 30295 no 2
aa3a 122 3185 29375 no 2
aa4a 122 4781 27779 no 2
aa5a 122 6414 26146 no 2
aa6a 122 11220 21340 no 2
aa7a 122 16100 16460 no 2
aa8a 122 22695 9865 no 2
aa9a 122 32560 16281 no 2
acoustic 50 78823 19705 yes 3
combined 100 78823 19705 yes 3
dna 180 2000 1186 no 3
ijcnn1 22 49990 91701 yes 2
letter 16 15000 5000 yes 26
mnist1 780 21000 49000 yes 10
protein 357 14895 6621 yes 3
satimage 36 4435 2000 yes 6
seismic 50 78823 19705 yes 3
shuttle 9 43500 14500 yes 7
splice 60 1000 2175 no 2
svmguide1 4 3089 4000 yes 2
svmguide3 22 1243 41 yes 2
usps 256 7291 2007 yes 10
vowel 10 528 462 yes 11
w1a 300 2477 47272 no 2
w7a 300 24692 25057 no 2
w8a 300 49749 14951 no 2
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Appendix B

NN Executions results

The following table contains the NC measurements for a selection of opti-
mization combinations with some databases. Each row lists the executions
from one to eight threads. Optimization combinations are encoded as fol-
lows:

B from 0 to 2 to describe the blocking level.

U as 0, 2 or 4 to describe the unrolling degree.

S denotes scalar.

V denotes vectorized.

Combination 1T 2T 3T 4T 5T 6T 7T 8T
aa2a
U0 S B0 byte 2.9240 1.4704 0.9804 0.7373 0.6175 0.5147 0.4420 0.3860

U0 S B2 byte 2.9207 1.4604 0.9751 0.7313 0.6168 0.5170 0.4418 0.3856

U0 S B0 double 3.3365 1.6683 1.1168 0.8400 0.7074 0.5910 0.5046 0.4397

U0 S B2 double 3.2952 1.6494 1.1061 0.8318 0.6961 0.5798 0.5001 0.4356

U0 S B0 float 3.0443 1.5307 1.0162 0.7651 0.6425 0.5385 0.4604 0.4016

U0 S B2 float 3.0265 1.5137 1.0149 0.7584 0.6399 0.5333 0.4600 0.4002

U0 S B0 int 2.9164 1.4567 0.9728 0.7295 0.6152 0.5153 0.4409 0.3845

U0 S B2 int 2.8995 1.4572 0.9674 0.7261 0.6165 0.5133 0.4389 0.3831

U0 S B0 short 3.1538 1.5769 1.0525 0.7951 0.6694 0.5581 0.5088 0.4161

U0 S B2 short 3.1427 1.5716 1.0479 0.7904 0.6673 0.5533 0.5003 0.4151

U0 V B0 byte 0.3678 0.1846 0.1235 0.0931 0.0784 0.0652 0.0560 0.0486

U0 V B2 byte 0.3642 0.1826 0.1216 0.0962 0.0769 0.0645 0.0556 0.0481

U0 V B0 double 1.6677 0.8337 0.5582 0.4185 0.3529 0.2931 0.2539 0.2200

U0 V B2 double 1.6114 0.8074 0.5406 0.4059 0.3408 0.2843 0.2448 0.2133

U0 V B0 float 0.8664 0.4332 0.2893 0.2179 0.1840 0.1534 0.1318 0.1146

U0 V B2 float 0.8425 0.4213 0.2824 0.2119 0.1782 0.1484 0.1281 0.1114

U0 V B0 int 1.0893 0.5452 0.3633 0.2726 0.2298 0.1926 0.1652 0.1437

U0 V B2 int 1.0664 0.5322 0.3555 0.2680 0.2251 0.1888 0.1619 0.1409

U0 V B0 short 0.5007 0.2498 0.1685 0.1256 0.1054 0.0878 0.0760 0.0659

U0 V B2 short 0.4874 0.2860 0.1630 0.1224 0.1028 0.0862 0.0740 0.0643

U4 S B0 byte 2.1787 1.0887 0.7264 0.5475 0.4604 0.3834 0.3293 0.2874

U4 S B2 byte 2.1828 1.0917 0.7336 0.5512 0.4607 0.3843 0.3304 0.2880

U4 S B0 double 2.0883 1.0412 0.6941 0.5244 0.4393 0.3659 0.3157 0.2757

U4 S B2 double 2.0076 1.0042 0.6688 0.5045 0.4253 0.3542 0.3046 0.2657
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Combination 1T 2T 3T 4T 5T 6T 7T 8T
U4 S B0 float 1.9924 0.9959 0.6642 0.4987 0.4220 0.3526 0.3017 0.2630

U4 S B2 float 1.9523 0.9753 0.6505 0.4913 0.4122 0.3434 0.2952 0.2580

U4 S B0 int 1.9676 0.9838 0.6598 0.4927 0.4156 0.3484 0.2978 0.2598

U4 S B2 int 1.9412 0.9701 0.6525 0.4862 0.4118 0.3440 0.2941 0.2566

U4 S B0 short 2.2622 1.1311 0.7584 0.5662 0.4775 0.4002 0.3417 0.2984

U4 S B2 short 2.2474 1.1238 0.7507 0.5651 0.4745 0.3957 0.3401 0.2969

U4 V B0 byte 0.2805 0.1405 0.0940 0.0704 0.0598 0.0496 0.0426 0.0371

U4 V B2 byte 0.2777 0.1395 0.0929 0.0702 0.0589 0.0491 0.0423 0.0368

U4 V B0 double 1.1193 0.5656 0.3750 0.2826 0.2418 0.2011 0.1846 0.1615

U4 V B2 double 1.0273 0.5139 0.3433 0.2580 0.2190 0.1809 0.1558 0.1365

U4 V B0 float 0.5987 0.2994 0.2017 0.1507 0.1279 0.1066 0.0967 0.0846

U4 V B2 float 0.5553 0.2802 0.1861 0.1399 0.1176 0.0992 0.0849 0.0734

U4 V B0 int 0.7762 0.3856 0.2594 0.1944 0.1636 0.1372 0.1188 0.1043

U4 V B2 int 0.7331 0.3660 0.2457 0.1847 0.1555 0.1296 0.1110 0.0967

U4 V B0 short 0.3838 0.1918 0.1281 0.0964 0.0812 0.0675 0.0585 0.0512

U4 V B2 short 0.3722 0.1872 0.1252 0.0936 0.0789 0.0661 0.0565 0.0493

aa9a
U0 S B0 byte 2.9300 1.4734 0.9821 0.7335 0.6175 0.5186 0.4432 0.3867

U0 S B2 byte 2.9207 1.4606 0.9746 0.7368 0.6168 0.5140 0.4418 0.3856

U0 S B0 double 3.6062 1.8362 1.2585 0.9160 0.8519 0.6956 0.6558 0.5629

U0 S B2 double 3.2921 1.6463 1.1041 0.8283 0.7005 0.5837 0.4996 0.4362

U0 S B0 float 3.1797 1.6019 1.0658 0.8122 0.6802 0.5669 0.4852 0.4233

U0 S B2 float 3.0265 1.5135 1.0136 0.7585 0.6394 0.5330 0.4582 0.4001

U0 S B0 int 3.0575 1.5390 1.0335 0.7789 0.6487 0.5451 0.4661 0.4058

U0 S B2 int 2.8966 1.4486 0.9660 0.7286 0.6156 0.5102 0.4380 0.3829

U0 S B0 short 3.1895 1.6054 1.0677 0.7987 0.6708 0.5612 0.5113 0.4199

U0 S B2 short 3.1430 1.5717 1.0494 0.7903 0.6685 0.5533 0.4896 0.4150

U0 V B0 byte 0.3755 0.1864 0.1240 0.0939 0.0787 0.0654 0.0563 0.0492

U0 V B2 byte 0.3630 0.1822 0.1211 0.0913 0.0767 0.0640 0.0553 0.0479

U0 V B0 double 2.1047 1.4529 1.1736 0.8123 0.7383 0.6111 0.6037 0.5081

U0 V B2 double 1.6079 0.8044 0.5398 0.4037 0.3406 0.2859 0.2453 0.2140

U0 V B0 float 1.0680 0.7117 0.5186 0.4025 0.3664 0.2966 0.2954 0.2449

U0 V B2 float 0.8399 0.4203 0.2804 0.2107 0.1778 0.1482 0.1285 0.1113

U0 V B0 int 1.2835 0.7203 0.5589 0.4212 0.3840 0.3068 0.3034 0.2526

U0 V B2 int 1.0625 0.5312 0.3548 0.2663 0.2263 0.1884 0.1616 0.1406

U0 V B0 short 0.5594 0.3068 0.2125 0.1607 0.1404 0.1148 0.1071 0.0873

U0 V B2 short 0.4863 0.2429 0.1622 0.1217 0.1029 0.0855 0.0738 0.0642

U4 S B0 byte 2.1781 1.0892 0.7282 0.5454 0.4599 0.3833 0.3295 0.2875

U4 S B2 byte 2.1836 1.0918 0.7277 0.5469 0.4611 0.3866 0.3305 0.2883

U4 S B0 double 3.3036 1.9560 1.3622 0.9617 0.8739 0.6506 0.6646 0.5782

U4 S B2 double 2.0049 1.0044 0.6729 0.5063 0.4280 0.3554 0.3047 0.2670

U4 S B0 float 2.4417 1.3339 1.0016 0.7653 0.5389 0.5286 0.4501 0.3991

U4 S B2 float 1.9477 0.9749 0.6509 0.4887 0.4145 0.3453 0.2958 0.2579

U4 S B0 int 2.4072 1.3281 0.8997 0.7781 0.5302 0.5406 0.4670 0.4106

U4 S B2 int 1.9393 0.9701 0.6497 0.4879 0.4128 0.3426 0.2940 0.2564

U4 S B0 short 2.3381 1.1701 0.7792 0.5856 0.4940 0.4101 0.3507 0.3061

U4 S B2 short 2.2474 1.1245 0.7524 0.5651 0.4748 0.3958 0.3406 0.2968

U4 V B0 byte 0.2847 0.1431 0.0961 0.0721 0.0603 0.0501 0.0434 0.0378

U4 V B2 byte 0.2782 0.1392 0.0928 0.0698 0.0588 0.0490 0.0423 0.0374

U4 V B0 double 2.3810 1.5225 1.1219 0.7966 0.7290 0.5718 0.5810 0.5032

U4 V B2 double 1.0237 0.5129 0.3440 0.2587 0.2181 0.1829 0.1567 0.1372

U4 V B0 float 1.1965 0.8094 0.5554 0.4044 0.3607 0.2870 0.2855 0.2373

U4 V B2 float 0.5556 0.2781 0.1856 0.1394 0.1176 0.0983 0.0845 0.0739

U4 V B0 int 1.4129 0.8837 0.5986 0.4298 0.3822 0.3067 0.2998 0.2432

U4 V B2 int 0.7315 0.3681 0.2441 0.1850 0.1548 0.1300 0.1112 0.0970

U4 V B0 short 0.4640 0.2972 0.1907 0.1566 0.1293 0.1090 0.0975 0.0828

U4 V B2 short 0.3723 0.1862 0.1248 0.0951 0.0787 0.0658 0.0575 0.0492

acoustic
U0 S B0 double 3.5128 1.7763 1.2802 0.9357 0.7951 0.7010 0.6496 0.5563

U0 S B2 double 3.1911 1.5940 1.0631 0.8018 0.6735 0.5630 0.4836 0.4226

U0 S B0 float 3.2592 1.6416 1.0955 0.8265 0.6961 0.5813 0.4958 0.4334
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Combination 1T 2T 3T 4T 5T 6T 7T 8T
U0 S B2 float 3.1012 1.5509 1.0353 0.7764 0.6586 0.5458 0.4695 0.4106

U0 V B0 double 2.1509 1.4502 1.0683 0.8357 0.7412 0.6149 0.6039 0.5082

U0 V B2 double 1.6778 0.8396 0.5599 0.4237 0.3551 0.2960 0.2585 0.2280

U0 V B0 float 1.1575 0.7111 0.5379 0.4147 0.3699 0.3019 0.2986 0.2502

U0 V B2 float 0.9453 0.4726 0.3152 0.2382 0.2013 0.1665 0.1455 0.1273

U4 S B0 double 3.1747 1.8688 1.2040 0.8639 0.8224 0.6756 0.6564 0.5351

U4 S B2 double 2.0080 1.0051 0.6736 0.5063 0.4274 0.3551 0.3055 0.2681

U4 S B0 float 2.2323 1.1465 0.8030 0.5987 0.4968 0.4028 0.3619 0.3100

U4 S B2 float 1.9584 0.9748 0.6501 0.4903 0.4116 0.3451 0.2958 0.2575

U4 V B0 double 2.3684 1.6115 1.0833 0.8340 0.7419 0.6050 0.5885 0.4938

U4 V B2 double 1.0939 0.5483 0.3678 0.2759 0.2319 0.1941 0.1688 0.1498

U4 V B0 float 1.0097 0.7126 0.5490 0.4075 0.3343 0.3019 0.2957 0.2443

U4 V B2 float 0.6505 0.3238 0.2159 0.1632 0.1368 0.1155 0.0990 0.0860

combined
U0 S B0 double 3.6333 1.8663 1.2767 1.0018 0.8622 0.7070 0.6632 0.5739

U0 S B2 double 3.3076 1.6551 1.1100 0.8296 0.7046 0.5832 0.5024 0.4382

U0 S B0 float 3.2546 1.6348 1.0820 0.8249 0.6954 0.5755 0.4919 0.4297

U0 S B2 float 3.0726 1.5362 1.0246 0.7693 0.6490 0.5424 0.4649 0.4059

U0 V B0 double 2.1089 1.4793 1.1806 0.8513 0.7361 0.6223 0.6062 0.5176

U0 V B2 double 1.6179 0.8091 0.5419 0.4062 0.3428 0.2859 0.2495 0.2212

U0 V B0 float 1.0905 0.7185 0.5344 0.4176 0.3798 0.3082 0.3030 0.2551

U0 V B2 float 0.8580 0.4315 0.2875 0.2151 0.1815 0.1513 0.1326 0.1167

U4 S B0 double 3.3301 2.0756 1.3979 0.9993 0.8976 0.6596 0.6759 0.5335

U4 S B2 double 2.0199 1.0108 0.6783 0.5094 0.4286 0.3582 0.3082 0.2685

U4 S B0 float 2.4895 1.3582 0.9042 0.7174 0.5554 0.5141 0.4250 0.3897

U4 S B2 float 1.9618 0.9853 0.6609 0.4955 0.4173 0.3491 0.2986 0.2606

U4 V B0 double 2.3911 1.7309 1.1070 0.8604 0.7560 0.6166 0.5963 0.5023

U4 V B2 double 1.0359 0.5189 0.3462 0.2608 0.2203 0.1837 0.1605 0.1426

U4 V B0 float 1.1581 0.8005 0.4802 0.4282 0.3792 0.3026 0.2950 0.2484

U4 V B2 float 0.5636 0.2823 0.1883 0.1421 0.1194 0.1006 0.0871 0.0763

ijcnn1
U0 S B0 double 3.5632 1.8426 1.2239 0.9154 0.7755 0.6431 0.5608 0.4871

U0 S B2 double 3.3319 1.6665 1.1126 0.8348 0.7036 0.5866 0.5059 0.4402

U0 S B0 float 3.3064 1.6522 1.1007 0.8223 0.6932 0.5780 0.4968 0.4343

U0 S B2 float 3.2558 1.6375 1.0892 0.8151 0.6875 0.5760 0.4928 0.4310

U0 V B0 double 2.1405 1.2335 0.8342 0.6616 0.6803 0.4715 0.4365 0.3611

U0 V B2 double 1.8440 0.9218 0.6182 0.4633 0.3893 0.3245 0.2813 0.2463

U0 V B0 float 1.1847 0.5923 0.3964 0.2953 0.2492 0.2082 0.1795 0.1576

U0 V B2 float 1.1451 0.5761 0.3840 0.2870 0.2419 0.2027 0.1745 0.1517

U4 S B0 double 2.5334 1.4120 0.9280 0.7269 0.6306 0.5192 0.4850 0.3985

U4 S B2 double 2.1154 1.0577 0.7059 0.5296 0.4464 0.3720 0.3217 0.2796

U4 S B0 float 2.1001 1.0515 0.7004 0.5294 0.4428 0.3691 0.3170 0.2765

U4 S B2 float 2.0735 1.0422 0.6938 0.5190 0.4379 0.3649 0.3148 0.2738

U4 V B0 double 1.7913 1.1152 0.7275 0.6029 0.5270 0.4472 0.4279 0.3562

U4 V B2 double 1.2466 0.6227 0.4155 0.3135 0.2632 0.2205 0.1901 0.1651

U4 V B0 float 0.8258 0.4239 0.2820 0.2133 0.1808 0.1517 0.1302 0.1149

U4 V B2 float 0.7802 0.3904 0.2600 0.1964 0.1647 0.1382 0.1196 0.1032

mnist1
U0 S B0 double 3.4507 1.7557 1.2590 0.8984 0.8627 0.7147 0.6553 0.5678

U0 S B2 double 3.1221 1.5623 1.0429 0.7840 0.6707 0.5576 0.4793 0.4189

U0 S B0 float 3.0054 1.5212 1.0087 0.7700 0.6482 0.5275 0.4529 0.3957

U0 S B2 float 2.8393 1.4278 0.9470 0.7142 0.6024 0.5001 0.4313 0.3754

U0 V B0 double 2.0714 1.5159 1.1557 0.8526 0.7654 0.6291 0.6133 0.5215

U0 V B2 double 1.5884 0.7979 0.5385 0.4053 0.3477 0.2890 0.2492 0.2183

U0 V B0 float 1.0334 0.7427 0.5306 0.4293 0.3804 0.3110 0.3025 0.2575

U0 V B2 float 0.7825 0.3924 0.2633 0.1979 0.1681 0.1400 0.1213 0.1054

U4 S B0 double 2.2696 1.4295 1.1266 0.8498 0.7435 0.5979 0.5670 0.4822

U4 S B2 double 1.9505 0.9826 0.6569 0.4927 0.4227 0.3519 0.3009 0.2658

U4 S B0 float 2.0923 1.0904 0.7157 0.6002 0.4822 0.4178 0.3463 0.3118

U4 S B2 float 1.8855 0.9477 0.6294 0.4740 0.4006 0.3332 0.2865 0.2501

U4 V B0 double 1.5976 1.3565 1.0165 0.7581 0.6894 0.5485 0.5252 0.4501
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Combination 1T 2T 3T 4T 5T 6T 7T 8T
U4 V B2 double 0.9927 0.5007 0.3368 0.2551 0.2182 0.1838 0.1584 0.1405

U4 V B0 float 0.9449 0.6983 0.5192 0.3737 0.3435 0.2732 0.2638 0.2314

U4 V B2 float 0.4949 0.2504 0.1664 0.1258 0.1069 0.0899 0.0771 0.0679

protein
U0 S B0 double 3.4778 1.7687 1.2703 0.8936 0.8551 0.7039 0.6530 0.5606

U0 S B2 double 3.1562 1.5798 1.0611 0.7959 0.6742 0.5603 0.4812 0.4213

U0 S B0 float 3.0697 1.5425 1.0232 0.7750 0.6547 0.5410 0.4627 0.4040

U0 S B2 float 2.8882 1.4524 0.9653 0.7235 0.6152 0.5095 0.4378 0.3827

U0 V B0 double 2.1104 1.4744 1.0343 0.9024 0.7582 0.6173 0.6034 0.5111

U0 V B2 double 1.6202 0.8127 0.5431 0.4113 0.3471 0.2922 0.2516 0.2207

U0 V B0 float 1.0611 0.7200 0.5269 0.4074 0.3721 0.2999 0.3008 0.2513

U0 V B2 float 0.8189 0.4104 0.2742 0.2057 0.1743 0.1455 0.1259 0.1095

U4 S B0 double 3.0062 1.8078 1.3726 0.9574 0.7696 0.6677 0.6111 0.5497

U4 S B2 double 1.9622 0.9834 0.6609 0.4957 0.4198 0.3533 0.3024 0.2634

U4 S B0 float 2.2699 1.2056 0.8197 0.7328 0.4866 0.5033 0.4373 0.3812

U4 S B2 float 1.8982 0.9504 0.6380 0.4785 0.4020 0.3357 0.2884 0.2521

U4 V B0 double 2.1546 1.4162 1.0739 0.7144 0.7010 0.5433 0.5522 0.4773

U4 V B2 double 0.9985 0.5021 0.3369 0.2542 0.2156 0.1817 0.1563 0.1372

U4 V B0 float 1.1879 0.6784 0.5545 0.3624 0.3486 0.2735 0.2839 0.2361

U4 V B2 float 0.5121 0.2586 0.1720 0.1295 0.1097 0.0918 0.0789 0.0691

satimage
U0 S B0 double 3.2776 1.6378 1.0928 0.8201 0.6915 0.5780 0.4973 0.4327

U0 S B2 double 3.2455 1.6232 1.0840 0.8583 0.6870 0.5740 0.4936 0.4306

U0 S B0 float 3.1727 1.5955 1.0615 0.7972 0.6699 0.5623 0.4823 0.4190

U0 S B2 float 3.1595 1.5876 1.0566 0.7927 0.6681 0.5586 0.4785 0.4184

U0 V B0 double 1.7999 0.8963 0.6008 0.4755 0.3787 0.3164 0.2723 0.2390

U0 V B2 double 1.7395 0.8723 0.5850 0.4612 0.3714 0.3140 0.2664 0.2353

U0 V B0 float 1.0516 0.5258 0.3511 0.2772 0.2253 0.1853 0.1596 0.1389

U0 V B2 float 1.0335 0.5200 0.3461 0.2625 0.2194 0.1840 0.1572 0.1375

U4 S B0 double 2.1110 1.0564 0.7082 0.5309 0.4467 0.3735 0.3201 0.2796

U4 S B2 double 2.0504 1.0272 0.6843 0.5443 0.4324 0.3631 0.3116 0.2717

U4 S B0 float 2.0320 1.0095 0.6775 0.5352 0.4262 0.3559 0.3064 0.2665

U4 S B2 float 1.9872 0.9959 0.6669 0.4989 0.4203 0.3526 0.3018 0.2633

U4 V B0 double 1.2337 0.6168 0.4138 0.3305 0.2813 0.2221 0.1986 0.1737

U4 V B2 double 1.1565 0.5776 0.3867 0.3069 0.2492 0.2045 0.1781 0.1544

U4 V B0 float 0.7329 0.3665 0.2458 0.1952 0.1592 0.1335 0.1138 0.0995

U4 V B2 float 0.6932 0.3461 0.2327 0.1838 0.1488 0.1236 0.1051 0.0930

shuttle
U0 S B0 double 3.7409 1.8748 1.2501 0.9450 0.7911 0.6632 0.5667 0.4945

U0 S B2 double 3.6841 1.8408 1.2277 0.9255 0.7775 0.6480 0.5583 0.4860

U0 S B0 float 3.6418 1.8311 1.2166 0.9126 0.7693 0.6442 0.5516 0.4809

U0 S B2 float 3.6243 1.8118 1.2096 0.9078 0.7652 0.6410 0.5483 0.4786

U0 V B0 double 2.2500 1.1240 0.7525 0.5662 0.4742 0.3954 0.3444 0.3008

U0 V B2 double 2.1747 1.0937 0.7290 0.5480 0.4589 0.3827 0.3326 0.2913

U0 V B0 float 1.4831 0.7413 0.4988 0.3741 0.3129 0.2608 0.2251 0.1956

U0 V B2 float 1.4609 0.7308 0.4899 0.3658 0.3084 0.2584 0.2223 0.1928

U4 S B0 double 2.4415 1.2219 0.8162 0.6102 0.5148 0.4289 0.3704 0.3229

U4 S B2 double 2.3704 1.1915 0.7938 0.5934 0.5002 0.4196 0.3604 0.3137

U4 S B0 float 2.3496 1.1680 0.7785 0.5891 0.4938 0.4110 0.3553 0.3084

U4 S B2 float 2.3221 1.1614 0.7743 0.5837 0.4903 0.4108 0.3528 0.3066

U4 V B0 double 1.6257 0.8106 0.5447 0.4068 0.3443 0.2870 0.2530 0.2202

U4 V B2 double 1.5377 0.7728 0.5146 0.4058 0.3243 0.2720 0.2351 0.2056

U4 V B0 float 1.0817 0.5406 0.3628 0.2718 0.2292 0.1911 0.1650 0.1427

U4 V B2 float 1.0632 0.5319 0.3569 0.2674 0.2247 0.1872 0.1642 0.1410

splice
U0 S B0 byte 2.8899 1.4507 0.9640 0.7629 0.6100 0.5090 0.4381 0.3815

U0 S B2 byte 2.8890 1.4516 0.9640 0.7243 0.6100 0.5090 0.4364 1.0696

U0 S B0 double 3.2196 1.6112 1.0796 0.8493 0.6794 0.5667 0.4886 0.4249

U0 S B2 double 3.1808 1.5924 1.1194 0.8017 0.6728 0.5645 0.4835 0.4208

U0 S B0 float 3.0901 1.5500 1.0318 0.7762 0.6530 0.5486 0.4701 0.4083

U0 S B2 float 3.0887 1.5543 1.0308 0.8015 0.6553 0.5469 0.4692 0.4080
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Combination 1T 2T 3T 4T 5T 6T 7T 8T
U0 S B0 int 2.7392 1.3696 0.9150 0.6921 0.5813 0.4822 1.0270 1.2207

U0 S B2 int 2.7348 1.3770 0.9143 0.7222 0.5778 0.4818 0.4147 0.3613

U0 S B0 short 3.6626 1.8309 1.2605 0.9619 0.7768 0.6484 0.5553 0.4831

U0 S B2 short 3.6624 1.8411 1.2197 0.9173 0.7723 0.6450 0.5552 0.4833

U0 V B0 byte 0.4562 0.2282 0.1523 0.1236 0.0962 1.6010 0.0772 0.0677

U0 V B2 byte 0.4547 0.2315 0.1604 0.1140 0.0962 0.9129 0.8125 0.0675

U0 V B0 double 1.7314 0.8623 0.5761 0.4595 0.3638 0.3061 0.2619 0.2281

U0 V B2 double 1.6724 0.8384 0.5595 0.4478 0.3586 0.2964 0.2541 0.2219

U0 V B0 float 0.9429 0.4743 0.3173 0.2495 0.2004 0.1665 0.1440 0.1279

U0 V B2 float 0.9361 0.4727 0.3138 0.2508 0.1979 0.1660 0.1419 0.1272

U0 V B0 int 1.1593 0.5790 0.3885 0.3065 0.2475 0.3560 0.1755 0.1533

U0 V B2 int 1.1510 0.5821 0.3840 0.3043 0.2455 0.2047 0.1746 0.1526

U0 V B0 short 0.5517 0.2763 0.1949 0.1458 0.1167 0.0984 0.0835 0.0731

U0 V B2 short 0.5524 0.2776 0.1945 0.1457 0.1182 0.0972 0.0843 1.6247

U4 S B0 byte 2.1495 1.0748 0.7229 0.5711 0.4536 0.5049 0.3264 0.2840

U4 S B2 byte 2.1491 1.0755 0.7185 0.5673 0.4557 0.3811 0.3264 0.2839

U4 S B0 double 2.0982 1.0501 0.7044 0.5269 0.4424 0.3743 0.3178 0.2787

U4 S B2 double 2.0034 1.0028 0.6749 0.5289 0.4244 0.3555 0.3031 0.2660

U4 S B0 float 1.9564 0.9784 0.6539 0.4907 0.4144 0.3444 0.2969 0.6190

U4 S B2 float 1.9433 0.9716 0.6511 0.5125 0.4111 0.3421 0.2950 0.2567

U4 S B0 int 1.9671 0.9785 0.6579 0.4906 0.4143 0.3493 0.2968 0.2584

U4 S B2 int 1.9469 0.9767 0.6565 0.5228 0.4111 0.3455 0.2952 0.2571

U4 S B0 short 2.2407 1.1201 0.7496 0.5936 0.4724 0.3979 0.3378 0.2959

U4 S B2 short 2.2402 1.1204 0.7538 0.5616 0.4790 0.3942 0.3397 1.2368

U4 V B0 byte 0.3459 0.1732 0.1154 0.0915 0.0731 0.0610 0.0524 0.0466

U4 V B2 byte 0.3461 0.1760 0.1155 0.0924 0.0745 0.0611 0.0645 1.6246

U4 V B0 double 1.1936 0.5978 0.4010 0.3205 0.2573 0.2121 0.1943 0.1702

U4 V B2 double 1.0837 0.5485 0.3669 0.2919 0.2308 0.1935 0.1651 0.1436

U4 V B0 float 0.6468 0.3245 0.2166 0.1705 0.1369 0.1148 0.1058 0.0954

U4 V B2 float 0.6398 0.3237 0.2146 0.1731 0.1376 0.1141 0.0976 0.0883

U4 V B0 int 0.8126 0.4006 0.2737 0.2143 0.1697 0.1449 0.1228 0.7136

U4 V B2 int 0.7956 0.3971 0.2784 0.2092 0.1689 0.1425 0.1202 0.1047

U4 V B0 short 0.4287 0.2148 0.1529 0.1132 0.0907 0.0756 0.0649 0.0697

U4 V B2 short 0.4283 0.2202 0.1518 0.1096 0.0906 0.0891 0.0649 0.9944

svmguide1
U0 S B0 double 4.3137 2.1601 1.5384 1.1488 0.9194 0.7632 0.6532 0.5708

U0 S B2 double 4.3132 2.1594 1.4681 2.6689 0.9101 0.7609 0.6546 0.5703

U0 S B0 float 4.3186 2.1753 1.5400 1.1392 0.9198 0.7609 0.6531 0.5702

U0 S B2 float 4.3144 2.1593 1.5325 1.1575 0.9164 0.7635 0.6547 0.5703

U0 V B0 double 3.0256 1.5186 1.0153 0.8075 0.6497 0.5351 0.4622 0.4008

U0 V B2 double 3.0287 1.5391 1.0272 0.8173 0.6418 0.5411 0.4617 1.9294

U0 V B0 float 2.6708 1.3393 0.8966 0.7062 0.5628 1.4229 0.4066 0.3538

U0 V B2 float 2.6712 1.3408 0.9567 0.7120 0.5703 0.4732 0.4066 0.3539

U4 S B0 double 2.9879 1.4991 1.0539 0.7904 0.6322 0.5310 0.4542 0.8764

U4 S B2 double 2.9900 1.5008 1.0050 0.8012 0.6389 0.5354 0.4543 0.3961

U4 S B0 float 2.8293 1.4219 0.9497 0.7477 0.6005 0.5014 0.4287 0.3747

U4 S B2 float 2.8346 1.4189 0.9477 0.7207 0.6011 0.5035 0.4288 1.8885

U4 V B0 double 2.4867 1.2517 0.8780 0.6569 0.5247 0.4389 0.3778 0.3366

U4 V B2 double 2.4845 1.2458 0.8786 0.6676 0.5257 0.4385 0.3774 1.7619

U4 V B0 float 2.2638 1.1376 0.7576 0.5990 0.4803 0.4112 0.3452 0.3001

U4 V B2 float 2.2643 1.1492 0.7573 0.6067 0.4791 0.3996 0.3433 0.9136

svmguide3
U0 S B0 double 3.3955 1.8016 1.1702 0.9805 0.8474 0.6597 0.5447 0.5629

U0 S B2 double 3.3813 1.7875 1.1782 0.9664 0.8070 0.6718 0.5467 0.5810

U0 S B0 float 3.2906 1.6927 1.1298 0.9381 0.7767 0.6032 0.5185 0.5205

U0 S B2 float 3.2906 1.6866 1.1298 0.9402 0.8171 0.6073 0.5185 0.5185

U0 V B0 double 1.9025 1.1601 0.8595 0.5367 0.4439 0.3531 0.3793 0.3107

U0 V B2 double 1.8622 1.1601 0.7646 0.7021 0.4519 0.4378 0.3107 0.3147

U0 V B0 float 1.1614 0.6010 0.4938 0.3884 0.3236 0.2256 55.1929 0.2256

U0 V B2 float 1.1633 0.5992 0.4531 0.3884 0.3162 0.2145 0.2219 0.2256

U4 S B0 double 2.1486 1.1056 0.7424 0.6819 0.5044 0.4136 0.3450 0.3430
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Combination 1T 2T 3T 4T 5T 6T 7T 8T
U4 S B2 double 2.1305 1.1056 0.8635 0.6416 0.5064 0.4398 0.3813 0.3813

U4 S B0 float 2.0861 1.0733 0.8252 0.5952 43.7153 0.4015 0.3309 0.3329

U4 S B2 float 2.0881 1.0773 0.7202 0.6517 0.4903 80.0789 0.3329 82.1024

U4 V B0 double 1.2892 0.7465 0.5609 0.4459 0.3067 0.2482 0.2441 0.2522

U4 V B2 double 1.2690 0.6638 0.4983 0.3531 0.3067 0.2925 0.2502 0.2542

U4 V B0 float 0.8026 0.5012 0.3699 0.2312 0.1905 51.7013 0.1535 0.1683

U4 V B2 float 0.8008 0.4161 0.3310 0.2293 0.2145 0.1516 0.1757 0.1701

vowel
U0 S B0 double 3.7147 1.8639 1.3140 1.0126 0.8401 0.6639 0.5694 0.5221

U0 S B2 double 3.7138 1.8639 1.3140 1.0117 0.7993 0.6639 0.5944 0.5146

U0 S B0 float 3.6526 1.8397 1.2296 0.9764 0.7975 10.2827 0.5592 46.3294

U0 S B2 float 3.6582 1.8397 1.2991 0.9764 0.7761 0.6537 0.5592 0.4942

U0 V B0 double 2.2682 1.3872 0.9801 0.7242 0.5703 0.4071 0.3542 0.3718

U0 V B2 double 2.2682 1.1461 0.8559 0.7409 0.5916 0.4071 0.3496 0.3709

U0 V B0 float 1.5254 0.7697 0.5170 0.4343 0.3307 0.2751 0.2357 0.2079

U0 V B2 float 1.5262 0.7697 0.5162 0.3871 0.3246 0.2720 0.2365 0.2079

U4 S B0 double 2.3878 1.3909 0.9505 0.6370 0.5221 0.4228 0.3681 0.3700

U4 S B2 double 2.3794 1.1981 0.9913 0.6352 0.5388 0.4266 0.3663 0.3746

U4 S B0 float 2.3136 1.1647 0.8216 0.6166 44.4303 0.4590 0.3616 0.3171

U4 S B2 float 2.3108 1.1647 0.7780 0.6408 0.5119 0.4154 0.3561 28.6839

U4 V B0 double 1.6116 0.8142 0.7001 0.5573 0.3839 45.0256 0.2513 0.2698

U4 V B2 double 1.6116 1.0441 0.5870 0.5462 0.3561 0.3672 0.3181 26.6949

U4 V B0 float 1.0795 0.5463 0.3848 0.2898 0.2303 0.1978 0.1685 0.1484

U4 V B2 float 1.0811 0.5486 0.3848 0.2898 0.2365 0.1978 0.1669 0.1476

w1a
U0 S B0 byte 2.8484 1.4242 0.9457 0.7103 0.5989 0.4991 0.4292 0.3743

U0 S B2 byte 2.8335 1.4168 0.9438 0.7090 0.5998 0.5008 0.4275 0.3738

U0 S B0 double 3.2283 1.6421 1.0931 0.8235 0.6846 0.5768 0.4980 0.4283

U0 S B2 double 3.1853 1.5951 1.0628 0.8044 0.6799 0.5632 0.4843 0.4248

U0 S B0 float 2.9354 1.4719 0.9785 0.7342 0.6182 0.5151 0.4426 0.3864

U0 S B2 float 2.9032 1.4529 0.9698 0.7272 0.6138 0.5121 0.4403 0.3840

U0 S B0 int 2.8148 1.4074 0.9384 0.7068 0.5966 0.4972 0.4251 0.3709

U0 S B2 int 2.7836 1.3917 0.9335 0.6998 0.5913 0.4909 0.4218 0.3683

U0 S B0 short 3.0153 1.5092 1.0062 0.7547 0.6365 0.5304 0.4803 0.3978

U0 S B2 short 3.0041 1.5039 1.0028 0.7527 0.6344 0.5294 0.5356 0.3994

U0 V B0 byte 0.3225 0.1606 0.1071 0.0804 0.0680 0.0565 0.0489 0.0423

U0 V B2 byte 0.3145 0.1571 0.1049 0.0792 0.0664 0.0556 0.0477 0.0415

U0 V B0 double 1.7502 0.8899 0.5914 0.4592 0.3808 0.3212 0.2839 0.2314

U0 V B2 double 1.6333 0.8195 0.5463 0.4131 0.3522 0.2910 0.2502 0.2189

U0 V B0 float 0.8665 0.4315 0.2877 0.2162 0.1822 0.1519 0.1314 0.1141

U0 V B2 float 0.8324 0.4169 0.2802 0.2089 0.1761 0.1470 0.1270 0.1105

U0 V B0 int 1.1088 0.5548 0.3718 0.2789 0.2353 0.1962 0.1680 0.1464

U0 V B2 int 1.0827 0.5441 0.3636 0.2722 0.2306 0.1915 0.1645 0.1436

U0 V B0 short 0.4658 0.2315 0.1667 0.1159 0.0976 0.0818 0.0705 0.0610

U0 V B2 short 0.4485 0.2244 0.1503 0.1125 0.0948 0.0796 0.0682 0.0595

U4 S B0 byte 2.1262 1.0628 0.7097 0.5324 0.4486 0.3738 0.3217 0.2804

U4 S B2 byte 2.1320 1.0650 0.7114 0.5337 0.4500 0.3769 0.3225 0.2818

U4 S B0 double 2.2351 1.1042 0.8240 0.5573 0.4973 0.4121 0.3444 0.2917

U4 S B2 double 1.9663 0.9890 0.6595 0.4972 0.4176 0.3494 0.3011 0.2635

U4 S B0 float 1.9414 0.9707 0.6509 0.4881 0.4129 0.3418 0.2940 0.2565

U4 S B2 float 1.9054 0.9537 0.6383 0.4789 0.4030 0.3362 0.2888 0.2522

U4 S B0 int 1.9271 0.9636 0.6450 0.4841 0.4086 0.3407 0.2913 0.2541

U4 S B2 int 1.8927 0.9481 0.6352 0.4766 0.4007 0.3360 0.2875 0.2507

U4 S B0 short 2.2126 1.1072 0.7386 0.5541 0.4668 0.3891 0.3346 0.2918

U4 S B2 short 2.1978 1.1049 0.7332 0.5509 0.4643 0.3871 0.3330 0.2903

U4 V B0 byte 0.2571 0.1285 0.0863 0.0647 0.0544 0.0456 0.0391 0.0341

U4 V B2 byte 0.2508 0.1261 0.0836 0.0630 0.0530 0.0444 0.0379 0.0331

U4 V B0 double 1.2981 0.7185 0.4786 0.3611 0.2859 0.2614 0.2263 0.1954

U4 V B2 double 1.0113 0.5099 0.3398 0.2568 0.2157 0.1812 0.1554 0.1381

U4 V B0 float 0.5639 0.2823 0.1900 0.1423 0.1217 0.1017 0.0925 0.0808

U4 V B2 float 0.5182 0.2611 0.1740 0.1309 0.1106 0.0918 0.0790 0.0692
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Combination 1T 2T 3T 4T 5T 6T 7T 8T
U4 V B0 int 0.7458 0.3728 0.2501 0.1885 0.1591 0.1318 0.1150 0.1002

U4 V B2 int 0.7130 0.3569 0.2391 0.1796 0.1511 0.1262 0.1083 0.0946

U4 V B0 short 0.3613 0.1806 0.1210 0.0914 0.0767 0.0639 0.0560 0.0487

U4 V B2 short 0.3421 0.1710 0.1142 0.0858 0.0722 0.0609 0.0517 0.0453

w8a
U0 S B0 byte 2.8931 1.4458 0.9575 0.7218 0.6080 0.5058 0.4340 0.3789

U0 S B2 byte 2.8310 1.4234 0.9451 0.7092 0.5978 0.5008 0.4285 0.3738

U0 S B0 double 3.4925 1.7704 1.2979 0.9049 0.8546 0.7179 0.6555 0.5715

U0 S B2 double 3.1887 1.5955 1.0687 0.8047 0.6751 0.5646 0.4851 0.4284

U0 S B0 float 3.0629 1.5490 1.0248 0.7813 0.6599 0.5427 0.4661 0.4054

U0 S B2 float 2.9000 1.4593 0.9681 0.7318 0.6135 0.5119 0.4402 0.3840

U0 S B0 int 2.9380 1.5148 0.9905 0.7543 0.6387 0.5258 0.4484 0.3921

U0 S B2 int 2.7807 1.3915 0.9283 0.6971 0.5882 0.4909 0.4219 0.3684

U0 S B0 short 3.0883 1.5514 1.0319 0.7752 0.6576 0.5442 0.4669 0.4073

U0 S B2 short 3.0040 1.5026 1.0016 0.7527 0.6345 0.5328 0.5491 0.3968

U0 V B0 byte 0.3659 0.1948 0.1416 0.1070 0.0969 0.0785 0.0777 0.0645

U0 V B2 byte 0.3135 0.1570 0.1047 0.0786 0.0668 0.0556 0.0477 0.0415

U0 V B0 double 2.1104 1.5121 1.1944 0.8724 0.7613 0.6286 0.6139 0.5213

U0 V B2 double 1.6341 0.8185 0.5498 0.4121 0.3495 0.2914 0.2511 0.2205

U0 V B0 float 1.0699 0.7428 0.5415 0.4382 0.3698 0.3124 0.3051 0.2592

U0 V B2 float 0.8313 0.4163 0.2779 0.2099 0.1768 0.1477 0.1278 0.1111

U0 V B0 int 1.2937 0.7177 0.6054 0.4428 0.3991 0.3243 0.3164 0.2682

U0 V B2 int 1.0825 0.5417 0.3636 0.2728 0.2298 0.1929 0.1652 0.1440

U0 V B0 short 0.5676 0.3653 0.2969 0.2130 0.1932 0.1560 0.1543 0.1299

U0 V B2 short 0.4478 0.2242 0.1496 0.1124 0.0948 0.0791 0.0682 0.0595

U4 S B0 byte 2.2031 1.1085 0.7342 0.5490 0.4658 0.3864 0.3300 0.2898

U4 S B2 byte 2.1314 1.0660 0.7109 0.5354 0.4530 0.3748 0.3223 0.2813

U4 S B0 double 3.2865 1.8032 1.3094 1.1557 0.7338 0.7996 0.5980 0.6099

U4 S B2 double 1.9679 0.9856 0.6617 0.4988 0.4184 0.3511 0.3017 0.2654

U4 S B0 float 2.2996 1.2882 0.8870 0.7340 0.5250 0.5165 0.4141 0.3867

U4 S B2 float 1.9030 0.9526 0.6394 0.4798 0.4031 0.3364 0.2892 0.2527

U4 S B0 int 2.2794 1.2149 0.8489 0.7454 0.4959 0.5147 0.4288 0.3884

U4 S B2 int 1.8919 0.9470 0.6323 0.4752 0.4031 0.3365 0.2875 0.2510

U4 S B0 short 2.3879 1.2265 0.8128 0.6021 0.5169 0.4272 0.3658 0.3178

U4 S B2 short 2.1975 1.0990 0.7362 0.5525 0.4668 0.3871 0.3331 0.2903

U4 V B0 byte 0.3430 0.2053 0.1487 0.1077 0.0959 0.0772 0.0743 0.0618

U4 V B2 byte 0.2505 0.1253 0.0839 0.0632 0.0533 0.0444 0.0381 0.0332

U4 V B0 double 2.3501 1.4117 1.1575 0.7813 0.7258 0.5556 0.5759 0.4873

U4 V B2 double 1.0112 0.5075 0.3394 0.2609 0.2168 0.1822 0.1574 0.1398

U4 V B0 float 1.2274 0.7968 0.6111 0.3893 0.3766 0.2936 0.2934 0.2461

U4 V B2 float 0.5172 0.2596 0.1751 0.1305 0.1109 0.0929 0.0802 0.0695

U4 V B0 int 1.4563 0.8742 0.6868 0.5379 0.3685 0.3814 0.3122 0.2433

U4 V B2 int 0.7125 0.3584 0.2387 0.1795 0.1515 0.1266 0.1091 0.0953

U4 V B0 short 0.6834 0.4539 0.3038 0.2148 0.1926 0.1518 0.1493 0.1208

U4 V B2 short 0.3415 0.1710 0.1143 0.0859 0.0724 0.0604 0.0521 0.0454
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Appendix C

Project resources

All the development and testing material developed for this work can be
found on line at:

http://code.ac.upc.edu/projects/nnvect

In particular, result files and databases are accessible through this loca-
tion:

http://code.ac.upc.edu/projects/nnvect/wiki/ExternalFiles
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