
Università di Bologna

The Alchemist simulator

Full Manual

Author:
Danilo Pianini

Contributors:
Michele Bombardi
Chiara Casalboni

Davide Ensini

Sara Montagna
Luca Nenni

Michele Pratiffi
Mirko Viroli

Date:
November 2,

2013

Contents

1 Generalities 3
1.1 introduction . 3
1.2 Computational Model . 4
1.3 Engine . 6

1.3.1 Dynamic Indexed Priority Queue 7
1.3.2 Dynamic Dependency Graph 8

1.4 Incarnations and language chain 9

2 Using Alchemist 12
2.1 Getting started . 12
2.2 Using the simulator via Java 13
2.3 Chemistry . 13
2.4 ListDouble . 14
2.5 SAPERE . 14

2.5.1 Specific language . 14
2.5.2 Writing agents . 26
2.5.3 Built-in fast gradient for SAPERE 27
2.5.4 Gradient and Force-based model for Pedestrian Dy-

namics . 28
2.6 Additional features . 37

2.6.1 Alchemist2Blender: An Alchemist to Blender interface 37
2.6.2 From png image to Environment 39
2.6.3 Real world maps . 44
2.6.4 Approximate Probabilistic Model Checker 46

3 How to develop Alchemist 57
3.1 Mercurial . 57
3.2 Maven . 58
3.3 PMD . 58
3.4 Find Bugs . 58
3.5 Code style . 59

1

3.6 Final remarks for the devels 59
3.6.1 Use internal logger . 59
3.6.2 Test plan . 61

3.7 How to report issues . 61

2

Chapter 1

Generalities

1.1 introduction

Complex systems, i.e. systems composed by many different parts that inter-
act so as to generate an unpredictable emergent behaviour, are everywhere in
nature – chemical, biological, social systems – and also in artificial systems
realised to support nowadays scenarios, like pervasive computing systems
built over the increasingly available smart computational devices.

Both natural and artificial systems of this kind have a set of common key
properties:

• situatedness – they deal with spatially- and possibly socially-situated
activities of entities, and should therefore be able to interact with the
surrounding world and adapt their behaviour accordingly;

• adaptivity – they should inherently exhibit properties of autonomous
adaptation and management to survive contingencies without external
intervention, global supervision, or both;

• self-organisation – spatial and temporal patterns of behaviour should
emerge out of local interactions and without a central authority that
imposes pre-defined plans.

In order to find common models capturing these properties in a uniform and
coherent way, a typical approach is to take inspiration from nature, adopting
some of its metaphors to design innovating computing models [26]. In fact,
in natural systems all the activities of the system components are inherently
situated in space and driven by local interactions only. Such interactions are
not ruled by pre-defined orchestrated patterns, but are rather simply subject

3

to a limited set of natural laws from which even complex patterns of inter-
actions dynamically emerge via self-organisation. In this way, adaptivity be-
comes an inherent characteristic deriving from the existence of self-organising
interactions patterns, whose structure can flexibly yet robustly re-shape in
response to contingencies. In line with recent research in the field of pervasive
computing [22, 24], among the many nature-inspired metaphors we choose a
chemical one properly enriched with a concept of networked space and dif-
fusion of “chemicals” through system locations—what we can refer to as a
biochemical metaphor. This metaphor can be turned into a computational
settings by adopting a reference meta-model that, developing on the ABM
(agent-based model)[18], grounds around autonomous and possibly heteroge-
neous agents situated in an environment, and whose behaviour (internal and
collaborative) is described in terms of chemical-like rules evolving (match-
ing, diffusing) structured annotations that play the role of molecules and are
created/manipulated/consumed by agents. A key brick of the engineering
of such agent systems, apart from middleware and programming languages
[23], is simulation, which is a necessary “tool” to analyse system behaviour
prior to deployment, which is rather mandatory with systems required to
expose emergent behaviour. Alchemist is meant to face natively the above
model abstractions. It implements an optimised version of the Gillespie’s
SSA – which has in principle been developed to model the dynamic of chem-
ical solutions – namely the Next Reaction Method [12], that is known for
its high performances. To face the model requirements, this algorithm has
been properly extended with the possibility to have dynamic reactions, i.e.,
system transitions that can be added or removed during simulation due to
network mobility and unpredicted situations.

The meta-model and simulation framework we are presenting here are
pretty generic, and as such they can have a wide range of applications be-
side pervasive computing, including computational biology and social inter-
actions.

1.2 Computational Model

A pictorial representation of the underlying computational model is shown
in Figure 1.1. In this simple vision of the world, an environment is a multi
dimensional space, continuous or discrete, which is able to contain nodes and
which is responsible of linking them following a rule. The environment may or
not allow nodes to move. Nodes are entities which can be programmed with
a set of reactions possibly changing over time. They also contain molecules,
each one equipped with a concentration value.

4

Environment

Node

Reactions

Molecules

Figure 1.1: Alchemist computational model: it features a possibly contin-
uous space embedding a linking rule and containing nodes. Each node is pro-
grammed with a set of reactions and contains a set of structured molecules.

Number of

neighbors<3

Node

contains

something

Any other

condition

about this

environment

Rate equation: how conditions

influence the execution speed

Conditions Probability distribution Actions

Any other

action

on this

environment

Move a node

towards...

Change

concentration

of something

Reaction

Figure 1.2: Alchemist model of reaction: a set of conditions on the envi-
ronment that determines whether the reaction is executable, a rate equation
describing how the speed of the reaction changes in response to environment
modifications, a probability distribution for the event and a set of actions,
which will be the neat effect of the execution of the reaction.

5

The concept of reaction is more elaborated than that used in chemistry:
in classical chemical models, a reaction lists a number of reactant molecules
which, combined, produce a set of product molecules. This kind of descrip-
tion is too strict for a general purpose simulator. A more generic concept is
to consider a reaction as a set of conditions about the system state, which
triggers the execution of a set of actions. A condition is a function asso-
ciating a boolean value to the current state of the system (or a subpart of
it), an action is a procedure that modifies the annotations representing it.
This allows, for example, to model reactions which are faster if a node has
many neighbours, or also reactions that resemble complex biological phe-
nomena such as the diffusion of morphogenes during embryo development as
described in [17]. It also allows to define which kind of time distribution to
use to trigger reactions: this enables us to model and simulate systems based
on Continuous Time Markov Chains (CTMCs), to add triggers, or also to
rely just on classical discrete time “ticks”.

1.3 Engine

One of the most flexible and fast algorithms to model chemical systems like
the above one is the Next Reaction Method presented in [12]. Alchemist
follows the basic steps of this algorithm, as listed in Algorithm 1.

Algorithm 1 Simulation flow in Alchemist

1: cur time = 0
2: cur step = 0
3: for each node n in environment do
4: for each reaction nr in n do
5: generate a new putative time for nr

6: insert nr in DIPQ
7: generate dependencies for nr

8: while cur time < max time and cur step < max step do
9: r = the next reaction to execute

10: if r’s conditions are verified then
11: execute all the actions of r

12: for each reaction rd which depends on r do
13: update the putative execution time
14: generate a new putative time for r

Likewise other simulation approaches for chemistry [13, 21], Gibson’s al-
gorithm is not appropriate as-is to support our simulations: in particular,
it does not provide facilities to add/remove/move nodes (which ultimately
changes the set of reactions and their interdependencies dynamically), and
to inject triggers and other non-exponential time distributed events. Hence,
our work on the engine had the primary goal to extend the Next Reaction

6

2.0
4 4

3.7
1

7.3
2 1

5.5
1 0

2

8.9
1 0

4.2
0 0

9.1
0 0

10.1
0 0

inf
0 0

Figure 1.3: Indexed Priority Queue extended with children count per branch

Method providing the possibility to add and remove reactions dynamically.
In order to add this support, it is mandatory to provide methods to add
and remove reactions from two key data structures used in Next Reaction,
namely, the indexed priority queue and the dependency graph, which are
described in turn.

1.3.1 Dynamic Indexed Priority Queue

The Indexed Priority Queue (IPQ) is a data structure proposed in [12]. It
is a binary tree of reactions, whose main property is that each node stores
a reaction whose putative time of occurrence is lower than each of its sons.
This means that the next reaction to execute is always in the root of the tree
and can be accessed in constant time. A key property of the original IPQ is
that the swap procedure used to update the data structure does not change
the balance of the tree, ensuring optimal update times in every situation.
This feature was easily achieved because no nodes were ever added neither
removed from the structure. As a consequence, once the tree is balanced at
creation time no event can occur to change its topology. This is no longer
the case in Alchemist, and we have to provide an extension to the IPQ
machinery in order to properly handle tree balancing.

The current solution is, for each node of the tree, to keep track of the
number of children per branch, having in such way the possibility to keep the

7

tree balanced when adding nodes. In figure 1.3 we show how the same IPQ
drawn in [12] would appear with our extension. Given this data structure,
the procedures to add and remove a new node n are described respectively
in Section 1.3.1 and Section 1.3.1, in which the procedure UPDATE AUX(n) is
the same described in [12].

Algorithm 2 Procedure to add a new node n

1: if root does not exist then
2: n is the new root
3: else
4: c ← root
5: while c has two children do
6: if c.right < c.left then
7: dir ← right
8: else
9: dir ← left
10: add 1 to count of dir children
11: c ← c.dir

12: if c has not the left child then
13: n becomes left child of c

14: set count of left nodes of c to 1
15: else
16: n becomes right child of c

17: set count of right nodes of c to 1
18: UPDATE AUX(n)

Algorithm 3 Procedure to remove a node n

1: c ← root
2: while c is not a leaf do
3: if c.left > c.right then
4: dir ← left
5: else
6: dir ← right
7: subtract 1 to count of dir children
8: c ← c.dir

9: if c 6= n then
10: swap n and c

11: remove n

12: UPDATE AUX(c)

13: else
14: remove n

Using Section 1.3.1 and Section 1.3.1, the topology of the whole tree is
constrained to remain balanced despite the dynamic addition and removal of
reactions.

1.3.2 Dynamic Dependency Graph

Since we want to support natively and efficiently the interaction between
nodes, which become dependencies among the reactions occurring in such

8

nodes, we defined three contexts (also called scopes): local, neighborhood
and global. Each reaction has an input context and an output context
dynamically computed, which respectively represent where data influencing
the rate calculus is located and where the modifications are made.

The first issue to address is to evaluate if a reaction r1 may influence
another reaction r2, considering their contexts. We introduced a boolean
procedure mayInfluence(r1, r2) which operates on two reactions and re-
turns a true value if:

• r1 and r2 are on the same node OR

• r1’s output context is global OR

• r2’s input context is global OR

• r1’s output context is neighborhood and r2’s node is in r1’s node
neighbourhood OR

• r2’s input context is neighborhood and r1’s node is in r2’s node neigh-
bourhood OR

• r1’s output context and r2’s input context are both neighborhood and
the neighbourhoods of their nodes have at least one common node.

Given this handy function, we can assert that a dependency exists between
the execution of a reaction r1 and another reaction r2 if mayInfluence(r1,r2)
is true and at least a molecule whose concentration is modified by r1 is among
those influencing r2.

Adding a new reaction implies to verify its dependencies against every
reaction of the system. In case there is a dependency, it must be added to the
dependency graph. Removing a reaction r requires to delete all dependencies
in which r is involved both as influencing and influenced. Moreover, in case of
a change of system topology, a dependency check among reactions belonging
to nodes with modified neighbourhood is needed. It can be performed by
scanning them, calculating the dependencies with the reactions belonging to
new neighbours and deleting those with nodes which are no longer in the
neighbourhood.

1.4 Incarnations and language chain

It is important to note that there is no restriction about the kind of data
structure representing the concentration, which can in fact be used to model

9

Environment

User Interface

Alchemist language

Application-specific Alchemist Bytecode Compiler

Environment description in application-specific language

Incarnation-specific language

Reporting System

Interactive UI

Reaction Manager

Dependency Graph

Core Engine

Simulation Flow Language Parser

Environment Instantiator

XML Bytecode

Figure 1.4: Alchemist architecture. Elements drawn with continuous lines
indicates components common for every scenario and already developed,
those with dotted lines are extension-specific components which have to be
developed with a specific incarnation in mind.

10

structured information: by defining a new kind of structure for the concen-
tration, it is possible to incarnate the simulator for different specific uses.
For example, by assessing that the concentration is an integer number, rep-
resenting the number of molecules currently present in a node, Alchemist
becomes a stochastic simulator for chemistry. A more complex example can
be the definition of concentration as a tuple set, and the definition of molecule
as tuple template. If we adopt this vision, Alchemist can be a simulator
for a network of tuple spaces. Each time a new definition of concentration
and molecule is made, a new “incarnation” of Alchemist is automatically
defined. For each incarnation, a set of specific actions, conditions, reactions
and nodes can be defined, and all the entities already defined for a more
generic concentration type can be reused.

11

Chapter 2

Using Alchemist

Alchemist is split in many different sub-projects. Some of them are generic
and contain core components or utilities, other define new incarnations, and
other (plugins) use those incarnations to realise specific scenarios. Documen-
tation for every module of Alchemist is available in the official maven site
(http://alchemist-maven.apice.unibo.it/).

Due to its modular nature, writing a simulation may differ between differ-
ent incarnations. In this chapter we will see how to get Alchemist, and then
we will explore some code examples for each of the available incarnations,
both using specific languages and Java.

2.1 Getting started

After several months of development, Alchemist got its own standalone
distribution. The latest version is available in the official project download
page: https://bitbucket.org/danysk/alchemist/downloads. The stan-
dalone distribution allows to load and run the Alchemist XML files, using
all the built-in abstractions. If the user has a set of additional parts (e.g.
new actions, reactions, environments or conditions) he needs, it is possible
to load those at runtime, by simply specifying a JAR file where all those
facilities are located.

To develop new parts for the simulator, the user must download the
source code from the main repository and compile it herself. The fastest
way is by far using Eclipse. In order to help getting started, we realised
a video which will guide the user throughout the process, it is available at
http://www.youtube.com/watch?v=C1nejv_9Wd4.

To launch a graphical instance of Alchemist, the user can launch the
class Alchemist, which can be found in the reporting module. Launching it

12

http://alchemist-maven.apice.unibo.it/
https://bitbucket.org/danysk/alchemist/downloads
https://bitbucket.org/danysk/alchemist/downloads
http://www.youtube.com/watch?v=C1nejv_9Wd4
http://www.youtube.com/watch?v=C1nejv_9Wd4
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/boundary/gui/Alchemist.html

within Eclipse is warmly recommended, since it will take care of including in
the classpath all the required libraries.

2.2 Using the simulator via Java

Using Alchemist in via Java is pretty tricky and generally discouraged,
however not every incarnation has its own specific language yet. Moreover, it
may turn useful for those interested in building some stand alone application
which uses the Alchemist engine internally. The general work flow should
be the one framed in Algorithm 4.

Algorithm 4 Generic procedure to initialize a simulation using Java

1: create the environment
2: for each node you want to add do
3: create the node
4: add the molecules you want in the node
5: for each reaction you want to add do
6: create the reaction
7: create a list of conditions
8: create a list of actions
9: for each condition do

10: create the condition
11: add the condition to the list
12: for each action do
13: create the action
14: add the action to the list
15: set the conditions list as reaction’s conditions
16: set the actions list as reaction’s actions
17: create a position for the node
18: add the node to the environment
19: create the simulation
20: for each output monitor you want do
21: create the corresponding object
22: add the output monitor to the simulation

23: start the simulation (using play())

2.3 Chemistry

In this incarnation, the concentration is an Integer number, representing the
number of molecules. Though a specific language targeting morphogenesis is
in development, no language is available yet.

13

2.4 ListDouble

This incarnation is pretty much an experiment and its usage is deprecated.
However, it can handle pretty complex scenarios, though not allowing for
the same expressiveness of the SAPERE incarnation. On the other hand,
it’s way faster, since no template matching is involved. No specific language
has been implemented yet, and no one will likely be ever implemented.

2.5 SAPERE

2.5.1 Specific language

A Domain Specific Language for SAPERE have been developed. It was
realised using the Xtext framework, and as a consequence an Eclipse product
with syntax highlighting, code suggestion and automatic code generation is
available.

SAPERE DSL installation

In order to be able to write new simulations through the high-level language,
the user should download and install the Alchemist-SAPERE Eclipse plug-
in. The following instructions do no apply for those who have already down-
loaded and installed the whole Alchemist package for developers. In fact,
they can just run SAPERE DSL environment from within Eclipse (as shown
in the video).

For the users that do not need to install the whole development infras-
tructure, the best way to get the advanced editor and compiler is by installing
it as a plug-in in Eclipse. To do so, the user can rely on the Eclipse feature
installer, following the instructions available in this video: https://www.

youtube.com/watch?v=0AvzC9rGfpc. Once installed, the user should apply
the Xtext nature to her project in order to enable code highlighting, auto
completion and XML generation. Creating a file with extension “alsap” will
do the job.

The produced XML file can be opened in Alchemist standalone di-
rectly. Who is driving the simulator via Java can interpret the file using the
EnvironmentBuilder in order to produce a new IEnvironment.

Encoding and other platform-specific issues

When using the Xtext-generated Eclipse environment in order to produce
Alchemist’s XML files from the domain specific languages, ensure that the

14

https://www.youtube.com/watch?v=0AvzC9rGfpc
https://www.youtube.com/watch?v=0AvzC9rGfpc
https://www.youtube.com/watch?v=0AvzC9rGfpc
https://www.youtube.com/watch?v=0AvzC9rGfpc
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/language/EnvironmentBuilder.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/interfaces/IEnvironment.html

Figure 2.1: The correct configuration for the encoding. The smartest way to
set it is to force UTF8 for the main project, and force al the subprojects to
inherit it.

15

Figure 2.2: The correct configuration for the Eclipse product configuration

16

option -XX:MaxPermSize=128M is passed to the Eclipse product launcher
parameters as in Figure 2.2. Also, please check that you’re using UTF8
(and not the evil MacRoman) as encoding for the whole project, or the code
generation will fail. The configuration should be the same of Figure 2.1.

What to define

For those who are used to the Xtext syntax, the language is defined in the
file available at the alchemist source code repository.

Due to Xtext constrains, the simulation files must have extension alsap.
Each file defines one and one only environment, namely a scenario to simulate.
The elements which can be defined are:

• environment (mandatory)

• linking rule (mandatory)

• lsas

• nodes

• reactions

• actions

• conditions

Environment

Let’s take a look to a well-formed environment:

Listing 2.1: Use of environment
1 environment env type AnEnvironment params ”some , parameters , 2”
2 with linking rule ALinkingRule params ”rule , paramenters ”
3 with concentration type ConcentrationType
4 with position type Posit ionType
5 with random seed 0
6 with time type TimeType

Let’s analyse it token by token:

1. environment: is the keyword signalling the beginning of our specifica-
tion

2. env: is the name of the environment. It’s optional.

17

3. of type AnEnvironment params "some,parameters,2": we want to
istantiate an IEnvironment whose real Java class is AnEnvironment,
using a constructor accepting three paramenters ”some,parameters,2”.
type must be followed by a class name which must be implemented in
the package
it.unibo.alchemist.model.implementations.environments. An alterna-
tive to this line is to specify default environment, which tells the
system to fall back to Continuous2DEnvironment. This default en-
vironment is a continuous space where both the coordinates and the
distances are defined by double numbers.

4. with linking rule ALinkingRule params "rule,paramenters": we
want the nodes to be connected with the policy specified in a class
named ALinkingRule belonging to the package it.unibo.alchemist.model.implementations.linklingrules,
whose constructor expect two parameters. It is possible to use a default
rule by specifying linking nodes in range N (where N is a number).
If the default is used, the environment will automatically link together
nodes within a certain range.

5. with concentration type ConcentrationType: is the Java class to
use as concentration. Not used normally, it’s optional, and if not spec-
ified the system falls back to LsaConcentration.

6. with position type PositionType: is the Java class to use as posi-
tion definition. It’s optional and defaults to Continuous2DEuclidean.
The user may want to change it only if she switches to a discrete envi-
ronment.

7. with random seed 0: it’s optional and defaults to a random number.
It can be useful if the user wants to enforce reproducibility on the
experiment: if unspecified, every new interpretation of the generated
XML file will produce a simulation whose result will differ from the
others. In future, the randomness management will be moved inside
the engine itself, and thus this part of the language will probably be
removed.

8. with time type TimeType: is the Java class to use as Time. It’s
optional and defaults to DoubleTime. The user may want to use some-
thing else just if the double 64bit precision is not fine grained enough
for the scenario: there is a loss of precision when you try to sum very
high numbers and very low numbers, due to the internal double repre-
sentation.

18

http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/interfaces/IEnvironment.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/environments/package-summary.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/environments/Continuous2DEnvironment.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/linklingrules/package-summary.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/concentrations/LsaConcentration.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/positions/Continuous2DEuclidean.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/times/DoubleTime.html

Examples:

default environment

linking nodes in range N

It’s the minimum allowed definition for an environment. This creates an
environment of type Continuous2DEnvironment, which links nodes which
are at most N distance units far.

environment of type InfiniteHalls params "10"

linking nodes in range N

Builds an environment loading the class InfiniteHalls and passing as the only
parameter 10 (it’s the hall size), which links nodes which are at most N
distance units far.

Lsa patterns

Let’s take a look to some well-formed lsa patterns:

lsa source <source, gradient0, 0>

lsa allSources <source, T, 0>

lsa withDescription <Var, 0, atom> description "Some text"

Those declarations (lsa can be used multiple times) assign a name to the
LSA which follows. From now on, it’s allowed to build reactions and define
nodes content using the names instead of writing a zillion times the same
LSA.

The LSAs in Alchemist are just plain tuples, à la Linda. Though not
as expressive as the D1.1 language, the SAPERE language currently in Al-
chemist allowes to:

• Use atoms, typing lower case starting strings e.g. <some, atoms>

• Use numbers e.g. <5, 7.254>

• Use variables, typing upper case starting strings e.g. <Two, Variables>

• Use operators on numbers, both binary (sum, subtraction, multipli-
cation, division, minimum and maximum) and unary (module), e.g.
<sum, X+Y>. In order to use multiple operators in the same element
of the LSA, it’s required to enclose in round brackets the two vari-
ables which belong to the operator, e.g. <complexOp, (X*5)+(Z-A)>.
Brackets are required: things such as <complexOp, X+Y+Z> will gen-
erate errors. When writing reactions, the usage of operations is sound
only on the right side.

19

http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/environments/Continuous2DEnvironment.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/environments/InfiniteHalls.html

• Use comparators on variables. Those only make sense on the left side
of the reactions. It’s possible to express majority, minority and equal-
ity: >, <, =, !=, <=, >=. The syntax is def: Variable OPERATOR

Variable, e.g. <tuple, A, def: B<A>.

• Use sets. It’s possible to define a set of elements by enclosing them into
square brackets, e.g. <set,[a;b;C;D;1;2;]>.

• Use operators on sets. As the operators on variables, they only make
sense on the right side of a reaction. It’s possible to: search the maxi-
mum and minimum element in the set (using min(Set) and max(Set)),
add or delete an element to the set (using Element add Set and Element

del Set).

• Use comparators on sets. They can be used only on the left side of a re-
action. It’s possible to check if some set is empty or not, or if some set is
contained in another set or not. The syntax is, respectively: def: Set

isempty, def: Set notempty, def: Set has [some;elements;],
def: Set hasnot [some;elements;]. In order to compare with a
single variable, the user must enclose it in a fake set, e.g. def: Set

has [Variable;].

• Attach a description. A description can be whatever text string, includ-
ing every UTF-8 character. It will be always considered as an atom,
even if it contains numbers, operators, comparators or starts with an
uppercase. It will be inserted as last argument of the tuple: this must
be considered when manipulating it through the normal eco-laws: the
example LSA provided, in fact, will have four arguments, not three.
This hook is useful, in particular, if you need richer items than the
provided flat tuples. For instance, if you need to attach semantic in-
formation, you can encode entire RDF specifications, and manipulate
them in the simulator by writing a specific Agent.

Nodes

The language offers facilities to create a single node in a specific point of
the space or multiple similar nodes at once in a rectangular or circular area.
Let’s analyse an example:

place node

named nodename

of type NodeType

at point (0,0)

20

containing anLSA <another,one>

with reactions

[] --> []

[] --> []

• place node: Creates a single node.

• named nodename: Assigns a name to the node. It’s optional.

• of type NodeType: Uses a specific node type, loading the Java class
which is passed. The class must be part of the package
it/unibo.alchemist.implementations.nodes. This is optional, and
the system defaults to LsaNode.

• at point (0,0): it’s the point in a bidimensional space where the
node will be placed. Mandatory.

• containing anLSA <"another,lsa">: it’s possible to specify which
LSAs should be within the node. It’s possible to both refer an LSA
pattern previously defined or to write new LSAs.

• with reaction: after this token, the definition of the reactions begins.

In this second example, we place multiple nodes inside a circle:

place 10 nodes in circle (0,0,100)

containing

in all anLSA

This specification places 10 nodes randomly in a circle whose centre is in
the point (0,0) and whose radius is 100. As for the previous example, it’s
possible insert a default content in the nodes. The in all spatial constrain
inserts the LSAs in all the nodes of the group. It’s possible to use also the in

rect (X,Y,Width,Height), which will inject the LSA only in those node
whose position is inside the given rectangle. The last available constrain is
in point (X,Y), which only inserts the LSA in the nodes of the group which
are exactly in the X,Y position

In the third and last example, the nodes are placed inside a rectangular
area:

place 10 nodes in rect (0,0,2,3) interval 1 tolerance 0.2

containing

in all <all>

in rect (1,1,1,1) <smallRect>

in point (0,0) <origin>

in rect (0,1,0.5,10) <tallRect>

21

http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/nodes/LsaNode.html

The most interesting part is interval 1: If specified, the system tries (best
effort approach) to separate nodes by a fixed distance. Otherwise, nodes are
spread randomly. tolerance 0.2 forces the system to use some randomness
when placing nodes: in particular, it will accept coordinate values which are
within ±0.2 distance units from the point they would have been placed if no
tolerance would have been specified. Specifying a tolerance turn very useful
when an almost-uniform coverage of an area is required, but a total regularity
is not desired. rect (0,0,2,3) specifies a rectangular region whose lower
left point is (0,0), width is 2 and height is 3. Multiple spatial constrains are
defined: they allow the user to shape the initial node content in a flexible
way.

Eco laws

Let’s continue in our learn by examples:

eco-law lawName

reaction ReactionType params "some,parameters"

[] --> []

• eco-law lawName: optional keyword which allows to specify a name
for the eco-law. Might be useful in order to render the code clearer.

• reaction ReactionType params "some,parameters": uses the class
ReactionType from package. it/unibo.alchemist.implementations.reactions,
calling a constructor with the parameters wrote after parameters. It is
optional, and the system falls back to LsaExpTimeReaction. Overrid-
ing the default class is often useful, in order to create non-exponential
timed reactions such as triggers and reactions which happen at specific
time ticks. For an overview of the available classes, see the package
it.unibo.alchemist.model.implementations.reactions.

• [] --> []: this is the core of the reaction. Inside the left brackets,
the conditions are specified. Inside the right brackets, the actions are
specified. The arrow is just a separator.

at time 2 [] -1-> []

If the default class is used, the user can specify at which time it should be
enabled. Moreover, the rate can be specified directly inside the arrow (simi-
larly to chemical reactions). No rate specified (-->) means ASAP reaction.
Be careful, since ASAP reactions keep being triggered until their conditions
are valid.

22

http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/reactions/LsaExpTimeReaction.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/reactions/package-summary.html

[<number,A>,<number,B>] -A*B-> []

It is allowed to write rate functions. They can turn useful in order to bind the
speed of a reaction to some dynamically changing parameter. In the example
above, the higher A and B, the faster the reaction. It’s possible to write
arbitrary complex expressions, using the same language already explained in
Section 2.5.1.

Conditions and Actions

Conditions and actions are, respectively, what enables some reaction and
what the reaction, when executed, does.

[definedLSA] --> [<L,5,a>]

Just writing some LSAs inside the brackets (either previously defined or
brand new) instantiates a default condition or action. These work in a very
similar way to chemical reactions, removing from the LSA space what’s on
the left side and adding what’s on the right side. In this case, definedLSA
will be removed and <"L,5,a"> will be added. Note that if definedLSA does
not contain a variable L which the system can match with the L on the right
side, the execution of this reaction will generate errors.

[definedLSA, +<L,S,a>] --> [<L,5,a>]

Of course, multiple LSAs can be listed, both on the left and right side. This
reaction is similar to the previous, but it only triggers if a tuple <"L,S,a"> is
present in the neighbourhood. The heading + means that the condition must
be true for at least one node in the neighbourhood. The LSA <"L,S,a"> will
be removed from such neighbour. If we wanted not to remove it, we should
have added +<"L,S,a"> on the right side.

[<time,T>] -1-> [<time,#T>]

In this example, the tuple time is kept up to date. The trick is the special
value #T, which is bound to the current simulation time. This one, as every
other special value (all those starting with #), can be used only on the right
side.

[<field,Val,Orientation>] --> [*<field,Val+#D,#O>]

23

The * character heading an action means that it’s executed on all the neigh-
bours. It’s the standard way to implement diffusions. This example shows
also the other special values: #D, #O. They all are valid only for reactions
which involve the neighbourhood. The first measures the distance between
the node and the current neighbour, the second is a vector (in the form
"[X,Y]") which points to the current node from the neighbour, namely if
the neighbour moves its position of (X,Y), it will reach the node. The third
is a list of the neighbours of the node. In case of actions on multiple neigh-
bours, those values are re-instanced for every neighbour, ensuring a consistent
execution.

[<"hotBall">] --> [+<"hotBall">]

The + header can be used for the actions too. It means that the action
involves only a (random) neighbour, and not them all. It resembles the
point-to-point diffusion system in SAPERE D1.1.

[condition ConditionClass params "some,params"] -1->

[agent AgentClass params "ENV,NODE,REACTION,RANDOM"]

Both conditions and actions can be told to load specific Java classes, from the
packages it.unibo.alchemist.model.implementations.conditions and it.unibo.alchemist.model.implementations.actions
respectively. It is particularly useful to define mobile agents, whose behaviour
might be application (and, thus, simulation) specific. Implementing an agent
is reduced to the implementation of a Java class extending LsaAbstractAc-
tion, which can then be used inside the language. When the explicit class
declaration is used, the special values ENV, NODE, REACTION and RANDOM can
be used in order to refer to, respectively: the current environment, the cur-
rent node, the current reaction, the current RandomEngine. That way, it’s
allowed to build agents which need references to the environment (e.g. for
moving or knowing the neighbourhood), to themselves (node), to their be-
haviour (reaction) and that can take non-deterministic actions (relying on
the passed RandomEngine).

Complete example

In Listing 2.2, a grid is built and a gradient is spread. In Listing 2.3, a
similar grid is built, but an information about crowd is placed inside an area,
creating a sort of “hole” in the gradient. An agent which raises the gradient
is created, and it’s emergent behaviour is to deflect to avoid the crowded
area.

24

http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/conditions/package-summary.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/package-summary.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/LsaAbstractAction.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/LsaAbstractAction.html
http://alchemist-maven.apice.unibo.it/apidocs/cern/jet/random/engine/RandomEngine.html
http://alchemist-maven.apice.unibo.it/apidocs/cern/jet/random/engine/RandomEngine.html

Listing 2.2: SAPERE-DSL example 1
1 default environment
2 l inking nodes in range 1 .2
3 with random seed 1
4
5 /∗
6 ∗ d e f i n i n g LSAs f o r g rad i en t
7 ∗/
8 lsa source
9 <source , Type , Time>

10 lsa t a r g e t
11 <source , target , 0>
12 lsa grad i en t <grad , Type , Distance , Time>
13 lsa gradtemp <grad , Type , Da , T>
14 /∗
15 ∗ c r e a t i n g a g r id o f nodes with reactions f o r g rad i en t
16 ∗/
17 place 42 nodes in rect (0 , 0 , 6 , 7) interval 1
18 with reactions
19 eco−law d i f f [gradtemp] −10−> [gradtemp ,∗<grad , Type , Da+#D,T>]
20 eco−law youngest [gradtemp ,<grad , Type , Db, de f : Tb<T>] −−> [gradtemp]
21 eco−law s h o r t e s t [gradtemp ,<grad , Type , de f : Db>=Da, T>] −−> [gradtemp]
22 /∗
23 ∗ c r e a t i n g the node source with the pump reaction
24 ∗/
25 place node at point (6 , 2 . 5)
26 containing t a r g e t
27 with reactions
28 eco−law pump [source] −1−> [< source , Type , Time+1>,<grad , Type , 0 , Time>]
29 [gradtemp] −10−> [gradtemp ,∗<grad , Type , Da+#D,T>]
30 [gradtemp ,<grad , Type ,Db, de f : Tb<T>] −−> [gradtemp]
31 [gradtemp ,<grad , Type , de f :Db>=Da,T>] −−> [gradtemp]

Listing 2.3: SAPERE-DSL example 2
1 default environment
2 l inking nodes in range 1 .2
3 with random seed 1
4
5 /∗
6 ∗ d e f i n i n g LSAs f o r g rad i en t
7 ∗/
8 lsa source <source , Type , Time>
9 lsa t a r g e t <source , target , 0>

10 lsa crowd <crowd , 10 , 0.5>
11 lsa ctemp <crowd , Level , K>
12 lsa g r a d d i f f <grad , d i f f , Type , D, T>
13 lsa gradctx <grad , ctx , Type , D, T>
14
15 /∗
16 ∗ c r e a t i n g a g r id o f nodes with eco−laws f o r g rad i en t
17 ∗/
18 place 63 nodes in rect (0 , 0 , 8 , 9) interval 1
19 containing
20 in rect (3 , 3 , 2 , 2) crowd
21 with reactions
22 [g r a d d i f f] −10−> [g r a d d i f f ,∗<grad , ctx , Type , D+#D, T>]
23 [g r a d d i f f ,<grad , d i f f , Type , D2 , de f : T2<T>] −−> [g r a d d i f f]
24 [g r a d d i f f , <grad , d i f f , Type , de f : D2>=D, T>] −−> [g r a d d i f f]
25 [gradctx , ctemp] −−> [<grad , d i f f , Type , (D)+(K∗Level) , T>,ctemp]
26 [gradctx] −100−> [g r a d d i f f]

25

27
28 /∗
29 ∗ c r e a t i n g the node source with the pump eco−law
30 ∗/
31 place node at point (8 , 3 . 5)
32 containing t a r g e t
33 with reactions
34 [source] −0.01−> [< source , Type , Time+1>,<grad , d i f f , Type , 0 , Time>]
35 [g r a d d i f f] −10−> [g r a d d i f f ,∗<grad , ctx , Type , D+#D, T>]
36 [g r a d d i f f ,<grad , d i f f , Type , D2 , de f : T2<T>] −−> [g r a d d i f f]
37 [g r a d d i f f , <grad , d i f f , Type , de f : D2>=D, T>] −−> [g r a d d i f f]
38 [gradctx , ctemp] −−> [<grad , d i f f , Type , (D)+(K∗Level) , T>,ctemp]
39 [gradctx] −100−> [g r a d d i f f]
40
41 /∗
42 ∗ c r e a t i n g a person look ing f o r the source
43 ∗/
44 place node at point (0 , 3 . 5)
45 with reactions
46 []−10−>[agent LsaAscendingAgent params ”REACTION,ENV,NODE, g r a d d i f f , 3 ”]
47 eco−law decay [<grad , State , Type , D, T>] −−> []

Notes

This section contains informations that have no space in the previous sec-
tions. I expect most of them to be just a “beware of common errors”.

1. Be careful with names – the Alchemist XML uses names internally
to allow the EnvironmentBuilder to build Java references. When names
are manually written, those will be used internally. If the same name is
used twice, expect something to go wrong, possibly without any error,
notice or exception thrown.

2.5.2 Writing agents

Since the agents are normally very simulation dependent, no facility is in-
cluded in the language to define them, so their implementation must be done
in Java. The agent code should implement the interface IAction, and the
behaviour should be encoded inside the execute() method.

The recommended way to create new agents is by means of extending
the existing support classes, namely SAPERELocalAgent, SAPERENeighb-
orAgent and SAPEREMoveNodeAgent. All these classes provide both an
implementation of the methods which are required by the simulator internals
and some useful methods meant to ease the development of the execute()

method. SAPERELocalAgent should be used in order to create an agent that
operates locally. It provides four constructors, requiring a different number
of molecules to be passed. When extending this class, the user must use
the proper constructor, passing the templates of the molecules which will

26

http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/language/EnvironmentBuilder.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/interfaces/IAction.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/SAPERELocalAgent.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/SAPERENeighborAgent.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/SAPERENeighborAgent.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/SAPEREMoveNodeAgent.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/SAPERELocalAgent.html

be modified in order for the agent to be correctly interpreted by the en-
gine. SAPEREMoveNodeAgent is specifically targeted to those who need
to move the local node, since it provides the move() method along with
utilities to get the current position (getCurrentPosition()) and access the
neighborhood. Finally, the SAPERENeighborAgent class provides support
for defining agents which write informations onto neighbours.

A nice way to implement more complex agents is to extend AbstractAc-
tion, which provides some generic mechanisms already implemented inter-
nally. It’s recommended to have a look to the existing subclasses of Ab-
stractAction to get familiarity with the usage of the object composing the
Alchemist computational model. A particularly important notice is to care
of the getContext() method. It is important to return the correct Context:
a Context too wide will make the simulation slower (even of magnitude or-
ders), a Context too strict will make the dependency graph to be wrong,
and consequently the simulation to have errors. If the agent just wanders
around (using the moveNode method of IEnvironment and grabs informations
from itself and the environment, the Context.LOCAL context is correct (and
fast). If the agent is rather complicated and modifies the LSA space content,
then the user must remember to add the LSA template it is modifying to the
list of the outgoing dependency. If the agent extends from AbstractAction, it
should be done simply calling addModifiedMolecule(yourLSATemplate) in-
side the constructor. The superclass will take care of the dependency stuff. If
the agent injects or modifies LSAs in the neighbourhood, then the user must
also remember to return Context.NEIGHBORHOOD in the getContext()

method. Finally, if the agent messes up with the LSAs in nodes which are
not neighbours (in a SAPERE system, however, this should never happen),
then the Context.GLOBAL is required.

2.5.3 Built-in fast gradient for SAPERE

After we realised some case studies with Alchemist, we soon realised that
the gradient is a fundamental pattern, sometimes used in order to build
more complex spatial structures. In order to maximize the performance,
Alchemist provides an heavy optimized and reliable gradient implementa-
tion within SAPEREGradient. This class can be instanced from the DSL:
an example is given in Listing 2.4.

Listing 2.4: SAPEREGradient usage example
1 [. . . environment d e f i n i t i o n . . .]
2
3 lsa s <source , Type , Dist>
4 lsa g <grad , Type , Dist>
5 lsa c <crowd , L>

27

http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/SAPEREMoveNodeAgent.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/SAPERENeighborAgent.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/AbstractAction.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/AbstractAction.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/AbstractAction.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/AbstractAction.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/interfaces/Context.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/interfaces/Context.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/interfaces/Context.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/interfaces/IEnvironment.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/interfaces/Context.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/actions/AbstractAction.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/interfaces/Context.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/interfaces/Context.html
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/model/implementations/reactions/SAPEREGradient.html

6
7 [. . . node group d e f i n i t i o n . . .]
8
9 reaction SAPEREGradient params ”ENV,NODE,RANDOM, s , g , 2 , ((Dist+#D) +(0.5∗L)) , c

, 200 ,1” [] −−> []
10
11 [. . . o ther reactions , nodes , and so on . . .]

This specification defines a new gradient reaction whose source is defined
in the fourth parameter. In this case, it references s, so LSA template for
the source is associated to <source, Type, Distance>.
The fifth parameter is the LSA template representing the form the gradient
will have. All the variables must be also present in the source template, in
order for the gradient LSA to be correctly instanced. In this case, we refer-
ence to g, which has the form <grad, Type, Distance>.
The sixth parameter tells the reaction in which position put the gradient
computation. In this case we choose the third element (the numbering goes
the same way of the arrays, so we must specify 2). This means that, when
computing the gradient, the Dist variable will be substituted with a different
value.
The seventh parameter explains which is this value. This must be a correct
expression, arbitrarily complex, which can only include variables present in
the gradient template and in the context template, plus the synthetic vari-
ables (#D and #T).
The eight parameter defines a context LSA template. The variables included
there can be used to influence the computation of the new value. In this
case, it refers to c, which is defined as <crowd, L>. This means that L can
be used in the formula defining how to compute the new values. It is obvi-
ously possible to make a gradient which does not need to be contextualised.
In this case, it is safe to write null in place of the LSA template name.
The ninth parameter defines a threshold for the gradient: if the computed
value goes above this threshold, the gradient is not spread. It can be used
to avoid flooding.
The tenth and last parameter defines the speed (Markovian rate) of the reac-
tion. It should be tuned depending on the performance you want to achieve.
The higher this value, the more reactive will be the gradient to changes (and
the harder for Alchemist to simulate, clearly).

2.5.4 Gradient and Force-based model for Pedestrian
Dynamics

Nowadays it is very important to have models to predict the behavior of
people in certain circumstances; therefore, it is essential to have a model for

28

the simulation of realistic pedestrians. A realistic model is the force-based
model, in which the choice of the direction to follow and the interactions are
modeled by means of two forces [11]:

• Attractive force represented by the target.

• Repulsive forces represented by other pedestrians and obstacles that
the agent meets in own way.

Speed Computation

To calculate the pedestrian speed we consider four forces: desired force, social
force, dodge force and obstacle force. At each execution the acceleration
is calculated as weighted sum of these forces and, subsequently, the new
speed is obtained from the previous step speed and the current acceleration.
This value must be obviously lower than the maximum allowed speed of a
pedestrian in order to simulate the different speeds that a pedestrian can
support.

Desired Force component The desired force represents the attractive
force to the target; the target is the node in the pedestrian’s neighborhood
which has the lowest gradient value. The components of this force are pro-
portional to the distance from the target node, according to the following
formulas:

desiredForcex = distancex
distance

desiredForcey = distancey
distance

Where distancex and distancey are respectively the distance along the
x-axis and the y-axis between the target node and the pedestrian; while
distance is the Euclidean distance between these nodes.

Social Force component The social force is the repulsive force among
pedestrians which ensures that they will avoid each other without colliding.

According to [9] and [14], every human being has the need for a living
space that, under normal conditions (i.e. not panic), is required to be not
violated. If one pedestrian j invades the vital space of another pedestrian
i, namely he is at a distance lower than a certain interaction range (rappre-
sented by the variable INTERACTION RANGE in class SocialForceAgent),
the repulsive force is calculated according to the following formula [11]:

~F rep
ij = −mikij

(ηv0i +vij)2

dij
~eij

29

Where:

• mi is the mass of i− th pedestrian;

• kij reduces the effective range of the repulsive force to the angle of
vision and is calculated with the following formula:

kij =

{
(~vi· ~eij)

‖~vi‖ , if ~vi · ~eij > 0 and ‖~vi‖ 6= 0

0, otherwise

• η is the social force strength; we have chosen a value equal to 0.2
according to [11].

• dij is the effective distance between pedestrian i and j.

• vij is the relative speed and it is defined in such a way that slower
pedestrians are less affected by the presence of faster pedestrians in
front of them:

vij =

{
(~vi − ~vj) · ~eij, if (~vi − ~vj) · ~eij > 0

0, otherwise

• eij is the force direction between the two pedestrian.

Dodge Force Component The dodge force represents the force which
enables a pedestrian to turn to the right or to the left if she is at a dis-
tance shorter than a certain range (rappresented by the variable PROX-
IMITY TURN RANGE in class SocialForceAgent) from another pedestrian.
This distance was set to 0.5 according to [25]. According to [15], depending
on the country in which they are grown, people prefer to get around obstacles
from the right or from the left: for example, the British (according to their
driving rules) prefer to get around obstacles from the left, while in the rest
of Europe from the right. In particular, our solution is to make a change of
direction of ±45 degrees according to the following mathematical formulas:

• Turning to the left:

dodgeForcex = −dodgeForceStrength ∗ desiredForcey
dodgeForcey = dodgeForceStrength ∗ desiredForcex

• Turning to the right:

30

dodgeForcex = dodgeForceStrength ∗ desiredForcey
dodgeForcey = −dodgeForceStrength ∗ desiredForcex

Where dodgeForceStrength is a factor that represents the force inten-
sity. A factor (represented by the variable TURN RIGHT PROBABILITY
in class SocialForceAgent) represents the percentage by which a pedestrian
choose to turn to the right. This factor is, obviously, higher for Europeans
and lower for Asians and British.

Obstacle Force component Finally, the obstacle force represents the re-
pulsive force generated by the obstacles encountered along the way. Given all
the obstacles that the pedestrian can see, which are all those within a certain
range (represented by the variable OBSTACLE INTERACTION RANGE in
class SocialForceAgent), the nearest is taken and the repulsive force is cal-
culated in the center of this obstacle. Due to the fact that we have choose
to calculate the force in the center of the obstacle, the pedestrian is subject
to a force that is bigger as the pedestrian is far from the center; in this way
we have a correct contribution even if the obstacle has not regular shape
(square) but irregular like rectangle. Moreover, only the nodes which are in
sight - namely, those which are not behind an obstacle - are considered in
order to compute the available directions.

obstacleForcex = −obstacleForceStrength ∗ distancex
distance

obstacleForcey = −obstacleForceStrength ∗ distancey
distance

Where obstacleForceStrength is a factor that represents the force in-
tensity; distancex and distancey are the distance along the x-axis and the
distance along the y-axis respectively between the center of the obstacle and
the pedestrian and distance is the Euclidean distance between these nodes.

Displacement computation

Once the speed is calculated as the weighted sum of the four forces described
above, the displacement is obtained from the variation of the pedestrian
position in the unit of time ∆t, using the following formulas:

dx = ∆t ∗ vx
dy = ∆t ∗ vy

Where vx and vy are the speed vector components.
To avoid the occurrence of sudden changes in direction, the final displace-
ment is calculated as a weighted average between the displacement calculated

31

at the previous cycle and the displacement computed in the current cycle. In
particular, the displacement of the previous cycle will have a greater weight
(80%) in order to not modify too much the desired direction of the pedes-
trian, namely to not have sudden direction changes. If the pedestrian is in
front of another pedestrian and the latter is sufficiently close to the first, a
displacement adjustement is performed that is equivalent to a slowdown.

Reach the target

Because not all pedestrians can exactly reach the target, we chose to make
them stop only if, for a certain number of calculation cycles (represented by
the variable MIN DISP CYC TH in class SocialForceAgent), their displace-
ment is lower than a certain value (represented by the variable MIN DISPLAC
EMENT in class SocialForceAgent). This means that the pedestrian can
not proceed further (for example due to the presence of other pedestri-
ans) and so he has to stop in the reached position because this is surely
the closest position to the target node; if there is another target to reach,
it is possible to reset the flag (represented by the variable targetInLineOf-
Sight in the class SocialForceAgent) that represents the reaching of the tar-
get in order to make pedestrians move again. The minimum displacement
(MIN DISPLACEMENT) is 0.01; this value has been chosen after verify-
ing that when pedestrians are around the target, they aren’t able to per-
form displacement with a value greater than 0.01. Greater values may cause
pedestrians stop before they’ve reached the target. Moreover, the value of
the threshold (MIN DISP CYC TH) can be choosen in the range [150;250],
these values derive from several tests in which the time necessary to stop hs
been measured (see the table Table 2.1).

Table 2.1: Minimum displacement cycles threshold

Value Runs Average time
150 5 1.38s
200 6 1.75s
250 4 2.40s

Smallest values make the convergence time decrease but in many cases
make pedestrians to stop too far away from the target node; the same thing
appens, more rarely, when 150 is chosen as value for the parameter. This

32

make us choose 200 as best trade-off between the convergence time and dis-
tance from the target.

Finally, the user can decide, by setting a boolean flag (represented by
the variable stopAtTarget in class SocialForceAgent) at pedestrian creation,
if pedestrians have to stop the movement once the target is reached. If
this flag is true pedestrians will stop as discussed above, otherwise they will
continue to move: this could be useful in the case that the user want to add
a new target node as the previuous is been reached.

Group movement

Each pedestrian has a groupId that is equal to 0 if the pedestrian does not
belong to any group and is different from 0 if the pedestrian belongs to some
group. The realization of the group behavior was obtained by using a kind
of positive reinforcement through the release of pheromone modelled by a
tuple like pheromone(N, GroupId) where N is the amount of pheromone in
that node and GroupId is the identifier of the group that must follow that
pheromone. Initially pedestrians search the node with minimum gradient
and release pheromone in it. In subsequent cycles, each pedestrian search
the node that has the highest pheromone value and moves towards it. Once
the pedestrian reaches that node, each pedestrian searches again the node
with the lower gradient value, releasing again pheromone; this described
behavior is repeated cyclically. To avoid that pedestrians do not continue,
seeking the node with higher pheromone value, to choose the same node, it
is denied to return to nodes that are already visited. You can see that in the
group behavior there is a modest presence of randomness, in fact, if there are
two nodes with high levels of pheromone, it may happen that two different
groups emerge. This is a desired behaviour to recreate a random behavior
for which a pedestrian can choose not to follow the rest of the group.

Qualitative evaluation

The realistic pedestrians have been qualitatively evaluated during the Al-
maOrienta 2013 event in Bologna. We took a few hours of videos of people
walking the exhibition, then we rebuilt the environment within the simula-
tor, placing the realistic pedestrians in positions resembling those filmed. We
tried to let the pedestrian move and see if their movement was qualitatively
comparable to what was on the videos. We obtained good results, in partic-
ular we have seen a similar behaviour in avoiding other people (the videos
confirmed the preferentially avoidance towards the right hand side), in group
behaviour (pedestrian belonging to big groups tend to split in sub-groups of

33

few units each) and in dealing with physical obstacles, in particular doors.

How to use

To use this Alchemist extension is necessary to define an environment popu-
lated with nodes that represent pedestrians. In this section will be illustrated
an example of usage.

A simple example In Listing 2.5, a simulation file is provided featuring:

• One target

• A set of European pedestrians who want to reach a target

• A set of pedestrians who stay in the center of the environment

Listing 2.5: Usage example for the realistic indoor pedestrian model
1 default environment
2 l inking nodes in range 1 .5
3
4 lsa source <source , Type , Distance>
5 lsa t a r g e t <source , target , 0>
6 lsa grad i en t <grad , Type , Distance>
7 lsa crowd <crowd , L>
8
9 place 200 nodes in rect (0 , 0 , 19 , 9) interval 1

10 containing in point (16 , 4) t a r g e t
11 with reactions
12 reaction SAPEREGradient
13 params ”ENV,NODE,RANDOM, source , grad ient , 2 , ((Distance+#D) +(0.5∗L)) , crowd

,2000000 ,10” []−−>[]
14 eco−law compute crowd []−1−> [agent CrowdSensor params ”ENV,NODE”]
15
16 place 15 nodes in c irc le (3 , 4 , 3)
17 containing in a l l <person>
18 with reactions
19 []−100−>[agent SocialForceEuropeanAgent params ”ENV,NODE,RANDOM, gradient

, 2 , 0 , f a l s e ”]
20
21 place 20 nodes in c irc le (10 , 4 , 2)
22 containing in a l l <person>

The execution rate was setted to 100 supposing that at each execu-
tion a time interval (represented by the variable DELTA T in class Social-
ForceAgent) of 0.01 is used to compute the new displacement. This means
that in one second a time interval of 1 is considered. Changing the execution
rate value lead to change the time interval value too.

34

Figure 2.3: A video frame took during the event, and a snapshot of the
simulator running the same two-groups passing by the two doors.

35

Stopping at the target To make pedestrians to stop or continue the
movement once the target has been reached is sufficient to change the sixth
parameter of the constructor of the pedestrian agent. To make pedestrians
to stop set the sixth paramenter to false, otherwise set it to true.

Group behavior To make pedestrians move towards the target forming
a group is sufficient to change the fifth parameter of the constructor of the
pedestrian agent. In fact, if you specify the value zero as in the previous
paragraph the pedestrian is not part of a group. If you specify a number
not equal to zero, the pedestrian is part of the group corresponding to that
number and it moves towards the target joining the pedestrians of the group.
Listing 2.6 presents an example of group specification:

Listing 2.6: Usage example for the realistic pedestrians group dynamics
1 [. . . environment d e f i n i t i o n . . .]
2
3 [. . . lsa d e f i n i t i o n . . .]
4
5 place 15 nodes in c irc le (3 , 4 , 3)
6 containing in a l l <person>
7 with reactions
8 []−100−>[agent SocialForceEuropeanAgent params ”ENV,NODE,RANDOM, gradient

, 2 , 1 , f a l s e ”]
9

10 [. . . g rad i en t d e f i n i t i o n . . .]
11
12 [. . . o ther reactions , nodes , and so on . . .]

Two pedestrian sets To define two sets of pedestrian having two differ-
ent targets is necessary to define a second target and a second code block
representing another set of pedestrians. See in Listing 2.7 an example of such
specification:

Listing 2.7: Example involving realistic pedestrians with two gradients
1 default environment
2 l inking nodes in range 1 .5
3
4 lsa source <source , Type , Distance>
5 lsa source2 <source , Type , Distance>
6 lsa grad i en t <grad , Type , Distance>
7 lsa grad i ent1 <grad , target , Distance2>
8 lsa grad i ent2 <grad , target2 , Distance2>
9 lsa crowd <crowd , L>

10
11 place 200 nodes in rect (0 , 0 , 19 , 9) interval 1
12 containing
13 in point (16 , 4) <source , target , 0>
14 in point (3 , 4) <source , target2 , 0>
15 with reactions
16 reaction SAPEREGradient params ”ENV,NODE,RANDOM, source , grad ient , 2 , ((Distance

+#D) +(0.5∗L)) , crowd ,2000000 ,10” []−−>[]

36

17 eco−law compute crowd []−1−> [agent CrowdSensor params ”ENV,NODE”]
18
19 place 15 nodes in c irc le (3 , 4 , 3)
20 containing in a l l <person>
21 with reactions
22 []−100−>[agent SocialForceEuropeanAgent params ”ENV,NODE,RANDOM, gradient1

, 2 , 0 , f a l s e ”]
23
24 place 15 nodes in c irc le (16 , 4 , 3)
25 containing in a l l <person>
26 with reactions
27 []−100−>[agent SocialForceEuropeanAgent params ”ENV,NODE,RANDOM, gradient2

, 2 , 0 , f a l s e ”]
28
29 place 20 nodes in c irc le (10 , 4 , 2)
30 containing in a l l <person>

Obviously, to make the two pedestrians sets move towards their target
forming a group, is sufficient to specify a value not equal to zero in the fifth
parameter of pedestrian agent constructors.

Defining pedestrians of different cultures In a previous section, we
said that European and Asian people has different approach to dodge the
obstacle. To implement this and other features (like different speed, different
pedestrian size and different vital space size) is necessary to write a Social-
ForceAgent extension and define there, it the parameters that you want to
change. For more detail just take a look at the implementation of the fol-
lowing classes:

• SocialForceAgent : representing a generic pedestrian agent

• SocialForceEuropeanAgent : extension representing the European be-
havior

• SocialForceAsianAgent : extension representing the Asian behavior

2.6 Additional features

2.6.1 Alchemist2Blender: An Alchemist to Blender in-
terface

Alchemist2Blender is a simple Java class which runs a simulation and outputs
data - using the Alchemist2BlenderOutputMonitor - to some files, in a csv-
like format. These can be later importer into Blender to have a 3D rendering
of the simulation.

37

The Java OutputMonitor The OutputMonitor is very simple: for each
step it writes the simulation data to two different files:

• one containing the moving nodes (.nod file extension);

• one containing the gradients (.gra file extension);

It also writes all the obstacles in a .wal file. The .nod file row structure is
the sequent: timestamp;step number;node;node;...; where ’node’ is composed
by:

• node name: the node’s ID

• node x: its ’x’ value

• node y: its ’y’ value

• node options: other parameters contained in the node.

For example:
0,00898;00020;469,8.52764,4.67685,person;468,7.80877,4.59889,person;...

The .gra file structure is very similar, but ’node options’ is substituted by
’node z’, as they have three dimensions: timestamp;step number;node;node;...;
where ’node’ is composed by:

• node name: the node’s ID

• node x: its ’x’ value

• node y: its ’y’ value

• node z: its ’z’ value

An example can be found in the following line:
0,21576;00300;344,24.0,8.0,3;319,24.0,7.0,2;318,23.0,7.0,3;

The .wal file is even simpler, as it contains just couple of points x1,y1,x2,y2
which are the opposite vertices of an obstacle. For example:

33.75,18.5,34.0,20.0;32.5,19.75,34.0,20.0;...

Alchemist2Blender may be launched with just one parameter, that is the
full path of the input XML file. The other two parameters are optional and
are the max number of steps to process - default: 2000 - and the frame/step
rate - default: 25. This last parameter may be useful in case of slow sim-
ulations, as it outputs only one frame every N ones, making the rendering
faster.

38

The Blender interface The Blender interface consists in some Python
files which have to be put in the Blender add-on directory; after this, they
may be activated from the ’User preferences’ menu. When the add-ons are
active, in the ’File -¿ Import’ menu you may find some new entries, for
example ’Alchemist nodes (.nod)’. The user just needs to choose the correct
file, and the script does everything else. All the add-ons have a very similar
functioning:

• first of all, the module imports data in a Python dictionary;

• then it creates all the meshes which represent the data, for every step;

• afther this, it creates a frame handler wich, for every frame, hides all
the objects which are not related to that step.

This last passage is not needed when importing obstacles, as their position
does not change during the simulation. Some of the add-ons may need ex-
ternal libraries, which are specified in the module comments, as well as the
location where to download the needed files.

2.6.2 From png image to Environment

Scope

Today on the web it’s easy to find many png images that represent maps
useful to use in some simulations. It’s also easy to create a particular map
of interest using any painting tool and saving it in png. Than the aim of
this extension is creating Environments, usable in the simulator, from png
images.

Used algorithms

In the development of this extension were created several algorithms. First
we must read the png image and take all the informations we need in the
next steps. The algorithm used to extract informations is very simple:

1. Read all the pixels colour values and save them;

2. Individuate all the possible pixels that can be vertices of a shape.

To do the second step the algorithm used, in details, is the following:

39

Algorithm 5 Individuate all the possible pixels that can be vertices of a
shape

1: create an empty list for the possible vertices
2: for each pixel in the image do
3: read the pixel colour value
4: if the pixel is the first or the last of a line then
5: add the pixel to the list
6: save the its colour value
7: else
8: if the current colour value is different from the previous then
9: add the current pixel to the list

10: add the previous pixel to the list
11: save the current colour value

12: return the list that contains all the possible vertices

The most important and complex algorithm is the one that does the
partitioning of the image in rectangle. This algorithm is based on the article
[10]. The main steps are:

1. Finds the vertices of the image and controls if are concave or convex;

2. Sorts them by row;

3. Finds the edges of the figures;

4. Sorts the vertices by column;

5. Finds internal lines joining couple of collinear edges;

6. Finds the maximum subset of these internal lines where every line do
not touch each other;

7. Completes the partition;

8. Finds all the rectangles.

To implement the first step for every pixel in the list, returned from the
Algorithm 5, we analyse the adjacent pixels. Every vertex of the pixel is a
candidate vertex of the image. We consider adjacent pixels as you can see in
the Figure 2.4.

40

Figure 2.4: Pixels adjacency all the numbered pixels are adjacent to the black
one.

When the vertices list is sorted by row the edges of the figure are easy to
find.

Algorithm 6 Finds the edges of the image

1: create two empty edge list h-edge and v-edge
2: for each vertex of the image do
3: if it’s not a vertex of a horizontal edge then
4: the next vertex in the list is the other vertex of the horizontal edge
5: add the founded edge to h-edge
6: if it’s not a vertex of a vertical edge then
7: the first vertex in the list with the same y value is the other vertex of the vertical edge
8: add the founded edge to v-edge

The next step of the algorithm finds the internal line joining couple of
collinear edges. An internal line joining two horizontal\vertical collinear lines
exists only if:

1. There are four consecutive horizontal\vertical vertices with the same
y\x coordinate;

2. The second and the third vertex are concave;

3. No vertical\horizontal edges intersect the segment joining the second
and the third vertex.

Now the algorithm proceed finding the subset of internal lines that do not
intersect each other. Before applying the proposed algorithm we divide the
internal lines with no intersection from the others and then uses the procedure
only on the lines that at less intersects another one. Every internal edge that
have an intersection can be represented as a vertex of a graph and every
edge of the graph exist only if the there is an intersection between the two
vertices (the internal edges). Two algorithm have been created to do this
step, one finds the maximum number of non intersecting edge that is the
optimum solution and the other is a simply heuristic that find a subset. The

41

implementation of the algorithm that finds the optimum follows the article
[20]. A representation of the algorithm can be:

Algorithm 7 Finds the maximum independent set

1: create a empty list of edges called result
2: create the variable maxindependentsize and set them to zero
3: while the graph cardinality isn’t zero do
4: select the edge that has more intersections
5: create a list called mis containing all the edges apart the ones that intersects the selected edges
6: if the mis size is greater than two and greater than maxindependentsize then
7: remove intersecting edges from the list
8: if the list size is grater than maxindependentsize then
9: maxindependentsize = list size

10: result = list
11: all the remaining vertices of the graph are independent
12: if the remaining edges number is greater than maxindependentsize then
13: result = list containing all the remaining edges

The heuristic algorithm is faster than the other and easy to explain. We
obtain the list of edge that have at least one intersection from the graph,
than one edge at time we control if it have intersection with the others edges
in the list. When an intersection occurs the edge is removed from the list
and the algorithm proceed with another edge. If no intersection are finded
we proceed with the following edge.

At the end the lines with no intersection are added to the list created by
the algorithm used.

To complete the partition for every remaining concave vertex that isn’t
a vertex of an internal line we draw an horizontal line until the next vertical
edge or internal line.

The last, but not the less important, step of the algorithm is the in-
dividuation of all the rectangles thanks to the informations created by the
previous steps. The algorithm used here wasn’t taken from the literature,
it was created expressly for this extension. It’s explained by the followings
lines of code:

42

Algorithm 8 Individuate all the rectangles

1: create an empty rectangles list called result
2: while there are horizontal edges do
3: find the top left edge, this is the one or one of the horizontal edges composing the top horizontal

edge of the rectangle
4: try to find the first vertical edge that intersect
5: while there aren’t vertical edges that intersect do
6: find the next horizontal edge
7: try to find the first vertical edge that intersect
8: the founded edge is the one or one of the vertical edges composing the right vertical edge of the

rectangle
9: try to find the first horizontal edge that intersect

10: while there aren’t horizontal edges that intersect do
11: find the next vertical edge
12: try to find the first horizontal edge that intersect
13: the founded horizontal edge is the one of one of the horizontal edges composing the bottom

horizontal edge of the rectangle
14: add the rectangle founded to result
15: remove from the edges lists all the edges composing the rectangle founded

How to use the extension

As seen in Section 2.5.1 you can write new simulations through the high-level
language. To use this extension it’s sufficient to use as environment in the
alsap specification file the PngEnvironment. The params that can be given
to the environment are the following:

• A double value called range (mandatory);

• A long value called delta;

• The png image path (mandatory);

• A double value called zoom;

• A boolean called findopt;

• A list of colours that represent the obstacles.

The range value is the maximum comunication range between the nodes
of the environment;

Delta is the x and y coordinate value offset of the map in the environment.
For example if the given delta value is three all the x and y coordinate of the
map are augmented of three. If not specified the delta value is by default
zero, and consequently no offset is applied.

The image path specified must be absolute.
With the zoom value you can specify the zooming factor of the image

in percentage. For example, if you want a fifty percent zooming factor you
must pass 50. If not specified by default its value is 100.

43

The boolean findopt must be true if you want find the optimum result or
false otherwise. By default its value is set to false.

Every colour that represents obstacles must be passed as a triple of int
values. Any int value is a RGB component of the colour, if no colours are
specified, the system defaults to black.

The simplest example you may try is the one in Listing 2.8, while a more
complete one can be found in Listing 2.9.

Listing 2.8: Simple example with PngEnvironment
1 environment type PngEnvironment params ”path/ to /your/ image . png”
2 l inking nodes in range 1

Listing 2.9: More complete example with PngEnvironment
1 environment type PngEnvironment params ”10 ,/ path/ to /your/ image . png , f a l s e ”
2 l inking nodes in range 75
3
4 lsa s <source , Type , Distance>
5 lsa t a r g e t <source , target , 0>
6 lsa grad i en t <grad , Type , Distance>
7 lsa c <crowd , L>
8
9 place 700 nodes in rect (0 ,0 ,1500 ,1200) interval 50

10 containing in point (400 , 900) t a r g e t
11 with reactions
12 reaction SAPEREGradient params ”ENV,NODE,RANDOM, s , grad ient , 2 , ((Distance+#D)

+(0.5∗L)) , c ,200000 ,10” []−−>[]
13 eco−law compute crowd []−1−> [agent CrowdSensor params ”ENV,NODE”]
14
15 place 15 nodes in c irc le (900 , 900 , 100)
16 containing in a l l <person>
17 with reactions
18 []−100−>[agent SocialForceEuropeanAgent params ”ENV,NODE,RANDOM, gradient

, 2 , 0 , f a l s e ”]

2.6.3 Real world maps

Alchemist is able to load and simulate on real world maps from Open-
StreetMap [3]. It is able to navigate in those maps pedestrians, cars and
bikes very quickly, thanks to GraphHopper [2].

Preliminary operations

Downloading maps OpenStreetMap allows users to download an arbi-
trarily big area of the world (whole planet included). Such map is encoded
in XML. To obtain a map given some boundaries (the so-called bounding
box), an online service is available [7]. When using such service, remem-
ber to disable the search by tag (you will need the whole data in the map,
then use the “search by area” tool to obtain boundaries. An URL will be
displayed, showing the query which should be performed to get the XML file.

44

Obviously, a browser is not the perfect tool for downloading a hudndred
of megabytes big XML file, and consequently I suggest to use wget [1] or a
similar tool for performing the operation. In case of wget, the command to
issue will look like:

wget http://open.mapquestapi.com/xapi/api/0.6/*[bbox=MinLong,MinLat,MaxLong,MaxLat]

For instance, the following command downloads a map for the whole city of
Cesena (Italy):

wget http://open.mapquestapi.com/xapi/api/0.6/*[bbox=12.1734,44.11947,12.3107,44.1749]

For the most commonly downloaded portions of the globe, specific web
services exist that provide updated versions of the map ready for a fast
download. A comprehensive list of those services is available at [6].

Refining maps Once downloaded, it is warmly suggested, albeit not manda-
tory, to refine the map. There are two reasons for executing this operation:

1. Performance: Alchemist can import the OpenStreetMap maps in
three forms: XML, compressed XML or Protocolbuffer Binary Format
(PBF). The first format is great for ease of parsing and sharing, but
the last is far more efficient both in terms of performance and space
consumed. To better understand the difference, consider that the same
map (we run tests with a map of the whole city of Vienna) was over
200MB in uncompressed XML, 42.6MB in compressed XML and 21MB
in PBF. The processing time was over a minute for the first two and
below ten seconds for the latter.

2. Exclusion of unnecessary parts: often, downloaded maps include por-
tions of the world we are not interested in, e.g. if a long straight
highway or a big part is part of the downloaded file, it may be included
entirely, even if the boundaries are outside those manually specified.

To overcome both problems, I suggest to use Osmosis [4]. If you have a
map.xml file that you want to convert into a map.pbf file filtering precisely
the bounding box with coordinates N, W, S and E (respectively for north,
west, south and east) you can issue a command such as:

osmosis --rx enableDateParsing=no file=map.xml --bb top=N left=W bottom=S right=E --wb file=map.pbf

Details on the usage og Osmosi are available at [5]

45

IMapEnvironment

The environment designed to support the OpenStreetMap maps is OSMEn-
vironment which implements IMapEnvironment. The smaller constructor
available accepts a single parameter, namely a String with the path of the
map. When using this environment, it is strongly recommended not to use
the default IPosition type but to explicitly use LatLongPosition. In fact, this
class allows for specifying points using latitude and longitude instead of the
classic x and y positions, and also automatically provides to translate the
distances in meters. When using such positions, also the nodes placement
must be specified in latitude/longitude format.

In Listing 2.10 a minimal example is written. Alchemist will load the
map in /home/user/map.pbf, will use latitude and longitude as positions
and will link together nodes which are at most 50 meters away from each
other.

Listing 2.10: Loading a OSMEnvironment
1 environment type OSMEnvironment params ”/home/ user /map . pbf ”
2 l inking nodes in range 50
3 with position type LatLongPosit ion

GPS traces

Available agents

2.6.4 Approximate Probabilistic Model Checker

46

http://alchemist-maven.apice.unibo.it/apidocs/it.unibo.alchemist.implementations.environments/OSMEnvironment.html
http://alchemist-maven.apice.unibo.it/apidocs/it.unibo.alchemist.implementations.environments/OSMEnvironment.html
http://alchemist-maven.apice.unibo.it/apidocs/it.unibo.alchemist.interfaces/IMapEnvironment.html
http://alchemist-maven.apice.unibo.it/apidocs/it.unibo.alchemist.interfaces/IPosition.html
http://alchemist-maven.apice.unibo.it/apidocs/it.unibo.alchemist.implementations.positions/LatLongPosition.html

Approximate Model Checking in a nutshell

This paragraph has the sole purpose to be an hand extended towards the
totally APMC unaware user. A more exhaustive introduction can be found
in many articles and manuals, like [19], [16], [8].

In the purpose of consistently evaluating the behavior of complex stochas-
tic systems, and considering the typical impossibility to perform proper
model checking for such systems, a facility is provided in Alchemist to obtain
approximate model checking.

Proper model checking analyzes any possible state of the system, to check
properties like liveness or safety. Instead of analyzing any state, which rapidly
becomes unfeasible as the number of states grows, an approximate model
checker performs many simulations of the observed system and returns not
an exact result, as a proper model checker would, but a confidence interval
of a certain dimension for the observed property.

An example could be: With which probability the good thing I expect
from my system will happen within 10 seconds? The answer to this question
could be the 99% confidence interval [0.95, 0.97]. Not only probabilities,
though. Confidence intervals can also be obtained for discrete and real values,
answering questions like how long does it take for... or How many items reach
the target whitin...

How to define the property to check

Since a specification language for properties hasn’t been built yet, the user
must write the needed classes himself, implementing the interfaces specified
in package it.unibo.alchemist.modelchecker.interfaces.

As shown in figure 2.5, three levels lie between an Environment and the
model checking result:

Observation The user must override here the observe method, which,
given an IEnvironment as a parameter, must look into it and ver-
ify the property of interest. This can be actually tricky at this time,
due to the lack of the possibility of naming things in an environment.
Is it possible, however, to exploit the automatic numbering of nodes,
and the getNodeByID method of IEnvironment. Various aspects can
be inspected, like a node’s position or the concentration of chemicals.
The method observe returns the value of interest, that can be of type
boolean or any numeric type.

The method canChange must be overridden too, and must return false

when observation can’t change, no matter how long the simulation will
go on.

47

Figure 2.5: The three tiers between Environment and model checker

Property This tier allows the user to compose observations in different
ways; a property can be the boolean AND operation over two (or more)
observations, or the sum, or mean, over some non boolean observa-
tions. Some classes have been provided to help the programmer: a
generic property, the boolean AND, the boolean OR.

Properties have a canChange method too, whit the same meaning of
above.

PropertyAggregator This last tier accepts as input the properties of all
the pool of simulations and performs the final aggregation; two main
cases are the transformation of a number of boolean observations in suc-
cess probability, or the computation of the mean of many numeric ob-
servations. These cases are realized in EventProbability and MeanAggregator.

In order to exploit some performance boost available in low variance
cases it is necessary to be able to compute the variance of aggregated
data. PropertyAggregator has been extended in PropertyAggregatorVariance,
which adding the getS method provides this functionality.

Performing the model checking

Once one or more Observations are built and put into a Property, and as
a PropertyAggregator is ready, a new instance of AlchemistAPMC can be
created; it’s time to specify the desired confidence interval as well.

As the object is constructed, we can get the process started invoking the
execute method, which requires three parameters: the path to the xml rep-

48

resentation of the environment, the maximum number of steps and maximum
execution time per simulation.

The call to execute will immediately return flow control to the invoking
thread. To get (and eventually wait for) the result, the getResult method
has to be called.

On AlchemistAPMC statistics

The reasoning behind this APMC engine is based mainly on [16] and [8]. In
these works, different statistical bounds are demonstrated for the number of
simulation necessary to obtain the desired confidence interval. These results
have been merged obtaining the bound used in AlchemistAPMC.

The bound from [16] is an upper bound for the dimension of the sample
needed to obtain a specified confidence interval, but only when working with
binomial distributions, that is, probabilities. Variance of the sample is not
considered here. Let’s name δ the width of our interval and α our confidence;
we’ll have that for any model on which we are observing a 1/0 property
resulting in a probability, we won’t need to run more than N = 4 ∗ ln

(
2
α

)
/δ2

simulations.
The bound from [8] is computed dynamically, exploiting the increasingly

meaningful knowledge about data variance that subsequent simulations give
us. The principle is: less variance, smaller sample. This bound is used in
AlchemistAPMC for non-binomial properties, like the mean of continuous
or discrete values, but it also plays a role in keeping sample size low when
working with probabilities. Basically, we gradually increase sample size and
periodically stop to examine generated data: knowing how many samples we
have already got and their result, and set a desired confidence, we can, for
large n, compute the width of our confidence interval as

δ0 = 2tα/2,n−1
s√
n

(2.1)

where tα/2,n−1 is the value in α/2 of Student’s t distribution with n−1 degrees
of freedom, and s is

s2 =

∑
i∈[1,n]Xi

2 −X2

n− 1
(2.2)

Here X is the value of the observed property, which, in case of probabilities,
takes value 1 for success, 0 otherwise. To obtain the desired confidence
interval we run new simulations, increasing sample size, until we get δ0 < δ.

As said before, this is the only stop criterion for non-binomial properties,
but it also gives us a way better bound for binomial ones, in the case of

49

low variance. Figure 2.6 shows, for different values of probability (which is
bound to variance in binomial distributions by the formula s2 = np(1−p))and
confidence, and for δ = 0.01, the value (estimated, in the case of the latter)
of both of our bounds.

Figure 2.6: Estimate of required sample size

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ti
m

a
 N

p

alpha=95%
alpha=99%

alpha=99,9%
alpha=99,99%

The actual necessary sample size is the minimum of the two; in practice,
given we don’t know probability in advance, we’ll use the dynamic bound,
periodically checking if we can stop, as described above, and we will stop
anyway when reaching the static bound.

The dynamic method needs to be given an adequate minimum sample
size, to avoid inconsistencies in cases of extremely low variance, when it is
possible that the first sample contains all results of the same type, e.g. all
zeros. It can be set by the user; by default it is set to the minimum number
of simulations for which, in a situation of all 0s (1s), if we added a simulation
with value 1 (0), the algorithm would still stop, because condition δ0 < δ
keeps holding. This minimum is found by solving

δ0 = 2tα/2,n−1
1

n
(2.3)

Figure 2.7 shows how this number varies against chosen confidence interval.
Variance is irrelevant here.

APMC real time preview

Statistically consistent results are available at the very end of the process,
but since some experiments can take a very long time, a facility has been

50

Figure 2.7: Minimum sample size

 10

 100

 1000

 10000

 0.0001 0.001 0.01

N
 m

in
im

o

(1-Confidenza)

delta=0,05%
delta=0,01%

delta=0.005%
delta=0.001%

developed to provide real time preview of the ongoing process for a particular
class of model checking experiments, namely those experiments in which the
realization of some property is checked against time. For such experiments,
a chart is plotted and continuously updated, showing the probability of the
observed property to be true at a certain time, along with its approximation
interval. This is achieved by doing a sampling over the set of time values
obtained with simulations, using a sampling interval that the user can set
accordingly to the precision he requires. Other controls that can be used on
the chart at any time are the setting of confidence, resulting on a different
approximation interval, and the level of zoom.

Usage example

Some experiments have been made to predict with Alchemist the behaviour
of a group of pedestrians, exploiting the force-based model

The specification in Listing 2.11 exploits the SAPERE DSL to model
an environment in which three different groups of pedestrians move to a
common target. As shown in following screen shot, the environment contains
some obstacles that the pedestrians, starting from the red dots, have to walk
through to get to the green area, their target. In the picture, grey dots are
pedestrians in their initial position, while green dots are pedestrians on their
way.

Listing 2.11: SAPERE-DSL specification
1 environment type BikeSharingEnv
2 l inking nodes in range 1 .5
3

51

4 lsa source <source , Type , Distance>
5 lsa t a r g e t <source , target , 0>
6 lsa grad i en t <grad , Type , Distance>
7 lsa crowd <crowd , L>
8
9 place 899 nodes in rect (0 , 0 , 47 , 18) interval 1

10 containing in point (17 , 10) t a r g e t
11 with reactions
12 reaction SAPEREGradient params ”ENV,NODE,RANDOM, source , grad ient , 2 , ((Distance

+#D) +(0.5∗L)) , crowd ,2000000 ,10” []−−>[]
13 eco−law compute crowd []−1−> [agent CrowdSensor params ”ENV,NODE”]
14
15 place 15 nodes in c irc le (42 , 7 , 5)
16 containing in a l l <person>
17 with reactions
18 []−100−>[agent SocialForceEuropeanAgent params ”ENV,NODE,RANDOM, gradient

, 2 , 1 , f a l s e ”]
19
20 place 10 nodes in c irc le (33 , 2 , 2)
21 containing in a l l <person>
22 with reactions
23 []−100−>[agent SocialForceEuropeanAgent params ”ENV,NODE,RANDOM, gradient

, 2 , 1 , f a l s e ”]
24
25 place 10 nodes in c irc le (8 , 2 , 3)
26 containing in a l l <person>
27 with reactions
28 []−100−>[agent SocialForceEuropeanAgent params ”ENV,NODE,RANDOM, gradient

, 2 , 1 , f a l s e ”]

The experiment we perform on this model consists in observing the time re-
quired for 80% of people to reach target area. This enables us to evaluate

52

the effectiveness of the abstraction we choose for pedestrians. For this ex-
periment we set a 1% approximation with a 99.9% confidence. This means
that we get statistically consistent data for any probability (lowest or highest
probabilities require, as stated, smaller samples) after running the simulation
about 25k times. For an experiment like this, running on a commercial pc,
this takes about 24 hours, but a significant preview of what is happening is
available much earlier, as shown in Figures 2.8 to 2.10, obtained respectively
after 160, 1k and 15k simulations.

Figure 2.8: Probability of condition satisfaction vs. time. Sample size = 160

The chart is shown as soon as a minimum sample is available, and is con-
tinuously updated, which is particularly useful in the case of complex models
that take long time to simulate, giving early detection of bad behaviour, and
fast previewing of the final result. To state this more clearly, let’s focus on
the information these three snap shot provide, and on the time required to
get them on an Intel i5-3230M machine. Suppose we are trying to under-
stand at what simulation time the probability overcomes 90%; do we really
need to perform a full 25k execution? Figure 2.8, obtained in seven minutes,
gives a rough representation of what is coming. The chart doesn’t take much
longer to get close to its final shape; Figure 2.9 is obtained after an hour,
and its differences from Figure 2.10, which took fifteen hours, could be, for
some uses, considered negligible. As stated, the whole model checking pro-
cess would require a 25k sample, taking a whole day of running. After an
hour of execution the value we are seeking is pretty well fixed in a space of
two or three tenths of second between 27 and 28. Being able to get relevant
data in such a shorter time is undoubtedly great advantage.

53

Figure 2.9: Probability of condition satisfaction vs. time. Sample size = 1k

Figure 2.10: Probability of condition satisfaction vs. time. Sample size =
15k

54

Figure 2.11:

Figure 2.12:

55

Figure 2.13:

Next three figures show how it is possible, at any time, to change desired
confidence to see how it affects the approximation on the chart. User interface
of the tool is also shown here. Figures 2.11 to 2.13 show three plots of the
same situation, where desired confidence is set respectively to 99%, 99.9%
and 99.99%.

56

Chapter 3

How to develop Alchemist

This chapter contains a methodology guide to ensure that developers will
follow a common workflow.

3.1 Mercurial

Alchemist relies on Mercurial as versioning system. Explaining the basics
on this control version system is out of the scope of this manual, however a
very good tutorial is available at http://hginit.com/. The tutorial includes
a special lesson meant to re-educate those who are used to the counter-
intuitive workflow of SVN. Git users, instead, should feel home when using
Mercurial.

In this section, I will suppose the user understood the Mercurial basics,
and I will only show how a developer could organise a good workflow, keeping
the base system synchronized with the mainline and continuously integrating
the new features.

Some final advices:

• The committer user name should be in the form:
Name Surname <youremail@yourprovider.smth>.

• Commit often. A commit is a point at which you can always go back,
it is cheap in terms of consumed resources and allows for much better
bug hunting.

• Never track binaries: Mercurial is not meant to deal with those. Track
only your source code, and be very careful when adding a resource (e.g.
an image) in tracking.

57

http://hginit.com/
http://hginit.com/

3.2 Maven

Alchemist relies on Maven to resolve the dependencies against libraries,
keep them up to date, and generate the whole project documentation in a
coherent and pleasant style.

3.3 PMD

From the official website description: “PMD is a source code analyzer. It
finds unused variables, empty catch blocks, unnecessary object creation, and
so forth”. Alchemist developers must install the PMD Eclipse plugin and
run it in order to be sure they produced high quality, clean code.

The PMD plugin can be installed from the update site http://pmd.

sourceforge.net/eclipse. Once installed, the proper rules set must be
set:

1. In the Eclipse properties menu, expand “PMD”;

2. Select “Rules configuration”;

3. Click on “Clear all”;

4. Click on “Import rules set”;

5. Browse your file system to find alchemist-pmd.xml, which contains the
rules definition for Alchemist: it comes with its own rules set, meant to
detect the most common badnesses not nagging the coder too much;

6. Click OK;

7. Click OK;

8. Refuse the complete build;

9. Use the freshly configured PMD plug-in by right click on your resources
and Clicking PMD ⇒ Check code with PMD.

3.4 Find Bugs

Find Bugs is “a program which uses static analysis to look for bugs in Java
code”. Basically, its goal is to statically check for bad practices in the Java
code.

58

http://pmd.sourceforge.net/eclipse
http://pmd.sourceforge.net/eclipse

As for PMD, the developers must install it and check their code, in order
to be sure they have written no error prone code lines. It can be installed with
the update site http://findbugs.cs.umd.edu/eclipse/. Once installed, it
can be used by simply right-clicking on the resource of interest and running
Find Bugs ⇒ Find Bugs. The code will be analysed and the problematic
part (if any) will be highlighted and decorated with a fancy bug icon.

3.5 Code style

Alchemist is developed by a number of people, each with its own style. This
may lead to code inconsistencies and different coding styles, which, with time,
may make harder for maintainers to read and fix the code. In order to prevent
this situation, the developers which want to contribute to the mainline code
must install Checkstyle and write their code respecting the guidelines. These
guidelines are basically just the recommendations from the Java Language
Specification, with some additional restriction which ensures a common code
style throughout the whole codebase. All the style recommendations are
compatible with the default Eclipse SDK formatting style: consequently,
most of the errors can be fixed automatically by running the internal code
formatter.

The Checkstyle specification to use is available at http://alchemist-maven.
apice.unibo.it/alchemist_checkstyle.xml. For those using Eclipse, a
plugin exists, it is available at http://eclipse-cs.sourceforge.net/. Its
installation is warmly recommended.

Once the plugin has been installed, it is necessary to configure a new
check configuration for Alchemist: all the built-in profiles are, in fact, too
restrictive. The Checkstyle options can be found under the Eclipse preferen-
cies. In the Global Check Configurations section, click on new, and configure
the new configuration as in Figure 3.1. Once done, select the Alchemist Style
from the Global Check Configurations list and click “Set as Default”. From
now on, you can enable Checkstyle in the projects you are working on, by
right click on the resource and Checkstyle ⇒ Activate Checkstyle.

3.6 Final remarks for the devels

3.6.1 Use internal logger

Alchemist comes with its logger, in the class L. In order to keep the output
clean, the developer should use the provided Logger for debug, warning and
error throwing purposes.

59

http://findbugs.cs.umd.edu/eclipse/
http://checkstyle.sourceforge.net/
http://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/specs/
http://checkstyle.sourceforge.net/
http://alchemist-maven.apice.unibo.it/alchemist_checkstyle.xml
http://alchemist-maven.apice.unibo.it/alchemist_checkstyle.xml
http://eclipse-cs.sourceforge.net/
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://alchemist-maven.apice.unibo.it/apidocs/it/unibo/alchemist/utils/L.html

Figure 3.1: Alchemist check configuration for Eclipse-CS

60

3.6.2 Test plan

It is important for the developers to provide some testing of their own classes,
in order to ease the whole system maintaining. Alchemist is structured
to provide a separate space for Java test sources and resources, in Maven
style. Every time a new version is released, the Maven documentation gets
regenerated, and among the other reports, the user can see the results of
Surefire, which runs all the tests, and Cobertura, which analyses which and
how many lines of code have actually been tested.

Currently, there is a wide portion of the code which is not tested enough,
mostly because there was a single developer and the project was in embryonic
stage. New contributions should not fall in the same error, and must come
along with (at least partial) tests.

3.7 How to report issues

Alchemist has its own issue tracking system, located on the same Bit-
bucket repository hosting the mainline code. It can be found at https:

//bitbucket.org/danysk/alchemist/issues. The issue tracking systems
is meant to be used for bug reports, but also for enhancement requests and
projects proposals.

When reporting a bug, it is important to attach everything that could help
the developers to help you. In particular, I suggest reading the document at
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html, which con-
tains a very exhaustive guide on how to correctly report issues. These are
just part of the final summary:

• The first aim of a bug report is to let the programmer see the failure
with their own eyes. If you can’t be with them to make it fail in front
of them, give them detailed instructions so that they can make it fail
for themselves.

• In case the first aim doesn’t succeed, and the programmer can’t see it
failing themselves, the second aim of a bug report is to describe what
went wrong. Describe everything in detail. State what you saw, and
also state what you expected to see. Write down the error messages,
especially if they have numbers in.

• When your computer does something unexpected, freeze. Do noth-
ing until you’re calm, and don’t do anything that you think might be
dangerous.

61

https://bitbucket.org/danysk/alchemist/issues
https://bitbucket.org/danysk/alchemist/issues
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

• By all means try to diagnose the fault yourself if you think you can,
but if you do, you should still report the symptoms as well.

• Be ready to provide extra information if the programmer needs it. If
they didn’t need it, they wouldn’t be asking for it. They aren’t being
deliberately awkward.

• Write clearly. Say what you mean, and make sure it can’t be misinter-
preted.

• Above all, be precise. Programmers like precision.

62

Bibliography

[1] Gnu wget. http://www.gnu.org/software/wget/. Accessed: Novem-
ber 2, 2013.

[2] Graphhopper road routing in java with openstreetmap. http://

graphhopper.com/. Accessed: November 2, 2013.

[3] Openstreetmap. http://www.openstreetmap.org/. Accessed: Novem-
ber 2, 2013.

[4] Osmosis - openstreetmap wiki. http://wiki.openstreetmap.org/

wiki/Osmosis. Accessed: November 2, 2013.

[5] Osmosis/detailed usage 0.38 - openstreetmap wiki. http://wiki.

openstreetmap.org/wiki/Osmosis/Detailed_Usage_0.38. Accessed:
November 2, 2013.

[6] Planet.osm - openstreetmap wiki. http://wiki.openstreetmap.org/

wiki/Planet.osm. Accessed: November 2, 2013.

[7] Xapi web service - mapquest platform. http://open.mapquestapi.

com/xapi/. Accessed: November 2, 2013.

[8] G. Agha, J. Meseguer, and K. Sen. Pmaude: Rewrite-based specifi-
cation language for probabilistic object systems. Electronic Notes in
Theoretical Computer Science, 153(2):213–239, 2006.

[9] J. Berrou, J. Beecham, P. Quaglia, M. Kagarlis, and A. Gerodimos. Cal-
ibration and validation of the Legion simulation model using empirical
data. In N. Waldau, P. Gattermann, H. Knoflacher, and M. Schreck-
enberg, editors, Pedestrian and Evacuation Dynamics 2005, chapter 15,
pages 167–181. Springer, Berlin, Heidelberg, 2007.

[10] R. Chadha and D. Allison. Partitioning rectilinear figures into rectan-
gles. In Proceedings of the 1988 ACM sixteenth annual conference on

63

http://www.gnu.org/software/wget/
http://graphhopper.com/
http://graphhopper.com/
http://www.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Osmosis
http://wiki.openstreetmap.org/wiki/Osmosis
http://wiki.openstreetmap.org/wiki/Osmosis/Detailed_Usage_0.38
http://wiki.openstreetmap.org/wiki/Osmosis/Detailed_Usage_0.38
http://wiki.openstreetmap.org/wiki/Planet.osm
http://wiki.openstreetmap.org/wiki/Planet.osm
http://open.mapquestapi.com/xapi/
http://open.mapquestapi.com/xapi/

Computer science, CSC ’88, pages 102–106, New York, NY, USA, 1988.
ACM.

[11] M. Chraibi, M. Freialdenhoven, A. Schadschneider, and A. Seyfried.
Modeling the desired direction in a force-based model for pedestrian
dynamics. 2012.

[12] M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of
chemical systems with many species and many channels. J. Phys. Chem.
A, 104:1876–1889, 2000.

[13] D. T. Gillespie. Exact stochastic simulation of coupled chemical reac-
tions. The Journal of Physical Chemistry, 81(25):2340–2361, December
1977.

[14] D. Helbing, L. Buzna, A. Johansson, and T. Werner. Self-organized
pedestrian crowd dynamics: Experiments, simulations, and design solu-
tions. Transportation Science, 39(1):1–24, Feb. 2005.

[15] D. Helbing, L. Buzna, A. Johansson, and T. Werner. Self-organized
pedestrian crowd dynamics: Experiments, simulations, and design solu-
tions. Transportation Science, 39(1):1–24, Feb. 2005.

[16] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate
probabilistic model checking. In B. Steffen and G. Levi, editors, Proc. 5th
International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI’04), volume 2937 of Lecture Notes in Computer
Science, pages 73–84. Springer, 2004.

[17] P. Lecca, A. E. C. Ihekwaba, L. Dematté, and C. Priami. Stochastic
simulation of the spatio-temporal dynamics of reaction-diffusion sys-
tems: the case for the bicoid gradient. J. Integrative Bioinformatics,
7(1), 2010.

[18] C. M. Macal and M. J. North. Tutorial on agent-based modelling and
simulation. Journal of Simulation, 4(3):151–162, 2010.

[19] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking
of stochastic systems. In Computer Aided Verification, pages 266–280.
Springer, 2005.

[20] A. Sharieh and W. A. Rawagepfeh. An algorithm for finding maximum
indipendent set in a graph. European Journal of Scientific Research,
23(4):586–596, 2008.

64

[21] A. Slepoy, A. P. Thompson, and S. J. Plimpton. A constant-time ki-
netic monte carlo algorithm for simulation of large biochemical reaction
networks. The Journal of Chemical Physics, 128(20):205101, 2008.

[22] M. Viroli, M. Casadei, S. Montagna, and F. Zambonelli. Spatial co-
ordination of pervasive services through chemical-inspired tuple spaces.
ACM Transactions on Autonomous and Adaptive Systems, 6(2):14:1 –
14:24, June 2011.

[23] M. Viroli, E. Nardini, G. Castelli, M. Mamei, and F. Zambonelli. A
coordination approach to adaptive pervasive service ecosystems. In
1st Awareness Workshop “Challenges in achieving self-awareness in au-
tonomous systems” (AWARE 2011). SASO 2011, Ann Arbor, MI, USA,
7 Oct. 2011.

[24] M. Viroli and F. Zambonelli. A biochemical approach to adaptive service
ecosystems. Information Sciences, 180(10):1876–1892, May 2010.

[25] J. Was, B. Gudowski, and P. J. Matuszyk. Social distances model of
pedestrian dynamics. In S. E. Yacoubi, B. Chopard, and S. Bandini,
editors, ACRI, volume 4173 of Lecture Notes in Computer Science, pages
492–501. Springer, 2006.

[26] F. Zambonelli and M. Viroli. A survey on nature-inspired metaphors
for pervasive service ecosystems. International Journal of Pervasive
Computing and Communications, 7(3):186–204, 2011.

65

	Generalities
	introduction
	Computational Model
	Engine
	Dynamic Indexed Priority Queue
	Dynamic Dependency Graph

	Incarnations and language chain

	Using Alchemist
	Getting started
	Using the simulator via Java
	Chemistry
	ListDouble
	SAPERE
	Specific language
	Writing agents
	Built-in fast gradient for SAPERE
	Gradient and Force-based model for Pedestrian Dynamics

	Additional features
	Alchemist2Blender: An Alchemist to Blender interface
	From png image to Environment
	Real world maps
	Approximate Probabilistic Model Checker

	How to develop Alchemist
	Mercurial
	Maven
	PMD
	Find Bugs
	Code style
	Final remarks for the devels
	Use internal logger
	Test plan

	How to report issues

