
Alerta Project
A log monitoring application

Logs STDOUT

Executor

Email

Notifications

Log4TailerConfiguration File

Reporting

Email STDOUTFile

cornerMark

inactivity

filter

n
o
ti

fy

Ctrl-C

Colors, like features, follow the changes of
the emotions.

Pablo Picasso

Copyright 2011 by Jordi Carrillo

Permission is granted to copy, distribute and/or modify this document under the terms of the gnu Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled gnu Free Documentation License.

2

Alerta User’s Guide
Version 3.0.9

http://bitbucket.org/jordilin/alerta

Jordi Carrillo

November 18, 2012

Alerta’s Contents

I The Basics 5

1 Introduction 5
1.1 Why should I use it? . 5
1.2 Components . 6

2 Installation and system requirements 6
2.1 System Requirements . 6
2.2 Installation . 6
2.3 Running the automated tests . 6

3 Command line parameters 6

II Advanced features 7

4 Targets 7
4.1 Every log with its own target scheme . 7

5 Throttling 7

6 Hostname appending 7

7 Notifications 8
7.1 Print Notification . 8

7.1.1 Available colors . 8
7.1.2 Providing user defined colors . 9
7.1.3 Every log with its own color . 9
7.1.4 Line spacing . 10

7.2 Filter Notification . 10
7.3 Ignore Notification . 10
7.4 CornerMark Notification . 10
7.5 Mail Notification . 11

7.5.1 Flood control . 11
7.5.2 When should I use Mail notification . 11

7.6 Inactivity Notification . 12
7.6.1 Inactivity Mail Notification . 12

7.7 Executor . 12
7.8 Poster notification . 12

3

http://bitbucket.org/jordilin/alerta

7.9 PrintShot . 13
7.9.1 requirements . 13
7.9.2 When should I use this feature . 13

7.10 SlowDown . 13

8 Pause Modes 13

9 Reporting 14
9.1 Reports by email . 14
9.2 Reports to a file . 14

10 Silent Mode 14
10.1 Silent Mode when no access to email notification . 15

11 Coloring Standard Input 15

12 Tailing last N lines 16

13 SSH Tailing 16
13.1 Dependencies for SSH tailing . 16

14 Configuration file 17

III Log4Server 20

15 A centralized reporting web application 20

16 Log4Tailer compliant server 20
16.1 Log4Tailer server API REST interface . 20

16.1.1 Registration . 20
16.1.2 Unregistration . 21
16.1.3 Alerting . 21
16.1.4 Status . 21

17 Log4Server deployment 22
17.1 Building the wsgi file . 22
17.2 Apache configuration . 22
17.3 Deciding on database . 23
17.4 Restarting Apache . 23
17.5 Main Web Frontend urls . 23

IV Case Studies 24

18 Full Automatic Log Monitorization 24

19 Semi Automatic Log Monitorization 24

20 No SMTP email access for log4tailer 24

4

1 Introduction Alerta Project

Part I

The Basics

1 Introduction

Alerta aims to provide a different approach to traditional log tailers. While the famous tail linux
command line tool does its job just well, Alerta adds some more advanced features, like throttling, user
defined colors and email notification just to name a few. Alerta project’s future is to become a very
good choice for monitoring application logs. List of features:

• Multitailing capability. It can tail multiple logs at a time

• Colors for every level: warn, info, debug, error and fatal

• Emphasize multiple targets (log traces) given regular expressions

• Follow log upon truncation by default

• User defined colors for each level

• Silent (daemonized) mode for full automatic log monitorization

• Throttling mode. Slow down the information being printed in the terminal

• Inactivity log monitoring

• mail notification

• Every log with its own color scheme

• Freeze output upon specific and well defined conditions

• Cornermark notification, visual alert box in your terminal when you are out of your desktop

• Log reporting by email, to a file or standard output

• Tailing remote logs by means of ssh

Most people use tail -F to tail and monitor the logs these days. When debugging enterprise class
applications you cannot just follow (in many situations) what is going on unless you go to the log, less
it and check if something was wrong, or just Ctrl-C tail program and scroll back. Human eye cannot
distinguish or grab a line out of thousands when that information is showed incredibly fast in the screen.
Alerta is just more than a tailer, it is becoming a full featured monitoring application.

The tail command line Unix/Linux tool has frustrated me many times, so I decided to write my own
tailer adding more functionalities as I needed them. There might be other tools out there, but to use
them you must install them system wide or write your own regexes and remember the terminal escape
characters to colorize the output. It wouldn’t be the first time I see people writing perl one liners with
complex regexes in order to tail logs. Alerta is an standalone application that you can run from your
/home directory if you desire with default common sense default colours. Of course, you will need read
access to those logs you want to monitor.

1.1 Why should I use it?

Just to name a few advantages:

1. Alerta is opensource, free software.

2. It runs in standalone mode. At this very moment, no installation is necessary. If you are a sysadmin
or an engineer monitoring logs in a network operation center, you can run Alerta from its folder.
Just untar and run the tailer.

3. Why do it in black and white, when you can do it with colors?

5

Alerta Project 3 Command line parameters

1.2 Components

Alerta has two components, namely:

• log4tailer. log4tailer is the main monitoring application. It has multiple features from tailing logs
in multicolor, to a real daemon that communicates with servers.

• log4server. It’s a centralized web server that can communicate with the log4tailer daemon to report
alertable logtraces.

2 Installation and system requirements

2.1 System Requirements

You’ll need at least version 2.4 of Python installed in your system. Python is multiplatform and you can
have a copy in http://www.python.org.

Alerta has been tested in Linux servers and it should run in any xterm compatible terminal such as
Putty, GNOME terminal and others.

2.2 Installation

Alerta can run in standalone mode, so no installation is necessary if you don’t want to. Untar, go to
the bin folder and run ;-). If for convenience, you want to install it, just type (having root access):

python setup.py install

and it will be installed system wide. For convenience, you can download the rpm, which has been packaged
for SUSE Enterprise Server 10.

2.3 Running the automated tests

The tests can be run using nosetests. You’ll need the pymox, mocker and paramiko packages to do that.
Alternatively, you can run:

make all

and it will install the required dependencies in the current directory plus a test script inside the bin
folder. Then, just type:

make runtests

3 Command line parameters

The full command line list is as follows:

./log4tail [-s silencemode] [-n numlines] [-t targets] [--throttle secs] [-i inactivityTime]

[-m mailnotification] [--no-mail-silence] [-c configfile] fullpathToLogs

6

http://www.python.org
http://somethingaboutorange.com/mrl/projects/nose/0.11.3/
http://code.google.com/p/pymox/
http://labix.org/mocker
http://www.lag.net/paramiko/packages

6 Hostname appending Alerta Project

Part II

Advanced features

4 Targets

Target option -t provides an easy way to identify, by means of a regular expression, a particular log
trace in your logs. By default, it will tail as normal and if your regex is matched, then that line will be
emphasized in a red background.
Example:

this is a log trace matched by target option

You can specify multiple comma separated targets. Each target is just an string being itself a simple
string or just a regular expression. It must be enclosed within simple or double quotes.

./log4tail -t [--target] ’regex1,regex2,regex3,...,regexN’ pathToLogs

4.1 Every log with its own target scheme

If you want every log with its own targets, then you must provide them in a config file. In order to do
that, just edit a text file and specify the next key, value optional parameters:

targets fullpathToLog0 = regex0 : color0; regex1 : color1;..; regexN : colorN

targets fullpathToLog1 = regex0 : color0; regex1 : color1;..; regexN : colorN

Where color0, ... colorN are comma separated combinations of foreground, background colors. Please
take a look at section 7.1.1.

An example of that could be:

targets /var/log/messages = iptables$: blue, on_red; ^2009-08-07 user : yellow

targets /var/log/mail.log = incoming \d+ : on_cyan; \d{1,3} something

If an specific regex does not have a corresponding color, then it will be emphasized using the default
color setup, which is the log trace on a red background.

5 Throttling

In release v05, the throttling option is provided. Many applications when started usually tend to upload
configuration parameters and log them very fast, which makes nearly impossible to identify anything
(unless you open the log and check). In that case, or in other ones where an application logs very fast,
you can provide the throttle option specifying the number of seconds you want to output in the screen
the logging information one line at a time. The number of seconds can be a floating point number.

./log4tail --throttle 0.5 pathToLogs

That would tail the logs showing the information every half a second one line at a time.

6 Hostname appending

In the case that log traces do not specify the hostname of the server they are being written, you can tell
Alerta to include it at the very beginning of each log trace. In order to enable that you must provide
the following in a configuration file:

print_hostname = true

Example:

7

Alerta Project 7 Notifications

stageserver: INFO trace in here

where stageserver would be the hostname where Alerta is tailing at.

7 Notifications

Alerta uses Notifications to identify what kind of action needs to trigger when it matches a certain line
with an specific log4j level. The actions provided as of version v05 are:

• Print (see subsection 7.1)

• Filter (see subsection 7.3)

• Ignore (see subsection 7.3)

• CornerMark (see subsection 7.4)

• Mail (see subsection 7.5)

• Inactivity (see subsection 7.6)

• Executor (see subsection 7.7)

• Poster (see subsection 7.8)

• PrintShot (see subsection 7.9)

• SlowDown (see subsection 7.10)

7.1 Print Notification

PrintAction does what the famous tail command does, just printing in the screen (terminal) but with
colors. When an application logs information very fast, colors provide and easy way to quickly identify a
certain pattern or problem. Every color identify an specific level according to the log4j java framework.

7.1.1 Available colors

Alerta provides the following foreground colors:

black (default for debug and trace) This is a test logtrace
red (default for fatal and critical) This is a test logtrace
green (default for info) This is a test logtrace
yellow (default for warning) This is a test logtrace
blue This is a test logtrace
magenta (default for error) This is a test logtrace
cyan This is a test logtrace

white This is a test logtrace

and the additional background colors:

on black this is a test logtrace

on red this is a test logtrace

on green this is a test logtrace

on yellow this is a test logtrace

on blue this is a test logtrace

on magenta this is a test logtrace

on cyan this is a test logtrace

on white this is a test logtrace

8

7 Notifications Alerta Project

7.1.2 Providing user defined colors

Default colors used in Alerta work well in clear background terminal, such as white. If your terminal
has black as background you can provide your own colors in a config file combining foreground and
background as you like, such as:

• warn = yellow, on cyan this is a WARN test logtrace

• fatal = red this is a FATAL test logtrace

• critical = red, on yellow this is a CRITICAL test logtrace

• error = magenta this is an ERROR test logtrace

• info = green, on black this is an INFO test logtrace

• debug = cyan this is a DEBUG test logtrace

• trace = black this is a TRACE test logtrace

and pass -c pathtoconfig as a parameter to Alerta.

It is not necessary to provide all the colors in the config file. If yellow is fine for warn and red for
fatal, you could say something like:

error = red

info = magenta

debug = green

error, info and debug colors will be overriden by your ones provided in the config file.

7.1.3 Every log with its own color

If you want to just tail different logs and you want each log with its own specific color, then you can
specify that in the config file. This feature overrides the level colors for that specific log, printing all
traces with the same color. For example, if we write in a config file something like:

/opt/log4/out0.log = green

/opt/log4/out1.log = yellow, on_blue

In that specific case, if we run:

log4tail -c configfile /opt/log4/out0.log /opt/log4/out1.log /opt/log4/out2.log

In the output you’ll see all traces from /opt/log4/out0.log in green, all traces from /opt/log4/out1.log
in yellow as foreground and blue as background and in the specific case of /opt/log4/out2.log it will use
the default color for each level. The example in Figure 1 will clarify that.

Figure 1: Alerta each log with its own color scheme

9

Alerta Project 7 Notifications

7.1.4 Line spacing

You can specify if you want line spacing in between log traces. By default, there is no line spacing, but
you can specify in your configuration file the next parameter:

tracespacing = 2

and Alerta will leave two white lines in between log traces. That configuration is good for easy
identification of specific patterns.

7.2 Filter Notification

It implements the tail and grep. You tail the log and grep for the information you are interested in. In
order to enable that feature you need to execute Alerta with the -f option:

./log4tail -f[--filter] regularexpression pathToLogs

7.3 Ignore Notification

The contrary of Filter Notification. It allows you to not notify all those log traces that match an specific
regular expression. Basically, it would be like tail and grep -v. In order to enable ignore just pass the
–ignore option in the command line as follows:

./log4tail [--ignore] regularexpression pathToLogs

7.4 CornerMark Notification

CornerMark notification will display a colored box in the bottom right side of the terminal in case a
Fatal, Error, Warning or Target trace has been found during the specified time. In order to activate this
type of notification you need to pass the option cornermark in the command line as follows:

./log4tail --cornermark numberofseconds pathToLogs

where numberofseconds can be any number.

Example of what you would see if that notification is activated can be seen in Figure 2.

Figure 2: Alerta with cornermark activated

For Fatals and Errors the mark will be red. For Warnings will be yellow and for Targets will be cyan.
These three colors are fine for easy identification in either clear terminal backgrounds or dark ones.

The motivation for having a corner mark is when you need to go for a break and want some kind of
visual alert when something goes wrong. The visual alert will be displayed for the number of seconds
you specify in the command line, so it is always advisable to be a number greater than the number of
seconds you’ll be out of your desktop.

10

7 Notifications Alerta Project

7.5 Mail Notification

Alerta has an SMTP email client built-in if you want to be notified by email. Mail notification is used
when you want to be notified by email when a target or level (error or fatal) has been found in the logs.
It is very useful when you are tailing for long hours and you cannot take a look at the screen from time
to time. It’s not necessary to run in silent mode anymore to use this action. This action can be triggered
by specifying the command line option -m and specifying the mail details in a configuration file.

./log4tail -m [--mail] -c [--config] [[-t [--targets] ’regex1,...,regexN’] pathToLogs

You’ll need to provide a configuration file with the following key parameters:

mail_username = yourusername

mail_hostname = youremailhostname

mail_port = port

mail_ssl = True or False

mail_from = Email from, it can be the same as your to address

mail_to = Email to where you will receive the alerts

The password will be asked during runtime to avoid being left in plain ascii in the configuration file. For
SSL connection you will need a Python 2.6 runtime, otherwise mail ssl should be left to False.

If an alert is raised, you will receive an email from mail from with the subject “Log4tailer alert” for
easy filtering.

Alerta works with SMTP Google email accounts1 if you have one. In Figure 3 you can see how it
looks like.

Figure 3: Alerta email alert in gmail

I have not tested Alerta with sendmail. For that you would have to configure sendmail to accept
smtp localhost connections. Explaining that is out of the scope of this document. You can take a look
in the sendmail documentation book in the Sendmail Consortium webpage at http://www.sendmail.org.

7.5.1 Flood control

In order to avoid being sent lots of notification emails when a flood of undesirable log traces turn up,
log4tailer has a way to control that by means of a 60 second gap, which means that non desirable levels
that happen within that gap are not notified. After that expiration time, the first undesirable log trace
to be found will be notified, triggering again a 60 second gap period.

7.5.2 When should I use Mail notification

MailAction would be like having additional eyes taking a look at the logs. That means, that you can
take a rest from time to time basically. If something is found, then you are notified. At this stage, it will
notify errors and fatals, considered to be non desired levels in an application. Along with that, you can
specify a series of patterns (regexes), log4tailer’s targets, that if found could mean that the application
is not behaving as expected. In that specific case, you will get notified as well.

1Using SMTP SSL connection. For SMTP SSL connectivity you’ll need a Python 2.6 runtime, as Python 2.4 does not
support it.

11

http://www.sendmail.org

Alerta Project 7 Notifications

7.6 Inactivity Notification

Inactivity monitors for inactivity time in the logs. Inactivity as of this release will just send an emphasized
line in the standard output notifying that there has been a lot of inactivity in that log. The inactivity
time must be provided in the command line with the -i parameter followed by the number of seconds of
inactivity to be monitored in the log. If there has not been any activity for the number of seconds given,
Alerta will print an emphasized line in the standard output.
As an example:

Inactivity in the log for 5.99955296516 seconds

The command line interface to activate the inactivity monitoring is:

./log4tail -i [--inact] numberinseconds pathToLogs

7.6.1 Inactivity Mail Notification

If you want a notification by email when inactivityAction is raised, just specify in the config file:

inactivitynotification = mail

By default is notification to the standard output as shown before.

7.7 Executor

The executor is another type of notification. Alerta will execute a program provided by the user if the
levels Error, Fatal or Critical have been found in the log trace. The user must provide the command line
option –executable along with a config file specifying the key executor with value the program you want
log4tailer to execute and its parameters separated by whitespaces. You can specify a couple of place
holders as well, where the first will be the log trace found and the second the log path where the trace
was found.

./log4tail --executable -c configfile pathToLogs

where in configfile you could write something like:

executor = anyscript %s %s

Where anyscript can be any program accepting two parameters, namely, lograce and log path. The
script you provide, of course, will need to have execution permissions for the user owning the Alerta
process.

As a simple example, if you cannot configure SMTP for log4tailer, then you could setup a script to
use the mail linux command line to send you an email by means of sendmail.

7.8 Poster notification

The poster notification is basically a REST client built in Alerta. That will open the possibility to
communicate with a centralized web server with a frontend. Poster notification will register to the server
and notify all those fatal, critical, errors or targets found in the log.

log4tail --post -c configfile.txt pathToLogs

where in the configfile.txt you will need to specify the following parameters:

server_url = url to the server

server_port = port

server_service_uri = /where/go/notifications

server_service_register_uri = /register/log4tailer/toserver

server_service_unregister_uri = /unregister/log4tailer/fromserver

Upon unregistration, the server will delete the log from the database and all its related logtraces. So,
if you don’t want that happen, just point the unregister uri to a non existent one, and the server will not
do anything, although it will keep the log as registered. Please, take a look at section 15.

12

8 Pause Modes Alerta Project

7.9 PrintShot

The PrintShot notification is basically the Print notification adding the capability of taking an screenshot
whenever we find an alertable log trace. An alertable log trace is any trace within levels Critical, Fatal
and Error or those that are targetable. In order to activate this notification, you need to execute Alerta
in the following manner:

log4tail --screenshot -c configfile.txt pathToLogs

Where in the configfile.txt you should specify the following key:

screenshot = fullpathtopicture.png

7.9.1 requirements

The PrintShot notification requires you have the import command line program to take screenshots. So,
make sure you have that software installed. Most modern Linux distributions have it.

7.9.2 When should I use this feature

This feature is useful whenever you are testing in your local desktop any software and you would like
to have a proof that some log trace is getting traced by that software. It would be good for software
documentation purposes as well.

7.10 SlowDown

When activated with the command line parameter slowdown it will slow down the tailing any time it
finds a target, warning, error or fatal log traces. Currently, it will tail one trace per second up to ten
consecutives traces.

It can be activated as follows:

log4tail --slowdown pathToLogs

8 Pause Modes

As of release 1.2 Alerta includes pausemodes feature. You will be able to pause or freeze the output by
a number of seconds if an specific level or target has been found. In order to enable pausemodes, you
must configure them in a config file providing any of the following keys2 :

pausedebug = secondsfordebug

pauseinfo = secondsforinfo

pausewarn = secondsforwarn

pauseerror = secondsforerror

pausefatal = secondsforfatal

pausetarget = secondsfortarget

You specify only those ones you want to use. For instance, if we want to freeze the output momentarily
(one second) for warnings:

pausewarn = 1

Then, we should run log4tailer like:

./log4tail -c yourconfig /pathToLogs

Pausetarget keyword will pause the output for any regex found in the log when running log4tailer with
-t option.

2the keys are case insensitive, so is the same pauseDEBUG or pausedebug. . .

13

Alerta Project 10 Silent Mode

9 Reporting

Every time we finish the tailing, log4tailer will output a report, specifying how long log4tailer has been
running and the number of events for debug, info and warn. In case of error and fatal, it will provide the
timestamps when they were found and their corresponding logtrace. Example:

Analytics:

Uptime:

0.0 years 0.0 days 0.0 hours 0.0 mins 45.9482619762 secs

Report for Log out.log

Levels Report:

FATAL:

ERROR:

15 May 2009 17:17:43=>> There was an error here

15 May 2009 17:17:44=>> There was another one in here

15 May 2009 17:17:45=>> Oops, another one

WARN:

4

INFO:

9

DEBUG:

14

TARGET:

3

OTHERS:

18 Jul 2010 11:45:44=>> Inactivity action detected

Ended log4tailer, because colors are fun

9.1 Reports by email

If you want a report by email after a given amount of time, then you can do that by means of the config
file. There are two values that can be setup, namely:

analyticsnotification = mail

analyticsgaptime = 10.5

If these two values are uncommented, then you will be required to provide the mail details in the same
configuration file, please check the subsection 7.5. The analyticsgaptime should be given in seconds, by
default is 3600 seconds (1 hour). You’ll receive a report after that period. After that period the statistical
information is flushed and then sent again once the gap notification time is expired and so on. In Figure 4
can see an email report notification in a Google gmail account.

9.2 Reports to a file

Alerta can give you a report to a file if you want to. Just provide the analyticsnotification in the
configuration file pointing to the reporting file (full path). An example of that would be:

analyticsnotification = /opt/reportlog4tailer.txt

analyticsgaptime = 10.5

10 Silent Mode

Silent mode, tails the logs in the background (daemonized tailer) and triggers the Mail notification,
notifying if error, fatal or any target has been found in the logs.

The syntax to activate the silent mode is:

./log4tail -s -c [--config] configfile [-t [--targets] ’regex1,..,regexN’] fullPathToLogs

Alerta will require a configuration file with your email details. Please take a look at the subsection 7.5
where specifies the key parameters that need to be specified.

14

11 Coloring Standard Input Alerta Project

Figure 4: Alerta email report notification

Note

It is very important to note that the path to the logs must be the full path, no relative. That’s
because when Alerta enters in daemonized mode, it switches to the root directory closing all
buffers and detaching itself from the terminal, in other words, it becomes a real daemon. As a
consequence, it is not necessary to execute it with the nohup Linux command line tool.

10.1 Silent Mode when no access to email notification

Alerta provides the no-mail-silence optional command line parameter, where it enters in daemonized
mode with no notification setup. It will be up to the user to setup some type of notification by means of
a configuration file. Actually, this option is thought to be used along with the -config parameter where
you can specify some notification. One of the scenarios would be when you want automatic monitoring
when the server you are running Alerta has no ports available for email notification. You could provide
a config file with analyticsnotification pointing to a file where Alerta would do a report of the logs status
every analyticsgaptime seconds or one hour by default.

./log4tail --no-mail-silence -c [--config] configfile fullPathToLogs

11 Coloring Standard Input

Log4tailer can colorize its standard input to the standard output. Main use would be when your appli-
cation does some output and finishes. In order to do that just type:

yourapplication | log4tail -

cat somelog.log | log4tail -

You can use the more Linux/Unix application in order to page the output. Example:

cat somelog.log | log4tail - | more

15

Alerta Project 13 SSH Tailing

12 Tailing last N lines

You can tail last N lines from the log with the -n option. Just type:

./log4tail -n numberOfLines pathToLog

and it will output the last numberOfLines from the log colorizing the corresponding levels.

13 SSH Tailing

SSH Tailing or remote tailing will allow you to tail multiple remote logs from different hosts. As of now,
only PrintAction is available, so you’ll be able to tail multiple remote logs in a colorful way as specified
in section 7.1. In order to tail remotely you’ll need to pass as a parameter the -r option along with some
config file parameters:

./log4tail -r -t targets -c yourconfig.txt

In your configfile you must provide the following parameters:

sshhostnames = hostname0, hostname1, hostnameN-1

hostname0 = username0, /var/log/log0, /var/log/log1, /var/log/logN-1

hostname1 = username1, /var/log/log0, /var/log/log1, /var/log/logN-1

hostnameN-1 = usernameN-1, /var/log/log0, /var/log/log1, /var/log/logN-1

Where:

• sshhostnames is a comma separated values of hostnames

• every hostname must be a parameter itself where first value should be its username and then the
logs you want to tail.

By default log4tailer will try to authenticate by using your rsa key under your ∼/.ssh/id rsa key if it
exists, otherwise it will use normal username, password authentication.

Note

Please be aware that you need to be the same username in both client and server. So, if you are
logging in as root the ssh key needs to be for the root user. Otherwise, it would request your
password.

If you want to use another rsa key other than the default id rsa key then you can provide one in the
config file by using the rsa key parameter. Example:

rsa_key = /home/youruser/.ssh/myrsakey

rsa key value must be the full path to the rsa key.

Some considerations are to be taking into account. As of now, remote tailing only provides PrintAc-
tion along with targets, that means that you will be able to tail with colors and emphasize those log traces
that match the comma separated regexes provided with -t. Besides, you’ll be able to use pauseModes set
up in the config file as explained in section 8.

To finish, just Ctrl-c and it will close all channels opened to communicate to the remote hosts.

13.1 Dependencies for SSH tailing

It is very important to note that for remote tailing, you’ll need to install the paramiko module, available
in major Linux distributions. In most of them is available under the name of python-paramiko. In Debian
systems, you’ll need to type:

sudo apt-get install python-paramiko

16

14 Configuration file Alerta Project

14 Configuration file

Config file is provided fully documented for convenience; just uncomment those lines you are interested
to enable and modify them for your specific purposes. In order to enable those values in the config file,
you must notify that to Alerta as a parameter in startup time.

./log4tail -c yourconfig.txt logs

If you always use the same configuration file, you can copy it in your HOME directory as .log4tailer and
log4tail will read it next time you execute the program, even if you don’t provide the -c option.

The config file provided for convenience is called log4tailerconfig.txt and is quoted below:

Optional config for log4tailer

to activate it

log4tail -c config yourlogs

==

Custom colours for every level. Available

colours are: red, green, yellow, blue, magenta, cyan

and white. Uncomment to override the default ones.

==

warn = yellow, on_cyan

error = magenta

fatal = red, on_green

info = green

debug = black

==

White lines in between log traces

==

tracespacing = 1

================================

targets: which lines do you want

to emphasize by using regexes

uncomment and provide your values.

================================

targets fullpathToLog0 = regex0 : color0; regex1 : color1;..; regexN : colorN

targets fullpathToLog1 = regex0 : color0; regex1 : color1;..; regexN : colorN

==

Every log with its own color scheme, overriding colors

for every level.

==

/path/to/log0 = yellow

/path/to/log1 = red

==

Pause the output by the number of seconds specified if

a level or target has been found. Uncomment the ones

you want. The value can be any number in seconds.

==

pausedebug = 4

17

Alerta Project 14 Configuration file

pauseinfo = 2

pausewarn = 1

pauseerror = 1

pausefatal = 1

pausetarget = 1

==

Mail details

==

mail_username = yourhostusername

mail_hostname = mailhostname

mail_port = 25

mail_ssl = True or False

mail_from = any from address

mail_to = alerts will be sent in the address you specify in here

===

executor notification

===

executor = program command1 command2 %s %s

executor = program command1 command2

===

poster notification

===

server_url = url to the server

server_port = port

server_service_uri = /where/go/notifications

server_service_register_uri = /register/log4tailer/toserver

server_service_unregister_uri = /unregister/log4tailer/fromserver

===

Inactivity notification, by email or stdout.

Possible values can be "mail" or "print". By default is "print".

===

inactivitynotification = mail

===

PrintShot notification

===

screenshot = fullpathtopicture.png

==

Analytics notification. You can make log4tailer send you

a report every analyticsgaptime seconds. By default it will be

printed out once finished. Uncomment analyticsnotification to

report by email or to a file. Another possible value can be "print".

==

analyticsnotification = mail

analyticsnotification = fullPathToaFile

analyticsgaptime = 10.5

18

14 Configuration file Alerta Project

==============================

SSH Tailing parameters

==============================

sshhostnames = hostname0, hostname1, hostnameN-1

hostname0 = username0, /var/log/log0, /var/log/log1, /var/log/logN-1

hostname1 = username1, /var/log/log0, /var/log/log1, /var/log/logN-1

hostnameN-1 = usernameN-1, /var/log/log0, /var/log/log1, /var/log/logN-1

rsa_key defaults to ~/.ssh/id_rsa, if that’s not your case then

provide yours

rsa_key = fullpathToRsaKeyName

19

Alerta Project 16 Log4Tailer compliant server

Part III

Log4Server

15 A centralized reporting web application

The Alerta project includes a web backend application that receives notifications from the log4tailer
clients, notifying in a web front page about the status of the logs in several machines. The log4server is
implemented using the Django web framework and can run in any wsgi compliant web server, such as
Apache, Cherokee, Nginx or CherryPy, just to name a few. Basically, the clients will register first to the
server and then notify if any fatal, error, critical or target logtrace has been found.

A network diagram is showed in Figure 5.

Figure 5: Log4Server network diagram

In the next section, we will describe the API that the log4server application implements and the one
being used by the log4tailer poster notification.

16 Log4Tailer compliant server

Alerta client has the poster notification that allows the tailer to communicate with a centralized web
application, notifying it of possible problems from remote logs. The poster notification will first register
the tailer client to the server, and next calls will be for alert notifications only.

16.1 Log4Tailer server API REST interface

The compliant API interface is as follows:

16.1.1 Registration

Log4tailer client registers to the server on startup when poster notification is provided.

HTTP Method URL Description
POST /register/ Log4tailer client registration to the server

The POST method will have in the body a JSON object with the following information:

• logpath Full path of the log

• hostname log’s server hostname

20

16 Log4Tailer compliant server Alerta Project

Upon a successul POST the server will reply a 201 CREATED answer.

Example:

POST /register/
{“logpath” : “/var/log/messages”, “logserver” : “localhost”}
RESPONSE
{“id” : 3}
HTTP/1.1 201 CREATED.

The id returned is the log identifier id.

16.1.2 Unregistration

Log4tailer client unregisters from the server ones it is stopped.

HTTP Method URL Description
POST /unregister/ Log4tailer client unregistration to the server

The POST method will have in the body a JSON object with the following information:

• id log registration id

Upon a successul POST the server will reply a 200 OK answer

Example:

POST /unregister/
{“id” : 4 }
RESPONSE
HTTP/1.1 200 OK.

16.1.3 Alerting

HTTP Method URL Description
POST /alerts/ New alert has been found.

The POST method will have in the body a JSON object with the following information:

• logtrace logtrace that triggered the alert.

• level level of the aforementioned logtrace.

• log log where the logtrace belongs to.

– logpath Full path of the log

– hostname log’s server hostname

Upon a successul POST the server will reply a 201 CREATED answer.

Example:

POST /alerts/
{“logtrace” : “This is an error trace”, “loglevel” : “error”, “log” : {“id” : “logid”, “logpath” :

“/var/log/messages”, “logserver”: “192.168.1.1”}}
RESPONSE
HTTP/1.1 201 CREATED.

16.1.4 Status

HTTP Method URL Description
GET /alerts/status Status of the log files.

21

Alerta Project 17 Log4Server deployment

It returns all log traces triggered along with the log and server they belong to. The date when it happened
is reported as well. The results are paginated in reverse order, the newest first.
Example:

GET /alerts/status
RESPONSE
HTTP/1.1 200 OK.

If you go to /alerts/status in your web browser, you would see something as showed in Figure 6.

Figure 6: Log4Server status web reporting

17 Log4Server deployment

Log4Server is implemented using the Django web framework. It persists alertable log traces into a
database for easy reporting and log4tailer client registrations.

The application uses buildout to manage all application dependencies and deployment. By issuing
the bin/buildout command, it will build a log4server.wsgi file, that is the one that you will need to use
when setting up the web server. In this document, we will show the instructions on how to set it up by
using the Apache web server.

17.1 Building the wsgi file

First of all, download the log4server distribution sources from googlecode site. Untar the package and
execute3:

virtualenv --no-site-packages ENV

. ENV/bin/activate

python bootstrap.py

bin/buildout

If everything is fine4 you will see a directory called bin. If you go into that directory you will see a
file called log4server.wsgi.

17.2 Apache configuration

In a Debian system such as Ubuntu, you’ll need to install Apache and libapache2-mod-wsgi. Once
installed, proceed as follows:

3The project provides a Makefile that executes the bin/buildout command for convenience. It can take a while, so relax
and take a cup of tea.

4You need external internet connectivity, as it will download all dependencies such as Django web framework in the
current directory.

22

17 Log4Server deployment Alerta Project

cd /etc/apache2/sites-available

and place a file called log4tailer.conf with the following contents5:

Listen 127.0.0.1:8000

Alias /media/ /path_to_log4server-version/src/log4server/media/

<VirtualHost *:8000>

WSGIDaemonProcess log4server processes=1 threads=5 display-name=%{GROUP}

WSGIProcessGroup log4server

WSGIScriptAlias / /path_to_thewsgi/log4server/bin/log4server.wsgi

</VirtualHost>

WSGISocketPrefix run/wsgi

WSGIRestrictStdout off

Then, go to:

cd /etc/apache2/sites-enabled

and place a soft link to the previous created log4tailer.conf file:

ln -s ../sites-available/log4tailer.conf

17.3 Deciding on database

Log4Server needs a database in order to persist the alertable logtraces. Sqlite3, Mysql or PostGres should
be, by far, enough. Actually, with just an Sqlite3 would be just fine. Before starting the server, you
should sync the database the first time or any time that the database does not exist already. In order to
do that, execute the following command:

bin/log4server syncdb

log4server is just a wrapper for the manage.py Django python script.

17.4 Restarting Apache

Once you have placed the Apache configuration file pointing to the wsgi file, you’ll need to restart Apache.

17.5 Main Web Frontend urls

Once Apache is running, open a web browser and go to the next url to see if it works:

http://hostname:port/alerts/status

If you see a web page with the title Logs Status Page then it means it’s working. Congratulations!!.

5this Apache2 configuration has been tested on an Ubuntu Maverick 10.10 Server

23

Alerta Project 20 No SMTP email access for log4tailer

Part IV

Case Studies

18 Full Automatic Log Monitorization

Full Automatic log monitorization can be performed when you execute Alerta in silent mode passing the
parameters -s. Log4Tailer will run silently in the background notifying by email when something goes
wrong. As of now, it will notify errors, fatals and those targets specified as a parameter or in the config
file. It is important to notice that every log can have its own set of targets (regexes). Apart from that,
you can make log4tailer to monitor inactivity in the log and notify you by email as well. You just need
to specify that in the config file as explained in the section 7.6.

Summing up, full automatic monitorization will monitor inactivity, errors, fatals and targets specified
in the config file or command line as parameters. This will give you extra confidence on the monitoring
of your application if your application uses already nagios or other monitoring software. 6

19 Semi Automatic Log Monitorization

You can have a mix of email notification and normal colorized print action. You just need to execute
log4tailer passing as a parameter -m and the corresponding configfile if you want to enable additional
features.

20 No SMTP email access for log4tailer

Sometimes a server can have the email ports closed (firewalled) due to security policies. Alternatives:

• For those cases you can use the executor notification using the mail Linux command line to send
email provided that the server runs some kind of MTA like sendmail. Let’s see an example:

log4tail --executable -c configfile.txt /var/log/out.log

where in the configfile.txt you could write something like7:

executor = echo ’ %s %s ’ | mail -s ’log4tailer alert’ -t youremail@hostname.com

If sendmail sends email to your localhost, then you could read the email easily by using the famous
command line client mutt for example. It’s important to note, that you can daemonize Alerta in
that case as well:

log4tail --no-mail-silence --executable -c configfile.txt /var/log/out.log

That means that log4tailer will be a daemon monitoring the out.log and sending email by using the
mail Linux command line.

• You can always make Alerta to report you in a file every some minutes or activate the cornermark
notifications (see section 7.4). Both features are really nice to activate them when you need to go
for a break. You can setup the cornermark feature with the cornermark parameter specifying a
time in seconds bit longer than the time you’ll be out of your desktop to avoid the mark going away.
The marks stay in the terminal for the time you specify.

6It is important to notice that pausemodes should not be enabled. That feature is to pause the output when having
PrintAction enabled.

7If you use the echo command line tool providing both place holders (log trace, log path), make sure you leave a white
space in between quotes.

24

	I The Basics
	1 Introduction
	1.1 Why should I use it?
	1.2 Components

	2 Installation and system requirements
	2.1 System Requirements
	2.2 Installation
	2.3 Running the automated tests

	3 Command line parameters

	II Advanced features
	4 Targets
	4.1 Every log with its own target scheme

	5 Throttling
	6 Hostname appending
	7 Notifications
	7.1 Print Notification
	7.1.1 Available colors
	7.1.2 Providing user defined colors
	7.1.3 Every log with its own color
	7.1.4 Line spacing

	7.2 Filter Notification
	7.3 Ignore Notification
	7.4 CornerMark Notification
	7.5 Mail Notification
	7.5.1 Flood control
	7.5.2 When should I use Mail notification

	7.6 Inactivity Notification
	7.6.1 Inactivity Mail Notification

	7.7 Executor
	7.8 Poster notification
	7.9 PrintShot
	7.9.1 requirements
	7.9.2 When should I use this feature

	7.10 SlowDown

	8 Pause Modes
	9 Reporting
	9.1 Reports by email
	9.2 Reports to a file

	10 Silent Mode
	10.1 Silent Mode when no access to email notification

	11 Coloring Standard Input
	12 Tailing last N lines
	13 SSH Tailing
	13.1 Dependencies for SSH tailing

	14 Configuration file

	III Log4Server
	15 A centralized reporting web application
	16 Log4Tailer compliant server
	16.1 Log4Tailer server API REST interface
	16.1.1 Registration
	16.1.2 Unregistration
	16.1.3 Alerting
	16.1.4 Status

	17 Log4Server deployment
	17.1 Building the wsgi file
	17.2 Apache configuration
	17.3 Deciding on database
	17.4 Restarting Apache
	17.5 Main Web Frontend urls

	IV Case Studies
	18 Full Automatic Log Monitorization
	19 Semi Automatic Log Monitorization
	20 No SMTP email access for log4tailer

