
Practical Attacks on 
DOCSIS



Who am I?

• @drspringfield 

• Security researcher at Accuvant 

• Work in embedded device security, reverse 
engineering, exploit dev 

• No background in DOCSIS, but I find it 
interesting



DOCSIS
• “Data Over Cable Service Interface Specification” 

• RF protocol stack underneath IP

It’s how your cable modem 
accesses the internet

• This presentation focuses on DOCSIS, not cable modems 

• Applicable in US, Europe (layer 1 differences), Japan



Motivation

Wifi attack range

DOCSIS 
attack range



Network overview

Router = CPE

Cable Modem = CM

Coax/fiber network = HFC

Cable modem termination system = 
CMTS



Protocol overview

Downstream PHY 
(1 to many, 64/256 QAM)

Upstream PHY 
(many to 1, TDMA, QPSK / 16-64 

QAM, “return frequencies”)

MAC

MAC ManagementPacket PDU Other

IP BPKM

MPEG-TS PMD



Protocol overview
MPEG-TS

• Fixed size packets 
• PID is 0x1FFE for DOCSIS 
• Desegmentation occurs here



Protocol overview

• Frame control determines packet type 
• Extended header supports TLVs

MAC



How to access?

1. Hacked cable modem 

• Model-specific, clunky 

2. SDR 

3. Dedicated hardware 

• Cheap, ready to go

Downstream



Clear QAM dongle

• MyGica USB QAM HDTV tuner 

• $29 on Amazon 

• Supported out of the box by Linux DVB API 

• Truly plug and play 

• Order one now!



How to access?
1. Hacked cable modem 

• Hacked CMTS? 

• Expensive, highly model-specific 

2. SDR 

• Best/only option 

3. Dedicated hardware 

• Doesn’t exist (that I know of)

Upstream



DOCSIS SEC / BPI+
• You didn’t think it was all in the clear did you? 

• DOCSIS SEC/BPI+ 

• Encryption and authentication protocol in DOCSIS 

• BPI  (Baseline Privacy Interface) in DOCSIS 1.0 

• BPI+ in DOCSIS 1.1 and 2.0 

• SEC (Security) in DOCSIS 3.0



DOCSIS SEC / BPI+

Downstream PHY / MPEG-TS Upstream PHY, PMD

MAC

MAC ManagementPacket PDU Other

IP BPKM

Encrypted
Key 

Management



BPKM 
Baseline Privacy Key Management

• Client/server key synchronization protocol 

• Operates on SAIDs (Security Association IDs) 

• 14-bit random integers 

• Authorization: 

• Prevent cable theft and device spoofing by cryptographically 
identifying modems 

• Don’t care much (this talk is not about service theft) 

• Traffic Encryption Key (TEK) provisioning 

• Provisioning TEKs that encrypt customer traffic



BPKM Authorization

Auth Request

Identification info 
serial#, MAC, CM’s public key

Certificate

Security Capabilities 
(supported algorithms)

SAID 
(initialized to zero)

Auth Response

Authorization Key 
(RSA encrypted with CM’s 

key)

Key lifetime

Key sequence #

Attributes 
(cryptographic algorithm)



BPKM Authorization
• This request is rare 

• One week lifetime* 

• On CM boot 

• This is where supported security capabilities are 
announced and selected 

• Note that supported capabilities field is unsigned 

• Downgrade attack possible?



Algorithms
• Encryption algorithms 

• 40-bit DES 

• 56-bit DES 

• 128-bit AES (added in DOCSIS 3.0) 

• Data authentication 

• None



BPKM TEK provisioning

Key Request

Identification info 
serial#, MAC, CM’s public key

Auth key sequence #

SAID

Key Response

SHA1 HMAC 
(key derived from Auth Key)

Auth key sequence #

SAID

current/next TEK parameters 
3DES encrypted TEK, lifetime, seq #, IV

SHA1 HMAC 
(key derived from Auth Key)



BPKM TEK provisioning
• More frequent 

• New TEK 6 hours* 

• TEK is protected with Auth key-derived KEK 

• IV is in the TEK parameters 

• Only 1 IV is used for the lifetime of TEK 

• Chaining is re-initialized with each frame



Packet PDU encryption 
(almost* all Packet PDUs)

MAC 
header

Contains “Extended 
Header” identifying 
Encryption enabled 

and SAID

Destination/
Source MAC 
addresses

Protocol 
Type IP CRC

Encrypted with TEK 
using CBC with 
residual block 
termination



Problems with DOCSIS SEC

• Use of 56-bit DES 

• DOCSIS 3.0 adds support for AES 

• Never seen AES used* 

• Lack of use likely due to DOCSIS 2.0 support 

• CMTS are not picking most secure 
cryptographic algorithm supported by CM



Problems with DOCSIS SEC

• Re-use of CBC IV in each frame 

• Required by specification 

• Identical packets will have identical ciphertext



Exploiting these 
vulnerabilities

• First focused on attacks performable with 
passive downstream read access only 

• Reduced cost and complexity to perform 

• No significant chance of detection 

• Doesn’t even require being a subscriber



DOCSIS DES brute force

1. Identify the victims 

2. Obtain tuples for each victim (X, E(X)) 

3. Brute-force DES key to determine X from E(X) 

• If X static, time/memory tradeoff possible



Identifying the victims
• Packet PDU exposes source & destination MAC 

addresses in clear 

• ARP traffic is in the clear 

• IP registration occurs prior to encryption/
authentication (in normal provisioning flow) 

• Unless EAE enabled (Early Authentication & 
Encryption) 

• Never seen this enabled*



Identifying the victims
• Sniff ARP traffic on downstream and collect subnets 

• Send ICMP ping sweeps across subnets with 
various packets sizes 

• Irrelevant how victim CPE responds 

• Perform correlation between encrypted packet 
sizes and sent ICMP packet length 

• Produce (MAC, IP) tuples



Obtaining known plaintext 
values

• Send ping containing known data

CBC

CipherN-1

PlainN

• Re-send identical packet but change PlainN  = CipherN-1 

• Subsequent CipherN = E(CipherN-1 ⊕ CipherN-1) = E(0) 

• Sniffing lossy due to channel bonding

CipherN



Brute-forcing 56-bit DES
• Attacking 56-bit DES is not new 

• EFF DES Cracker (1998) 

• Moxie Marlinspike (2012) for MS-CHAPv2 using 
FPGAs 

• Karsten Nohl (2013) for SIM cards using rainbow 
tables 

• Sergey Gordeychik/Alex Zaitsev (2014) reproducing 
Karsten’s attack using FPGAs



DOCSIS use-case

• DES TEKs are only useful for 6 hours of traffic 

• Ideally, cracking DES TEKs should be cheap, 
fast (<6hrs), and repeatable 

• Some upfront cost is acceptable



Existing DES attack 
platforms

Implementer Upfront cost Crack time

Karsten ~ EUR 1500 1 minute

Moxie ? 23 hours

Sergey/Alex ~$1400 3.4 days



My attack platform
• Uses rainbow tables for time/memory tradeoff 

since E(0) 

• Created with Amazon EC2, tables stored in S3 

• Total upfront EC2 cost was around $2000 (across 
~3 weeks) on GPU spot instances 

• Cracking cost is $0.22, takes 23 minutes 

• Assuming spin-up time is amortized



DES rainbow tables
• 16 rainbow tables, 64gb apiece (1 tb total) 

• Each chain represents 1048576 DES operations 
(1 MegaDES)

E(0,Imm1)Start E(0,Start) Imm1 EndE(0,ImmN-1)

DES Reduce DES

…

Reduce

Keep start and end only



Attack platform systems: 
generation

• RTGen 

• GPU+CPU instances creating work units 

• Each work unit is 1 TeraDES 

• Massively parallelized 

• Assimilator 

• Memory-optimized instance 

• Sorts and uniques work unit chains (by endpoint) into finished 
tables 

• Each finished table is 64gb, and represents 4 PetaDES



Attack platform systems: 
cracking

• Cracker 

• GPU instance (one for each table index) 

• Does “precalculation”: calculate every possible chain endpoint that would 
contain E(X) 

• Takes 20 minutes 

• Table Lookup 

• Memory instance (one for each table index) 

• Looks up all precalculated chain endpoints in final table 

• For each found, walks chain from start point to find cleartext X 

• Takes ~3 minutes



Success probability
• Due to reduction step, cracking success is not 

guaranteed 

• Probability of two ciphertexts reducing to the same key 
is 255/2**56 

• Unless collision occurs at same position, chains will 
not merge 

• This is because position is used in reduction function 

• In practice, about 4% endpoint collisions in a table part



Notes on performance
• Use bit slicing to do N parallel DES operations 

• N depends on GPU (32) vs CPU (128) 

• Each DES bit is represented in a single variable 

• This makes permutation (bit-shuffling) operations free, which are 
otherwise costly on CPUs 

• Bits in the variable represent DES operations occurring in parallel 

• Replace typical reduction algorithm (addition) with bitslice-friendly 
(xor) to avoid serializing bits between steps

Data Bit X Key 0 Key 1 Key 2 Key 3 Key 4 Key N…



IV recovery
• Cracking only reveals key, what about IV? 

• Only in BPKM Key Reply 

• Ignoring it is OK, since you only lose the first block, but 
Wireshark won’t like your pcaps 

• Heuristic recovery

0800 

45 
00 

05dc



Video Demo





Decryption oracle attacks
• Two theoretical attacks that are nearly practical 

• Work regardless of encryption algorithm 

• These will be more important after AES used 

• Use the CMTS/CM + ICMP as a decryption oracle 

• This is an active attack, and only available for TEK lifetime 

• Requires functional ICMP to/from victim 

• Requires being a subscriber



Decryption oracle

1) Echo 2) Echo

3) Echo 
Reply

4) Echo 
Reply

attacker victim



Decryption oracle

2) Echo

3) Echo 
Reply

4) Echo 
Reply

CM Oracle: 
Downstream 

injection

modify &  
reinject

attacker victim



CM Oracle attack
1. Identify the victims, collect downstream 

encrypted payloads 

2. Send ICMP echo to victim, collect encrypted 
ping request 

3. Inject ICMP echo, but splice in desired payload 

• Requires QAM modulator 

4. Wait for echo response containing cleartext



CM Oracle attack

MAC PDU IP ICMP Echo Placeholder Data

Collected downstream to victim

MAC PDU IP ICMP Echo Sniffed Encrypted Data

Modified and re-injected downstream with modulator

MAC PDU IP ICMP Echo 
Reply Decrypted Replayed Data

Received by attacker



Injection feasibility
• There doesn’t appear to be anything preventing this at 

the physical layer 

• Requires specific hardware 

• QAM modulator 

• Lots of these available on eBay for all kinds of price 
points, starting at reasonable levels 

• Likely require some level of hacking 

• SDR



Decryption oracle

3) Echo 
Reply

CMTS Oracle: 
Upstream 

sniffing

modify &  
reinjectattacker victim

4) Echo 
Reply



CMTS Oracle attack
1. Identify the victims, collect downstream encrypted 

payloads 

2. Send ICMP echo to victim, collect upstream ping reply 
from victim 

• Requires upstream sniffing capability 

3. Spoofed upstream packet, but splice in desired payload 

• Requires hacked cable modem 

4. Wait for echo response containing cleartext



Upstream sniffing feasibility
• Requires sniffing upstream data 

• Requires sniffing with SDR



Upstream spoofing on Ubee
• Telnet on 64623 as user/user for root access 

• /proc/net/dbrctl/maxcpe 

• number of CPE devices the modem will forward (default 1) 

• /proc/net/dbrctl/addcpe 

• write another MAC address here to start modem forwarding 

• Read current TEK/IV from /dev/mem 

• decrypt encrypted data with my TEK, expect modem to encrypt it 
back to original (?) 

• SAID is not in upstream packet, but key version# is



CRC validation
• What about the encrypted CRC in the spliced packet 

PDU?  

• We don’t know what the correct CRC value is 

• Brute force sucks 

MAC PDU IP ICMP Echo Sniffed Encrypted DataCRC 
solution

4b, “resets” CRC to what it would be after processing MAC 
header only, so spliced CRC still correct



Conclusions

• Your DOCSIS network is less safe than your wifi 
network 

• Downstream sniffing is easy and decryption is 
possible 

• Upstream sniffing is close 

• Active attacks are plausible



Solutions
• Support AES immediately for 3.0 modems 

• Support EAE 

• Drop ICMP at the CMTS? 

• Consider other traffic types that may be used 
for oracle 

• Add data authentication!



Software Releases
• CableTables software 

• Uses MyGica dongle (or equivalent) to perform DES cracking 
attack 

• Supports local or cloud-based rainbow tables 

• http://tiny.cc/cabletables 

• Cloud DES Rainbow table generation software 

• What I used to generate my DES rainbow tables in EC2 

• What I use for cloud-based cracking 

• http://tiny.cc/cabletables_cloud

http://tiny.cc/cabletables
http://tiny.cc/cabletables_cloud


Obtaining the tables

• They are available to all AWS users 

• Requestor Pays: you just pay for data transfer 

• $0 to US East AWS region 

• 1tb: ~$20 to other AWS region 

• 1tb: ~$90 over the internet to your computer



Q&A


